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Abstract. In this paper, we present spherical zone t-designs, which provide quadrature rules4
with equal weight for spherical polynomials of degree at most t on a spherical zone {x ∈ S2 : cos θ̄ ≤5
x·z ≤ cos θ} with z ∈ S2 and 0 ≤ θ < θ̄ ≤ π. The spherical zone t-design is constructed by combining6
spherical t-designs and trapezoidal rules on [0, 2π] with polynomial exactness t. We show that the7
spherical zone t-designs using spherical t-designs only provide quadrature rules with equal weight8
for spherical zonal polynomials of degree at most t on the spherical zone. We apply the proposed9
spherical zone t-designs to numerical integration, hyperinterpolation and sparse approximation on10
the spherical zone. Theoretical approximation error bounds are presented. Some numerical examples11
are given to illustrate the theoretical results and show the efficiency of the proposed spherical zone12
t-designs.13
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1. Introduction. A spherical t-design, introduced by Delsarte, Goethals and
Seidel [15], is a set of points {x1, . . . ,xn} on the unit sphere S2 := {x ∈ R3 : ∥x∥ = 1}
such that the following quadrature rule∫

S2
P (x)dω(x) =

4π

n

n∑
i=1

P (xi), ∀P ∈ Pt(S2)

holds, where ∥ · ∥ is the Euclidean norm, dω(x) is the surface measure on S2 and16

Pt(S2) is the space of all spherical polynomials of degree at most t. Seymour and17

Zaslavsky [24] proved the existence of spherical t-designs for arbitrary t if the number18

of points n is sufficiently large. Spherical t-designs have been extensively studied19

(see [6] for an excellent survey). Compared with nonequal positive weight quadrature20

rules on the sphere, spherical t-designs have shown promising prospects in various21

research areas, such as numerical integration and approximation over the sphere [1, 2],22

Lasso hyperinterpolation approximation [3], needlet approximation [30], sparse signal23

recovery [12], noisy data fitting [20].24

Nowadays, there is a growing interest in numerical integration and approximation
on subsets of the sphere. For any z ∈ S2 and Θ = (θ, θ̄)⊤ with 0 ≤ θ < θ̄ ≤ π, we
define a spherical zone Z(z; Θ) centered at z by

Z(z; Θ) := {x ∈ S2 : cos θ̄ ≤ x · z ≤ cos θ}.

The surface area of Z(z; Θ) is |Z(z; Θ)| :=
∫
Z(z;Θ)

dω(x) = 2π(cos θ − cos θ̄). In25

particular, if θ = 0 and θ̄ ̸= π, then C(z; θ̄) := Z(z; Θ) is a spherical cap with center26
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z ∈ S2 and angular radius 0 < θ̄ < π. If θ = 0 and θ̄ = π, then Z(z; Θ) = S2.27

Mhaskar [22] showed the existence of positive weight rules on a spherical cap by28

judiciously selecting nodes from a given set of scattered points on the spherical cap.29

Then, the author investigated the condition so that the results can be generalized to30

more general compact subsets of the sphere in [21]. Dai and Wang [14] proved that31

under certain conditions a positive weight rule with polynomial exactness t exists32

with t2 points. Hesse and Womersley [18] showed the construction of positive weight33

quadrature rules with polynomial exactness t on spherical caps. Numerical quadrature34

and hyperinterpolation on spherical triangles using positive weight quadrature rules35

which are nearly exact for polynomials of certain degree are studied in [27, 28]. In36

[19], we proposed spherical cap t-subdesigns induced from spherical t-designs which37

are exact for spherical zonal polynomials of degree at most t and a class of orthonormal38

functions defined by shifted Legendre polynomials of degree at most t on spherical39

caps. We showed that spherical cap t-subdesigns are efficient for numerical integration40

and approximation on spherical caps.41

Likewise, equidistant points on [0, 2π] provide an equal weight quadrature rule on42

[0, 2π], known as the trapezoidal rule (see for example [4, 29]), which is exact for all43

trigonometric polynomials of certain degree. Specifically,44

(1.1)

∫ 2π

0

Q(φ)dφ =
2π

t+ 1

t+1∑
i=1

Q(φi), ∀Q ∈ Qt([0, 2π]),45

where {φ1, . . . , φt+1} is a set of equidistant points on [0, 2π] with step size 2π/(t+1),46

Qt([0, 2π]) := span{ 1
2 , cosφ, sinφ, . . . , cos(tφ), sin(tφ)} is the space of all trigonomet-47

ric polynomials of degree at most t on [0, 2π]. It is known that trapezoidal rules48

show good properties in numerical analysis and approximation theory (see [4, 29] and49

references therein). Especially, they show exponential convergence for approximating50

periodic functions with some smooth properties [29].51

To the best of our knowledge, positive equal weight quadrature rules with poly-52

nomial exactness for numerical integration on spherical zones with 0 < θ < θ̄ < π53

have not been developed. In this paper, we utilize spherical t-designs and trapezoidal54

rules on [0, 2π] to construct equal weight quadrature rules on spherical zones.55

Analogous to the definition of a spherical t-design, we give the definition of a56

spherical zone t-design as follows.57

Definition 1.1. We call a set of points Xn := {x1, . . . ,xn} on a spherical zone
Z(z; Θ) a spherical zone t-design if it holds that∫

Z(z;Θ)

P (x)dω(x) =
2π(cos θ − cos θ̄)

n

n∑
i=1

P (xi), ∀P ∈ Pt(S2).

By the rotational invariance of the unit sphere S2, we first show that it is sufficient58

to construct spherical zone t-designs on the spherical zone Z(e3; Θ) with center e3 =59

(0, 0, 1)⊤. Then, we construct spherical zone t-designs on a spherical zone Z(e3; Θ)60

by combing spherical t-designs and trapezoidal rules (1.1) on [0, 2π], which provide61

equal weight quadrature rules for spherical polynomials of degree at most t on the62

spherical zone. The polynomial exactness of the spherical zone t-design comes from63

the exactness of both spherical t-designs and trapezoidal rules (1.1) on [0, 2π] with64

precision t. We give an example of a spherical zone 2-design with 6 points constructed65

from a tight spherical 2-design with 4 points and trapezoidal rules (1.1) on [0, 2π]66
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with t = 2. We indicate that the spherical zone t-design constructed using spherical67

t-designs only provide equal weight quadrature rules for spherical zonal polynomials.68

We also show that any positive weight quadrature rules with polynomial exactness t69

on the unit sphere S2 can induce a positive weight quadrature rule on the spherical70

zone Z(e3; Θ) that is exact for both spherical harmonics of degree ≤ t and a class of71

orthonormal functions which are derived from shifted Legendre polynomials of degree72

at most t. This also contributes to the numerical integration of product of spherical73

harmonics on spherical zones with low computational cost. The present work provides74

some heuristic research for equal weight quadrature rules with polynomial exactness75

on spherical zones.76

The main contributions of this paper are summarized as follows.77

• We construct spherical zone t-designs on a spherical zone Z(e3; Θ) with poly-78

nomial exactness t by combing spherical t-designs and trapezoidal rules (1.1)79

on [0, 2π] with polynomial exactness t. We also present spherical zone t-80

designs for spherical zonal polynomials based on spherical t-designs only.81

• We present positive weight quadrature rules with polynomial exactness on a82

spherical zone Z(e3; Θ) induced by quadrature rules on the sphere S2. We83

show that the induced quadrature rules are exact for spherical harmonics,84

product of spherical harmonics and a class of orthonormal functions defined85

by shifted Legendre polynomials.86

• We apply the spherical zone t-designs and Slepian functions to numerical87

integration and hyperinterpolation approximation on spherical zones. We also88

apply a capped-l1 regularized minimization problem for approximation from89

noisy data on a spherical zone. Approximation error bounds are presented.90

The paper is organized as follows. In section 2, we give notations and preliminar-91

ies. In section 3, we present positive weight quadrature rules, spherical zone t-designs92

on spherical zones and provide numerical integration error bounds. In section 4, we93

study hyperinterpolation and sparse approximations on spherical zones. In section 5,94

we present numerical results. Finally, we conclude the paper in section 6.95

2. Notation and Preliminaries. In this section, we summarize some notations96

and preliminaries used in this paper.97

2.1. Notation. Let N0 := {0, 1, 2, . . .} denote the set of natural numbers includ-
ing zero. For any t ∈ N0, we denote dt := (t+ 1)2. The rotation group is denoted by
SO(3) := {R ∈ R3×3 : R⊤R = I,detR = 1}, where I ∈ R3×3 is the identity matrix.
We use ⌊·⌋ and ⌈·⌉ to denote the floor and ceiling functions, respectively. [ϕ]mod2π

means that ϕ is mapped into [0, 2π] by adding 2kπ with k being an integer as re-
quired. We denote by L2(Γ) the space of square-integrable functions on a non-empty
connected subset Γ ⊆ S2 endowed with the inner product

⟨f, g⟩L2(Γ) =
∫
Γ
f(y)g(y)dω(y), ∀f, g ∈ L2(Γ),

and the L2 norm ∥f∥L2(Γ) = (⟨f, f⟩L2(Γ))
1/2. Let C(Γ) denote the space of continuous98

functions on Γ, ∥f∥L∞(Γ) := supx∈Γ |f(x)| for f ∈ C(Γ), and Pt(Γ) be the space of99

polynomials of degree ≤ t on Γ. And Pℓ denotes a Legendre polynomial of degree ℓ100

defined as Pℓ(x) :=
1

2ℓℓ!
dℓ

dxℓ (x
2 − 1)ℓ, ∀x ∈ [−1, 1].101

2.2. Spherical harmonics and Slepian functions. The standard basis for102

real-valued spherical harmonics of degree ℓ ∈ N0 is (see for example [5])103

Yℓ,1(ϑ, ϕ) = Nℓ,0Pℓ(cosϑ),104
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Yℓ,2m(ϑ, ϕ) = Nℓ,mPℓ,m(cosϑ) cosmϕ,105

Yℓ,2m+1(ϑ, ϕ) = Nℓ,mPℓ,m(cosϑ) sinmϕ, m = 1, . . . , ℓ, ∀(ϑ, ϕ) ∈ [0, π]× [0, 2π],106

where Nℓ,m =
√

2ℓ+1
2π

(ℓ−m)!
(ℓ+m)! , Nℓ,0 =

√
2ℓ+1
4π and Pℓ,m is an associated Legendre107

function, i.e., Pℓ,m(x) = (−1)m(1 − x2)
m
2 P

(m)
ℓ (x), ∀x ∈ [−1, 1], m = 1, . . . , ℓ, where108

P
(m)
ℓ denotes the mth derivative of a Legendre polynomial Pℓ of degree ℓ. For any109

ℓ ∈ N0, Yℓ,1 is called a zonal spherical harmonic. For convenience, we denote by Yℓ,k110

a real-valued spherical harmonic of degree ℓ ∈ N0, order k ∈ {1, . . . , 2ℓ+1} and write111

Yℓ,k(x) := Yℓ,k(ϑ, ϕ) with x = (sinϑ cosϕ, sinϑ sinϕ, cosϑ)⊤ ∈ S2.112

It is well-known that Pt(S2) := span{Y0,1, Y1,1, . . . , Yt,2t+1} (see for example [5]).113

Due to the loss of orthogonality of spherical harmonics on subsets of the unit sphere,114

we adopt the spherical Slepian functions [25]. For any non-empty connected subset115

Γ ⊂ S2 of the sphere and t ∈ N0, let D ∈ Rdt×dt be a matrix with elements116

(2.1) (D)ℓ2+k,ℓ′2+k′ =

∫
Γ

Yℓ,k(x)Yℓ′,k′(x)dω(x),117

ℓ, ℓ′ = 0, 1, . . . , t, k = 1, 2, . . . , 2ℓ+ 1, k′ = 1, 2, . . . , 2ℓ′ + 1. From [25], D is a positive118

definite matrix and its eigenvalues satisfy λi ∈ (0, 1), i = 1, . . . , dt. For convenience,119

we order the eigenvalues λi such that 1 > λ1 ≥ . . . ≥ λdt > 0 with corresponding120

eigenvectors v1, . . . ,vdt (We choose v1, . . . ,vdt to be orthonormal). The real-valued121

Slepian functions [25] are defined by122

(2.2) Si(x) =

t∑
ℓ=0

2ℓ+1∑
k=1

viℓ,kYℓ,k(x), i = 1, 2, . . . , dt, ∀x ∈ S2,123

where vi = (vi0,1, v
i
1,1, v

i
1,2, v

i
1,3, . . . , v

i
t,2t+1)

⊤ ∈ Rdt , which admit the following orthog-124

onal property125

(2.3)

∫
Γ

Si(x)Sj(x)dω(x) = λiδij and

∫
S2
Si(x)Sj(x)dω(x) = δij , i, j = 1, 2, . . . , dt,126

where δij = 1, if i = j and δij = 0, if i ̸= j.127

The sum of the eigenvalues of D gives128

(2.4) Sh :=

dt∑
i=1

λi =

dt∑
i=1

(D)i,i =

t∑
ℓ=0

2ℓ+1∑
k=1

∫
Γ

Y 2
ℓ,k(x)dω(x) =

|Γ|
4π
dt129

the spherical Shannon number, which is a good estimate of the number of significant130

eigenvalues [25], where |Γ| denotes the area of Γ.131

Based on the well-known Funk-Hecke formula (see, for example, [5]) and Propo-132

sition 2.2 in [19], we obtain the following proposition on spherical zones.133

Proposition 2.1. Let f be a continuous function on [−1, 1]. For any t ∈ N0 and134

any y ∈ S2, let Yρ
t (y) = (ρ0Y0,1(y), ρ1Y1,1(y), ρ1Y1,2(y), . . . , ρtYt,2t+1(y))

⊤, where135

ρi = 2π
∫ 1

−1
f(x)Pi(x)dx, i = 0, 1, . . . , t. For any fixed Θ = (θ, θ̄)⊤ and ℓ ≤ t, we have136

(2.5)

∫
Z(e3;Θ)

f(x · y)Yℓ,k(x)dω(x) = cℓ,kY
ρ
t (y), ∀y ∈ S2,137

where cℓ,k := vℓ,kΛV
⊤, Λ = diag(λ1, . . . , λdt

) and V = (v1, . . . ,vdt
) with λi,vi being138

the ith eigenvalue and corresponding eigenvector of the matrix D defined by (2.1) with139

Γ = Z(e3; Θ), and vℓ,k is the (ℓ2 + k)th row of the matrix V.140
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The proof of Proposition 2.1 is similar with the proof of Proposition 2.2 in [19]141

by defining D on the spherical zone Z(e3; Θ), and thus we omit it here. Besides, if142

θ = 0 and θ̄ = π, D is an identity matrix, and thus (2.5) reduces to the Funk-Hecke143

formula on the sphere. If θ = 0 and θ̄ ̸= π, (2.5) reduces to Proposition 2.2 in [19].144

3. Spherical zone t-designs. In this section, we first construct positive weight145

quadrature rules on spherical zones induced from quadrature rules on the unit sphere146

with polynomial exactness for spherical harmonics, product of spherical harmonics147

and a class of orthonormal functions on spherical zones. Then, we present spherical148

zone t-designs on spherical zones using spherical t-designs and trapezoidal rules (1.1)149

with polynomial exactness t on [0, 2π].150

For convenience, for any Θ = (θ, θ̄)⊤ with 0 ≤ θ < θ̄ ≤ π, let

κ1 =
2

cos θ − cos θ̄
and κ2 =

cos θ̄ + cos θ

cos θ − cos θ̄
.

For any Θ = (θ, θ̄)⊤ with 0 ≤ θ < θ̄ ≤ π and y = (sinϑ cosϕ, sinϑ sinϕ, cosϑ)⊤ ∈151

S2, we define152

(3.1) R(y; Θ) :=

 cos2 ϕ cos η + sin2 ϕ (cos η − 1) cosϕ sinϕ − cosϕ sin η
(cos η − 1) cosϕ sinϕ sin2 ϕ cos η + cos2 ϕ − sinϕ sin η

cosϕ sin η sinϕ sin η cos η

 ,153

where η := ϑ− arccos((cosϑ+ κ2)/κ1).154

Remark 3.1. By the definitions of κ1 and κ2, we have

(cosϑ+ κ2)/κ1 = (cosϑ(cos θ − cos θ̄) + cos θ + cos θ̄)/2 ∈ [cos θ̄, cos θ], ∀ϑ ∈ [0, π].

Thus, ϑ − η = arccos((cosϑ + κ2)/κ1) ∈ [θ, θ̄], ∀ϑ ∈ [0, π]. Through matrix-vector
multiplication and simplification, we obtain

R(y; Θ)y = (sin(ϑ− η) cosϕ, sin(ϑ− η) sinϕ, cos(ϑ− η))⊤ ∈ Z(e3; Θ),

for any y = (sinϑ cosϕ, sinϑ sinϕ, cosϑ)⊤ ∈ S2.155

By the rotational invariance of the unit sphere and Lemma 3.1 in [18], we show156

that it is sufficient to construct rules on the spherical zone Z(e3; Θ) with center e3.157

Lemma 3.2. If a quadrature rule on a spherical zone Z(e3; Θ) with nodes Xn :=158

{x1, . . . ,xn} ⊆ Z(e3; Θ) and positive weights w1, . . . , wn has polynomial exactness159

t ∈ N0, that is,160

(3.2)

∫
Z(e3;Θ)

P (x)dω(x) =

n∑
i=1

wiP (xi), ∀P ∈ Pt(S2),161

then162

(3.3)

∫
Z(z;Θ)

P (x)dω(x) =

n∑
i=1

wiP (Rxi), ∀P ∈ Pt(S2),163

where R ∈ SO(3) is a rotation matrix such that Re3 = z.164

Proof. We see
∫
Z(z;Θ)

P (x)dω(x) =
∫
Z(e3;Θ)

P (Ry)dω(y) =
∑n

i=1 wiP (Rxi),165

where the first equality follows from |det(R)| = 1 and rotational invariance of the166

Lebesgue measure dω(x), the last equality follows from (3.2). The proof is completed.167
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3.1. Positive weight quadrature rules. Following the idea in [16, 19], we168

first present a set of real-valued orthonormal functions on a spherical zone Z(e3; Θ)169

derived from a shifted Legendre polynomial of degree ℓ ∈ N0 as follows,170

Tκ
ℓ,1(θ, ϕ) =

√
κ1Nℓ,0Pℓ(κ1 cos θ − κ2),

Tκ
ℓ,2m(θ, ϕ) =

√
κ1Nℓ,mPℓ,m(κ1 cos θ − κ2) cosmϕ,

Tκ
ℓ,2m+1(θ, ϕ) =

√
κ1Nℓ,mPℓ,m(κ1 cos θ − κ2) sinmϕ, m = 1, 2, . . . , ℓ,

171

for any (θ, ϕ) ∈ [θ, θ̄] × [0, 2π]. For convenience, we write Tκ
ℓ,k(x) := Tκ

ℓ,k(θ, ϕ) with172

x = (sin θ cosϕ, sin θ sinϕ, cos θ)⊤ ∈ Z(e3; Θ) for any ℓ ∈ N0, k ∈ {1, . . . , 2ℓ+ 1}.173

The functions {Tκ
ℓ,k} are L2(Z(e3; Θ))-orthonormal to each other, that is,174

(3.4)
∫
Z(e3;Θ)

Tκ
ℓ,k(x)T

κ
ℓ′,k′(x)dω(x) = δℓℓ′δkk′ ,175

for any ℓ, ℓ′ ∈ N0, k ∈ {1, . . . , 2ℓ+ 1}, k′ ∈ {1, . . . , 2ℓ′ + 1}.176

In the following, we present the relationship between Tκ
ℓ,k and Yℓ,k. For notational

simplicity, we define a function Υ : [θ, θ̄] → R as follows

Υ(θ) =


1 if θ = 0, θ̄ = π

κ21(cos θ − cos θ̄)/(1 + cos θ) if θ = 0, θ̄ ̸= π
κ21(cos θ − cos θ)/(1− cos θ) if θ ̸= 0, θ̄ = π

(1− (κ1 cos θ − κ2)
2)/(1− cos2 θ) otherwise.

Proposition 3.3. Let θ, θ̄ satisfy 0 ≤ θ < θ̄ ≤ π. Then for any ℓ ∈ N0,177

k ∈ {1, . . . , 2ℓ+ 1} and any (θ, ϕ) ∈ [θ, θ̄]× [0, 2π], the following statements hold.178

(i) Tκ
ℓ,k(θ, ϕ) =

√
κ1Yℓ,k(ϑ, ϕ) with ϑ = arccos(κ1 cos θ − κ2) ∈ [0, π].179

(ii)180

(3.5) (Υ(θ))
ν
2 Yℓ,k(θ, ϕ) =

ℓ∑
j=ν

βjT
κ
j,k(θ, ϕ),181

where ν = ⌊k/2⌋, βj = κν−0.5
1 ajNℓ,ν/Nj,ν , aj = 0.5κ1(2j + 1)

∫ cos θ

cos θ̄
Pℓ(x)Pj(κ1x −182

κ2)dx, j = ν, . . . , ℓ.183

Proof. (i) follows from definitions of Tκ
ℓ,k and Yℓ,k.184

(ii) For any ℓ ∈ N0, let185

ψκ
ℓ,1(θ, ϕ) =

√
κ1Nℓ,0Pℓ(κ1 cos θ − κ2),

ψκ
ℓ,2m(θ, ϕ) = (−1)m

√
κ1Nℓ,mP

(m)
ℓ (κ1 cos θ − κ2) sin

m θ cosmϕ,

ψκ
ℓ,2m+1(θ, ϕ) = (−1)m

√
κ1Nℓ,mP

(m)
ℓ (κ1 cos θ − κ2) sin

m θ sinmϕ, m = 1, . . . , ℓ,

186

where (θ, ϕ) ∈ [θ, θ̄] × [0, 2π]. Then following similar arguments as in the proof of187

Proposition 2.6 in [19], we obtain (ii). The proof is completed.188

Now, we introduce the induced quadrature rules on a spherical zone.189

Theorem 3.4. If a quadrature rule on the unit sphere with quadrature nodes Yn =
{y1, . . . ,yn} ⊂ S2 and positive weights w1, . . . , wn has polynomial exactness t ∈ N0,
then

XY
n := {xj : xj = R(yj ; Θ)yj ,yj ∈ Yn, j = 1, . . . , n}
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is a set of points on Z(e3; Θ) induced by Yn such that the following statements hold.190

(i) For any ℓ ≤ t, k ∈ {1, 2, . . . , 2ℓ+ 1}, we have191 ∫
Z(e3;Θ)

Tκ
ℓ,k(x)dω(x) =

n∑
j=1

wj

κ1
Tκ
ℓ,k(xj).192

(ii) For any ℓ ≤ t, k ∈ {1, 2, . . . , 2ℓ+ 1}, we have193 ∫
Z(e3;Θ)

Yℓ,k(x)dω(x) =

n∑
j=1

wj

κ1
(Υ(arccos(xj · e3)))

⌊k/2⌋
2 Yℓ,k(xj).194

(iii) For any ℓ, ℓ′ ∈ N0 satisfying 2(ℓ+ ℓ′) ≤ t, k ∈ {1, 2, . . . , 2ℓ+ 1},195

∫
Z(e3;Θ)

Yℓ,k(x)Yℓ′,k(x)dω(x) =

n∑
j=1

wj

κ1

ℓ+ℓ′∑
ℓ′′=0

cℓ′′,1Yℓ′′,1(xj),196

where cℓ′′,1 =
∑n

i=1 wiYℓ,k(yi)Yℓ′,k(yi)Yℓ′′,1(yi).197

Proof. For any given Θ and yj ∈ Yn, by (3.1), we obtain xj := R(yj ; Θ)yj ∈198

Z(e3; Θ), j = 1, . . . , n, that is XY
n ⊆ Z(e3; Θ). Then following similar arguments as199

in the proof of Lemma 3.1 in [19], we obtain (i).200

(ii) For any ℓ ≤ t and k ̸= 1, we have201

n∑
j=1

wj

κ1
(Υ(arccos(xj · e3)))

ν
2 Yℓ,k(xj) =

n∑
j=1

wj

κ1

ℓ∑
i=ν

βiT
κ
i,k(xj)

=

ℓ∑
i=ν

βi

n∑
j=1

wj

κ1
Tκ
i,k(xj) =0 =

∫
Z(e3;Θ)

Yℓ,k(x)dω(x),

(3.6)202

where ν = ⌊k/2⌋, βi are defined in Proposition 3.3, the first equality follows from (3.5),203

the third equality follows from (i) and the last equality follows from
∫ 2π

0
cosmϕdϕ = 0204

and
∫ 2π

0
sinmϕdϕ = 0 for any integer m ̸= 0.205

For any ℓ ≤ t and k = 1, we have206 ∫
Z(e3;Θ)

Yℓ,1(x)dω(x) =

∫
Z(e3;Θ)

ℓ∑
i=0

βiT
κ
i,1(x)dω(x)

=

n∑
j=1

wj

κ1

ℓ∑
i=0

βiT
κ
i,1(xj) =

n∑
j=1

wj

κ1
Yℓ,1(xj),

207

where the first and the last equalities follow from (3.5) and the second equality follows208

from (i). Thus we obtain (ii).209

(iii) It is easy to see that there are cℓ′′,k′′ ∈ R such that Yℓ,k(x)Yℓ′,k(x) =210 ∑ℓ+ℓ′

ℓ′′=0

∑2ℓ′′+1
k′′=1 cℓ′′,k′′Yℓ′′,k′′(x), ∀x ∈ S2. By (ii), for any ℓ, ℓ′ satisfying 2(ℓ + ℓ′) ≤ t,211

we have212 ∫
Z(e3;Θ)

Yℓ,k(x)Yℓ′,k(x)dω(x) =

ℓ+ℓ′∑
ℓ′′=0

2ℓ′′+1∑
k′′=1

cℓ′′,k′′

∫
Z(e3;Θ)

Yℓ′′,k′′(x)dω(x)

=

ℓ+ℓ′∑
ℓ′′=0

cℓ′′,1

∫
Z(e3;Θ)

Yℓ′′,1(x)dω(x) =

ℓ+ℓ′∑
ℓ′′=0

cℓ′′,1

n∑
j=1

wj

κ1
Yℓ′′,1(xj),

213
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where the second equality follows from (3.6), the third equality follows from (ii) with214

k = 1. By definition of Yn, we have cℓ′′,1 =
∫
S2 Yℓ,k(y)Yℓ′,k(y)Yℓ′′,1(y)dω(y) =215 ∑n

i=1 wiYℓ,k(yi)Yℓ′,k(yi)Yℓ′′,1(yi). Hence we obtain (iii). The proof is completed.216

Remark 3.5. (Remark on Theorem 3.4) (i) If θ = 0 and θ̄ = π, then XY
n = Yn.217

(ii) If Yn is a spherical t-design, then: (a) Theorem 3.4(i) has equal weight 4π/(nκ1)218

and
∑n

j=1
4π
nκ1

= 2π(cos θ− cos θ̄) = |Z(e3; Θ)|; (b) for θ = 0 and θ̄ ̸= π (or θ ̸= 0 and219

θ̄ = π), XY
n reduces to a spherical cap t-subdesign induced by the spherical t-design220

Yn, which has been studied in [19].221

By Theorem 3.4(ii), we have the following results for spherical zonal polynomials.222

Theorem 3.6. Let Yn := {y1, . . . ,yn} ⊂ S2 be a spherical t-design. Then,223

(3.7) XY
n := {xi : xi = R(yi; Θ)yi,yi ∈ Yn, i = 1, . . . , n}224

provides an equal weight quadrature rule for spherical zonal polynomials of degree at225

most t on Z(e3; Θ), that is,226

(3.8)

∫
Z(e3;Θ)

P (x)dω(x) =
4π

nκ1

n∑
i=1

P (xi)227

holds for any zonal polynomial P =
∑t

ℓ=0 αℓ,1Yℓ,1 ∈ Pt(S2), ∀αℓ,1 ∈ R.228

The proof of Theorem 3.6 follows from Theorem 3.4(ii) by taking k = 1.229

3.2. Spherical zone t-designs. In this section, we show the construction of230

spherical zone t-designs on a spherical zone Z(e3; Θ).231

Theorem 3.7. Let Yn := {yj ∈ S2 : yj = (sinϑj cosϕj , sinϑj sinϕj , cosϑj)
⊤, j =232

1, . . . , n} be a spherical t-design and arbitrary ζj ∈ [0, 2π], j = 1, . . . , n. Then,233

Xn(t+1) :=

{
xij ∈ Z(e3; Θ) : xij = (sin θj cosφij , sin θj sinφij , cos θj)

⊤,where

θj = arccos
(cosϑj + κ2

κ1

)
, φij =

[
2π(i− 1)

t+ 1
+ ζj

]
mod2π

,

j = 1, . . . , n, i = 1, . . . , t+ 1

}(3.9)234

is a spherical zone t-design on the spherical zone Z(e3; Θ), that is,235

(3.10)

∫
Z(e3;Θ)

P (x)dω(x) =
4π

nκ1(t+ 1)

n∑
j=1

t+1∑
i=1

P (xij), ∀P ∈ Pt(S2).236

Proof. By the trapezoidal rule (1.1), for j = 1, . . . , n and any m ≤ t, we have237

(3.11)

∫ 2π

0

cosmφdφ =
2π

t+ 1

t+1∑
i=1

cosmφij and

∫ 2π

0

sinmφdφ =
2π

t+ 1

t+1∑
i=1

sinmφij .238

It is sufficient to verify (3.10) for spherical harmonics Yℓ,k of degree ≤ t. By239

Theorem 3.4(ii) and the definition of Yℓ,1, for any ℓ ≤ t, we have240

(3.12)∫ θ̄

θ

∫ 2π

0

Yℓ,1(θ, φ) sin θdθdφ =
4π

nκ1

n∑
j=1

Yℓ,1(θj , ·) =
4π

nκ1(t+ 1)

n∑
j=1

t+1∑
i=1

Yℓ,1(θj , φij).241
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For any ℓ ≤ t and even k, let m = k/2, then we have242

4π

nκ1(t+ 1)

n∑
j=1

t+1∑
i=1

Yℓ,k(xij) =
2Nℓ,m

nκ1

n∑
j=1

Pℓ,m(cos θj)

(
2π

t+ 1

t+1∑
i=1

cosmφij

)

=
2Nℓ,m

nκ1

n∑
j=1

Pℓ,m(cos θj)

∫ 2π

0

cosmφdφ = 0 =

∫
Z(e3;Θ)

Yℓ,k(x)dω(x),

(3.13)243

where the first equality follows from definition of Yℓ,k and the second equality follows244

from (3.11). Similarly, for any ℓ ≤ t and odd k ̸= 1, 4π
nκ1(t+1)

∑n
j=1

∑t+1
i=1 Yℓ,k(xij) =245 ∫

Z(e3;Θ)
Yℓ,k(x)dω(x). Then, combing (3.12) and (3.13), we complete the proof.246

Remark 3.8. (Remark on Theorem 3.7)247

(i) If θ = 0 and θ̄ ̸= π, Xn(t+1) with κ1 = 2/(1−cos θ̄), κ2 = (1+cos θ̄)/(1−cos θ̄)248

in (3.9) is a spherical cap t-design. Similar result holds for θ ̸= 0 and θ̄ = π.249

(ii) LetR ∈ SO(3)\{I} be a rotation matrix such thatRe3 = e3. Then X ′
n(t+1) :=250

{Rxij ∈ Z(e3; Θ) : xij ∈ Xn(t+1), j = 1, . . . , n, i = 1, . . . , t + 1} is also a spherical251

zone t-design on the spherical zone Z(e3; Θ).252

Remark 3.9. (Remark on the number of quadrature nodes) A lower bound [15]253

on the number of points of a spherical t-design is

{
(t+ 1)(t+ 3)/4, if t is odd

(t+ 2)2/4, if t is even
,254

which is achievable in a few special cases. The authors in [10] proved the existence255

of spherical t-designs with O(t2) points, thus the spherical zone t-designs established256

in Theorem 3.7 with O(t3) points exists. Chen et al. [11] established the existence of257

spherical t-designs for t ≤ 100 with (t + 1)2 points using the interval method, which258

implies that the spherical zone t-designs can have (t+1)3 points for t ≤ 100. Following259

[31], we can obtain computed spherical zone t-designs with t2(t+1)/2+O(t2) points.260

By Theorem 3.6, the number of quadrature nodes of the spherical zone t-designs for261

zonal polynomials coincides with that of spherical t-designs.262

The sphere is invariant under rotations that any rotation of a spherical t-design
is still a spherical t-design. In the following, we show a spherical zone 2-design with 6
points constructed based on a tight spherical 2-design which is rotated from the tight
spherical 2-design

Y◦
4 :=


 0

0
1

 ,


√
8
3
0
−1
3

 ,
 −

√
2

3√
6
3−1
3

 ,
 −

√
2

3
−
√
6

3−1
3




given in [1]. The mesh norm and the separation distance of a point set Xn with respect
to Z(e3; Θ) are defined respectively by

h(Xn) := supy∈Z(e3;Θ) minxj∈Xn dist(y,xj) and τ(Xn) := mini ̸=j dist(xi,xj),

where dist(x,y) := arccos(x · y), ∀x, y ∈ S2 is the geodesic distance.263

Example 3.10. Let Y4 be the spherical 2-design rotated from Y◦
4 , specifically,

Y4 =


 0√

6
3√
3
3

 ,
 0

−
√
6

3√
3
3

 ,


√
6
3
0

−
√
3

3

 ,
 −

√
6

3
0

−
√
3

3


 ,R =

 0 1 0√
3
3 0

√
6
3√

6
3 0

√
3
3

 ,
9
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where R is the corresponding rotation matrix. We show Y4 in Fig.1(a).264

We choose a spherical zone Z(e3; Θ̂) with Θ̂ = (arccos
√
3/3, arccos−

√
3/3)⊤.265

Thus, κ1 =
√
3 and κ2 = 0.266

By Theorems 3.4 and 3.6, the following set including four points

XY
4 :=


 0

2
√
2

3
1
3

 ,
 0

−2
√
2

3
1
3

 ,
 2

√
2

3
0
−1
3

 ,
 −2

√
2

3
0
−1
3


induced by Y4 in Fig.1(b) provides equal weight quadrature rules for {Tκ

ℓ,k} for ℓ ≤ 2267

and spherical zonal polynomials of degree ≤ 2.268

Let Qj
3 := {φij = [2π(i− 1)/3 + ζj ]mod2π, i = 1, 2, 3}, j = 1, . . . , 4.269

By Theorem 3.7, we can obtain the following spherical zone 2-designs on Z(e3; Θ̂).270

(i) If ζ1 = ζ2 = 0 and ζ3 = ζ4 = π/3, then we obtain a spherical zone 2-design271

with 6 points X6 = {x1, . . . ,x6}, see Fig.1(c), where272

x1 =

 2
√
2

3
0
1
3

 ,x2 =

 −
√
2

3√
6
3
1
3

 ,x3 =

 −
√
2

3
−
√
6

3
1
3

 ,x4 = −x3,x5 = −x1,x6 = −x2.273

(ii) If ζj = 0, j = 1, . . . , 4, then we obtain a spherical zone 2-design with 6 points274

X̂6 = {x̂1, . . . , x̂6}, see Fig.1(d), where275

x̂1 = x1, x̂2 = x2, x̂3 = x3, x̂4 =

 2
√
2

3
0
−1
3

 , x̂5 =

 −
√
2

3√
6
3−1
3

 , x̂6 =

 −
√
2

3
−
√
6

3−1
3

 .276

In Fig. 1, the local mesh norm of spherical zone t-designs is estimated by using a277

set of generalized spiral points [7] on the spherical zone Z(e3; Θ̂) with 577,350 points.278

(a) Y4 (b) XY
4

(c) X6, (0.9537, 1.2310) (d) X̂6, (1.0794, 0.6797)

Fig. 1. (a) spherical 2-design Y4. (b) XY
4 induced by Y4. (c) spherical zone 2-design X6 and

(d) spherical zone 2-design X̂6, where the dashed blue lines are the boundary of Z(e3; Θ̂) and the

pair (·, ·) is the estimated mesh norm and separation distance of X6 and X̂6, respectively.

We see from Example 3.10 that spherical t-designs having a symmetric property279

can significantly reduce the number of spherical zone t-designs. Spherical zone t-280

designs constructed with different ζj have better separation distance than using the281

same ζj . To further illustrate the above insight, we give another example in the282

following. We pesent a spherical zone 3-design with 8 points constructed from a283

symmetric spherical 3-design Y◦
6 = {e1, e2, e3,−e1,−e2,−e3} given by [31], where284

e1 = (1, 0, 0)⊤ and e2 = (0, 1, 0)⊤.285
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Example 3.11. Let Z(e3; Θ̂) with Θ̂ = (arccos
√
3/3, arccos−

√
3/3)⊤ be a spher-

ical zone, and Y6 (see Fig.2 (a)) be a symmetric spherical 3-design rotated from Y◦
6 ,

specifically

Y6 =


 0√

6
3√
3
3

 ,
 −

√
2

2
−
√
6

6√
3
3

 ,


√
2
2

−
√
6

6√
3
3

 ,
 0

−
√
6

3
−
√
3

3

 ,


√
2
2√
6
6

−
√
3

3

 ,
 −

√
2

2√
6
6

−
√
3

3


 .

By Theorems 3.4 and 3.6, the induced point set XY
6 (see Fig.2 (b)) is as follows

XY
6 =


 0√

8
3
1
3

 ,
 −

√
6

3
−
√
2

3
1
3

 ,


√
6
3

−
√
2

3
1
3

 ,
 0

−
√
8

3−1
3

 ,


√
6
3√
2
3−1
3

 ,
 −

√
6

3√
2
3−1
3


 .

For j = 1, . . . , 6, let Qj
4 := {φij = [2π(i− 1)/4 + ζj ]mod2π, i = 1, 2, 3, 4}, where286

ζ1 = ζ2 = ζ3 = 0 and ζ4 = ζ5 = ζ6 = π/4. By Theorem 3.7, we obtain a spherical287

zone 3-design X8 (see Fig.2 (c)) with 8 points, specifically,288

X8 = {x1,x2,x3,x4,x5,x6,x7,x8} =289 


√
8
3
0
1
3

 ,
 0√

8
3
1
3

 ,
 −

√
8

3
0
1
3

 ,
 0

−
√
8

3
1
3

 ,
 2

3
2
3−1
3

 ,
 −2

3
2
3−1
3

 ,
 −2

3−2
3−1
3

 ,
 2

3−2
3−1
3

 .290

We show the spherical zone 3-design X̂8 = {x1,x2,x3,x4,−x1,−x2,−x3,−x4}291

constructed by choosing ζ1 = . . . = ζ6 = 0 in Fig.2 (d).

(a) Y6 (b) XY
6

(c) X8, (0.7424,1.0270) (d) X̂8, (0.8402,0.6797)

Fig. 2. (a) symmetric spherical 3-design Y6. (b) XY
6 induced by Y6. (C) spherical zone

3-design X8 and (d) spherical zone 3-design X̂8, where the dashed blue lines are the boundary of

Z(e3; Θ̂) and the pair (·, ·) is the estimated mesh norm and separation distance of X8, respectively.

292

In [18], the authors show the construction of spherical cap t-designs with O(t3)293

points based on equal weight rules on [−1, 1] due to Bernstein [8]. In the following, we294

show an alternative construction of spherical zone t-designs on spherical zones using295

the method in [18].296

Lemma 3.12. ([8]) Let t be a positive odd integer, that is, t = 2k − 1 with a297

suitable k ∈ N0, and let M be an even integer such that M ≥ M0(t) := 2⌊
√
2(t +298

3)(t + 9)/2 + 1⌋ = 2⌊2
√
2(r + 1)(r + 4) + 1⌋. There exist nodes x1 > x2 > . . . > xt299

in (−1, 1) and weights s1, s2, . . . , st such that (i) x2k−i = −xi for i = 1, . . . , t, (ii) si,300

i = 1, . . . , t are positive integers, (iii) si = s2k−i for i = 1, . . . , t, (iv)
∑t

i=1 si = M ,301

and (v) the numerical integration rule
∫ 1

−1
P (x)dx = 2

M

∑t
i=1 siP (xi) holds for any302

polynomial P ∈ Pt([−1, 1]).303

11

This manuscript is for review purposes only.



Corollary 3.13. Let t be a positive odd integer, the set {( 2sjM , xj) :
∑t

j=1 sj =304

M, sj ∈ N0 \ {0}, xj ∈ [−1, 1], j = 1, . . . , t} satisfy Lemma 3.12, and let ζj ∈ [0, 2π]305

be arbitrary for j = 1, . . . , n. Then306

XM(t+1) :=

{
xij ∈ Z(e3; Θ) : xij = (sin θj cosφij , sin θj sinφij , cos θj)

⊤,

where θj = arccos
(xj + κ2

κ1

)
, φij =

[
2π(i− 1)

(t+ 1)sj
+ ζj

]
mod2π

,

i = 1, 2, . . . , (t+ 1)sj , j = 1, 2, . . . , t

}(3.14)307

is a spherical zone t-design on Z(e3; Θ), that is,308

(3.15)

∫
Z(e3;Θ)

P (x)dω(x) =
4π

κ1(t+ 1)M

t∑
j=1

(t+1)sj∑
i=1

P (xij), ∀P ∈ Pt(S2).309

The proof of Corollary 3.13 is similar with the proof of Theorem 3.7, thus we omit310

it here. Notice that the rule in Corollary 3.13 holds for t− 1.311

Remark 3.14. (Remark on Corollary 3.13) Different from [18], we choose {ζj}nj=1312

in (3.14) such that XM(t+1) has relatively better separation distance. As stated in313

[18], the number of nodes in (3.14) is bounded by 2(t + 1)⌊(t + 3)(t + 9)/
√
2 + 1⌋314

which is more than the number of nodes in (3.9). Thus, we take Corollary 3.13 as315

an alternative method for constructing equal weight quadrature rules on a spherical316

zone and will not discuss it in detail in this paper.317

In the following, we present an error bound for numerical integration of continuous318

functions on a spherical zone Z(e3; Θ) using spherical zone t-designs constructed319

above. We denote Et(f) := infP∈Pt(Z(e3;Θ)) ∥f − P∥L∞(Z(e3;Θ)).320

Theorem 3.15. Let t ∈ N0 and Xn := {x1, . . . ,xn} be a spherical zone t-design
on a spherical zone Z(e3; Θ). Given f ∈ C(Z(e3; Θ)), we have

∣∣∣ 4π
nκ1

n∑
i=1

f(xi)−
∫
Z(e3;Θ)

f(x)dω(x)
∣∣∣ ≤ 8π

κ1
Et(f).

Proof. We first observe that 4π
nκ1

∑n
i=1 P (xi) =

∫
Z(e3;Θ)

P (x)dω(x) for any P ∈321

Pt(Z(e3; Θ)). Then, for any P ∈ Pt(Z(e3; Θ)), we have322 ∣∣∣ 4π
nκ1

∑n
i=1 f(xi)−

∫
Z(e3;Θ)

f(x)dω(x)
∣∣∣

=
∣∣∣ 4π
nκ1

∑n
i=1(f(xi)− P (xi)) +

∫
Z(e3;Θ)

P (x)− f(x)dω(x)
∣∣∣

≤ 4π
nκ1

∑n
i=1 |f(xi)− P (xi)|+

∫
Z(e3;Θ)

|P (x)− f(x)|dω(x)

≤ 4π
κ1
∥f − P∥L∞(Z(e3;Θ)) +

√
4π
κ1
∥P − f∥L2(Z(e3;Θ)) ≤ 8π

κ1
Et(f),

323

where the second inequality follows from Cauchy–Schwarz inequality and the last324

inequality follows from arbitrariness of P ∈ Pt(Z(e3; Θ)). The proof is completed.325
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4. Approximation on spherical zones. In this section, we consider approxi-326

mations using spherical zone t-designs and Slepian functions on a spherical zone.327

For convenience, for any t ∈ N0, let D ∈ Rdt×dt be the positive definite matrix328

defined as (2.1) with Γ = Z(e3; Θ) and spherical Shannon number Sh := |Γ|dt/(4π).329

We observe that (D)ℓ2+k,ℓ′2+k′ = 0 for k ̸= k′, thus we apply the quadrature rules in330

section 3 to discretize the elements in D and denote the eigenvalues and corresponding331

eigenvectors of D by λi,vi, i = 1, . . . , dt, respectively. Then, we denote by {Si}dt
i=1332

the Slepian functions on Z(e3; Θ) defined following (2.2).333

4.1. Hyperinterpolation on spherical zones. Hyperinterpolation [26] is a334

discretization of the L2 orthogonal projection of a continuous function f on the sphere335

onto Pt(S2) by a quadrature rule with polynomial exactness 2t. In this section, we336

study hyperinterpolation on a spherical zone. We consider the approximation of337

a continuous function f on a spherical zone Z(e3; Θ) using Slepian functions and338

spherical zone t-designs and present an error bound in L2 norm.339

Theorem 4.1. Let t ∈ N0 and Xn := {x1, . . . ,xn} be a spherical zone 2t-design
on the spherical zone Z(e3; Θ). Given f ∈ C(Z(e3; Θ)), let

Htf :=
4π

nκ1

dt∑
j=1

1

λj

n∑
i=1

f(xi)Sj(xi)Sj .

Then the following statements hold.340

(i)
∑n

i=1(Htf(xi))
2 ≤

∑n
i=1 f

2(xi).341

(ii) ∥Htf∥L2(Z(e3;Θ)) ≤
√
4π/κ1∥f∥L∞(Z(e3;Θ)).342

(iii) ∥Htf − f∥L2(Z(e3;Θ)) ≤ 2
√
4π/κ1Et(f).343

Proof. (i) Let ⟨f, g⟩n := 4π
nκ1

∑n
i=1 f(xi)g(xi), ∀f, g ∈ C(Z(e3; Θ)). Then,344

⟨Htf, Sj⟩n = ⟨
dt∑
i=1

⟨f, Si⟩n
λi

Si, Sj⟩n =

dt∑
i=1

⟨f, Si⟩n
λi

⟨Si, Sj⟩n = ⟨f, Sj⟩n, j = 1, . . . , dt,345

where the last equality follows from exactness of spherical zone 2t-design and orthog-
onality of Slepian functions, that is, ⟨Si, Sj⟩n =

∫
Z(e3;Θ)

Si(x)Sj(x)dω(x) = λiδij .

Thus, we obtain ⟨Htf,Htf⟩n = ⟨f,Htf⟩n. Then, we have

⟨f −Htf, f −Htf⟩n = ⟨f, f⟩n + ⟨Htf,Htf⟩n − 2⟨f,Htf⟩n = ⟨f, f⟩n − ⟨Htf,Htf⟩n,

which implies ⟨Htf,Htf⟩n ≤ ⟨f, f⟩n due to ⟨f −Htf, f −Htf⟩n ≥ 0. We obtain (i).346

(ii) It is easy to see that347

∥Htf∥2L2(Z(e3;Θ)) =
4π

nκ1

n∑
i=1

(Htf(xi))
2 ≤ 4π

nκ1

n∑
i=1

f2(xi) ≤
4π

κ1
∥f∥2L∞(Z(e3;Θ)).348

Hence, (ii) holds.349

(iii) For any P ∈ Pt(Z(e3; Θ)), we have HtP = P . Thus, we obtain350

∥Htf − f∥L2(Z(e3;Θ)) = ∥Htf + P − P − f∥L2(Z(e3;Θ))

≤ ∥P − f∥L2(Z(e3;Θ)) + ∥Ht(f − P )∥L2(Z(e3;Θ)) ≤
√

16π
κ1

∥P − f∥L∞(Z(e3;Θ)).
351

By the arbitrariness of P ∈ Pt(Z(e3; Θ)), we obtain (iii). The proof is completed.352
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4.2. Sparse approximation on spherical zones. In this subsection, we con-353

sider the sparse approximation of a continuous function from noisy data on Z(e3; Θ).354

Let Xn := {x1, . . . ,xn} be a spherical zone 2t-design on a spherical zone Z(e3; Θ).355

We apply the following capped-l1 optimization model to approximate a continuous356

function f from noise perturbed data at Xn = {x1, . . . ,xn},357

(4.1) min
u∈Rd

F (u) :=
1

2
∥Au− b∥2 + µ

d∑
i=1

min

(
|ui|
δ
, 1

)
,358

where b = w̄(f + ϵ) with f = (f(x1), . . . , f(xn))
⊤ and ϵ = (ϵ1, . . . , ϵn)

⊤ is a noisy359

vector, w̄ =
√
4π/(nκ1), A ∈ Rn×d is a matrix with elements (A)i,j = w̄Sj(xi),360

i = 1, . . . , n, j = 1, . . . , d, {Si}di=1 are the first d := ⌈|Z(e3; Θ)|dt/(4π)⌉ ≤ dt optimally361

concentrated [25] Slepian functions on Z(e3; Θ), µ > 0 and δ > 0.362

Since Xn is a spherical zone 2t-design, we have A⊤A = Λ := diag{λ1, . . . , λd}.363

Let g(u) := 1
2∥Au− b∥2. Then g : Rd → R is strongly convex.364

Now, we consider directional stationary points (see, for example, [17, 23]) of365

problem (4.1). The directional derivative of F at u = (u1, . . . , ud)
⊤ along a direction366

h is defined by (see, for example, [17])367

F ′(u;h) : = lim
τ↓0

F (u+ τh)− F (u)

τ
368

= ∇g(u)⊤h+
µ

δ
(
∑

i∈Iδ
<(u)

sign(ui)hi +
∑

i∈Iδ
=(u)

min{sign(ui)hi, 0}+
∑

i∈I0(u)

|hi|),369

where Iδ
<(u) := {i : 0 < |ui| < δ}, Iδ

=(u) := {i : |ui| = δ}, and I0(u) := {i : ui = 0}.370

Definition 4.2. We call u∗ ∈ Rd a directional stationary point of (4.1) if

F ′(u∗;u− u∗) ≥ 0, ∀u ∈ Rd.

By the discussions in [9, 17, 23], we obtain the following lower bounded property371

of directional stationary points of (4.1) and optimality conditions of problem (4.1).372

Theorem 4.3. Assume that δ ≤ µ
∥A⊤b∥∞

. Then the following statements hold.373

(i) If u∗ ∈ Rd is a directional stationary point of (4.1), then, for every i = 1, . . . , d,

either u∗i = 0 or |u∗i | > δ.

Moreover, u∗i = λ−1
i (A⊤b)i, if u

∗
i ̸= 0.374

(ii) u∗ ∈ Rd is a directional stationary point of (4.1) if and only if F (u∗) ≤ F (u),
∀u ∈ N (u∗), where

N (u∗) =

u ∈ Rd : ui ∈

 [−δ, δ] if u∗i = 0
[δ, u∗i + δ] if u∗i > δ
[u∗i − δ,−δ] if u∗i < −δ

 .

Proof. (i) Assume on the contrary that there is i ∈ Iδ
<(u

∗)∪Iδ
=(u

∗). If i ∈ Iδ
<(u

∗),375

then376

λiu
∗
i − (A⊤b)i +

µ

δ
sign(u∗i ) ≤ λiu

∗
i − (A⊤b)i − ∥A⊤b∥∞ < 0, if u∗i < 0,377

λiu
∗
i − (A⊤b)i +

µ

δ
sign(u∗i ) ≥ λiu

∗
i − (A⊤b)i + ∥A⊤b∥∞ > 0, if u∗i > 0,378
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which is in contradiction to (λiu
∗
i − (A⊤b)i +

µ
δ sign(u∗i ))(ui − u∗i ) ≥ 0, ∀ui ∈ R. If379

i ∈ Iδ
=(u

∗), then380

λiu
∗
i − (A⊤b)i +

µ

δ
min{sign(u∗i ), 0} ≥ 0,381

−(λiu
∗
i − (A⊤b)i) +

µ

δ
min{− sign(u∗i ), 0} ≥ 0,382

which imply min{− sign(u∗i ), 0} + min{sign(u∗i ), 0} ≥ 0. Obviously, this inequality383

does not hold for |u∗i | = δ. Thus, the set Iδ
<(u

∗) ∪ Iδ
=(u

∗) is empty.384

For any i ∈ Iδ
>(u

∗) := {i : |u∗i | > δ}, we have (λiu
∗
i − (A⊤b)i)(ui − u∗i ) ≥ 0,385

∀ui ∈ R which implies λiu
∗
i − (A⊤b)i = 0, and thus u∗i = λ−1

i (A⊤b)i.386

(ii) If F (u∗) ≤ F (u), ∀u ∈ N (u∗), then u∗ is a local minimizer of (4.1). Hence it387

is a directional stationary point of (4.1).388

Let u∗ be a directional stationary point of (4.1). Then for any u ∈ N (u∗), we389

have390

F (u)− F (u∗)− F ′(u∗;u− u∗)391

≥ µ

δ
(

d∑
i=1

min(|ui|, δ)−
d∑

i=1

min(|u∗i |, δ)−
∑

i∈I0(u∗)

|ui|)392

=
µ

δ
(
∑

i∈I0(u∗)

min(|ui|, δ) +
∑

i/∈I0(u∗)

min(|ui|, δ)−
∑

i/∈I0(u∗)

δ −
∑

i∈I0(u∗)

|ui|) = 0,393

where the first inequality follows from definitions of F and F ′(u∗;u− u∗), convexity394

of g, that is, g(u) − g(u∗) ≥ ∇g(u∗)⊤(u − u∗) and (i), the first equality follows395

from (i), the last equality follows from definition of N (u∗). Thus, F (u) − F (u∗) ≥396

F ′(u∗;u−u∗) ≥ 0 for any u ∈ N (u∗) and u∗ is a local minimizer of (4.1). The proof397

is completed.398

From [9], we know that any local minimizer of problem (4.1) is a local minimizer of399

the cardinality constrained problem: min 1
2∥Au−b∥2 +µ∥u∥0. Moreover, any global400

minimizer of the cardinality constrained problem is a global minimizer of problem401

(4.1). We shall refer to [9, 17] for comprehensive discussions.402

Now, we estimate the approximation error in the L2 norm.403

Theorem 4.4. Assume that δ ≤ µ
∥A⊤b∥∞

. Let u∗ = (u∗1, . . . , u
∗
d)

⊤ be a directional404

stationary point of problem (4.1) and H∗
t f =

∑d
i=1 u

∗
iSi. Then,405

(4.2) ∥H∗
t f − f∥L2(Z(e3;Θ)) ≤

√
4π∥u∗∥0
nκ1

∥ϵ∥+
√

8π

κ1
∥f∥L∞(Z(e3;Θ)) +

√
16π

κ1
Et(f).406

Proof. For notational simplicity, we write L2 := L2(Z(e3; Θ)), ∥ · ∥L∞ := ∥ ·407

∥L∞(Z(e3;Θ)), denote by Ai the ith column of A and I := {i : u∗i ̸= 0}.408

Let Hd
t f =

∑d
i=1 uiSi and Htf =

∑dt

i=1 uiSi, where (u1, . . . , udt
)⊤ = Λ−1A⊤f̄ ,409

f̄ := w̄f . By Theorem 4.1(ii), we have410

(4.3) ∥Hd
t f −Htf∥2L2

=
4π

nκ1

n∑
i=1

(Hd
t f(xi)−Htf(xi))

2 ≤ 4π

κ1
∥f∥2L∞

.411

By Theorem 4.3(ii), u∗i = λ−1
i (A⊤b)i, ∀i ∈ I and u∗i = 0, ∀i /∈ I. Then, we have412

∥H∗
t f −Hd

t f∥2L2
=

d∑
i=1

λi|u∗i − ui|2 =
∑
i∈I

λi|u∗i − ui|2 +
∑
i/∈I

λi|ui|2413
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≤
∑
i∈I

|A⊤
i (b− f̄)|2

λi
+

4π

κ1
∥f∥2L∞

=
∑
i∈I

|w̄A⊤
i ϵ|2

λi
+

4π

κ1
∥f∥2L∞

414

≤ w̄2∥ϵ∥2
∑
i∈I

∥Ai∥2

λi
+

4π

κ1
∥f∥2L∞

=
4π|I|
nκ1

∥ϵ∥2 + 4π

κ1
∥f∥2L∞

,(4.4)415

where the first equality follows from Parseval’s theorem, the first inequality follows416

from Theorem 4.1(ii), and the last equality follows from A⊤A = Λ. Thus,417

(4.5) ∥H∗
t f −Htf∥2L2

≤ ∥H∗
t f −Hd

t f∥2L2
+ ∥Hd

t f −Htf∥2L2
≤ 4π|I|

nκ1
∥ϵ∥2+ 8π

κ1
∥f∥2L∞

.418

Then we obtain419

∥H∗
t f − f∥L2 =∥H∗

t f −Htf +Htf − f∥L2 ≤ ∥H∗
t f −Htf∥L2 + ∥Htf − f∥L2

≤

√
4π|I|
nκ1

∥ϵ∥+
√

8π

κ1
∥f∥L∞ +

√
16π

κ1
Et(f),

420

where the second inequality follows from Theorem 4.1(iii). The proof is completed.421

Remark 4.5. (Remark on Theorem 4.4) From the proof of Theorem 4.4, we ob-422

serve that: (i) if d = dt, then (4.3) vanishes; (ii) if ui = 0 for i /∈ I, then the last term423

in (4.4) vanishes; (iii) if (i) and (ii) hold simultaneously, the second term in both (4.5)424

and (4.2) vanishes.425

5. Numerical experiments. In this section, we present numerical experiments426

for numerical integration, hyperinterpolation and sparse approximation on spherical427

zones. We denote by Xn := {x1, . . . ,xn} the spherical zone t-designs on a spherical428

zone Z(z; Θ), (x)+ = max{x, 0}, ∀x ∈ R, e1 = (1, 0, 0)⊤ and e2 = (0, 1, 0)⊤.429

5.1. Numerical integration. Let x = (x, y, z)⊤ ∈ S2, we consider the following430

functions for numerical integration and hyperinterpolation,431

f1(x) = ((1/4− (x− 1/
√
18)2 + (y − 1/

√
18)2 + (z − 4/

√
18)2)+)

3,

f2(x) = exp(x+ y + z) + 150(y − cos(π/3))3+,

f3(x) = cos(10(x+ y + z)),

432

where f1 has support on a spherical cap C(x̄; arccos(7/8)) with x̄ = (1, 1, 4)⊤/
√
18433

and is nonsmooth at the boundary of its support; f2 is a function over the sphere434

and nonsmooth at the boundary of the spherical cap C(e2;π/3), and f3 is a smooth435

function on the sphere.436

We choose the spherical zones

Γ1 := Z(x̄; Θ1) and Γ2 = Γ3 := Z(e3; Θ̄),

where Θ1 = (π/25, arccos(7/8))⊤ and Θ̄ = (π/3, π/2)⊤. The 3D view of fi on Γi, i =437

1, 2, 3 are shown in Fig.3 and Fig.4.438

The approximate values of IΓi
(fi) :=

∫
Γi
fi(x)dω(x), i = 1, 2, 3 computed by439

using Matlab command “integral2” are IΓ1(f1) := 0.0023640, IΓ2(f2) := 12.7842907,440

and IΓ3
(f3) := −0.1589865.441

We show the absolute errors |IΓi
(fi)− 4π

nκ1

∑n
j=1 fi(xj)|, xj ∈ Xn, i = 1, 2, 3 as a442

function of degree t in Fig.3 and Fig.4.443
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For f1, which is a zonal function, the sets Xn are induced by spherical t-designs444

with (t+ 1)2 points [31], that is constructed following Theorem 3.6.445

For f2 and f3, the spherical zone t-designs Xn are constructed by (3.9), where we446

use spherical t-designs with (t+1)2 points [31] and ζj = 2πj/(t+1)3, j = 1, . . . , (t+1)2.447

We also compare the results with that of choosing ζj = 0, j = 1, . . . , (t + 1)2. See448

Fig.4 (b) and (e) .449

In addition, for f2 and f3, we compare the results of using spherical zone t-designs450

Xn and XY
n′ which are induced from spherical t-designs only (see (3.7)), see Fig.4 (c)451

and (d). The spherical zone t-designs Xn in Fig.4 (c) and (d) are constructed using452

spherical t-designs with N = t2/2 + t + O(1) points [31] and ζj = 2πj/((t + 1)N),453

j = 1, . . . , N . The sets XY
n′ are induced from spherical t′-designs with n′ = (t′ + 1)2454

points. The x-coordinates at the top and bottom in both Fig.4 (c) and (d) are degrees455

t′ and t, respectively, such that n′ ≥ n.456

From Fig.4, we see that spherical zone t-designs are efficient for numerical inte-457

gration on spherical zones for smooth and nonsmooth functions. Moreover, spherical458

zone t-designs constructed using n distinct ζj perform better than using the same ζj ,459

achieve smaller absolute errors and are more stable for different functions.460

Fig. 3. Left: 3D view of f1 on Γ1 ; Right: absolute errors |IΓ1 (f1)−
4π
nκ1

∑n
j=1 f1(xj)|.

5.2. Hyperinterpolation approximation. We show the hyperinterpolation461

approximation of f1 on Z(x̄; Θ1), f2 and f3 on Γ2 and Γ3, respectively. We choose Xn462

to be a spherical zone 60-design with n = 226, 981 constructed based on a spherical 60-463

design with 3721 points and ζj = 2πj/n, j = 1, . . . , n to estimate the approximation464

errors. The L2 norm of the approximation error is estimated by465

(5.1) ∥Htfi − fi∥L2(Γi) ≈ (
∑n

j=1
4π
nκ1

|fi(xj)−Htfi(xj)|2)
1
2 , xj ∈ Xn.466

For each t, we estimate the uniform error by467

(5.2) ∥Htfi(x)− fi(x)∥L∞(Γi) ≈ maxx∈X◦ |fi(x)−Htfi(x)|,468

where X ◦ ⊂ Γ2 is a set of generalized spiral points [7] with 250,000 points. The results469

are shown in Figure 5. We observe that spherical zone designs and Slepian functions470

are efficient for hyperinterpolation approximation on spherical zones. We choose t =471

30 to show the pointwise errors. For f1, the pointwise errors are significantly smaller472

for t ≥ 3. For f2 the largest pointwise error occurs at the boundary of the spherical473

cap C(e2;π/3) where it is nonsmooth. And for f3, the largest pointwise error occurs474

at the boundary of Z(e3; Θ̄).475
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(b) (c)

(e) (f)

Fig. 4. (b) and (c) are the absolute errors of f2; (e) and (f) are the absolute errors of f3.

Fig. 5. Hyperinterpolation approximation errors and pointwise errors of f1 (left column), f2
(middle column) and f3 (right column) for t = 30.

5.3. Sparse approximation. We choose the following test function

f4(x) =
∑6

j=1 h(∥x− xj∥), ∀x ∈ S2,

where h(x) = (1−x)8+(32x3+25x2+8x+1), ∀x ∈ R is the Wendland function [13], x1 =476

e1, x2 = (1/2,
√
3/2, 0)⊤, x3 = (−1/2,

√
3/2, 0)⊤, x4 = −e1, x5 = (−1/2,−

√
3/2, 0)⊤477

and x6 = (1/2,−
√
3/2, 0)⊤.478

We choose the spherical zone Z(e3; Θ̃) with Θ̃ = (π/3, 2π/3)⊤. And d := Sh =479
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Fig. 6. Sparse approximation results of f4 on Z(e3; Θ̃) with σ = 0.05, where the second and
third columns are the results solved by problem (4.1) and problem (5.3), respectively.

128. We see from Figure 7 that f4 is highly located in the spherical zone. Then,480

we choose t = 15 and Xn to be a spherical zone 31-design with n = 15438 on the481

spherical zone constructed from a symmetric spherical 31-design with 498 points [31]482

and ζj = 2πj/n, j = 1, . . . , n.483

We also show the approximation results solved by the l1 norm regularized opti-484

mization problem (see for example [3]), that is,485

(5.3) min
u∈Rd

1

2
∥Au− b∥2 + µ∥u∥1.486

For problem (4.1), we set µ = 0.02 and δ = µ/∥A⊤b∥1. For problem (5.3), we set487

µ = 0.001 if σ = 0.05, µ = 0.0032 if σ = 0.1. We test ten times and report the average488

values.489

We show the approximation results in Table 1, where we also show the results490

solved by problem (5.3) with µ = 0.02, ū denotes the local minimizer, “nnz(ū)” de-491

notes the number of nonzero elements in ū, L2 := L2(Z(e3; Θ̃)), L∞ := L∞(Z(e3; Θ̃))492

are estimated following (5.1) and (5.2), respectively.493

We see from Table 1 that the capped-l1 regularized problem (4.1) performs better.494

We show the pointwise errors solved by problems (4.1) and (5.3) in Figures 6 and 7.495

We observe that the largest error occurs at the boundary or the nonsmooth point of496

the function.497

Table 1
Sparse approximation results of f4 on Z(e3; Θ̃) solved by problem (4.1) and problem (5.3).

σ = 0.05 σ = 0.1
Problem nnz(ū) L2 L∞ nnz(ū) L2 L∞
capped-l1 8 0.0044 0.0057 8 0.0066 0.0088

l1 42.9 0.0064 0.0099 20.2 0.017 0.0165
l1 (µ = 0.02) 6.8 0.0556 0.0544 6.6 0.0553 0.0558
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Fig. 7. Sparse approximation results of f4 on Z(e3; Θ̃) with σ = 0.1, where the second and
third columns are the results solved by problem (4.1) and problem (5.3), respectively.

6. Conclusion. In this paper, we propose spherical zone t-designs, which pro-498

vide equal weight quadrature rules with polynomial exactness t on a spherical zone499

Z(z; Θ) with center z ∈ S2 and angular radius Θ = (θ, θ̄)⊤ satisfying 0 ≤ θ < θ̄ ≤ π.500

The spherical zone t-design is constructed based on spherical t-designs and trapezoidal501

rules on [0, 2π] with polynomial exactness t. We compare various spherical zone t-502

designs constructed from a spherical t-design and different sets of quadrature nodes of503

the trapezoidal rule on [0, 2π] with polynomial exactness t. We show that using spher-504

ical t-designs only we can obtain quadrature rules with equal weight and polynomial505

exactness t for spherical zonal polynomials on spherical zones. Moreover, we apply506

the spherical zone t-designs and Slepian functions to numerical integration, hyperin-507

terpolation, and sparse approximation on spherical zones and derive error bounds of508

the approximations. Numerical experiments show that spherical zone t-designs con-509

structed with different {ζj} have better performance than using the same {ζj} and510

are promising for approximation on spherical zones.511

Note that, in [1, 11], the authors proposed methods for computing spherical t-512

designs with O(t2) points. However, these methods cannot be directly adapted to513

spherical zones, since Proposition 2.1 in [1] does not hold over spherical zones. The514

construction of spherical zone t-designs with O(t2) points remains an open problem515

and warrants our further study.516
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