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Smoothing Neural Network for Constrained
Non-Lipschitz Optimization With Applications

Wei Bian and Xiaojun Chen

Abstract— In this paper, a smoothing neural network (SNN)
is proposed for a class of constrained non-Lipschitz optimiza-
tion problems, where the objective function is the sum of a
nonsmooth, nonconvex function, and a non-Lipschitz function,
and the feasible set is a closed convex subset of R

n. Using
the smoothing approximate techniques, the proposed neural
network is modeled by a differential equation, which can be
implemented easily. Under the level bounded condition on the
objective function in the feasible set, we prove the global existence
and uniform boundedness of the solutions of the SNN with
any initial point in the feasible set. The uniqueness of the
solution of the SNN is provided under the Lipschitz property
of smoothing functions. We show that any accumulation point of
the solutions of the SNN is a stationary point of the optimization
problem. Numerical results including image restoration, blind
source separation, variable selection, and minimizing condition
number are presented to illustrate the theoretical results and
show the efficiency of the SNN. Comparisons with some existing
algorithms show the advantages of the SNN.

Index Terms— Image and signal restoration, non-Lipschitz
optimization, smoothing neural network, stationary point,
variable selection.

I. INTRODUCTION

NEURAL networks are promising numerical methods for
solving a number of optimization problems in engi-

neering, sciences, and economics [1]–[4]. The structure of
a neural network can be implemented physically by desig-
nated hardware such as specific integrated circuits where the
computational procedure is distributed and parallel. Hence,
the neural network approach can solve optimization problems
in running time at the order of magnitude much faster than
the conventional optimization algorithms executed on general
digital computers [5], [6]. Moreover, neural networks can solve
many optimization problems with time-varying parameters [7],
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[8] since the dynamical techniques can be applied to the
continuous-time neural networks.

Recently, neural networks for solving optimization problems
have been extensively studied. In 1986, Tank and Hopfield
introduced the Hopfield neural network for solving the lin-
ear programming problem [9]. This paper inspired many
researchers to develop various neural networks for solving
optimization problems. Kennedy and Chua proposed a neural
network for solving a class of nonlinear programming prob-
lems in [10].

We have noticed that in many important applications, the
optimization problems are not differentiable. However, the
neural networks for smooth optimization problems cannot
solve nonsmooth optimization problems, because the gradients
of the objective and constrained functions are required in
such neural networks. Hence, the study of neural networks
for nonsmooth optimization problems is necessary. In [11],
Forti, Nistri, and Quincampoix presented a generalized neural
network for solving a class of nonsmooth convex optimization
problems. In [12], using the penalty function method and dif-
ferential inclusion, Xue and Bian defined a neural network for
solving a class of nonsmooth convex optimization problems.
Other interesting results for nonsmooth convex optimization
using neural networks can be found in [13]–[15].

The efficiency of the neural networks for solving convex
optimization problems relies on the convexity of functions.
A neural network for a nonconvex quadratic optimization is
presented in [16]. Xia, Feng, and Wang gave a recurrent neural
network for solving a class of differentiable and nonconvex
optimization problems in [6]. Another neural network using a
differential inclusion for a class of nonsmooth and nonconvex
optimization problems was proposed in [17]. Some results on
the convergence analysis of neural networks with discontinu-
ous activations are given in [18]–[20], which are potentially
useful for using the neural networks to solve nonsmooth
optimization problems.

For nonsmooth optimization, the Lipschitz continuity is
a necessary condition to define the Clarke stationary point.
However, some real-world optimization problems are non-
Lipschitz, such as problems in image restoration, signal recov-
ery, variable selection, etc. For example, the l2-l p problem

min
x∈Rn

‖Ax − b‖2
2 + λ‖x‖p

p (1)

with 0 < p < 1. Problem (1) attracts great attention in
variable selection and sparse reconstruction [21]–[33]. The
l2 − l1 problem is also known as Lasso [24], which is a
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convex optimization problem and can be efficiently solved.
In some cases, some solutions of the l2-l1 problem are in
the solution set of the corresponding l2-l0 problem [27]. l1
regularization provides the best convex approximations to l0
regularization and it is computationally efficient. Nevertheless,
l1 regularization can not handle the collinearity problem and
may yield inconsistent selections when applied to variable
selection in some situations. Moreover, l1 regularization often
introduces extra bias in estimation [23] and cannot recovery a
signal or image with the least measurements when it is applied
to compressed sensing [25]–[31].

In [31], Chartrand and Staneva showed that by replacing
the l1 norm with the l p (p < 1) norm, exact reconstruc-
tion was possible with substantially fewer measurements.
Using the basis pursuit method, Saab, Yilmaz, Mckeown, and
Abugharbieh [25] illustrated experimentally that the separation
performance for underdetermined blind source separation of
anechoic speech mixtures was improved when one used l p

basis pursuit with p < 1 compared to p = 1. Chen, Xu, and
Ye [32] established a lower bound theorem to classify zero and
nonzero entries in every local solution of l2-l p problem (1).
Recently, it has been proved that finding a global minimizer
of (1) is strongly NP-hard [33].

The following problem is a generalized version of (1):

min
x∈Rn

n∑

i=1

ψ(|Ai x − bi |)+ λ

d∑

i=1

ωi (|xi |) (2)

where Ai is the i th row of A, ωi is a non-Lipschitz function,
and ψ is the Huber function [34], [35].

Penalty optimization problems are also an important source
of non-Lipschitz optimization problems. Penalty techniques
are widely used in constrained optimization. However, using
smooth convex penalty functions cannot get exact solutions of
the original problems. Non-Lipschitz penalty functions have
been used to get exact solutions [36].

Basing on the above source problems, in this paper, we
consider the following optimization problem:

min f (x)+
r∑

i=1

ϕ
(
|dT

i x |p
)

s.t. x ∈ X
(3)

where x ∈ R
n , f : R

n → R is a locally Lipschitz function,
X is a closed convex subset of R

n , p ∈ (0, 1) is a positive
parameter and di ∈ R

n , i = 1, 2, . . . , r , ϕ : R+ → R is a
differentiable and globally Lipschitz function with Lipschitz
constant lϕ .

Some popular formats of ϕ satisfying the above conditions
can be given by

ϕ(z) = λz, ϕ(z) = λ
αz

1 + αz
, ϕ(z) = λ log(αz + 1) (4)

where λ and α are positive parameters.
In our optimization model (3), the function | · |p for 0 <

p < 1 is neither convex nor Lipschitz continuous, and f is
not necessarily convex or smooth. It is worth noting that our

analysis can be easily extended to the following problem:

min f (x)+
r∑

i=1

ϕi

(
|dT

i x |p
)

s.t. x ∈ X
(5)

that is, these functions ϕi are not necessarily same.
Specially, when di is the i th column of the identity matrix

with dimension n × n, then (5) is reformatted as

min f (x)+
n∑

i=1

ϕi
(|xi |p)

s.t. x ∈ X .
(6)

To the best of our knowledge, all methods for solving
non-Lipschitz optimization problems are discrete, such as
reweighted l1 methods, orthogonal matching pursuit algo-
rithms, iterative thresholds algorithms, smoothing conjugate
gradient methods, etc. In this paper, for the first time, we use
the continuous neural network method to solve non-Lipschitz
optimization problem (3) and we adopt the smoothing tech-
niques [21], [37]–[39] into the proposed neural network.
Almost all neural networks for solving optimization problems
are relying on the Clarke generalized gradient, which is defined
for the locally Lipschitz function. For the non-Lipschitz items
in (3), the Clarke generalized gradient cannot be defined and
it is difficult to give a kind of gradient of the non-Lipschitz
functions, which are effective for optimization and can be
calculated easily. However, the smoothing approximations of
the non-Lipschitz items used in this paper are continuously dif-
ferentiable and their gradients can be calculated easily. More-
over, from the theoretical analysis and numerical experiments
in this paper, we can find that they are effective for solving
optimization problem (3). This is the main reason that we use
the neural network based on the smoothing method instead
of using the neural network directly to solve (3). Moreover,
there are some difficulties in solving and implementing neural
networks modeled by differential inclusion [11], [12], [16],
[17]. The neural network based on smoothing techniques for
nonsmooth optimization is modeled by a differential equation
instead of differential inclusion, which can avoid solving
differential inclusion. Since the objective function of (3) is
non-Lipschitz, the Clarke stationary point of (3) cannot be
defined. We introduce a new definition of stationary points of
optimization problem (3).

We will use the projection operator to handle the constraint
in (3) since the feasible set X is a closed convex set. Moreover,
in many applications, the projection operator has an explicit
form, for instance, X is defined by box constraints or affine
equality constraints.

The remaining part of this paper is organized as follows.
In Section II, we introduce some necessary definitions and
preliminary results including the definitions of smoothing
function and stationary point of (3). In Section III, we propose
a smoothing neural network (SNN) modeled by a differential
equation to solve (3). We study the global existence and limit
behavior of the solutions of the proposed neural network. In
theory, we prove that any accumulation point of the solutions
of the proposed neural network is a stationary point of (3).
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Especially, when the proposed neural network is applied
to solve (6), its accumulation points can satisfy a stronger
inclusion property which reduces to the definition of the Clarke
stationary point for p ≥ 1. In Section IV, we present numerical
results to show the efficiency of the SNN for image restoration,
blind source separation, variable selection, and optimizing
condition number.

Notation: Given column vectors x = (x1, x2, . . . , xn)
T and

y = (y1, y2, . . . , yn)
T , 〈x, y〉 = x T y = ∑n

i=1 xi yi is the
scalar product of x and y. xi denotes the i th element of x . ‖x‖
denotes the Euclidean norm defined by ‖x‖ = (

∑n
i=1 x2

i )
1/2.

For a matrix A ∈ R
n×n , the norm ‖A‖ is defined by ‖A‖ =

max‖x‖=1 ‖Ax‖. For any y ∈ R, ∇ϕ(y) means the value
of ∇ϕ at a point y. For a closed convex subset � ⊆ R

n ,
int(�), and cl(�) mean the interior and closure of � in
R

n , respectively. For a subset U ⊆ R
n , co U indicates the

convex hull of U . P� : R
n → � is the projection operator

from R
n onto � and N�(x) means the normal cone of � at

x . AC[0,∞) represents the set of all absolutely continuous
functions x : [0,∞) → R

n .

II. PRELIMINARY RESULTS

In this section, we state some definitions and properties
needed in this paper. We refer the readers to [39]–[42].

Definitions of local Lipschitz and regular real-valued func-
tions, upper semicontinuous and lower semicontinuous set-
valued functions can be found in [40].

Suppose that h: R
n → R is locally Lipschitz, hence h is

differentiable almost everywhere. Let Dh denote the set of
points at which h is differentiable. Then the Clarke generalized
gradient is given by

∂h(x) = co

{
lim

xk→x;xk∈Dh

∇h(xk)

}
. (7)

Proposition 2.1 ([40]): For any fixed x ∈ R
n , the following

statements hold.

1) ∂h(x) is a nonempty, convex and compact set of R
n .

2) ∂h is upper semicontinuous at x .
For a nonempty, closed and convex set � in R

n , the
definitions of the tangent and normal cones of � are as in [40].

From [40, Proposition 2.4.2], we know that

N�(x) = cl

⎛

⎝
⋃

ν≥0

ν∂d�(x)

⎞

⎠ (8)

where d�(x) = minu∈� ‖x − u‖ is a globally Lipschitz
function.

The projection operator to � at x is defined by

P�(x) = arg min
u∈� ‖u − x‖2

and it has the following properties.
Proposition 2.2 ([42]):

〈v − P�(v), P�(v)− u〉 ≥ 0 ∀ v ∈ R
n, u ∈ �;

‖P�(u)− P�(v)‖ ≤ ‖u − v‖ ∀ u, v ∈ R
n .

Many smoothing approximations for nonsmooth optimiza-
tion problems have been developed in the past decades.

The main feature of smoothing methods is to approximate the
nonsmooth functions by the parameterized smooth functions.
This paper uses a class of smoothing functions defined as
follows.

Definition 2.1: Let h : R
n → R be a locally Lipschitz

function. We call h̃ : R
n ×[0,+∞) → R a smoothing function

of h, if h̃ satisfies the following conditions.
1) For any fixed μ > 0, h̃(·, μ) is continuously differ-

entiable in R
n , and for any fixed x ∈ R

n , h̃(x, ·) is
differentiable in [0,+∞).

2) For any fixed x ∈ R
n , limμ↓0 h̃(x, μ) = h(x).

3) There is a positive constant κh̃ > 0 such that

|∇μh̃(x, μ)| ≤ κh̃ ∀μ ∈ [0,∞), x ∈ R
n .

4) {limz→x,μ↓0 ∇z h̃(z, μ)} ⊆ ∂h(x).
We should state that (2) and (3) of Definition 2.1 imply that

for any fixed x ∈ R
n

lim
z→x,μ↓0

h̃(z, μ) = h(x) (9)

and

|h̃(x, μ)− h(x)| ≤ κh̃μ ∀μ ∈ [0,∞), x ∈ R
n. (10)

Many existing results in [37]–[39] give us some theoretical
basis for constructing smoothing functions. Throughout this
paper, we always denote f̃ a smoothing function of f in (3).

Next, we will focus on the smoothing approximations of
non-Lipschitz items ϕ(|dT

i x |p), i = 1, 2, . . . , r . In this paper,
we use the smooth functions ϕ(θ p(dT

i x, μ)) to approximate
ϕ(|dT

i x |p), i = 1, 2, . . . , r , where θ(s, μ) is a smoothing
function of |s| defined by

θ(s, μ) =
⎧
⎨

⎩

|s|, if |s| > μ

s2

2μ
+ μ

2
, if |s| ≤ μ.

(11)

Since limμ↓0 θ(dT
i x, μ) = |dT

i x |, we can easily obtain that

lim
μ↓0

ϕ(θ p(dT
i x, μ)) = ϕ(|dT

i x |p) i = 1, 2, . . . , r. (12)

For any fixed μ > 0, i = 1, 2, . . . , r , we obtain

∇xθ
p(dT

i x, μ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p|dT
i x |p−1sign(dT

i x)di , if |dT
i x | > μ

p

(
|dT

i x |2
2μ + μ

2

)p−1
dT

i xdi

μ ,

if |dT
i x | ≤ μ.

(13)
Then, we have

∇xϕ(θ
p(dT

i x, μ)) = ∇ϕ(θ p(dT
i x, μ)) · ∇xθ

p(dT
i x, μ) (14)

which means that ϕ(θ p(dT
i x, μ)) is continuously differentiable

in x for any fixed μ > 0, i = 1, 2, . . . , r .
On the other hand, for any fixed x ∈ R

n , we have

∇μθ p(dT
i x, μ) = pθ p−1(dT

i x, μ)∇μθ(dT
i x, μ) (15)

where

∇μθ(dT
i x, μ) =

⎧
⎪⎨

⎪⎩

0, if |dT
i x | > μ

− |dT
i x |2
2μ2 + 1

2
, if |dT

i x | ≤ μ.
(16)
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Thus

∇μϕ(θ p(dT
i x, μ)) = ∇ϕ(θ p(dT

i x, μ))·∇μθ p(dT
i x, μ) (17)

which means that ϕ(θ p(dT
i x, μ)) is continuously differentiable

in μ for any fixed x ∈ R
n , i = 1, 2, . . . , r .

In [32], Chen, Xu, and Ye studied unconstrained l2-l p

optimization problem (1) and gave a definition for the first
order necessary condition of problem (1), where the objective
function is not Lipschitz continuous.

Combining the first order necessary condition of [32, 1]
and the definition of the Clarke stationary point, we define the
stationary point of (3) as follows.

Definition 2.2: For x∗ ∈ X , we call x∗ a stationary point
of (3) if

0 ∈ (x∗)T ∂ f (x∗)+ p
r∑

i=1

|dT
i x∗|p∇ϕ

(
|dT

i x∗|p
)

+(x∗)T NX (x∗).

III. MAIN RESULTS

In this paper, we propose a SNN modeled by the following
differential equation:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ(t) = − x(t)+ PX [x(t)− ∇x f̃ (x(t), μ(t))

−
r∑

i=1

∇xϕ(θ
p(dT

i x(t), μ(t)))]

x(0) = x0

where f̃ : R
n × [0,∞) → R is a smoothing function of f ,

μ : [0,∞) → [0,∞) is a continuously differentiable and
decreasing function satisfying limt→∞ μ(t) = 0.

Remark 3.1: We can choose

μ(t) = μ0

(t + 1)α
or μ(t) = μ0e−αt

where μ0 and α are positive numbers.
The proposed neural network SNN is modeled by a nonau-

tonomous differential equation. There are many kinds of
nonautonomous neural network models, such as the Cohen-
Grossberg-Type neural network in [43] and the uncertain
stochastic Hopfield neural network in [44], which have many
implementation methods. The proposed network SNN can be
seen as a neural network with one continuous variable input
μ(t). The dynamic differential equation in the SNN can be
realized in a network with the architecture block diagram
structure in Fig. 1.

To present the main results of this paper, we need some
properties of ϕ(θ p(dT

i x, μ)), i = 1, 2, . . . , r as follows.
Proposition 3.1: For any i = 1, 2, . . . , r , the following

statements hold.

1) |∇μϕ(θ p(dT
i x, μ))| ≤ plϕμp−1 ∀x ∈ R

n .
2) |ϕ(θ p(dT

i x, μ))− ϕ(|dT
i x |p)| ≤ łϕμp ∀x ∈ R

n .
3) ∇xθ

p(dT
i x, μ) is globally Lipschitz in x for any fixed

μ > 0.
4) If ∇ϕ is locally (globally) Lipschitz on [0,+∞), then

∇xϕ(θ
p(dT

i x, μ)) is locally (globally) Lipschitz in x for
any fixed μ > 0.

∇
x
f̃  (•,•)

∇
5
θP (•,•)μ

d
1

T

d
r
T

d
1

d
r

∇ϕ(•)

×

×

−
−+ +

∇ϕ(•)

p
x
(•) x∫� �

∇
5
θP (•,•)

θP (•,•)

θP (•,•)

Fig. 1. Architecture block diagram structure of the SNN.

Proof: See Appendix A.
Remark 3.2: The gradients of the three functions ϕ given

in (4) are globally Lipschitz.
Now, we study the global existence, boundedness and

feasibility of the solutions of the SNN. For simplicity, we use
xt and μt to denote x(t) and μ(t) in the proofs of the main
results of this paper, respectively.

Theorem 3.1: Suppose the level set
{

x ∈ X : f (x)+
r∑

i=1

ϕ(|dT
i x |p) ≤ γ

}

is bounded for any γ > 0. Then, for any initial point x0 ∈
X , the SNN has a solution x : [0,∞) → R

n in AC[0,∞).
Moreover, any solution x ∈ AC[0,∞) of the SNN satisfies:

1) x(t) ∈ X , ∀t ∈ [0,∞);
2) there is a ρ > 0 such that supt∈[0,∞) ‖x(t)‖ ≤ ρ.

Proof: Since the right-hand function of the SNN is
continuous in x and t , there are a T > 0 and an absolutely
continuous function x : [0, T ) → R

n such that it is a local
solution of the SNN [45]. Suppose that [0, T ) is the maximal
existence interval of this solution.

First, we prove that xt ∈ X , ∀t ∈ [0, T ). The SNN can be
rewritten as

ẋt + xt = h(t)

where

h(t) = PX

[
xt − ∇x f̃ (xt , μt )−

r∑

i=1

∇xϕ(θ
p(dT

i xt , μt ))

]

is a continuous function taking its values in X . A simple
integration procedure gives

xt = e−t x0 + e−t
∫ t

0
h(s)esds

which can be rewritten as

xt = e−t x0 + (1 − e−t )

∫ t

0
h(s)

es

et − 1
ds. (18)

Since (es/et − 1) > 0, h(s) ∈ X , ∀ 0 ≤ s ≤ t ,
∫ t

0 (e
s/et −

1) ds = 1 and X is convex, we have
∫ t

0
h(s)

es

et − 1
ds ∈ X ∀t ∈ [0, T ).
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Combining the above result and x0 ∈ X in (18), we obtain
that

xt ∈ X ∀t ∈ [0, T ).

Differentiating f̃ (xt , μt )+∑r
i=1 ϕ(θ

p(dT
i xt , μt )) along this

solution of the SNN, we obtain

d

dt

[
f̃ (xt , μt )+

r∑

i=1

ϕ
(
θ p(dT

i xt , μt )
)]

=
〈
∇x f̃ (xt , μt )+

r∑

i=1

∇xϕ(θ
p(dT

i xt , μt )), ẋt

〉

+
(

∇μ f̃ (xt , μt )+
r∑

i=1

∇μϕ
(
θ p(dT

i xt , μt )
))

μ̇t . (19)

Let v = xt − ∇x f̃ (xt , μt ) − ∑r
i=1 ∇xϕ(θ

p(dT
i xt , μt )) and

u = xt in Proposition 2.2, from the SNN, we have
〈
∇x f̃ (xt , μt )+

r∑

i=1

∇xϕ
(
θ p(dT

i xt , μt )
)
, ẋt

〉
≤ −‖ẋt‖2.

(20)
From Definition 2.1 and μ̇t ≤ 0, ∀t ∈ [0, T ), there is a

κ f̃ > 0 such that

∇μ f̃ (xt , μt )μ̇t ≤ −κ f̃ μ̇t . (21)

By Proposition 3.1, we obtain

r∑

i=1

∇μϕ(θ p(dT
i xt , μt ))μ̇t ≤ −r plϕμ

p−1
t μ̇t . (22)

Substituting (20)–(22) into (19) we have

d

dt

[
f̃ (xt , μt )+

r∑

i=1

ϕ
(
θ p(dT

i xt , μt )
)

+ κ f̃ μt + rlϕμ
p
t

]
≤ −‖ẋt‖2. (23)

This implies that f̃ (xt , μt ) + ∑r
i=1 ϕ(θ

p(dT
i xt , μt )) +

κ f̃ μt + rlϕμ
p
t is a non-increasing function in t on [0, T ),

which follows that for any t ∈ [0, T )

f̃ (xt , μt )+
r∑

i=1

ϕ
(
θ p(dT

i xt , μt )
)

+ κ f̃ μt + rlϕμ
p
t

≤ f̃ (x0, μ0)+
r∑

i=1

ϕ
(
θ p(dT

i x0, μ0)
)

+ κ f̃ μ0 + rlϕμ
p
0 .

On the other hand, from (10) and Proposition 3.1 in (2), we
obtain

f̃ (xt , μt )+
r∑

i=1

ϕ
(
θ p(dT

i xt , μt )
)

+ κ f̃μt + rlϕμ
p
t

≥ f (xt )+
r∑

i=1

ϕ(|dT
i xt |p). (24)

Thus, for any t ∈ [0, T )

f (xt )+
r∑

i=1

ϕ
(
|dT

i xt |p
)

≤ f̃ (x0, μ0)

+
r∑

i=1

ϕ(θ p(dT
i x0, μ0))+ κ f̃ μ0 + rlϕμ

p
0 . (25)

Owning to the level boundedness of the objective function in
X , we obtain x : [0, T ) → R

n is bounded. Using the theorem
about the extension of a solution [45], we get that this solution
of the SNN can be extended, which leads a contradiction to
the supposition that [0, T ) is the maximal existence interval
of xt . Therefore, this solution of the SNN exists globally.

Moreover, since (25) holds for all t ∈ [0,∞), from the
level bounded assumption in this theorem, this solution xt of
the SNN is uniformly bounded, which means there is a ρ > 0
such that

‖xt‖ ≤ ρ ∀t ∈ [0,∞).

The next proposition shows that the locally Lipschitz con-
tinuity of ∇ϕ(·) and ∇x f̃ (·, μ) can guarantee the uniqueness
of the solution of the SNN.

Proposition 3.2: With the conditions of Theorem 3.1, if
∇ϕ(·) and ∇x f̃ (·, μ) is locally Lipschitz for any fixed μ > 0,
then the solution of the SNN with an initial point x0 ∈ X is
unique.

Proof: See Appendix B.
The next theorem gives the main results of this paper, which

presents some convergent properties of the SNN.
Theorem 3.2: With the conditions of Theorem 3.1, any

solution x ∈ AC[0,∞) of the SNN with an initial point
x0 ∈ X satisfies the following properties:

1) limt→∞ f (x(t))+ ∑r
i=1 ϕ(|dT

i x(t)|p) exists;
2) ẋ(t) ∈ L2[0,∞) and limt→∞ ‖ẋ(t)‖ = 0;
3) any accumulation point of x(t) is a stationary point

of (3);
4) if all stationary points of (3) are isolated, then x(t)

converges to one stationary point of (3) as t → ∞.
Proof: From Theorem 3.1, there is a ρ > 0 such that

‖xt‖ ≤ ρ, ∀t ≥ 0. Thus, from (24), we obtain

f̃ (xt , μt )+
r∑

i=1

ϕ
(
θ p(dT

i xt , μt )
)

+ κ f̃ μt + rlϕμ
p
t

≥ inf
x∈{x :‖x‖≤ρ}

[
f (x)+

r∑

i=1

ϕ(|dT
i x |p)

]
. (26)

Equations (23) and (26) imply that

f̃ (xt , μt )+
r∑

i=1

ϕ(θ p(dT
i xt , μt ))+ κ f̃ μt + rlϕμ

p
t

is non-increasing and bounded from below on [0,∞), then

lim
t→∞

[
f̃ (xt , μt )+

r∑

i=1

ϕ(θ p(dT
i xt , μt ))+ κ f̃ μt + rlϕμ

p
t

]

(27)

exists.
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Thus, from (9), Proposition 3.1 and limt→∞μt = 0, we
obtain

lim
t→∞

[
f̃ (xt , μt )+

r∑

i=1

ϕ(θ p(dT
i xt , μt ))+ κ f̃ μt + rlϕμ

p
t

]

= lim
t→∞

[
f (xt )+

r∑

i=1

ϕ(|dT
i xt |p)

]
.

On the other hand, (23) and (27) imply that

lim
t→∞

d

dt

[
f̃ (xt , μt )+

r∑

i=1

ϕ(θ p(dT
i xt , μt ))

+κ f̃μt + rlϕμ
p
t

]
= 0. (28)

Owning to (23), we obtain

lim
t→∞ ‖ẋt‖ = 0.

From (26), integrating (23) from 0 to t gives
∫ ∞

0
‖ẋt‖2dt < ∞.

Since x : [0,∞) → R
n is uniformly bounded, xt has at

least one accumulation point. If x∗ is an accumulation point
of xt , there exists a sequence {tk} such that limk→∞ xtk = x∗
and limk→∞ μtk = 0 as limk→∞ tk = ∞.

From Theorem 3.1, we know that x∗ ∈ X .
Let

gtk = xtk − PX
[

xtk − ∇x f̃ (xtk , μtk )

−
r∑

i=1

∇xϕ(θ
p(dT

i xtk , μtk ))

]
. (29)

Owning to limk→∞ ẋtk = 0 and the SNN, we obtain

lim
k→∞ gtk = 0. (30)

Using Proposition 2.2 into (29), we have
〈
∇x f̃ (xtk , μtk ) +∑r

i=1 ∇xϕ(θ
p(dT

i xtk , μtk ))− gtk ,

u − (xtk − gtk )

〉
≥ 0 ∀ u ∈ X . (31)

From the definition of normal cone and the above inequality,
we have

0 ∈ ∇x f̃ (xtk , μtk )+
r∑

i=1

∇xϕ
(
θ p(dT

i xtk , μtk )
)

− gtk

+NX (xtk − gtk ). (32)

From (32) and

NX (xtk − gtk ) =
⋃

ν≥0

ν∂dX (xtk − gtk )

there exist νtk ≥ 0 and ξtk ∈ ∂dX (xtk − gtk ) such that

0 = ∇x f̃ (xtk , μtk )+
r∑

i=1

∇xϕ(θ
p(dT

i xtk , μtk ))− gtk + νtk ξtk .

From Definition 2.1, we have
{

lim
k→∞ ∇x f̃ (xtk , μtk )

}
⊆ ∂ f (x∗). (33)

Since x � ∂dX (x) is upper semicontinuous and
limk→∞ xtk − gtk = x∗, then

{
lim

k→∞ ξtk

}
⊆ ∂dX (x∗).

Combining the above relationship with limk→∞ xtk = x∗,
we have

{
lim

k→∞ νtk ξtk

}
⊆

⋃

ν≥0

ν∂dX (x∗) = NX (x∗). (34)

Thus

0 ∈ ∂ f (x∗)+
r∑

i=1

lim
k→∞ ∇xϕ(θ

p(dT
i xtk , μtk ))+ NX (x∗). (35)

From (13), we obtain

xT
tk ∇xθ

p(dT
i xtk , μtk )

=

⎧
⎪⎨

⎪⎩

p|dT
i xtk |p, if |dT

i xtk | > μtk

p

(
|dT

i xtk |2
2μtk

+ μtk
2

)p−1 |dT
i xtk |2
μtk

, if |dT
i xtk | ≤ μtk .

Thus
lim

k→∞ x T
tk ∇xθ

p
(

dT
i xtk , μtk

)
= p|dT

i x∗|p

which implies that

lim
k→∞ x(tk)

T
r∑

i=1

∇xϕ
(
θ p(dT

i xtk , μtk )
)

= p
r∑

i=1

∇ϕ
(
|dT

i x∗|p
)

|dT
i x∗|p. (36)

Therefore, we obtain

0 ∈ (x∗)T ∂ f (x∗)+ p
r∑

i=1

|dT
i x∗|p∇ϕ(|dT

i x∗|p)+(x∗)T NX (x∗)

which means x∗ is a stationary point of (3).
If xt has two accumulation points x∗ and y∗, there are two

sequences tk and sk such that

lim
k→∞ tk = lim

k→∞ sk = ∞, lim
k→∞ xtk = x∗ and lim

k→∞ xsk = y∗.

Since x(t) is continuous on [0,∞) and uniformly bounded,
there exists a path from x∗ to y∗, denoted w(x∗, y∗), such
that any point on w(x∗, y∗) is a stationary point of (3), which
leads a contradiction to that x∗ and y∗ are isolated.

Remark 3.3: When p ≥ 1, the critical point set of (3) is

C =
{

x ∈ X : 0 ∈ ∂ f (x)+
r∑

i=1

∂ϕ(|dT
i x |p)+ NX (x)

}

which coincides with the optimal solution set of (3) when f
is convex.

From (35), we can confirm that the solution of the SNN is
convergent to the critical point set of (3) when p ≥ 1, and to
the optimal solution set of (3) when f is convex and p ≥ 1.
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Moreover, if x∗ is a limit point of the solution of the SNN
such that dT

i x∗ �= 0, i = 1, 2, . . . , r , then from (35), we obtain
that

0 ∈ ∂ f (x∗)+
r∑

i=1

∇ϕ(|dT
i x∗|p)+ NX (x∗).

Many application models can be formatted as (6), where the
components of variable x are separated in the non-Lipschitz
items of the objective function. When the SNN is used to
solve (6), similar to the analysis in Theorem 3.2, we have the
following corollary.

Corollary 3.1: If the SNN is used to solve (6), for any
initial point x0 ∈ X , any accumulation point x∗ of the
solutions of the SNN satisfies

{
x∗ ∈ X
0 ∈ X∗∂ f (x∗)+ p∇ϕ(|x∗|p)|x∗|p + X∗NX (x∗)

(37)

where X∗ = diag(x∗
1 , . . . , x∗

n ) and

∇ϕ(|x∗|p)|x∗|p = (∇ϕ1(|x∗
1 |p)|x∗

1 |p, . . . ,∇ϕn(|x∗
n |p)|x∗

n |p)T .

We should notice that the inclusion property (37) in Corollary
3.1 is stronger than the conditions in Definition 2.2 for the
SNN to solve (6). Moreover, the property (37) is a generaliza-
tion of the first order necessary condition and reduces to the
Clarke stationary point when p ≥ 1 [32].

IV. NUMERICAL EXPERIMENTS

In this section, we use the following notations to report our
numerical experiments.

1) SNN: use codes for ODE in MATLAB to implement the
proposed neural network SNN in this paper.

2) x∗: numerical solution obtained by the corresponding
algorithms.

3) N∗: number of nonzero elements of x∗.
4) PSNR(dB) and SNR(dB): signal-to-noise ratios defined

by

PSNR = −10 lg
‖x∗ − s‖2

n
, SNR = −20 lg

‖x∗ − s‖
‖s‖

where s is the original signal and n is the dimension of
the original signal.

5) R A(%): recovery rate, where we say the recovery of
signal s is effective if its SNR is larger than 40.

6) Oracle and Radio: the oracle estimator is defined by
Oracle = σ 2tr(AT

�A�)−1, where � = support(s). And
we define Radio = ‖x∗ − s‖/Oracle.

A. Image Restoration

Image restoration is to resconstruct an image of an unknown
scene from an observed image, which has wide applications in
engineering and sciences. In this experiment, we perform the
SNN on the restoration of 64 ×64 circle image. The observed
image is distorted from the unknown true image mainly by
two factors: the blurring and the random noise. The blurring
is a 2-D Gaussian function

h(i, j) = e
−2

(
i
3

)2−2
(

j
3

)2
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Fig. 2. (a) Original images. (b) Observed images.
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Fig. 3. Restored images with (a) p = 0.5 and (b) p = 0.3.

which is truncated such that the function has a support of 7×7.
A Gaussian noise with zero mean and standard derivation of
0.05 is added to the blurred image. Fig. 2 presents the original
and the observed images that is used in [21] and [22]. The
peak signal-to-noise ratio (PSNR) of the observed image is
15.50 dB.

Then, we consider the following minimization problem:

min ‖Ax − b‖2 + 0.02
r∑

i=1

ψ(|dT
i x |p)

s.t. x ∈ X = {x : xi ∈ [0, 1], i = 1, 2, · · · , n}
(38)

where n = 64 × 64, A ∈ R
n×n is the blurring matrix, b ∈ R

n

is the observed image, p ∈ [0, 1) is a positive parameter,
ψ : [0,+∞) → [0,+∞) is the potential function defined by

ψ(z) = 0.5z

1 + 0.5z
.

dT
i ∈ R

n is the i th row of the first-order difference matrix D,
which is used to define the difference between each pixel and
its four adjacent neighbors [21], [22].

Let μ(t) = e−0.1t and x0 = PX (b). In this experiment, we
use ode15s in MATLAB to implement the SNN and we stop
when the computation iteration exceeds 1500. The restored
images with p = 0.5 and p = 0.3 are presented in Fig. 3.
The ultimate values of μ(t) for the two cases are about 0.01
and 0.007. Fig. 4 shows the PSNRs along the solutions of the
SNN when p = 0.5 and p = 0.3. From this figure, we see
that the PSNRs are strictly increasing along the solutions of the
SNN. Table I presents the objective values and PSNRs for the
original image, observed image, and restored images with p =
0.5 and p = 0.3. The PSNRs of the graduated nonconvexity
GNC algorithm in [22] and the smoothing projected gradient
SPG algorithm in [21] are 19.42 dB and 19.97 dB, respectively.
From Table I, we see that PSNRs obtained by the SNN are
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Fig. 4. PSNRs with p = 0.5 and p = 0.3.

TABLE I

OBJECTIVE VALUES AND PSNRS IN IMAGE RESTORATION

Original Observed p = 0.5 p = 0.3

Objective value 14.486 39.461 16.784 16.784

PSNR(dB) 15.503 20.686 20.924

higher than those obtained in [21] and [22]. Moreover, using
p = 0.3 is better than using p = 0.5 for this problem.

B. Underdetermined Blind Source Separation (BSS)

BSS describes the process of extracting some underlying
original source signals from a number of observed mixture
signals, where the mixing model is either unknown or the
knowledge about the mixing process is limited. The problem
of BSS has been extensively studied over the past decades
due to its potential applications in a wide range of areas such
as digital communications, speech enhancement, medical data
analysis, and remote sensing [25], [29], [46].

In the anechoic instantaneous mixing model, at each time l,
one has N sources x(l), K mixtures b(l), and K noises n(l)
such that

b(l) = Ax(l)+ n(l)l = 1, . . . , L

where A = (ai j )K×N with
∑K

k=1 |akj |2 = 1 for j =
1, 2, . . . , N .

In this experiment, we focus on the reformulation of sparse
source signal s when the mixing matrix A has been fixed
and the sparsity of s is unknown. To evaluate the efficiency
of algorithms in recovering the original signals, we use the
signal-to-noise ratio. The larger the SNR the algorithm has,
the better.

We use the following MATLAB code to generate real-
valued original signals S ∈ R

N×L with length L. The lth
column of S is the signal at time l, which is with dimension
N and sparsity T .

S = zeros(N, L);
for m = 1:L
q = randperm(N);
S[q(1:T),m] = [sqrt(4)*randn(T,1)];
end.
And we use the following MATLAB code to generate

mixing matrix A and mixture signals b ∈ R
K×L .

TABLE II

SIGNAL RESTORATION WITHOUT NOISE WITH

N = 8, T = 2, K = 4, 5, 6, 7, AND L = 100

p K 4 5 6 7

0.1 R A(%) 65 86 97 100

Mean-SNR(dB) 13.52 19.57 32.43 83.22

0.3 R A(%) 68 87 95 100

Mean-SNR(dB) 12.92 20.24 31.19 77.46

0.5 R A(%) 62 86 93 100

Mean-SNR(dB) 12.03 19.54 31.06 71.06

0.7 R A(%) 60 82 92 100

Mean-SNR(dB) 12.02 18.97 30.78 63.39

1 R A(%) 48 65 84 92

Mean-SNR(dB) 11.47 17.86 28.73 50.17

A = randn(K,N);
for j = 1:N
A(:, j) = A(:, j)/norm[A(:, j)];
end
noise = σ∗randn(K, L);
b = A*S-noise;
1) Signal Without Noise: In this part, we consider the signal

without noise and wish to restore the sparsest signal. In many
papers [25], [29], [30], this class of BSS problems is formally
stated as

min
n∑

i=1

|xi (l)|p, s.t. Ax(l) = b(l) (39)

l = 1, 2, . . . , L, where 0 < p ≤ 1. For each l ∈ {1, 2, . . . , L}
X = {x ∈ R

n : Ax = b(l)}
PX (x) = x − AT (AAT )−1(Ax − b(l)).

We define Mean-SNR as the mean SNR of the L tests.
Choose initial point x0 = AT (AAT )−1b and μ(t) = 4e−0.1t .
Use ode15s in MATLAB to implement the SNN and stop when
μ(t) ≤ 0.005. Table II presents the numerical results of using
the SNN to solve (39) with N = 8, T = 2, L = 100, and
K = 4, 5, 6, 7. Saab, Yilmaz, Mckeown, and Abugharbieh [25]
pointed out that the choice of 0.1 ≤ p ≤ 0.4 is appropriate in
the case of speech. From Table II, we see that the numerical
results using p ≤ 0.5 is better than that using p > 0.5 in this
experiment.

Next, we test the SNN by a problem with N = 512, T =
130 and p = 0.5. The SNRs of the SNN for solving (39) with
K = 225, 250, 280, 300, and 330 are 10.20 dB, 55.39 dB,
59.17 dB, 60.00 dB, and 63.10 dB, respectively.

2) Signal With Noise: In this part, we consider the signal
restoration with noise, where noise is the independent identi-
cally distributed Gaussian noise with zero mean and variance
σ 2. We evaluate the recovery of signals with noise by the SNR
and “Radio.” The “Radio” is closer to 1, the algorithm is more
robust.

In this experiment, we let N = 512, T = 130, L = 10,
K = 270, and σ = 0.1 in the MATLAB code to generate the
mixing signals with noises. To solve the signal recovery with
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TABLE III

SNRS AND RADIOS OF THE SNN WITH

N = 512, L = 10, AND p = 0.5

K 270 280 290 300 310 320

Max-SNR(dB) 18.29 18.64 19.06 19.51 20.33 20.71

Min-SNR(dB) 11.57 15.42 16.23 16.74 17.42 19.07

Mean-SNR(dB) 15.43 17.77 17.80 17.96 18.68 19.61

Oracle 2.49 2.40 2.32 2.73 2.25 2.22

Max-Radio 2.39 1.46 1.33 1.32 1.30 1.18

Min-Radon 1.11 1.16 1.07 1.05 1.05 1.00

Mean-Radio 1.61 1.27 1.26 1.25 1.19 1.07
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Fig. 5. Original (first), mixture (second), and recovered (third) signal with
N = 512, T = 130, K = 270, and p = 0.5.

noise, we use the unconstrained l2-l p model as follows:

min ‖Ax(l)− b(l)‖2 + λ

n∑

i=1

|xi (l)|p, l = 1, . . . , L . (40)

Let N = 512, T = 130, and L = 10. For different
choices of K , Table III presents the numerical results of the
SNN with p = 0.5, λ = 0.05 and random initial points
to solve (40), where Max-SNR(Max-Radio), Min-SNR(Min-
Radio), Mean-SNR(Mean-Radio) are the maximal, minimal,
and mean SNR(Radio) of randomly generated ten tests. From
Table III, we can see that the “Radio” is always close to 1 using
the SNN to solve the underdetermined blind source separation
with noise. Fig. 5 shows the original signal, mixing signal, and
recovered signal of a random test with N = 512, K = 270,
and p = 0.5.

C. Variable Selection

In this section, we report numerical results for testing a
prostate cancer problem. The data set is downloaded from the
UCI Standard database [47]. The data set consists of the med-
ical records of 97 patients who were about to receive a radical
prostatectomy, which is divided into two parts: a training set
with 67 observations and a test set with 30 observations. The
predictors are eight clinical measures: lcavol, lweight, age,
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Fig. 6. Convergence of solution x(tk ) of the SNN with ψ1 and λ = 4.5.
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Fig. 7. Convergence of solution x(tk ) of the SNN with ψ1 and λ = 5.5.

lbph, svi, lcp, pleason, and pgg45. In this experiment, we
want to find fewer main factors with smaller prediction error.
Thus, we solve this problem by the following unconstrained
minimization problem:

min lg(‖Ax − b‖2 + 1)+ λ

8∑

i=1

ψ(|xi |p) (41)

where A ∈ R
97×8, p = 0.5, ψ is defined by one of the

following three formats:

ψ1(z) = z, ψ2(z) = 3z

1 + 3z
, ψ3(z) = lg(3z + 1).

(41) is an unconstrained non-Lipschitz optimization, where
the first item in the objective function of (41) is smooth,
but nonconvex. Every element of x is a clinical measure
of the predictors. We call a clinical measure is a main factor if
the relevant element of obtain optimal solution x∗ is nonzero.
The prediction error is defined by the mean square error over
the 30 observations in the test set. In [32], the authors use l2-
l p model and OMP-SCG method to solve this problem with
A ∈ R

67×8. In their numerical results, the authors can obtain
three main factors with prediction error 0.443.

Choose x0 = (0, . . . , 0)T and μ(t) = e−0.1t . In this
experiment, we use ode15s in MATLAB to implement the
SNN and stop when μ(t) ≤ 10−6. The numerical results
using the SNN to solve (41) are listed in Table IV, “Error” is
the prediction error of x∗. Table IV shows that we can find
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TABLE IV

VARIABLE SELECTION WITH DIFFERENT VALUES OF λ

ψ1 ψ2 ψ3

λ 4.5 5.5 6 5 10.3 10.5 2.5 4.1 4.2

x∗
1 (lcavol) 0.655 0.769 0.794 0.671 0.799 0.829 0.685 0.745 0.840

x∗
2 (lweight) 0.208 0.130 1.58e-10 0.209 0.159 4.15e-9 0.201 3.00e-7 1.49e-8

x∗
3 (age) 1.24e-7 3.81e-10 1.28e-9 –3.28e-8 5.12e-9 1.96e-10 –4.14e-12 5.53e-8 1.71e-8

x∗
4 (lbph) 6.89e-7 2.84e-9 1.14e-9 2.30e-8 1.85e-8 3.42e-9 –6.58e-12 1.73e-7 5.87e-10

x∗
5 (svi) 0.232 4.93e-9 1.62e-10 0.228 3.42e-8 3.71e-9 0.215 0.175 1.98e-8

x∗
6 (lcp) 7.42e-13 2.20e-9 8.04e-8 6.45e-8 1.20e-8 1.45e-9 –3.18e-13 –3.31e-8 2.06e-8

x∗
7 (pleason) 3.67e-12 2.04e-9 6.87e-8 4.81e-9 1.24e-8 1.34e-9 –3.37e-12 2.62e-8 1.26e-8

x∗
8 (pgg45) 1.71e-8 3.22e-9 –1.39e-10 1.46e-7 2.08e-8 2.48e-9 –4.46e-12 6.17e-8 1.95e-8

N∗ 3 2 1 3 2 1 3 2 1

Error 0.394 0.399 0.497 0.396 0.479 0.483 0.394 0.478 0.480
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Fig. 8. Convergence of λmax(Q(x(tk ))) and λmin(Q(x(tk ))) along the
solution of the SNN with a random initial point in X .

fewer main factors with smaller prediction errors by using the
SNN to solve optimization model (41). Figs. 6 and 7 show
the convergence of the solutions of the SNN using ψ1 with
λ = 4.5 and λ = 5.5.

D. Optimizing Condition Number

Optimizing eigenvalue functions has been studied for
decades. The condition number of a positive definite matrix
Q ∈ R

m×m is defined by

κ(Q) = λmax(Q)

λmin(Q)

where λmax(Q) and λmin(Q) are the maximal and minimal
eigenvalues of Q. The quantity κ(Q) has been widely used
in the sensitivity analysis of interpolation and approximation.
The problem of minimizing condition number is an important
class of nonsmooth nonconvex optimization problems [48],
[49]. In this example, we consider the test problem

min κ(Q(x)) = κ

(
I +

n∑

i=1

xi Qi

)

s.t. x ∈ X = {x : 0 ≤ xi ≤ 1, i = 1, 2, . . . , n}
(42)

where n = 100, I is the 5 × 5 identity matrix, Qi ∈ R
5×5 is

a symmetric positive definite matrix generated by MATLAB
randomly, i = 1, 2, . . . , n.
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Fig. 9. Optimal values with three different values of λ.

We know that the optimal value of this problem is 1.
Denote λ1(Q), . . . , λ5(Q) the non-decreasing ordered

eigenvalues of Q. We use the smoothing function of the
objective function given in [49], specially

f̃ (x, μ) = −
ln
(∑5

i=1 eλi (Q(x))/μ
)

ln
(∑5

i=1 e−λi (Q(x))/μ
) .

Then, the SNN can be rewritten as

ẋ(t) = −x(t)+ PX [x(t)− ∇x f̃ (x(t), μ(t))]. (43)

With a random initial point in X , Fig. 8 presents the con-
vergence of λmax(Q(x(tk))) and λmin(Q(x(tk))) along the
solution of (43).

We know that adding a non-Lipschitz item into the objective
function can often bring some influences to the original opti-
mization problems, such as the sparsity. In the following, we
consider what influences may occur in this kind of problems.
Then, we consider the revised optimization model

min κ(Q(x)) = κ

(
I +

n∑

i=1

xi Qi

)
+ λ

n∑

i=1

|xi |p

s.t. x ∈ X = {x : 0 ≤ xi ≤ 1, i = 1, 2, . . . , n}.
(44)

The objective function of (44) is the combining of a non-
smooth, nonconvex function, and a non-Lipschitz function.
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TABLE V

CONDITION NUMBERS FOR DIFFERENT VALUES OF λ

λ λmax(Q(x∗)) λmin(Q(x
∗)) κ(Q(x∗)) N∗

0 51.6629 51.6299 1.0004 72

0.01 40.8222 40.7932 1.0007 48

0.03 21.021 21.0411 1.0010 31

0.05 11.8538 11.8712 1.0015 21

0.07 8.6105 8.6596 1.0057 17

0.1 7.0827 7.3791 1.0418 10

We use the SNN modeled by

ẋ(t) = −x(t)+ PX
[
x(t)− ∇x f̃ (x(t), μ(t))

−λ∇xθ
p(x(t), μ(t))

]
(45)

where θ is defined as in (11), λ is a positive parameter.
Table V shows the numerical results for different values of

λ in (45). From the results in Table V, we see that as λ is
increasing, the sparsity of the optimal solution is increasing
and the eigenvalues are decreasing. Thus, if we want to get
a more sparse solution, we can add a non-Lipschitz item to
the original problem. Fig. 9 presents the convergence of the
optimal values with three different values of λ in Table V.

V. CONCLUSION

In this paper, we studied a class of constrained non-
Lipschitz optimization problems, which has wide applications
in engineering, sciences, and economics. To avoid solving
differential inclusions, by applying the smoothing techniques,
we proposed the SNN modeled by a differential equation to
solve this kind of problem. The definition of a stationary point
of the constrained non-Lipschitz optimization was introduced.
Under a mild condition, we proved the global existence,
boundedness, and limit convergence of the proposed SNN,
which shows that any accumulation point of the solutions of
the SNN is a stationary point of (3). Specifically, when the
SNN was used to solve the special case (6), any accumulation
point of the solutions of SNN satisfies a stronger inclusion
property which reduces to the definition of the Clarke sta-
tionary points for Lipschitz problems with p ≥ 1. Some
numerical experiments and comparisons on image restoration,
signal recovery, variable selection, and optimizing condition
number were illustrated to show the efficiency and advantages
of the SNN.

APPENDIX A

PROOF OF PROPOSITION 3.1

Fix i ∈ {1, 2, . . . , r}.
1) From (16), we can get

|∇μθ(dT
i x, μ)| ≤

⎧
⎨

⎩

0, if |dT
i x | > μ

1

2
, if |dT

i x | ≤ μ.

Thus, from (11), (15), and (17), we obtain

|∇μϕ(θ p(dT
i x, μ))| ≤ plϕμ

p−1. (46)

2) When |dT
i x | > μ, θ p(dT

i x, μ)− |dT
i x |p = 0. Then, we

only need to consider the case that |dT
i x | ≤ μ.

In [32], Chen, Xu, and Ye have proved that

∇2
s θ

p(s, μ) > 0 ∀s ∈ (−μ,μ) (47)

which means that θ p(s, μ) is strongly convex in s on
[−μ,μ].
For any fixed μ, since θ p(s, μ) and |s|p are symmetrical
on [−μ,μ] and θ p(s, μ) is strongly convex in s on
[−μ,μ], then

|θ p(dT
i x, μ)− |dT

i x |p| ≤ θ p(0, μ) ≤
(μ

2

)p

∀ x ∈ R
n μ > 0.

Since ϕ is globally Lipschitz, we obtain 2).
3) First, we prove the Lipschitz property of ∇sθ

p(s, μ) in
s for any fixed μ > 0, which can be derived by the
global boundedness of the Clarke generalized gradient
of ∇sθ

p(s, μ). ∇sθ
p(s, μ) is not differentiable only

when |s| = μ. From (7), we only need to prove the
global boundedness of the gradient of ∇sθ

p(s, μ) when
|s| �= μ.
Fix μ > 0. When |s| > μ, we obtain

|∇2
s θ

p(s, μ)| = |p(p − 1)|s|p−2| ≤ pμp−2.

When |s| < μ, we have

∇2
s θ

p(s, μ) ≤ p

( |s|2
2μ

+ μ

2

)p−1 (
1

μ

)
≤ 2 pμp−2.

(48)
From (47), then

|∇2
s θ

p(s, μ)| ≤ 2 pμp−2 ∀s ∈ (−μ,μ). (49)

Combining (7), (48), and (49), we have

|ξ | ≤ 2 pμp−2 ∀s ∈ R, ξ ∈ ∂s(∇sθ
p(s, μ))

which implies that

|∇sθ
p(s, μ)−∇rθ

p(r, μ)| ≤ 2 pμp−2|s −r |, ∀s, r ∈ R.

Therefore, for any x, z ∈ R
n , we get

‖∇xθ
p(dT

i x, μ)− ∇zθ
p(dT

i z, μ)‖
≤ 2 pμp−2‖di d

T
i ‖ · ‖x − z‖. (50)

4) From (13), we have

‖∇xθ
p(dT

i x, μ)‖ ≤ 2 p‖di‖μp−1 (51)

which follows that θ p(dT
i x, μ) is globally Lipschitz in

x for any fixed μ > 0. If ∇ϕ is locally (globally)
Lipschitz, then ∇ϕ(θ p(dT

i x, μ)) is locally (globally)
Lipschitz.

Combining the Lipschitz property in x and the uni-
form boundedness of ∇ϕ(θ p(dT

i x, μ)) and ∇xθ
p(dT

i x, μ),
from (14), we get the local (global) Lipschitz property of
∇xϕ(θ

p(dT
i x, μ)) in x for any fixed μ.
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APPENDIX B

PROOF OF PROPOSITION 3.2

Denote x, x̂ ∈ AC[0,∞) two solutions of the SNN with
initial point x0. From Theorem 3.1, there is a ρ > 0 such that
‖xt‖ ≤ ρ and ‖x̂t‖ ≤ ρ, ∀t ≥ 0. Suppose there exists a t̂ > 0
such that xt̂ �= x̂t̂ . Then there exists a δ > 0 such that xt �= x̂t ,
∀t ∈ [t̂, t̂ + δ].

Denote

k(x, μ) = −x + PX[
x − ∇x f̃ (x, μ)−

r∑

i=1

∇xϕ(θ
p(dT

i x, μ))

]
.

Form Propositions 2.2 and 3.1, when ∇ϕ(·) and ∇x f̃ (·, μ)
is locally Lipschitz, k(·, μ) are locally Lipschitz for any fixed
μ > 0, which means that there exists an Lμ > 0 such that

‖k(y, μ)− k(ŷ, μ)‖ ≤ Lμ‖y − ŷ‖
∀y, ŷ ∈ {u ∈ R

n : ‖u‖ ≤ ρ}. (52)

Since xt , x̂t , and μt are continuous and uniformly bounded
on [0, t̂ + δ], from (52), there is an L > 0 such that

‖k(xt , μt )− k(x̂t , μt )‖ ≤ L‖xt − x̂t‖
∀t ∈ [0, t̂ + δ].

Differentiating (1/2)‖xt − x̂t‖2 along the two solutions of the
SNN, we obtain

d

dt

1

2
‖xt − x̂t‖2 ≤ L‖xt − x̂t‖2 ∀t ∈ [0, t̂ + δ].

Integrating the above inequality from 0 to t (≤ t̂ + δ) and
applying Gronwall’s inequality [41], it follows that xt = x̂t ,
∀t ∈ [0, t̂ + δ], which leads a contradiction.
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