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SPHERICAL ZONE T-DESIGNS FOR NUMERICAL INTEGRATION
AND APPROXIMATION *

CHAO LI" AND XIAOJUN CHEN¥

Abstract. In this paper, we present spherical zone t-designs, which provide quadrature rules
with equal weight for spherical polynomials of degree at most ¢ on a spherical zone {x € S? : cosf <
x-z < cosf} withz € S? and 0 < § < § < 7. The spherical zone t-design is constructed by combining
spherical ¢-designs and trapezoidal rules on [0, 27] with polynomial exactness t. We show that the
spherical zone t-designs using spherical ¢-designs only provide quadrature rules with equal weight
for spherical zonal polynomials of degree at most ¢t on the spherical zone. We apply the proposed
spherical zone t-designs to numerical integration, hyperinterpolation and sparse approximation on
the spherical zone. Theoretical approximation error bounds are presented. Some numerical examples
are given to illustrate the theoretical results and show the efficiency of the proposed spherical zone
t-designs.

Key words. spherical designs, spherical zones, sparse optimization, trapezoidal rule
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1. Introduction. A spherical t-design, introduced by Delsarte, Goethals and
Seidel [15], is a set of points {x1,...,X,} on the unit sphere S? := {x € R3: ||x|| = 1}
such that the following quadrature rule

/SQ P(x)dw(x) = 4% znjp(xi), VP € P,(S?)

holds, where | - || is the Euclidean norm, dw(x) is the surface measure on S? and
P;(S?) is the space of all spherical polynomials of degree at most ¢. Seymour and
Zaslavsky [24] proved the existence of spherical ¢t-designs for arbitrary ¢ if the number
of points n is sufficiently large. Spherical t-designs have been extensively studied
(see [6] for an excellent survey). Compared with nonequal positive weight quadrature
rules on the sphere, spherical ¢-designs have shown promising prospects in various
research areas, such as numerical integration and approximation over the sphere [1, 2],
Lasso hyperinterpolation approximation [3], needlet approximation [30], sparse signal
recovery [12], noisy data fitting [20].

Nowadays, there is a growing interest in numerical integration and approximation
on subsets of the sphere. For any z € S? and © = (0,0)" with 0 < 0 < 0 < 7, we
define a spherical zone Z(z; ©) centered at z by

Z(2;0) :={x€S*:cosf <x-z< cosf}.

The surface area of Z(z;0) is |Z(z;0)| := fZ(z'@) dw(x) = 2m(cosf — cosf). In
particular, if § = 0 and @ # 7, then C(z;0) := Z(z;©) is a spherical cap with center
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z € S? and angular radius 0 < § < m. If # = 0 and § = 7, then Z(z;0) = S2.
Mhaskar [22] showed the existence of positive weight rules on a spherical cap by
judiciously selecting nodes from a given set of scattered points on the spherical cap.
Then, the author investigated the condition so that the results can be generalized to
more general compact subsets of the sphere in [21]. Dai and Wang [14] proved that
under certain conditions a positive weight rule with polynomial exactness t exists
with #2 points. Hesse and Womersley [18] showed the construction of positive weight
quadrature rules with polynomial exactness ¢ on spherical caps. Numerical quadrature
and hyperinterpolation on spherical triangles using positive weight quadrature rules
which are nearly exact for polynomials of certain degree are studied in [27, 28]. In
[19], we proposed spherical cap t-subdesigns induced from spherical ¢-designs which
are exact for spherical zonal polynomials of degree at most ¢ and a class of orthonormal
functions defined by shifted Legendre polynomials of degree at most ¢ on spherical
caps. We showed that spherical cap t-subdesigns are efficient for numerical integration
and approximation on spherical caps.

Likewise, equidistant points on [0, 27] provide an equal weight quadrature rule on
[0, 27], known as the trapezoidal rule (see for example [4, 29]), which is exact for all
trigonometric polynomials of certain degree. Specifically,

27 o t+1
(1.1) . Qp)dp = 1 ;Q(%‘)a vQ € Qq([0, 27]),

where {¢1,..., @1} Is a set of equidistant points on [0, 27] with step size 27 /(¢ + 1),
Qq([0, 27]) := span{3, cos p,sin ¢, ..., cos(tp), sin(tp)} is the space of all trigonomet-
ric polynomials of degree at most ¢ on [0,27]. It is known that trapezoidal rules
show good properties in numerical analysis and approximation theory (see [4, 29] and
references therein). Especially, they show exponential convergence for approximating
periodic functions with some smooth properties [29].

To the best of our knowledge, positive equal weight quadrature rules with poly-
nomial exactness for numerical integration on spherical zones with 0 < § < 6 < 7
have not been developed. In this paper, we utilize spherical ¢-designs and trapezoidal
rules on [0, 27| to construct equal weight quadrature rules on spherical zones.

Analogous to the definition of a spherical t-design, we give the definition of a
spherical zone t-design as follows.

DEFINITION 1.1. We call a set of points X, := {x1,...,X,} on a spherical zone
Z(z;0) a spherical zone t-design if it holds that

/ Px)du(x) = 2L OS0) §™ piy  vp e By(s?).
Z(2;0) n i=1

By the rotational invariance of the unit sphere S?, we first show that it is sufficient
to construct spherical zone t-designs on the spherical zone Z(es; ©) with center ez =
(0,0,1)T. Then, we construct spherical zone ¢-designs on a spherical zone Z(es3;©)
by combing spherical ¢t-designs and trapezoidal rules (1.1) on [0, 27, which provide
equal weight quadrature rules for spherical polynomials of degree at most ¢ on the
spherical zone. The polynomial exactness of the spherical zone t-design comes from
the exactness of both spherical ¢-designs and trapezoidal rules (1.1) on [0, 27] with
precision t. We give an example of a spherical zone 2-design with 6 points constructed
from a tight spherical 2-design with 4 points and trapezoidal rules (1.1) on [0, 27]
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with ¢ = 2. We indicate that the spherical zone t-design constructed using spherical
t-designs only provide equal weight quadrature rules for spherical zonal polynomials.
We also show that any positive weight quadrature rules with polynomial exactness ¢
on the unit sphere S? can induce a positive weight quadrature rule on the spherical
zone Z(e3; O) that is exact for both spherical harmonics of degree < ¢ and a class of
orthonormal functions which are derived from shifted Legendre polynomials of degree
at most ¢t. This also contributes to the numerical integration of product of spherical
harmonics on spherical zones with low computational cost. The present work provides
some heuristic research for equal weight quadrature rules with polynomial exactness
on spherical zones.
The main contributions of this paper are summarized as follows.

e We construct spherical zone t-designs on a spherical zone Z(es; ©) with poly-
nomial exactness ¢t by combing spherical ¢-designs and trapezoidal rules (1.1)
on [0,27] with polynomial exactness t. We also present spherical zone ¢-
designs for spherical zonal polynomials based on spherical t-designs only.

e We present positive weight quadrature rules with polynomial exactness on a
spherical zone Z(es;©) induced by quadrature rules on the sphere S2. We
show that the induced quadrature rules are exact for spherical harmonics,
product of spherical harmonics and a class of orthonormal functions defined
by shifted Legendre polynomials.

e We apply the spherical zone t-designs and Slepian functions to numerical
integration and hyperinterpolation approximation on spherical zones. We also
apply a capped-l; regularized minimization problem for approximation from
noisy data on a spherical zone. Approximation error bounds are presented.

The paper is organized as follows. In section 2, we give notations and preliminar-
ies. In section 3, we present positive weight quadrature rules, spherical zone t-designs
on spherical zones and provide numerical integration error bounds. In section 4, we
study hyperinterpolation and sparse approximations on spherical zones. In section 5,
we present numerical results. Finally, we conclude the paper in section 6.

2. Notation and Preliminaries. In this section, we summarize some notations
and preliminaries used in this paper.

2.1. Notation. Let Ny :={0,1,2,...} denote the set of natural numbers includ-
ing zero. For any t € Ny, we denote d; := (t + 1)2. The rotation group is denoted by
SO(3) ;== {R e R¥>3:RTR =1,det R = 1}, where I € R3*3 is the identity matrix.
We use || and [-] to denote the floor and ceiling functions, respectively. [¢]mod2r
means that ¢ is mapped into [0,27] by adding 2kn with k being an integer as re-
quired. We denote by Lo(T') the space of square-integrable functions on a non-empty
connected subset I' C S? endowed with the inner product

<f7 g>]L2(F) = fr‘ f(Y)g(y)dw(y)a vfag € L?(F)a

and the Ly norm || f||r,ry = ((f, f)ro))*/?. Let C(I') denote the space of continuous
functions on T, || f|lL_(ry := supyer | f(x)| for f € C(I'), and P(T") be the space of
polynomials of degree < ¢ on I'. And P, denotes a Legendre polynomial of degree ¢
defined as Py(x) := ﬁdd—;(xz - 1) Vo e [-1,1].

2.2. Spherical harmonics and Slepian functions. The standard basis for
real-valued spherical harmonics of degree ¢ € Ny is (see for example [5])

Yi1(9,¢) = NooPe(cos?),
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Yo om0, 0) = Nom Po,m(cos ) cos me,
Ys2m11(9, @) = Nom Prm(cos V) sinme, m =1,...,4, V(9,¢) € [0,7] x [0, 27],

! . .
where Ny, = ,/22':1 EL?,, Nyo = 1/% and P ., is an associated Legendre

m

function, i.e., Pppy,(zr) = (—1)™(1 — 2)7Pl(m)(x), Ve € [-1,1], m = 1,...,¢, where
Pe( ™) denotes the mth derivative of a Legendre polynomial P, of degree ¢. For any
¢ € Ny, Y, is called a zonal spherical harmonic. For convenience, we denote by Yy j
a real-valued spherical harmonic of degree ¢ € Ny, order k € {1,...,2¢+ 1} and write
Yok (x) = Yy (9, ) with x = (sin 9 cos ¢, sin ¥ sin ¢, cos ) " € S2.

It is well-known that P;(S?) := span{Yj 1, Yii,..., Y2041} (see for example [5]).
Due to the loss of orthogonality of spherical harmonics on subsets of the unit sphere,
we adopt the spherical Slepian functions [25]. For any non-empty connected subset
I' C S? of the sphere and t € Ny, let D € R%*% be a matrix with elements

(2.1) (D) mssr = [ VialoVi s (<))

60 =0,1,...,t, k=1,2,...,20+ 1,k =1,2,...,2¢' + 1. From [25], D is a positive
definite matrix and its eigenvalues satisfy A; € (0,1), i = 1,...,d;. For convenience,
we order the eigenvalues A; such that 1 > A\ > ... > A4, > 0 with corresponding
eigenvectors vy, ..., vy, (We choose vi,...,v4, to be orthonormal). The real-valued
Slepian functions [25] are defined by

t 2041
(2.2) Si(x) =Y v Yer(x), i=1,2,....d;, VxeS
=0 k=1
where v; = (v} 1,0} 1,0} 5,0} 5.V} 9.41) " € R%, which admit the following orthog-

onal property
(2.3) / Si(x)S;(x)dw(x) = X\;6;; and Si(x)S;(x)dw(x) = b5, 1, = 1,2,...,dy,
r S2

where 0;; = 1,if ¢ = j and 0;; = 0, if ¢ # j.
The sum of the eigenvalues of D gives

dy

dy t
(2.4) Shi=Y A= D)ii=),
i=1

i=1 £=0

[
+

(41
IF\

[ Vueodatx) = Ly

E
I

1

the spherical Shannon number, which is a good estimate of the number of significant
eigenvalues [25], where |T'| denotes the area of T'.
Based on the well-known Funk-Hecke formula (see, for example, [5]) and Propo-
sition 2.2 in [19], we obtain the following proposition on spherical zones.
PROPOSITION 2.1. Let f be a continuous function on [—1,1]. For anyt € Ny and
any y € S?, let Yp( ) = (p0Y0,1(¥): mY1,1(¥)s 1 Y12(¥)s -+, p Y2041 (¥)) T, where
pz—Qﬂ'f f(z)Pi(x)dz, i =0,1,...,t. For any fized © = (8,0) and £ < t, we have

(25) / Floe YYa(0d(x) = e e Y2 (y), Yy €S,
Z(es @)
where g, := ve AV, A = diag(A1,...,Aq,) and V = (v1,...,va,) with A\, v; being

the ith eigenvalue and corresponding eigenvector of the matriz D defined by (2.1) with
I = Z(e3;0), and vy, is the ({2 + k)th row of the matriz V.

4
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The proof of Proposition 2.1 is similar with the proof of Proposition 2.2 in [19]
by defining D on the spherical zone Z(e3;0), and thus we omit it here. Besides, if
0 =0and § = 7, D is an identity matrix, and thus (2.5) reduces to the Funk-Hecke
formula on the sphere. If § = 0 and 6 # 7, (2.5) reduces to Proposition 2.2 in [19].

3. Spherical zone t-designs. In this section, we first construct positive weight
quadrature rules on spherical zones induced from quadrature rules on the unit sphere
with polynomial exactness for spherical harmonics, product of spherical harmonics
and a class of orthonormal functions on spherical zones. Then, we present spherical
zone t-designs on spherical zones using spherical ¢-designs and trapezoidal rules (1.1)
with polynomial exactness ¢ on [0, 27].

For convenience, for any © = (6,0) " with 0 <0 <0 < 7, let

2 cosf + cosf

K1 = ————— and ko= =5
cosf — cos b cosf — cos @

For any © = (0,0)" with 0 < 0 < 0 <7 and y = (sin 9 cos ¢, sin 9 sin ¢, cos9) | €
S?, we define

cos? pcosn +sin? ¢ (cosn — 1) cospsing — cos¢sing
(3.1)  R(y;0):= |(cosn —1)cos¢sing sin®pcosn+ cos®¢ —singsing| ,
cos ¢sinm sin ¢ sinn cosn
where 7 := ¢ — arccos((cos ¥ + k2)/kK1).

Remark 3.1. By the definitions of k1 and ks, we have

(cos® + k2)/k1 = (cosI(cos§ — cos @) 4 cos§ + cos0)/2 € [cos O, cosb], VI € [0, 7].

Thus, ¥ — n = arccos((cos¥ + k2)/k1) € [6,0], V¥ € [0,7]. Through matrix-vector
multiplication and simplification, we obtain

R(y;©)y = (sin(d — 1) cos ¢, sin( — n) sin ¢, cos(9 — 1)) " € Z(es3; 0),

for any y = (sin cos ¢, sin ¥ sin ¢, cos ) T € S2.
By the rotational invariance of the unit sphere and Lemma 3.1 in [18], we show
that it is sufficient to construct rules on the spherical zone Z(es; ©) with center es.

LEMMA 3.2. If a quadrature rule on a spherical zone Z(esz; ©) with nodes X, :=
{X1,...,x,} C Z(e3;0) and positive weights w1, ..., w, has polynomial exactness
t € Ny, that is,

= Y w; X; t 2
(3.2) /. o POE0) = P ), VP E RS
then

= Y w; X 2
(3.3) /Z(Z;G)P(x)dw(x)—; P(Rx;), VP eP/(S?),

where R € SO(3) is a rotation matriz such that Res = z.
Proof. We see fZ(z;@) P(x)dw(x) = fZ(eg;G)) PRy)dw(y) = i, wiP(Rx;),

where the first equality follows from |det(R)| = 1 and rotational invariance of the
Lebesgue measure dw(x), the last equality follows from (3.2). The proof is completed.O
5
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3.1. Positive weight quadrature rules. Following the idea in [16, 19], we
first present a set of real-valued orthonormal functions on a spherical zone Z(es; ©)
derived from a shifted Legendre polynomial of degree ¢ € Ny as follows,

TZl (0, ¢) = /K1 Ng,oPi(k1 cosd — Ka),
T2 (0, 8) = /K1 No,i Po.n (K1 cos 0 — kg) cos ma,
Ty omi1(0,0) = V/EINe i Pom (K1 cos 0 — k) sinme, m =1,2,...,¢,
for any (0, ¢) € [0,0] x [0,27]. For convenience, we write Tfp(x) = T;.(0, ¢) with

x = (sinf cos ¢,sinfsinp,cos ) € Z(e3;O) for any £ € Ng, k € {1,...,20+ 1}.
The functions {7} } are Lz(Z(e3; ©))-orthonormal to each other, that is,

(34) Sz (e5:0) Tee(R)T o (x)dw (%) = Sper Open,

for any 0,0 e No, k€ {1,...,20 + 1}, K € {1,...,2¢' + 1}.
In the following, we present the relationship between 77, and Yy j. For notational
simplicity, we define a function Y : [#,0] — R as follows

1_ ifQ:O,H::ﬂ'
T(0) = k2(cos @ — cos ) /(1 + cos ) if0=0,0#m
o k3(cosf — cos ) /(1 — cos ) ifg#£0,0=m

2

(1 — (k1 cosf — k2)?)/(1 —cos? @)  otherwise.

PROPOSITION 3.3. Let 0, 0 satisfy 0 < 0 < 6 < w. Then for any £ € Ny,
ke{l,...,20+1} and any (0,¢) € [0,0] x [0,27], the following statements hold.

(i) T71.(0,¢) = /E1Ye (9, ) with ¥ = arccos(k1 cosf — kz2) € [0, ].

(i)

(3.5) (Y(0))2Yy(0 Zﬁ] (0, 9),

where v = |k/2], B; = kY"°%a;jNy,/Nj.,, aj = 0.561(2j + 1) fccoc;s; Py(z)Pj(k1z —
ko)dz, j = 1/,...,6.

Proof. (i) follows from definitions of T} and Yy .
(ii) For any ¢ € Ny, let

Vi (0,¢) = VE1Ng o Pk cos 0 — ka),
Viom (0, 9) = (1) VE1Nem P, (Hl cos 0 — ko) sin™ 0 cos ma,
Viomy1(0,0) = (=1)™ \/mNe,mPe( (k1 cosf — ko) sin™ Osinme, m = 1,...,,
where (0,¢) € [0,0] x [0,27]. Then following similar arguments as in the proof of
Proposition 2.6 in [19], we obtain (ii). The proof is completed. 0

Now, we introduce the induced quadrature rules on a spherical zone.

THEOREM 3.4. If a quadrature rule on the unit sphere with quadrature nodes YV, =
{¥1,---,¥n} C S? and positive weights w1, . ..,w, has polynomial evactness t € Ny,
then

Xg} = {Xj L X :R(yJ,G))yj,yj S yna] = 1,--.,71}
6
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190 is a set of points on Z(es; 0) induced by Y, such that the following statements hold.
191 (i) For any £ <t, ke {1,2,...,20+ 1}, we have
192 / Tpp(x)dw(x) = S L T7(x;).
Z(eg;@) j=1 Kl
193 (i) For any £ <t, k€ {1,2,...,20 + 1}, we have
194 / Yo 1 (x)dw(x) = Z & T (arccos(x; - €3))) g Yo re(x;).
Z(e3;0) =1 '%1
195 (iii) For any £,¢' € Ny satisfying 200 +¢') <t, k € {1,2,...,20 + 1},
s o+
196 / Yo 1 (%)Y 1o( - cor 1Yo 1(%5),
Z(eg;@) ; K1 KZO

197 where cory =Y 0w Yo (yi)Ye k(i) Yer 1(yi).-
198 Proof. For any given © and y; € Yy, by (3.1), we obtain x; := R(y;;O)y; €
199 Z(e3;0), j =1,...,n, that is XY C Z(e3;0). Then following similar arguments as

200 in the proof of Lemma 3.1in [19] we obtain (i).
201 (ii) For any ¢ <t and k # 1, we have
n n L
w w;

z; H—i(’f(arccos(xj -e3)))2 Yo k(x5) Z :‘ii ZB, T (x5)

j= i=v
202 (3.6) PR

W
= YA ) 0= [ ViuGdux)
i=v j=1 k1 Z(e3;9)

203 where v = |k/2], B; are defined in Proposition 3.3, the first equality follows from (3.5),
204 the third equality follows from (i) and the last equality follows from fo cos modop = 0

205 and fo sinmodg = 0 for any integer m # 0.
206 For any ¢ <t and k = 1, we have

Y, i

/Z(es; 9) Zl /Z(es 9)1256 o &)
ijz& le] :Z YZlX]
: = j=1

208  where the first and the last equalities follow from (3.5) and the second equality follows
209 from (i). Thus we obtain (ii).

210 (iii) It is easy to see that there are cpv v € R such that Y, (x)Ye p(x) =
o+ 20" +1

21 oo Do Cor g Yor g (x), Vx € S By (ii), for any ¢, ¢ satisfying 2(¢ + ¢') <t
212 we have
040 207 +1
/ Yé,k(X)Yé/ Z Z C@// k”/ }/g// k‘” )dw(x)
Z(ES'@) 01 =0 k'""=1 2(93 O)
218 v o+
= Z E” 1/ e// 1 dw( Z 2// 1 Z n// 1 Xj
011 —0 Z(e3;0 0" =0
7
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where the second equality follows from (3.6), the third equality follows from (ii) with
k = 1. By definition of Y,, we have c¢pr1 = [o Yor(y)Ye x(y)Yer 1(y)dw(y) =
S wiYer(yi)Ye k(vi)Yer 1(y:). Hence we obtain (iii). The proof is completed. 0O

Remark 3.5. (Remark on Theorem 3.4) (i) If § = 0 and 6 = 7, then XY = V.
(ii) If Y, is 2 spherical t-design, then: (a) Theorem 3.4(i) has equal weight 47/ (n#;)
and Ej 1 W = 27(cosf — cosf) = | Z(e3;0)]; (b) for § = 0 and § # 7 (or § # 0 and
6 = 7), &Y reduces to a spherical cap t-subdesign induced by the spherical ¢-design
Y», which has been studied in [19].

By Theorem 3.4(ii), we have the following results for spherical zonal polynomials.

THEOREM 3.6. Let Yy, := {y1,...,¥n} C S? be a spherical t-design. Then,
(3.7) XY = {x: % =R(y#0)yi,yi € Vn,i=1,...,n}

provides an equal weight quadrature rule for spherical zonal polynomials of degree at
most t on Z(es;0), that is,

(38) [, PO = ZP )

holds for any zonal polynomial P = 22:0 ap1Ye1 € Py(S?), Vag 1 € R.
The proof of Theorem 3.6 follows from Theorem 3.4(ii) by taking k = 1.

3.2. Spherical zone t-designs. In this section, we show the construction of
spherical zone t-designs on a spherical zone Z(es; ©).

THEOREM 3.7. Let Y, :={y; € S* : y; = (sin¥, cos ¢J,sm19 sin gbj,cosﬁ Yj=
1,...,n} be a spherical t-design and arbitrary ¢; € [0,2x], j =1,...,n. Then,

X141 ::{xij € Z(e3;0) : x;; = (sinf; cos ¢;;,sin 0 sin ¢, cos Hj)T,Where

(3.9) 0; = arccos (M» = {%(Z_l)

K1 t+ 1 CJ:| mod27 ’

i=1,...,n, il,...,t+1}

is a spherical zone t-design on the spherical zone Z(es3;©), that is,

n t+1

am
(3.10) / P(x)dw(x) = ———— P(xij), VP e€Py(S?).
Z(es;0) nki(t+1) ; ZZ:; !
Proof. By the trapezoidal rule (1.1), for j =1,...,n and any m < ¢, we have
2 2 t+1 21 t+1
(3.11) /0 cos mpdp = T - Zcos myp;; and / sinmedp = m Zsm ;.

It is sufficient to verify (3.10) for spherical harmonics Y, ; of degree < ¢. By
Theorem 3.4(ii) and the definition of Yy 1, for any ¢ < ¢, we have
(3.12)
n t+1

27
// Yy1(0 sm&d&dtp*n—mznl J,):ym1 ZZYM s Pi)-

]111
8
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For any ¢ <t and even k, let m = k/2, then we have

4 n ol IN n 9x T
lm
nri(t+1) jz::l ; ok (Xi) nk1 JZZI 2.m (cos 65) (t +1 ;1 cosmey J)

(3.13)

Py - 2m
=25 NT P, (cosO; dp=0= Y, dw(x),
et Y~ Py (cos J)/O cos mpdp / 0k (%)dw(x)

j=1 Z(e3;0)

where the first equality follows from definition of Y, , and the second equality follows
from (3.11). Similarly, for any ¢ < ¢t and odd k # 1 47:“) > Zfii Yo r(xij) =

’ nkq(

fZ(eg;e) Ye 1(x)dw(x). Then, combing (3.12) and (3.13), we complete the proof. 0O

Remark 3.8. (Remark on Theorem 3.7)

(i) If 0 = 0 and 0 # m, X, ¢41) with k1 = 2/(1—cosf), ky = (1+cos)/(1—cosf)
in (3.9) is a spherical cap t-design. Similar result holds for § # 0 and 6 = 7.

(ii) Let R € SO(3)\{I} be a rotation matrix such that Rez = e3. Then sz(t+1) =
{Rx;; € Z(e3;0) : x5 € X441y, = 1,...,n,0 = 1,...,t + 1} is also a spherical
zone t-design on the spherical zone Z(es; 9).

Remark 3.9. (Remark on the number of quadrature nodes) A lower bound [15]
t+1)(t+3)/4, if tisodd
(t+2)2/4, if ¢ is even ’

which is achievable in a few special cases. The authors in [10] proved the existence
of spherical t-designs with O(?) points, thus the spherical zone t-designs established
in Theorem 3.7 with O(#?) points exists. Chen et al. [11] established the existence of
spherical t-designs for ¢ < 100 with (¢ + 1)? points using the interval method, which
implies that the spherical zone t-designs can have (t+1)3 points for t < 100. Following
[31], we can obtain computed spherical zone t-designs with ¢2(¢ + 1)/2 + O(t?) points.
By Theorem 3.6, the number of quadrature nodes of the spherical zone t-designs for
zonal polynomials coincides with that of spherical ¢-designs.

on the number of points of a spherical t-design is {

The sphere is invariant under rotations that any rotation of a spherical ¢-design
is still a spherical t-design. In the following, we show a spherical zone 2-design with 6
points constructed based on a tight spherical 2-design which is rotated from the tight
spherical 2-design

01 (2] [ |

vee=d ol | 0 |.] & |.] =5
1 =1 3 3

3 3 3

given in [1]. The mesh norm and the separation distance of a point set X,, with respect
to Z(es3; O) are defined respectively by

h(X5n) = SUDy ¢ 2 (e,;0) Milx, e x, dist(y,x;) and  7(&,) := min,; dist(x;, x;),

where dist(x,y) := arccos(x - y), Vx, y € S? is the geodesic distance.
EXAMPLE 3.10. Let Y, be the spherical 2-design rotated from Yy, specifically,

0 0 V6 =6 0 1 0
Vi = é s %\/6 y 8 y 8 7R: ? 0 ? ;
3 3 3 3 3 3
9
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279
280
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where R is the corresponding rotation matriz. We show Y, in Fig.1(a).

We choose a spherical zone Z(es;©) with © = (arccosv/3/3,arccos —v/3/3) 7.
Thus, k1 = V3 and ke = 0.

By Theorems 3.4 and 3.6, the following set including four points

0 0 2v2 —2v2

Xg = 2v2 , —2v2 , 8 , 8
it it -1 -1
3 3 3 3

induced by Yy in Fig.1(b) provides equal weight quadrature rules for {T7} for £ <2
and spherical zonal polynomials of degree < 2.

Let Qg = {pij = [2m(i — 1)/3 + (jlmodar, i = 1,2,3}, j = 1,...,4.

By Theorem 3.7, we can obtain the following spherical zone 2-designs on Z(es; é)

(i) If (4 = ¢ =0 and {3 = {4 = 7/3, then we obtain a spherical zone 2-design
with 6 points Xg = {x1,...,Xg}, see Fig.1(c), where

2v/2 =2 =2
3 3 3
X = 0  Xo = V6 Xz = | =6 | x4 =—X3,X5 = —X|,Xg = —Xo.
1 i i
3 3 3

(i) If (; =0, j =1,...,4, then we obtain a spherical zone 2-design with 6 points
Xo = {X1,...,%X¢}, see Fig.1(d), where

2v2 -2 -2
A A A A 3 A 3 A 3
X1 = X1,X2 = X9,X3 = X3,Xq4 = 0 , X5 = V6 , X = =6
3 3
=1 =1 =1
3 3 3

In Fig. 1, the local mesh norm of spherical zone t-designs is estimated by using a

set of generalized spiral points [7] on the spherical zone Z(e3;©) with 577,350 points.

R == —— — " — —— d ——— T

T — T A TTe— P R

(a) V4 (b) &Y (c) X, (0.9537,1.2310) (d) Xg, (1.0794,0.6797)

Fi1G. 1. (a) spherical 2-design Y. (b) X4y induced by Yi. (c) spherical zone 2-design Xe¢ and
(d) spherical zone 2-design X, where the dashed blue lines are the boundary of Z(es; é) and the
pair (+,-) is the estimated mesh norm and separation distance of Xg and X, respectively.

We see from Example 3.10 that spherical ¢-designs having a symmetric property
can significantly reduce the number of spherical zone t-designs. Spherical zone t-
designs constructed with different (; have better separation distance than using the
same (;. To further illustrate the above insight, we give another example in the
following. We pesent a spherical zone 3-design with 8 points constructed from a
symmetric spherical 3-design Y§ = {e1,e2,e3, —€1, —e3, —e3} given by [31], where
e; = (1,0,0)" and ey = (0,1,0) .

10
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EXAMPLE 3.11. Let Z(e3; ©) with © = (arccos v/3/3, arccos —/3/3)T be a spher-
ical zone, and Vg (see Fig.2 (a)) be a symmetric spherical 3-design rotated from Vg,

specifically
0 =2 V2 0 V2 =2
2 2 2 2
Ve = g ) _T\/é ) _T\/é ) 7T\/6 ) % ) ?
V3 V3 V3 =V3 -3 -3
3 3 3 3 3 3

o1 0 =
XY = VBl =2 | =22 |, 2B 2|, V2
? i 2 2 i 2
3 3 3 3 3 3
286 Forj=1,...,6, let Q) = {pi; = [21(i — 1)/4 + lmodzn>i = 1,2,3,4}, where

287 (1 =C =C =0and {4 = (5 = (¢ = 7/4. By Theorem 3.7, we obtain a spherical
288 zone 3-design Xg (see Fig.2 (c)) with 8 points, specifically,

289 XS = {X17x27x37X41X57X67X77X8} =

V8 0 =8 0 2 =2 =2 2
290 0 B AR 0 | =8 % , % ’ % 7 %
1 1 =1 =1 =1 =1
3 3 3 3 3 3 3 3
291 We show the spherical zone 3-design /’\?g = {x1,X2,X3, X4, —X1, —X2, —X3, —X4}
constructed by choosing (1 = ... = (s =0 in Fig.2 (d).

-

— —

T

(a) Ve (b) &7 (c) Xg, (0.7424,1.0270) (d) X, (0.8402,0.6797)

—

FiGc. 2. (a) symmetric spherical 3-design YVs. (b) Xﬁy induced by YVe. (C) spherical zone
3-design Xg and (d) spherical zone 3-design 2‘2’8, where the dashed blue lines are the boundary of
Z(e3;0) and the pair (-,-) is the estimated mesh norm and separation distance of Xg, respectively.

293 In [18], the authors show the construction of spherical cap t-designs with O(t3)
294  points based on equal weight rules on [—1, 1] due to Bernstein [8]. In the following, we
295 show an alternative construction of spherical zone ¢-designs on spherical zones using
296  the method in [18].

297 LEMMA 3.12. (/8]) Let t be a positive odd integer, that is, t = 2k — 1 with a
208 suitable k € No, and let M be an even integer such that M > My(t) := 2|[v/2(t +
200 3)(t+9)/2+ 1] = 2|2vV2(r + 1)(r + 4) + 1]. There exist nodes 1 > x5 > ... > ¢
300 4n (—1,1) and weights s1, Sa, ..., St such that (i) xop—; = —x; fori=1,...,t, (ii) s;,
301 4 =1,...,t are positive integers, (1ii) s; = sap—; fori =1,...,t, (iv) 22:1 s;i =M,
302 and (v) the numerical integration rule fil P(z)dz = 2 22:1 s;P(x;) holds for any
303 polynomial P € Py([—1,1]).

11
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306

310
311
312
313
314
315
316
317
318
319
320

COROLLARY 3.13. Let t be a positive odd integer, the set {(%,33]) : 23:1 sj =
M,sj € Ng\{0},z; € [-1,1], j =1,...,t} satisfy Lemma 3.12, and let (; € [0, 27]
be arbitrary for j =1,...,n. Then

Xpr(e41) ::{xij € Z(es;0) : x;; = (sinb; cos p;;,sin b, sin g;;, cos Hj)T,

Z; + Ko 2m(i — 1)
3.14 here 0, = arccos( J ), ij = { + G )
(314 where £ AR A (T

i=1,2,...,(t+1)s;, j=1,2,...,t}

is a spherical zone t-design on Z(es;©), that is,

t (t+1)s

(3.15) /Z( o P(x)dw(x) = t+1 — T Z Z (xi;), VP €Py(S?).

The proof of Corollary 3.13 is similar with the proof of Theorem 3.7, thus we omit
it here. Notice that the rule in Corollary 3.13 holds for ¢ — 1.

Remark 3.14. (Remark on Corollary 3.13) Different from [18], we choose {(;}7_;
in (3.14) such that Xj;(;41) has relatively better separation distance. As stated in
[18], the number of nodes in (3.14) is bounded by 2(t + 1)[(t + 3)(t + 9)/v2 + 1]
which is more than the number of nodes in (3.9). Thus, we take Corollary 3.13 as
an alternative method for constructing equal weight quadrature rules on a spherical
zone and will not discuss it in detail in this paper.

In the following, we present an error bound for numerical integration of continuous
functions on a spherical zone Z(e3;©®) using spherical zone t-designs constructed
above. We denote Ey(f) := infpep, (z(e5;0)) |/ — PllLo (2(es50))-

THEOREM 3.15. Let t € Ny and X, := {X1,...,Xn} be a spherical zone t-design
on a spherical zone Z(e3;0). Given f € C(Z(e3;0)), we have

;;i:f(xi)—/

i=1 Z(e3;0)

7| < T E(f).

R1

Proof. We first observe that 22 - > i P(xi) fz(ed 0) P(x)dw(x) for any P €
P:(Z(e3;©)). Then, for any P € ]P’t(Z(eg, ©)), we have

A ST F0) = [z(eyi0) S (x)|
f;rl Z:L:1(f(xl) — P(x;)) + fz(eS;@) P(x) — f(x)dw(x)
S D 1 (x0) = P()| + [(4:0) 1P (%) = f(x)]dw(x)

<IN = PllLa(z(es0)) + /2P = fllLo(z(esi0)) < ZE:(f),

where the second inequality follows from Cauchy—Schwarz inequality and the last
inequality follows from arbitrariness of P € P;(Z(es;0)). The proof is completed. O

12

This manuscript is for review purposes only.



326
327
328
329
330
331
332
333
334
335
33¢€

1

I\

338
339

346
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4. Approximation on spherical zones. In this section, we consider approxi-
mations using spherical zone t-designs and Slepian functions on a spherical zone.

For convenience, for any ¢t € Ny, let D € R%*% be the positive definite matrix
defined as (2.1) with ' = Z(e3; ©) and spherical Shannon number Sy, := |['|d;/(47).
We observe that (D)2 245 = 0 for k # £/, thus we apply the quadrature rules in
section 3 to discretize the elements in D and denote the eigenvalues and corresponding
eigenvectors of D by A\;,v;, i = 1,...,ds, respectively. Then, we denote by {Si}fgl
the Slepian functions on Z(e3; ©) defined following (2.2).

4.1. Hyperinterpolation on spherical zones. Hyperinterpolation [26] is a
discretization of the Ly orthogonal projection of a continuous function f on the sphere
onto P;(S?) by a quadrature rule with polynomial exactness 2t. In this section, we
study hyperinterpolation on a spherical zone. We consider the approximation of
a continuous function f on a spherical zone Z(e3;©) using Slepian functions and
spherical zone t-designs and present an error bound in Ly norm.

THEOREM 4.1. Let t € Ny and X, := {x1,...,X,} be a spherical zone 2t-design
on the spherical zone Z(es; 0). Given f € C(Z(e3;0)), let

n

Hf = 23 D F00)5,06)5;

j=1
Then the following statements hold.
(1) Soiy (Hef (x:))? < 200, f2 (%)
(ii) | HefllLa(z(esio) < VAT/Fallf L (z(esi0))
(i) [[Hef = fllLa(z(esso)) < 2v/4m/ k1 EL(f)
Proof. (1) Let (f,g)n := ri% Yo f(xi)g(x:), Vf,g € C(Z(es;0)). Then,

& Sz n 9
(Hef. 550 = (30 L2 si,sj>n—2<fk> (81,8300 = (. S3)ms G =1, d,
i=1 v i=1 v

where the last equality follows from exactness of spherical zone 2¢-design and orthog-
onality of Slepian functions, that is, (S;, Sj)n fz(es 0) S;(x)S;(x)dw(x) = Xidsj.
Thus, we obtain (H¢f, Hef)n = (f, Hef)n. Then, we have

<f_Htf7f_Htf>n = <faf>n+<HtfaHtf>n_2<faHtf>n: <f7f>n_ <Htf7Htf>n;

which implies (Hyf, Hi f)n < {f, [)n due to (f — Hif, f — Hif)n > 0. We obtain (i).
(ii) It is easy to see that

n n

4
IHefIIE, (2(e00)) = TmZ(Htf x;))” < Z ) < *Hf”mw(z (e3;0))"

i=1 =1

Hence, (ii) holds.
(iii) For any P € P,(Z(e3;0)), we have H,P = P. Thus, we obtain

[Hef = fllLa(z(es:0) = Hef + P — P — fllL,(2(es:0))
<P = fllLa(z(esio) + 1He(f = P)lLy(z(eso)) < \/2EIP = fllLo(2(esi0))-

By the arbitrariness of P € P;(Z(e3;©)), we obtain (iii). The proof is completed. 0O
13
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4.2. Sparse approximation on spherical zones. In this subsection, we con-
sider the sparse approximation of a continuous function from noisy data on Z(es; 9).
Let &, := {x1,...,%X,} be a spherical zone 2t-design on a spherical zone Z(es;©).
We apply the following capped-l; optimization model to approximate a continuous
function f from noise perturbed data at X, = {x1,...,Xn},

(4.1) win F(u) = Lan— b3 min (1
' ucRd 2 P 6’ ’

where b = w(f + €) with f = (f(x1),...,f(x,))" and € = (e1,...,€,)" is a noisy
vector, W = \/4n/(nk1), A € R"*? is a matrix with elements (A); ; = w0S;(x;),
i=1,...,n,5=1,...,d,{S;}¢, are the first d := [|Z(e3; O)|d;/(47)] < d; optimally
concentrated [25] Slepian functions on Z(e3;©), u > 0 and 6 > 0.

Since X, is a spherical zone 2¢-design, we have AT A = A := diag{\,...,\q}-
Let g(u) := 1||Au— b||>. Then g: R? — R is strongly convex.

Now, we consider directional stationary points (see, for example, [17, 23]) of
problem (4.1). The directional derivative of F' at u = (u1,...,uq)" along a direction
h is defined by (see, for example, [17])

F(u+7h) — F(u)

F'(u;h) : = lim
710 T
— ThaH ~ V. in{si Vhe ,
=Vg(u) h+ g( Z sign(u;)h; + Z min{sign(u;)h;, 0} + Z [hil),

i€ZS (u) i€Z8 (u) 1€Zo(u)

where Z2 (u) := {i : 0 < |u;| < 6}, Z2(u) := {i : |u;| = 6}, and Zo(u) := {i : u; = 0}.
DEFINITION 4.2. We call u* € R? a directional stationary point of (4.1) if
F'(u*;u—u*) >0, YueR%
By the discussions in [9, 17, 23], we obtain the following lower bounded property
of directional stationary points of (4.1) and optimality conditions of problem (4.1).
THEOREM 4.3. Assume that § < m. Then the following statements hold.
(i) If u* € RY is a directional stationary point of (4.1), then, for everyi =1,...,d,

either u; =0 or |uj|>4d.

Moreover, u} = A;l(ATb)i, if ui # 0.
(1) u* € R? is a directional stationary point of (4.1) if and only if F(u*) < F(u),
Vu € N(u*), where

(6, 0] ifuf =0
Nu)={ueR: u e [0,uf +d] iful >4

i

[uf —0,—0] ifuf<—0

i

Proof. (i) Assume on the contrary that there is i € Z2 (u*)UZZ (u*). If i € Z3 (u*),
then

Aiup = (ATb); + K sign(uf) < Auf — (ATb); — [ATb|l <0, if uj <0,

Nup = (ATb); + K sign(uf) > Auf — (A7), + |ATbllw >0, if uj >0,
14
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which is in contradiction to (Aju} — (ATb); + & sign(uf))(u; —u}) > 0, Vu; € R. If
i € Z% (u*), then
* AT
uf —(ATb)i+ 2
'; min{— sign(u}),0} > 0,

mln{51gn( 9,0} >0,
(i — (ATb)) +

which imply min{—sign(u}),0} + min{sign(u}),0} > 0. Obviously, this inequality
does not hold for |u}| = 4. Thus the set Z2 (u*) UZZ (u*) is empty.

For any i € I3 (u*) := {i : |uf| > d}, we have (Auf — (ATb);)(u; — u}) > 0,
Vu; € R which implies \ju; — (ATb); = 0, and thus u} = \; ' (ATb),.

(ii) If F(u*) < F(u), Yu € N (u*), then u* is a local minimizer of (4.1). Hence it
is a directional stationary point of (4.1).

Let u* be a directional stationary point of (4.1). Then for any u € N (u*), we
have

F(u) - F(u*) — F'(u*;u —u")

d d

K . : *

2g(me(luil,é)—me(luil,é)— > fuwl)
i=1 i=1 i€Zo(u*)

Iz :

=5 > min(luwl, )+ > min(lul,0) = > - D |ul) =0,
1€Zo(u*) i¢Zo(u*) i¢Zo(u*) 1€Zo(u*)

where the first inequality follows from definitions of F' and F'(u*;u — u*), convexity
of g, that is, g(u) — g(u*) > Vg(u*)"(u — u*) and (i), the first equality follows
from (i), the last equality follows from definition of A'(u*). Thus, F(u) — F(u*) >
F'(u*;u—u*) > 0 for any u € N(u*) and u* is a local minimizer of (4.1). The proof
is completed. ]

From [9], we know that any local minimizer of problem (4.1) is a local minimizer of
the cardinality constrained problem: min £||Au— b||? + y[[ul|o. Moreover, any global
minimizer of the cardinality constrained problem is a global minimizer of problem
(4.1). We shall refer to [9, 17] for comprehensive discussions.

Now, we estimate the approximation error in the Lo norm.

THEOREM 4.4. Assume that § < W. Letu* = (uf,...,u})" be a directional
stationary point of problem (4.1) and H; f = Zle ufS;. Then,

N 4rllu*|o ST 167
(42) [#:F — Flaztonon < A0y er P11 enon + 1/ R B ().
nKk1 K1 KR

Proof. For notational simplicity, we write Ly := L2(Z(e3;0)), || - [, = | -
L. (2(es;0)), denote by A; the ith column of A and T := {i : uj # 0}.
~ Let HIf = Z?:l u;S; and Hif = Zf;l u;S;, where (uy,...,uq,) = ATTATE,
f := wf. By Theorem 4.1(ii), we have
dn 4dn
Z(de(xz) Hef (x:))? < —|IfIZ.
K1 K1

i=1

(4.3) 1HEf = Ho S, =

By Theorem 4.3(ii), uf = A\; '(ATb);, Vi € T and u} = 0, Vi ¢ Z. Then, we have

d
[y f = HEFIE, =D Ny —wil> = Afuf —wil + ) Nifus]?
i—1 i€T i¢T
15
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|A]( 4 |wA e* 4r
<y Ijlllfllzrﬁ =Y ,_Tlllfl\foo

€L 1€

. ||A A2 47T|I\ 4m
(4.4) w?llel* D = +7Hf||]l‘°o lell* + 1||f||ioo,

1€L l

where the first equality follows from Parseval’s theorem, the first inequality follows
from Theorem 4.1(ii), and the last equality follows from AT A = A. Thus,

(4.5) [H f—HefI2, <\ Hif—HIFIR, +IHEF —HfI2, <

Aw|Z|, o 8T, .o
B+ 212,

Then we obtain

IHif — fllL, =IHEf = Hef +Hef — fllo, < VHGf — Heflle, + [ Hef — flle,

S e+ [+ ),

where the second inequality follows from Theorem 4.1(iii). The proof is completed.O

Remark 4.5. (Remark on Theorem 4.4) From the proof of Theorem 4.4, we ob-
serve that: (i) if d = d;, then (4.3) vanishes; (ii) if u; = 0 for ¢ ¢ Z, then the last term
in (4.4) vanishes; (iii) if (i) and (ii) hold simultaneously, the second term in both (4.5)
and (4.2) vanishes.

5. Numerical experiments. In this section, we present numerical experiments
for numerical integration, hyperinterpolation and sparse approximation on spherical
zones. We denote by X, := {x1,...,X,} the spherical zone t-designs on a spherical
zone Z(z;0), (z)y = max{z,0}, Vx € R, e; = (1,0,0)" and ey = (0,1,0)"

5.1. Numerical integration. Let x = (z,y,2) € S?, we consider the following
functions for numerical integration and hyperinterpolation,

J1(x0) = (14— (& = 1/V18)* + (y — 1/V18)® + (2 — 4/V18)*)1)?,
f2(x) = exp(z + y + 2) + 150(y — cos(7/3))%,
fs(x) = cos(10(z +y + 2)),

where f; has support on a spherical cap C(X;arccos(7/8)) with x = (1,1,4)" /\/18
and is nonsmooth at the boundary of its support; fs is a function over the sphere
and nonsmooth at the boundary of the spherical cap C(eq;7/3), and f3 is a smooth
function on the sphere.

We choose the spherical zones

I :=Z(%,0;) and Ty=T3:=Z(es;0),

Where O, = (r/25,arccos(7/8)) " and © = (7/3,7/2)". The 3D view of f; on I';,i =

2,3 are shown in Fig.3 and Fig.4.

The approximate values of Zr,(f;) = fr fi(x)dw(x), i = 1,2,3 computed by
using Matlab command “integral2” are Irl(fl) = O 00236407 TIr,(f2) := 12.7842907,
and Tr, (f3) := —0.1589865.

We show the absolute errors |Zr, (f;) — ::1 Z;;l filxj)], x; € Xp, i =1,2,3 as a
function of degree ¢ in Fig.3 and Fig.4.

16
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For f;, which is a zonal function, the sets A, are induced by spherical t-designs
with (¢ + 1)2 points [31], that is constructed following Theorem 3.6.

For fy and fs, the spherical zone ¢-designs &, are constructed by (3.9), where we
use spherical t-designs with (¢£+1)? points [31] and ¢; = 27 /(t+1)3,j = 1,..., (t+1)%
We also compare the results with that of choosing ¢; = 0, j = 1,...,(t + 1)%. See
Fig.4 (b) and (e) .

In addition, for fo and f3, we compare the results of using spherical zone t-designs
X, and X, which are induced from spherical ¢-designs only (see (3.7)), see Fig.4 (c)
and (d). The spherical zone t-designs X, in Fig.4 (¢) and (d) are constructed using
spherical t-designs with N = /2 + ¢ + O(1) points [31] and ¢; = 27j/((t + 1)N),
j=1,...,N. The sets X2 are induced from spherical #'-designs with n’ = (¢’ + 1)2
points. The z-coordinates at the top and bottom in both Fig.4 (c¢) and (d) are degrees
t' and t, respectively, such that n’ > n.

From Fig.4, we see that spherical zone t-designs are efficient for numerical inte-
gration on spherical zones for smooth and nonsmooth functions. Moreover, spherical
zone t-designs constructed using n distinct (; perform better than using the same (j,
achieve smaller absolute errors and are more stable for different functions.

fi :\“\

FIG. 3. Left: 3D view of fi1 on T'1 ; Right: absolute errors |Ip, (f1) — 22 G f10x5)]-

nK1

5.2. Hyperinterpolation approximation. We show the hyperinterpolation
approximation of f; on Z(X;01), f2 and f3 on I'y and I's, respectively. We choose X,
to be a spherical zone 60-design with n = 226, 981 constructed based on a spherical 60-
design with 3721 points and ¢; = 27j/n, j =1,...,n to estimate the approximation
errors. The Ly norm of the approximation error is estimated by

(5.1) [Hefi = fillary = (Cjmy m=fi(xg) = Hefi(x5)[)2, % € X
For each t, we estimate the uniform error by

(5.2) [Hefi(x) = fi(3) Lo (ry) = maxxexo [fi(x) — Hefi(x)],

where X° C T’y is a set of generalized spiral points [7] with 250,000 points. The results
are shown in Figure 5. We observe that spherical zone designs and Slepian functions
are efficient for hyperinterpolation approximation on spherical zones. We choose t =
30 to show the pointwise errors. For f7, the pointwise errors are significantly smaller
for t > 3. For f; the largest pointwise error occurs at the boundary of the spherical
cap C(eq;m/3) where it is nonsmooth. And for f3, the largest pointwise error occurs

at the boundary of Z(es; ©).
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F1G. 5. Hyperinterpolation approzimation errors and pointwise errors of f1 (left column), fo
(middle column) and f3 (right column) for t = 30.

5.3. Sparse approximation. We choose the following test function

fa(x) =32

where h(z) = (1—2)8 (32234252?+8z+1), Va € Ris the Wendland function [13], x; =
e, xo = (1/2,v3/2,0)7, x5 = (=1/2,v/3/2,0)7, x4 = —e1, x5 = (=1/2,-V/3/2,0)"
and x¢ = (1/2,—v/3/2,0)T.

i1 il = x51),

j=1

vx € §?,

We choose the spherical zone Z(e3; ) with © = (7/3,27/3)". And d := S}, =

18
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third columns are the results solved by problem (4.1) and problem (5.3), respectively.

128. We see from Figure 7 that f; is highly located in the spherical zone. Then,
we choose t = 15 and &), to be a spherical zone 31-design with n = 15438 on the
spherical zone constructed from a symmetric spherical 31-design with 498 points [31]
and ¢ =2mj/n, j=1,...,n.

We also show the approximation results solved by the I; norm regularized opti-
mization problem (see for example [3]), that is,

1 2
(5.3) min of|Au— bl + pfull.

For problem (4.1), we set u = 0.02 and § = u/||A"b|;. For problem (5.3), we set
w=0.001if 0 = 0.05, p = 0.0032 if 0 = 0.1. We test ten times and report the average
values.

We show the approximation results in Table 1, where we also show the results
solved by problem (5.3) with y = 0.02, u denotes the local minimizer, “nnz(a)” de-
notes the number of nonzero elements in @, Ly := La(Z(e3;0)), Loo := Loo(Z(e3; 0))
are estimated following (5.1) and (5.2), respectively.

We see from Table 1 that the capped-l; regularized problem (4.1) performs better.
We show the pointwise errors solved by problems (4.1) and (5.3) in Figures 6 and 7.
We observe that the largest error occurs at the boundary or the nonsmooth point of

the function.

TABLE 1

Sparse approzimation results of fa on Z(e3;O) solved by problem (4.1) and problem (5.8).

o =0.05 oc=0.1
Problem nnz(a) Loy Lo | nnz(a) Lo Lo
capped-ly 8 0.0044  0.0057 8 0.0066 0.0088
I 429  0.0064 0.0099 | 20.2 0.017  0.0165
Iy (p=0.02) 6.8 0.0556  0.0544 6.6 0.0553  0.0558
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6. Conclusion. In this paper, we propose spherical zone t-designs, which pro-
vide equal weight quadrature rules with polynomial exactness ¢ on a spherical zone
Z(2;0) with center z € S? and angular radius © = (6,60) " satisfying 0 < § < 0 < 7.
The spherical zone t-design is constructed based on spherical t-designs and trapezoidal
rules on [0, 27] with polynomial exactness t. We compare various spherical zone t-
designs constructed from a spherical t-design and different sets of quadrature nodes of
the trapezoidal rule on [0, 27] with polynomial exactness t. We show that using spher-
ical t-designs only we can obtain quadrature rules with equal weight and polynomial
exactness t for spherical zonal polynomials on spherical zones. Moreover, we apply
the spherical zone t-designs and Slepian functions to numerical integration, hyperin-
terpolation, and sparse approximation on spherical zones and derive error bounds of
the approximations. Numerical experiments show that spherical zone t-designs con-
structed with different {(;} have better performance than using the same {(;} and
are promising for approximation on spherical zones.

Note that, in [1, 11], the authors proposed methods for computing spherical t-
designs with O(t?) points. However, these methods cannot be directly adapted to
spherical zones, since Proposition 2.1 in [1] does not hold over spherical zones. The
construction of spherical zone t-designs with O(t?) points remains an open problem
and warrants our further study.
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