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a b s t r a c t

Various models of traffic assignment under stochastic environment have been proposed
recently, mainly by assuming different travelers’ behavior against uncertainties. This paper
focuses on the expected residual minimization (ERM) model to provide a robust traffic
assignment with an emphasis on the planner’s perspective. The model is further extended
to obtain a stochastic prediction of the traffic volumes by the technique of path choice
approach. We show theoretically the existence and the robustness of the ERM solution.
In addition, we employ an improved solution algorithm for solving the ERMmodel. Numer-
ical experiments are carried out to illustrate the characteristics of the proposed model, by
comparing with other existing models.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The main role of traffic or transportation model is to provide a forecast of future traffic state. The output from the model is
often used in highway and public transport project design and evaluation. The current state of the art of traffic modeling
involves various modeling paradigms ranging from the traditional four-step model, activity based model, to dynamic traffic
assignment. An underlying structure of these modeling paradigms is the interaction between the demand and supply sides of
the traffic system. The travel demand is normally defined as an origin–destination (OD) matrix or captured by a demand
function. On the supply side, the performance of a road or highway is represented by a speed-flow function (in either static
or dynamic framework). The forecast provided by the traffic model is then based on the equilibrium state between the de-
mand and supply of travel which are deterministic inputs of the models. However, such long term forecasts often involve a
high degree of uncertainty of the inputs (e.g. future travel demand in the next 10 years). Thus, the validity of the project
evaluation or any infrastructure design may also be subject to this uncertainty (Ashley, 1980; Mahmassani, 1984).

Several other works addressed the issue of uncertainty in demand modeling and system evaluation (Ashley, 1980, see;
Mahmassani, 1984; Zhao and Kockelman, 2002). Ashley (1980) proposed a modification of the conventional four-step model
by incorporating uncertainties of modeling parameters (e.g. percentage growth, behavioral parameters, road speeds, etc.). At
each step of the four-step model, a statistical simulation is performed to draw samples of these parameters as inputs to the
calculation in that modeling step. The random outputs from each step is then propagated through the subsequent modeling
steps. Zhao and Kockelman (2002) adopted a similar framework to illustrate the application of the approach with the case
study of the Dallas–Forth Worth network. Essentially, this approach overcomes the deficiency in modeling calibration and
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prediction which rely only on a point estimate. The parameters involved in the models are treated as random variables
resulting in stochastic vehicle/passenger flows.

This paper focuses on the last stage of traffic model which is the traffic assignment. A concept which is widely adopted to
define an equilibrium point of the traffic assignment is Wardrop’s user equilibrium (Wardrop, 1952). Under Wardrop’s equi-
librium, travelers will only travel on the cheapest route in terms of his/her generalized nonadditive travel cost which may
include travel time, out of pocket expense, etc.. Thus, at the equilibrium point no traveler can change his/her route unilat-
erally to reduce his/her own travel cost. The traditional approach of traffic assignment requires deterministic inputs of travel
demand and supply (e.g. OD matrix and speed-flow relationship) in which the model will then provide a deterministic pre-
diction of the future traffic condition (e.g. congestion level on each link in the next 10 years).

Recently, several transport network modeling approaches have been proposed to consider uncertainties from both de-
mand and supply sides of the system. In particular, the concept of stochastic network (see e.g. Watling, 2002; Clark and
Watling, 2005; Sumalee et al., 2009) is developed to include the stochastic demand and supply characteristics into the traffic
assignment model. The stochastic network framework takes the inputs of OD demand and/or road capacity as random vari-
ables. Watling (2002) proposed a framework of stochastic network model considering the stochastic travel demand which
follows a stationary Poisson process and a probabilistic route choice model. Shao et al. (2006) and Sumalee and Xu (in press)
proposed a similar model but used a normal distribution to represent the stochastic demand. Zhou and Chen (2008) on the
other hand, adopted the log-normal stochastic demand in their model formulation. On the supply side, Lo and Tung (2003)
introduced the stochastic link capacity, which is assumed to follow a uniform distribution, into the stochastic network mod-
el. Sumalee et al. (2009) introduced both demand and supply uncertainties which are assumed to follow a log-normal dis-
tribution. Chen and Zhou (2010) recently proposed an a-reliability model to represent equilibrium route choice assignment
under stochastic demand and supply. In all cases, a key operational feature of the stochastic network model is the stochastic
prediction of the equilibrium flows based on the stochastic inputs of OD demand and road capacity, i.e. equilibrium path and
link flows will follow some statistical distributions. This, in some way, can be viewed as an attempt to consider uncertainties
in the forecast of future traffic condition based on uncertain inputs.

However, all of the proposed stochastic network models mainly focus on the short-term uncertainty of the travel demand
and supply. The definition of stochastic demand and supply, in fact, stems from the day-to-day variability of demand and
supply in the network. For instance, it is evident that the number of travelers between each OD pair varies from day to
day due to the intrinsic stochastic nature of travel demand and human behavior. Similarly, the road capacity may also change
from day to day due to incidents or weather effect (Lam et al., 2008). The framework of stochastic network model empha-
sizes on capturing the effect of day-to-day uncertainties of travel condition on travelers in which a prediction of potential
traffic states is made based upon these uncertainties (Bell and Cassir, 2002). This model can be viewed as a user-oriented
model. Under this framework, attentions have been paid on developing a risk-averse based traffic equilibrium model to in-
clude uncertainty into traveler’s decision (see e.g. Bell and Cassir, 2002; Connors and Sumalee, 2009).

On the other hand, from the planner’s perspective the prediction of the future traffic condition should be robust against
possible uncertainties of the future demand and supply. A forecast of the traffic condition (in terms of traffic volumes and
minimum travel costs) is considered robust if this forecast deviates as little as possible from the set of equilibrium states
resulted from the traffic assignment with different potential OD matrices and capacities. Let S1, S2 and S3 be the solution
set of Wardrop’s user equilibrium assignment corresponding to the three different scenarios of the future demand, respec-
tively. A forecasted traffic equilibrium x̂ is considered robust if the expected distance of x̂ to S1, S2 and S3 is minimum. Thus, if
x̂ is a robust prediction against the uncertain demand, any project evaluation and design based on x̂ should also be robust
against anticipated uncertainty. This is probably one of the main concerns of the transport planners in using traffic model to
evaluate or design a transport project. This paper, thus, proposes the robust Wardrop’s equilibrium assignment model which
can take the stochastic OD demand generated from the procedures suggested in Ashley (1980) or Zhao and Kockelman
(2002), and provides the ‘‘robust’’ prediction of future traffic flows for the planning and evaluation purposes. The robust pre-
diction proposed in this paper is different from the concepts previously proposed in the literature (which thoroughly re-
viewed above), and provides a more rigorous analysis of the prediction and project evaluation robustness as to be
described later in the paper (see e.g. Theorem 2 and Remark 2 in Section 2.3).

Note that the notion of robust Wardrop equilibrium was used previously by Ordóñez and Stier-Moses (2007). However,
their model focuses on the traveler’s perspective in which the flow prediction is based on the Wardrop’s user equilibrium
principle considering the worst-case of uncertain link travel times.

Failure to include uncertainty properly in a traffic assignment model may lead to a very expensive, or even fatal decision if
the anticipated random variable is not realized. This paper focuses on the robust traffic assignment model with an emphasis
on the planner’s perspective in obtaining a robust prediction against the uncertain future demand and capacity. The model is
based on the expected residual minimization (ERM) introduced by Chen and Fukushima (2005) for general stochastic nonlin-
ear complementarity problem (SNCP). The ERM model minimizes the expected value of loss at all possible scenarios due to
failures in equilibrium, which also gives a small expected distance from its solution to the solution set Sx of the NCP corre-
sponding to each possible scenario under some conditions (see e.g. Chen et al., 2009). Note that obtaining one solution of the
NCP for a given scenario x might be difficult due to the nonadditive travel cost. In addition, the whole solution set Sx may
also in general be nonsingleton and even nonconvex.

Zhang and Chen (2008) applied the ERM model to the traffic equilibrium under uncertainty. Compared to that paper, this
paper has the following main distinctive contribution. (i) The motivation of this paper is to present the ERM model for
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assessing the robustness of a traffic assignment to the transportation field. The aim of Zhang and Chen (2008) is to provide
sufficient conditions that ensure the boundedness of the solution set of the ERM model. Traffic assignment is used as an
example to show these sufficient conditions hold in some applications. (ii) The robustness of the solution of the ERM model
for traffic assignment is provided theoretically in this paper, which has not been addressed before and hence constitutes an
original contribution. (iii) The SPG method adopted here is promising to solve realistic larger network as illustrated in the
numerical results. In Zhang and Chen (2008), no algorithm with convergence result has been proposed.

Given a ERM solution, we also propose an approach to generate the statistical distribution of the traffic state following the
method adopted in Sumalee and Xu (in press). The paper compares the prediction results of the proposed model with those
from other stochastic network assignment models.

This paper is organized as follows. In the following section, we begin with the basic settings for traffic network under sto-
chastic environment. We then focus on presenting the proposed expected residual minimization (ERM) model, together with
the path choice proportion approach, and briefly review two other existing models for robust assignment in the stochastic
network. We also analyze theoretically some properties including the existence and robustness of the solution. Section 3 de-
scribes how to apply the smoothing projected gradient (SPG) method proposed by Zhang and Chen (2009) for solving the
ERM model. In Section 4, numerical examples on two small-size networks as well as a moderate-size network are provided
to demonstrate that the ERMmodel and the SPGmethod are promising in providing a robust traffic assignment under uncer-
tainties. We then conclude the paper in the final section.

2. Model formulation

Wewill use the following notations in the paper. z+ = max(z,0) for any given vector z, jSj denotes the cardinality of a given
finite set S, and j�j refers to the Euclidean norm. Given a set X # Rm of random vectors x, let PfbXg ¼ Pfx 2 X : x 2 bXg be
the probability of x 2X that belongs to the subset bX of X. Let suppX be the support set of X. It is known that suppX =X
whenX = {x1, . . . ,xi, . . .} consisting of countable discrete points with Pfxig > 0 for all i; and suppX is the closure of the set
S = {x 2X: q(x) > 0} when x 2X is a continuous random vector with density function q(x).

2.1. Stochastic network framework

We consider a strongly connected network ½N;A�, where N is the set of nodes and A is the set of links. We denote by K
the set of all possible paths with cardinality jKj, and W the origin–destination (OD) movements with cardinality jWj.

Let Kr be a set of paths connecting the rth OD, and X # Rm be the set of uncertain factors such as weather, accidents, etc.
Let Q(x) be a demand vector with entries Qr(x) representing the stochastic travel demand on the rth OD, and C(x) be a
capacity vector with entries Ca(x) denoting the stochastic capacity on link a, for uncertain factor x 2X. The probability dis-
tributions of random vectors Q(x) and C(x) are known.

For a realization of random vectors Q(x) and C(x), x 2X, an assignment of flows to all paths is denoted by the vector
F(x), whose component Fr

kðxÞ denotes the flow on the kth path connecting the rth OD, while an assignment of flows to
all links is represented by the vector V(x) whose component Va(x) denotes the stochastic flow on link a. The relation be-
tween F(x) and V(x) is presented by

VðxÞ ¼ DFðxÞ;

where D = (da,k) is the link–path incidence matrix with entries da,k = 1 if link a is on path k, and da,k = 0 otherwise. A random
unknown vector U(x) with components Ur(x) represents the stochastic minimum travel cost for the rth OD.

LetC = (cr,k) denote the OD-path incidence matrix with entries cr,k = 1 if path k connects the rth OD, and cr,k = 0 otherwise.
Thus each row of C is a nonzero vector since the network is strongly connected, and C has full row rank since one path con-
nects only one OD movement.

Given the path flow vector f, we know that the link flow vector V = Df. The link travel time function T(V,x) is a stochastic
vector, and each of its entries Ta(V,x) is assumed to follow a generalized Bureau of Public Roads (GBPR) function,

TaðV ;xÞ ¼ t0a 1þ ba
Va

CaðxÞ
� �na� �

; ð1Þ

where t0a ; ba and na are given parameters. We employ the nonadditive path travel cost function U(f,x) extended from Gab-
riel and Bernstein (1997) by

Uðf ;xÞ ¼ g1D
TTðDf ;xÞ þWðDTTðDf ;xÞÞ þKðf ;xÞ: ð2Þ

Here g1 > 0 is the time-based operating costs factor, W is the function converting time T to money, and K is the perturbed
financial cost function. Various factors may cause the nonadditivity of the cost function such as the route-specific toll
schemes and the nonlinear value of time.

Later we always assume that the following assumption holds.
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Assumption 1. The travel cost function U(f,x) for any given path flow f, and the uncertain demand Q(x), are bounded for
x 2X almost everywhere (a.e.).

Let us denote

x ¼ f

u

� �
; Gðx;xÞ ¼ Uðf ;xÞ � CTu

Cf � Q ðxÞ

 !
; ð3Þ

where x 2 Rn is a deterministic vector with n = jKj + jWj. Here f 2 RjKj is a path flow pattern and u 2 RjWj is a travel cost vector
corresponding to f.

For a fixed �x 2 X, the NCP formulation for Wardrop’s user equilibrium, denoted by NCP ðGðx; �xÞÞ, seeks x 2 Rn such that

x P 0; Gðx; �xÞ P 0; xTGðx; �xÞ ¼ 0: ð4Þ
At any solution, it is known that u coincides with the vector of minimum OD travel costs corresponding to the equilibrium
flow pattern f. Both path flows and the minimum OD travel costs are considered as decision variables, constituting useful
information of Wardrop’s user equilibrium for the planner. Moreover, the NCPðGðx; �xÞÞ is equivalent to the system of non-
linear equations

minðx;Gðx; �xÞÞ ¼ 0:

In the case that the travel demands and road capacities are endogenously considered to be random variables, we may not
expect to find a traffic path flow pattern f and a related travel cost u such that they constitute a Wardrop’s user equilibrium
under all realized demand and supply. That is, in general, there is no solution x satisfying the following SNCP

minðx;Gðx;xÞÞ ¼ 0 for all x 2 X:

Hence it is meaningful to extend Wardrop’s user equilibrium to a user equilibrium under uncertainty for the planner in the
following two ways.

First, it should provide a deterministic equilibrium pattern for the planner, which deviates as little as possible from the set
of equilibrium states under any possible scenario. Secondly, the planners can estimate the distribution of the random flow
pattern, based on the vector of path choice proportions from the deterministic equilibrium pattern. From the above informa-
tion, planner can then make a robust decision.

2.2. ERM model

We now explain the ERM model, which can meet the above two requirements for the traffic assignment under uncer-
tainty mentioned earlier. The ERM model seeks a robust traffic assignment under stochastic environment by solving

min
x2Rnþ

gðxÞ :¼ E½kminðx;Gðx;xÞÞk2�; ð5Þ

where E[�] refers to the expectation operator.
For any x 2X, let Sx denote the solution set of NCP (G(x,x)) and dist(x,Sx) represent the Euclidean distance function

from the vector x to the solution set Sx. We define the residual function rx(�): Rn ? R+ of NCP (G(x,x)) by

rxðxÞ :¼ kminðx;Gðx;xÞÞk:
In the field of NCP, rx(�): Rn ? R+ is called a residual of NCP(G(x,x)), if rx(x) = 0 if and only if x 2 Sx, i.e., dist(x,Sx) = 0. The
objective function g plays the role of penalizing the vector x 2 Rn

þ that is far away from solution set Sx, x 2X. In the next
section, we will prove that by minimizing (5) the expected distance E[dist(xERM,Sx)] tends to be small. Let
xERM ¼ f TERM;u

T
ERM

� �T be the solution of (5) and SERM be the solution set of the ERM model. The planner can choose fERM as a
robust path flow pattern and uERM as a robust minimum travel cost corresponding to fERM under uncertainties.

One may question if we can also get a robust solution by solving:

min
x2Rnþ

E½distðx; SxÞ�

instead of the ERM. We argue that although the above minimization problem meets the robust requirement, it is impractical
to compute dist(x,Sx) since Sx in general is not a singleton nor convex if nonadditive travel cost is adopted. Another possible
alternative is to obtain a solution xx 2 Sx for each scenario x and solve

min
x2Rnþ

E½kx� xxk2�:

However there exists numerous scenarios x when a continuous distribution is used. To compute one solution for each sce-
nario is computationally prohibitive. Furthermore, an arbitrary chosen xx 2 Sxmight lead to a bias prediction with respect to
xx in the case that Sx contains more than one element.

A stochastic traffic flow eFERMðxÞwhich can be derived from fERM has not been studied by Zhang and Chen (2008). Here we
outline the proportion technique to obtain a stochastic traffic flow eFðxÞ from a deterministic traffic assignment f.
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We introduce the concept of vector of path choice proportions p ¼ pr
k

� � 2 RjKj for a deterministic path flow pattern f,
where K is the set of possible paths. The entry

pr
k ¼

fkP
j2Kr fj

ð6Þ

is the proportion of flow on path k 2 K between the rth OD. It is clear thatX
k2Kr p

r
k ¼ 1; for any rth OD movement:

In a static setting of traffic network, if f lies in the set of Wardrop’s user equilibria, the path choice proportions pr
k; k 2 Kr ,

determine the allocation of the given demand Qr on the set of possible paths connecting the rth OD. The random path flow
can then be expressed aseF r

kðxÞ ¼ pr
kQ

rðxÞ; ð7Þ
and hence the demand conservation

P
k2Kr eFr

kðxÞ ¼ QrðxÞ holds for each fixed x. The random path flow eF r
kðxÞ follows the

same type of distribution of Qr(x). We have

E eFr
kðxÞ

h i
¼ E pr

kQ
rðxÞ� � ¼ pr

kE½QrðxÞ�;

and

Var eFr
kðxÞ

h i
¼ Var pr

kQ
rðxÞ� � ¼ pr

k

� �2Var½QrðxÞ�:

Note that variance of the demand flow is not conserved here sinceX
k2Kr Var eFr

kðxÞ
h i

¼
X

k2Kr pr
k

� �2Var½QrðxÞ�– Var½QrðxÞ�:

The implication of this non-conservation is a lower path flow variance compared to the OD demand variance. This will also
imply the underestimation of the variance of the link flow. Nevertheless, one can introduce the covariance term of the path
flows, cov(Fi,Fj), to ensure the variance conservation following Lam et al. (2008). However, the non-conservation property of
variance should not affect the main result on the robustness of the ERM solution, since the model aims to find a deterministic
robust prediction of flows. The variance of path/link flow is only generated through the path choice proportion concept
which will be carried out after the ERM model is solved.

We can write eFðxÞ in the form of the multiplication of matrices aseFðxÞ ¼ diagðpÞCTQ ðxÞ;
where diag(p) is the diagonal matrix satisfying (diag(p))ii = pi for each i. Moreover,

E½eFðxÞ� ¼ diagðpÞCTE½Q ðxÞ�:
At follows, we briefly review two relevant models on traffic assignment under stochastic environment, which are also ex-
tended from Wardrop’s user equilibrium, but in different manners compared with the ERM model.

� Expected value (EV) model

The EV model assumes that to contend with random demand and supply, the travelers select paths to minimize their ex-
pected travel cost Uðf Þ ¼ E½Uðf ;xÞ�, and the expected demand Q ¼ E½Q ðxÞ� is considered for the network.

Let us denote

GðxÞ ¼ E½Gðx;xÞ� ¼ Uðf Þ � CTu

Cf � Q

 !
:

Thus the EV model solves Wardrop’s user equilibrium NCP ðGðxÞÞ,

minðx;GðxÞÞ ¼ 0: ð8Þ
Let us signify the solution of the EV model by xEV ¼ f TEV ;u

T
EV

� �T . It is worth mentioning that fEV in general is not unique, while
the link flow vector vEV is unique if U is strictly monotone with respect to f.1

1 We may also write Wardrop’s user equilibrium in the variational inequality (VI) form. The link flow vector vEV = DfEV is Wardrop’s user equilibrium if fEV
satisfies

UðfEV ÞT ðf � fEV Þ P 0; 8f 2 F ¼ ff : Cf ¼ E½QðxÞ�; f P 0g:
This formulation ignores any travel time variability and presupposes that travelers consider only the deterministic mean path costs.
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� Best worst-case (BW) model

The so-called BW model borrows the idea from robust optimization of stochastic programming by assuming that each user
selects path to minimize for each i the worst-case cost bUiðf Þ ¼ maxx2suppXUiðf ;xÞ, and the worst-case demandbQ i ¼ maxx2suppXQ iðxÞ will be assigned to the network. Note that the boundedness of U(f,x) and Q(x) over the domain
X a.e. in Assumption 1 guarantees that bUðf Þ and bQ are well-defined and finite. Denote

bGðxÞ ¼ bUðf Þ � CTu

Cf � bQ
 !

:

The BW model coincides to a Wardrop’s user equilibrium NCP ðbGðxÞÞ,
minðx; bGðxÞÞ ¼ 0: ð9Þ

A special case of the BW model called a robust Wardrop equilibrium is proposed by Ordóñez and Stier-Moses (2007), where
the path travel cost U(f,x) = DTT(V,x) is additive and only the link travel time

TaðV ;xÞ ¼ laðVaÞ þxaca
explicitly incorporates uncertainty. Here ca is an upper bound of possible deviation from the load-dependent nominal value
la(Va), and the random vector x = (xa) belongs to

X ¼ fx : xa 2 ½0;1�; ðDTxÞk 6 d for any link a and path kg;
corresponding to a given uncertainty budget d.

The aforementioned three models coincide to the same NCP for Wardrop’s user equilibrium ifX is a singleton. Otherwise,
the EV/BW model is equivalent to a certain NCP for Wardrop’s user equilibrium, where EV takes the average and BW adopts
the worst-case of stochastic demand and travel cost to deal with uncertainties. The ERM model, on the other hand, is a non-
smooth nonconvex optimization problem on Rn

þ, which is not equivalent to a NCP.
From the computational point of view, the EV model, NCP ðGðxÞÞ, is a standard NCP with a smooth function GðxÞ in ordin-

ary setting. The EV model can be solved efficiently if GðxÞ is monotone. However, the monotonicity of GðxÞ is in general not
guaranteed due to the nonadditive cost. The BW model leads to computationally intensive method, because the nonsmooth-
ness of bUðxÞ caused by the maximum operator that functions on numerous/continuous random vector x 2X. We will illus-
trate the SPG method for solving the ERM model in Section 3.

2.3. Existence and robustness of ERM

In this section, we establish the existence and robustness of the solution provided by the ERMmodel for the traffic assign-
ment under stochastic environment. We assume the following condition on the travel cost function, which is easy to meet in
practice.

Assumption 2. For fixed x 2X a.e., the travel cost function Uk(f,x) on each path k is a nonnegative nondecreasing smooth
function of flow f.

In transportation field, much attention has been paid on whether the function Gðx; �xÞ in NCPðGðx; �xÞÞ for Wardrop’s user
equilibrium is monotone, where �x refers to a static scenario. This is often not the case when the nonadditive travel cost is
adopted. However, we find that the special structure of Gðx; �xÞ allows it to be an R0 function, and moreover, G(x,x) to be a
stochastic R0 function where x refers to random vector in X, regardless of the nonadditive travel cost function which is
adopted. The existence of ERM solution relates closely to the stochastic R0 function G(x,x).

Let us review the concepts of R0 function as well as stochastic R0 function.

Definition 1 Chen, 2001. A function J: Rn ? Rn is called an R0 function on Rn
þ if for every infinite sequence fxkg#Rn

þ satisfying

lim
k!1

kxkk ¼ 1; lim supk!1kð�JðxkÞÞþk < 1;

there exists i 2 {1,2, . . . ,n} such that lim supk!1 min xki ; JiðxkÞ
� � ¼ 1.

It is clear that J is an R0 function if and only if kmin(x, J(x))k2 is coercive, i.e., kmin(x, J(x))k2 ?1 as kxk?1. The coercivity
implies the boundedness of level set

Ls ¼ fx : kminðx; JðxÞÞk2 6 sg for any sP 0:

Choosing the special s = 0, we obtain the boundedness of solution set L0 of NCP(J(x)).

Definition 2 Zhang and Chen, 2008. A function G : Rn �X ! Rn is called a stochastic R0 function on Rn
þ if for every infinite

sequence fxkg#Rn
þ satisfying
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lim
k!1

kxkk ¼ 1; lim sup
k!1

kð�Gðxk;xÞÞþk < 1 for x 2 X a:e:; ð10Þ

there exists i 2 {1,2, . . . ,n} such that Pfx 2 X : lim supk!1 minðxki ;Giðxk;xÞÞ ¼ 1g > 0.
Let us explain the above definition in detail. The stochastic R0 function Gðx;xÞ, where the random vector x 2X, indeed

requires that for any fxkg#Rn
þ satisfying (10), there must exist a subset bX#Xwith probability PfbXg > 0 and a subsequence

fxkjg# fxkg such that

min x
kj
i ;Giðxkj ;xÞ

� 	
! 1 for any x 2 bX:

We do not restrict the type of random vector x. We only require the positive probability of bX, where for discrete random
vector x,

PfbXg ¼
X
xj2bX Pfxjg;

and for continuous random vector x with density function q(x),

PfbXg ¼
Z
x2bX qðxÞdx > 0:

Zhang and Chen (2008) investigated the special structure of the particular stochastic function

Gðx;xÞ ¼ Uðf ;xÞ � CTu
Cf � Q ðxÞ

 !
for Wardrop’s user equilibrium given in (3). It is shown in Proposition 3.1 (Zhang and Chen, 2008) that G(x,x) is a stochastic
R0 function under Assumptions 1 and 2, where x 2X is random vector. If X ¼ f �xg is a singleton, the stochastic R0 function
Gðx; �xÞ reduces to the R0 function, which indicates that Gðx; �xÞ is an R0 function for each fixed �x 2 X a.e..

Roughly speaking, G(x,x) being a stochastic R0 function lies in that the two parts of x and G(x,x) are closely correlated. For
fxk ¼ ðf kT ;ukTÞTg#Rn

þ such that (10) holds, we can prove that there exist a subsequence fxkjg# fxkg, a subset bX#X with po-
sitive probability, and a certain index l or i, such that for x 2 bX, either

min f
kj
l ; ðUðf kj ;xÞ � CTukj Þl

� 	
! 1;

or

min u
kj
i ; Cf kj � Q ðxÞ� �

i

� 	
! 1:

Together with Remark 3.1 (Zhang and Chen, 2008), we immediately have the following existence results.

Theorem 1. Suppose that Assumptions 1 and 2 hold. Then the solution set SERM of the ERM model (5) is nonempty and bounded.

Lemma 1. Suppose that Assumptions 1 and 2 hold. Then for fixed x 2X a.e., the solution set Sx is nonempty and bounded.

Proof. For fixed x 2X a.e., Sx is nonempty by Theorem 5.3 in Aashtiani and Magnanti (1981), since the network is strongly
connected, the demand Q(x) is bounded, and Uk(f,x) on each path k is a nonnegative continuous function of flow f by
Assumptions 1 and 2. Furthermore, G(x,x) is an R0 function indicates that the solution set Sx is bounded. h

Our main motivation to propose the ERM model for the traffic assignment under stochastic environment lies in that it
might provide the planner a robust solution under any possible realization of random variables. Below, we show theoreti-
cally the robustness of the solution.

Assumption 3. For fixed x 2X a.e., the residual rx(x) = kmin(x,G(x,x))k is a local error bound for NCP(G(x,x)) in Rn
þ.

Recall that rx(x) is a local error bound for NCP(G(x,x)) if there exists some constant gx > 0 and �x > 0 such that, for each
x 2 Rn

þ, with rx(x) 6 �x,

distðx; SxÞ 6 gxrxðxÞ:
Assumption 3 holds if for fixed x 2X a.e., Hx(x) = min(x,G(x,x)) is BD-regular at all solutions in Sx (Chen, 2001,
Theorem 3.1).

The locally Lipschitzian function Hx(x) is said to be BD-regular at x if all elements in

@BHxðxÞ ¼ flimrHxðxkÞ : xk ! x; xk 2 DHxg
are nonsingular, where DHx is the set of points where Hx is F-differentiable. We give a sufficient condition to guarantee the
BD-regularity of Hx(x).
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Proposition 1. Hx(x) is BD-regular at x� ¼ ðf �T ;u�TÞT 2 Sx, if the principal submatrix ðrUðf �;xÞÞc0c0 is nonsingular for any index
subset c

0
of K ¼ f1;2; . . . ; jKjg satisfying c # c

0
# c [ b, where

b ¼ fi 2 K : f �i ¼ 0 ¼ Giðx�;xÞg;
c ¼ fi 2 K : f �i > 0 ¼ Giðx�;xÞg:

Proof. Any element M 2 @BHx(x*) can be expressed by

M ¼
ðrUðf �;xÞÞc0K ð�CTÞc0W
I�c0K O�c0W

CWK OWW

0B@
1CA;

for some subset c0. Here W ¼ f1;2; . . . ; jWjg; �c0 ¼ K n c0, and O refers to the zero matrix. Clearly we have

detðMÞ ¼ det
ðrUðf �;xÞÞc0c0 ð�CTÞc0W
CWc0 OWW

 ! !
:

Note that ðrUðf �;xÞÞc0c0 is invertible from the assumption, and CWc0 is of full row rank, since there is at least one path k 2 c0

connecting each OD movement. Hence det M– 0 and M is nonsingular, which indicates that Hx(x) is BD-regular at x*. h

The BD-regular condition required in Proposition 1 may be difficult to verify in a general network case. Nevertheless, we
can verify this condition under a more restricted setting.

Proposition 2. Consider a network in which there does not exist any unused path with minimum path travel time (i.e. b = ;). The
BD-regular condition can be ensured if: the nonadditive path travel costs of the used path (k 2 c) is strongly dominated by the path
flow on that path itself, i.e.,

@Ukðf �;xÞ
@fk

>
X

k–k02c
@Ukðf �;xÞ

@fk0





 



; for any k 2 c:

Proof. This condition indeed guarantees that for any c0 # c, and any solution x� ¼ ðf �T ;u�TÞT 2 Sx, the submatrix
ðrUðf �;xÞÞc0c0 is a strictly row diagonally dominant matrix, which is known to be nonsingular. By Proposition 1, Hx(x) is
BD-regular at any x* 2 Sx. h

Lemma 2. Suppose that Assumptions 1–3 hold. Then for fixed x 2X a.e., and any compact set X � Rn
þ, there exists a positive

constant gx such that

distðx; SxÞ 6 gxrxðxÞ; 8x 2 X:

Proof. Assume on the contrary that the lemma is false. Then for fixed x 2X a.e. satisfying Assumption 3, and for each inte-
ger k, there exists an xk 2 X such that

distðxk; SxÞ > krxðxkÞ:
Note that for fixedx 2X a.e., rx(x) is a local error bound for NCP(G(x,x)). Hence for suchx, there exist an integer �k > 0 and
a scalar � > 0 such that rx(xk) > � for all k > �k. This indicates that

distðxk; SxÞ ! 1;

which is impossible since xk contains in a compact set X, and Sx is bounded. This completes the proof. h

Theorem 2. Suppose thatX = {x1,x2, . . . ,xN} is a finite set with the probability of each element to be positive, and Assumptions
1–3 hold. Then for any compact set X � Rn

þ, there exists a positive constant g such that

E½distðx; SxÞ� 6 g
ffiffiffiffiffiffiffiffiffi
gðxÞ

p
:

Proof. According to Lemma 2, we know that forxj 2X and any compact set X � Rn
þ, there exists a positive constant gxj such

that

distðx; Sxj Þ 6 gxj rxj ðxÞ; 8x 2 X:

Let g ¼ maxjgxj , and we get immediately
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E½distðx; SxÞ� 6 E½gkminðx;Gðx;xÞÞk� 6 g
ffiffiffiffiffiffiffiffiffi
gðxÞ

p
: �

Remark 1. From the above theorem, we have

E½distðxERM; SxÞ� 6 g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðxERMÞ

p
¼ g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min
x2Rnþ

gðxÞ
r

;

which implies that the E[dist(xERM,Sx)] is likely to be small, and hence xERM of the ERM model can be considered as a robust
solution, no matter what realization occurs.

Remark 2. The predicted traffic volume is often used in evaluating the cost and benefit of a transport project. As discussed
earlier, the uncertainty of future demand may affect the reliability or robustness of the project evaluation. As explained in
Theorem 2 and Remark 1, the proposed robust Wardrop’s user equilibrium assignment model provides a robust prediction of
future traffic volume. This robust traffic volume can then be used by transport planners to evaluate the project in a robust
way. For instance, let f(V) denote the evaluation function of a transport project (e.g. total travel time), where V is the link
flow. Suppose that the link flow Vx of Wardrop’s user equilibrium is unique under each realization x 2X = {x1,x2, . . . ,xN},
and f is a globally Lipschitz continuous function on RjAj

þ , i.e., there exists a constant L > 0 such that

kfðVÞ � fðV 0Þk 6 LkV � V 0k for all V ; V 0 2 RjAj
þ :

Denote x̂x ¼ ðf̂x; ûxÞT to be the solution in Sx satisfying

distðxERM; SxÞ ¼ kxERM � x̂xk:
We can easily derive that

E½kfðVERMÞ � fðVxÞk� 6 E½LkVERM � Vxk� ¼ E½LkDfERM � Df̂xk� 6 LkDkE½kfERM � f̂xk� 6 LkDkE½kxERM � x̂xk�
¼ LkDkE½distðxERM; SxÞ� 6 LkDkg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðxERMÞ

p
6 LkDkg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min
x2Rnþ

gðxÞ
r

:

This indicates that the evaluation of project adopting the outputs from the ERMmodel will also inherit the ‘‘robust’’ property.

Remark 3. In this section, only the existence and robustness properties of the ERMmodel are presented. We do not have the
similar equivalence property as the NCP and VI for static traffic equilibrium, since the optimal objective value of the ERM
model is in general nonzero. Moreover, the uniqueness property is difficult to provide due to the nonconvexity of the objec-
tive function.

3. Solution algorithm of the ERM model

The ERM model is in general a nonsmooth nonconvex minimization problem on Rn
þ, with the objective function

gðxÞ ¼ E½kminðx;Gðx;xÞÞk2� ¼ E½HxðxÞTHxðxÞ�:

The ERMmodel can be solved by the smoothing projected gradient (SPG) method (Zhang and Chen, 2009), which is extended
from the classical projected gradient (PG) method.

Let ~g : Rn � Rþ be a smoothing function of g, that is, ~gð�;lÞ is continuously differentiable in Rn for any l > 0, and for any
x 2 Rn,

lim
z!x;l#0

~gðz;lÞ ¼ gðxÞ; ð11Þ

and flimz!x;l#0rx~gðz;lÞg is nonempty and bounded. Here rx~gðz;lÞ is the gradient of ~gð�;lÞ at point z. The SPG method is
described in detail as follows.

Algorithm 1 (SPG algorithm by Zhang and Chen (2009)). Let .̂;.1 and .3 be positive constants, where .1 	 .3. Let .2, r, r1

and r2 be constants in (0,1), where r1 6 r2. Choose x0 2 Rn
þ and l0 > 0. For kP 0:

1. If k½xk �rx~gðxk;lkÞ�þ � xkk ¼ 0, let xk+1 = xk and go to step 3. Otherwise, go to step 2.
2. (PG method) Let y0,k = xk. For jP 0:

yj;kðaÞ ¼ ½yj;k � arx~gðyj;k;lkÞ�þ ð12Þ

and yj+1,k = yj,k(aj,k) where aj,k is chosen so that,
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~gðyjþ1;k;lkÞ 6 ~gðyj;k;lkÞ þ r1ðrx~gðyj;k;lkÞ; yjþ1;k � yj;kÞ

and

.3 P aj;k P .1; or aj;k P .2
�aj;k > 0;

such that �yjþ1;k ¼ yj;kð�aj;kÞ satisfies

~gð�yjþ1;k;lkÞ > ~gðyj;k;lkÞ þ r2ðrx~gðyj;k;lkÞ; �yjþ1;k � yj;kÞ: ð13Þ

If kyjþ1;k�yj;k k
aj;k

< .̂lk, set x
k+1 = yj+1,k and go to step 3.

3. Choose lk+1 6 rlk.

Each iteration in the SPG algorithm only requires the calculation of the function value of the smoothing function ~g and its
gradient, without any computationally intensive operations. Note that the nonsmoothness of g comes essentially from the
‘‘min’’ operator. Hence its smoothing function ~g can be constructed easily (see e.g. Chen and Ye (1999) for reference). We
provide a concrete smoothing function ~g along with its gradient as an example.

Let q(s) be the uniform density function

qðsÞ ¼ 1 if � 1
2 6 s 6 1

2 ;

0 otherwise:

(

The Chen–Mangasarian family of smoothing approximation for the ‘‘min’’ operator

minða; bÞ ¼ a�maxð0; a� bÞ;

can be computed by

/ða; b;lÞ ¼ a�
Z 1

�1
maxð0; a� b� lsÞqðsÞds

¼
b if a� b P l

2 ;

a� 1
2l a� bþ l

2

� �2 if � l
2 < a� b < l

2 ;

a if a� b 6 � l
2 :

8>><>>:
The smoothing function ~g can then be defined by

~gðx;lÞ ¼ E½eHxðx;lÞT eHxðx;lÞ�; ð14Þ

where eHx : Rn � Rþþ ! Rn is given by

eHxðx;lÞ ¼
/ðx1;G1ðx;xÞ;lÞ

..

.

/ðxn;Gnðx;xÞ;lÞ

0BB@
1CCA:

The gradient of ~g can be computed by

rx~gðx;lÞ ¼ 2E½rx
eHxðx;lÞeHxðx;lÞ�;

where for each i = 1,2, . . . ,n, the ith row of rx
eHxðx;lÞ 2 Rn�n is defined by

ðrx
eHxðx;lÞTÞi: ¼ Ii: � ðIi: �rxGðx;xÞÞi:

Z xi�Giðx;xÞ
l

�1
qðsÞds;

¼
ðrxGðx;xÞÞi: if xi � Giðx;xÞ P l

2 ;

Ii: � ðIi: � ðrxGðx;xÞÞi:Þ xi�GiðxÞ
l þ 1

2

� 	
if � l

2 < xi � Giðx;xÞ < l
2 ;

Ii: if xi � Giðx;xÞ 6 � l
2 :

8>><>>:
The SPG method is very easy to implement and attractive for large-scale problems. It is shown by Zhang and Chen (2009)
that the SPG method is well-defined and globally convergent to a Clarke stationary point associated with ~g under mild
assumptions. It is worth pointing out that we may not obtain a global optimal point, or even a local minimizer. Nevertheless,
if we choose the initial point of the SPGmethod good enough, e.g., to be a solution of the EVmodel, we may get a more robust
solution than that of the EV model.
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4. Numerical results

We present our computational results in this section. The purpose of the numerical experiments is to illustrate the char-
acteristics of the ERMmodel for the user equilibrium assignment under uncertainties in both demand and supply sides, com-
pared with the Wardrop’s user equilibrium model, the BW model, and the EV model.

When the path travel cost is additive, the method of successive averages (MSA) is often applied for solving the NCPs cor-
responding to Wardrop’s user equilibrium. For the case of nonadditive path travel cost, the semismooth Newtonmethod (e.g.
Luca et al., 1996) is further adopted for solving the NCPs in order to get a solution xBW of the BW model, xEV of the EV model,
and a solution xx of Wardrop’s user equilibrium under each scenario.

The convergence of the semismooth Newton method for a fixed NCP, e.g. NCPðGðx; x̂ÞÞ, can be evaluated by the residual

r2;x̂ðxÞ ¼ 0:5
Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ Giðx; x̂Þ2

q
� xi � Giðx; x̂Þ

 !2

;

which should be close to zero to indicate convergence. Of course, other residuals such as rx̂ðxÞ can also play the role of indi-
cator for convergence. The semismooth Newton method uses r2;x̂ðxÞ as the objective function to minimize due to its smooth-
ness. Thus r2;x̂ðxÞ is computed already in each iteration and hence adopting it as indicator is convenient. Using xEV as an
initial point, we employ the SPG method in Algorithm 1 to obtain a solution xERM of the ERM model, with parameters

l0 ¼ 1; .1 ¼ 1
2
; .2 ¼ 1

4
; .3 ¼ 103; r ¼ 1

2
; r1 ¼ r2 ¼ 10�3 or 10�2:

The parameter q̂3 varies with different scales of the networks. We use q̂3 ¼ 103 for Examples 1 and 2 of small networks, and
q̂3 ¼ 108 for Example 3 where a larger network is considered. We stop the SPG algorithm and set xERM = xk if
kxk � xk�1k 6 10�12 or the total number of iterations exceeds a given maximum iteration which varies for different problems.

4.1. Example 1: a simple 5-link network

To demonstrate the properties of the ERM model, we first use a small tractable 5-link network shown in Fig. 1, which is
subject to three discrete one-dimensional random demand vectors.

There are two two-way roads: a mountain road (L1,R1), a sea-side road (L2,R2), and one one-way ordinary road L3 connect-
ing the two cities West and East. The links L1, L2 and L3 direct from West to East, and the links R1 and R2 are the returns. Let
X = {x1,x2,x3} with x1 = 0, x2 = 1, x3 = 2 represent the set of different future scenarios, with probabilities
p1 ¼ 1

2 ; p2 ¼ 1
4 ; p3 ¼ 1

4, respectively.
The uncertainties in demand and supply sides are mainly due to different demand growth and supply change. The de-

mand Q(x1) = (260,170)T and Q(x2) = Q(x3) = (160,70)T, with the 1st and 2nd components for the demand connecting
the OD pair – West to East, and the return, respectively. In practice, the simulation approach adopted in Ashley (1980) or
Zhao and Kockelman (2002) for trip generation, trip distribution, and modal split can be utilized to generate the distribution
of possible future demand. Although the stochastic demand generated by this approach follows a continuous statistical dis-
tribution, one can always define a number of discrete scenarios of demand pattern from this continuous distribution. It is
noteworthy that our proposed robust traffic assignment can handle both discrete and continuous stochastic demand cases.

This example employs the GBPR function (1) with the parameters na 
 1 and ba ¼ 1
2t0a
, where t0a and Ca(x)�1 are listed in

Table 1. We adopt the asymmetric path travel cost function (2) with parameter g = 1, W 
 0, and

W

1

1

3

2

2

E

Fig. 1. 5-link network.
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Kðf ;xÞ ¼

0 0 0 20aðxÞ 0
0 0 0 0 20bðxÞ
0 0 0 0 0

8aðxÞ 0 0 0 0
0 4bðxÞ 0 0 0

0BBBBBB@

1CCCCCCAf ;

where aðxÞ ¼ 1
2xðx� 1Þ and b(x) =x(2 �x). Here the asymmetric term K comes from the interaction of the correlated

two-way roads.
Various deterministic assignment patterns from Wardrop’s user equilibrium, the BW, the EV, and the ERM models are

listed in Table 2. The vector of path choice proportions p ¼ pr
k

� �
is important in the traffic assignment under uncertainty

for the planner, which reflects the preference of choosing the possible paths, and plays essential role of generating stochastic
traffic flow pattern eFðxÞ. We present vectors of path choice proportions in Table 3. We list in Table 4 the values g(x),
E[kx � xxk], E[kV � Vxk], E[ku � uxk], and E½keVðxÞ � Vxk�, which indicate the distance of a traffic assignment pattern under
uncertainty to the Wardrop’s user equilibrium under each realization. Here the notations xx ¼ f Tx;u

T
x

� �T
; V refers to the link

flow, and eVðxÞ ¼ DeFðxÞ represents the stochastic link flow. In this example, it is easy to see that Vx = fx and eVðxÞ ¼ eFðxÞ.
From Tables 2 and 3, we can see that the traffic assignment patterns from the BW, the EV, and the ERM models are quite

different. The major difference occurs on link L3, which is the link with the highest free-flow travel time but without capacity
variation. Among the three models, the BW model allocates the demand to L3 most, and predicts the highest OD travel cost
whereas the ERM model allocates the least flow to L3 and predicts the lowest OD travel cost.

It is easy to check that the link travel time function T(f,x) is strictly monotone for each scenario, which implies that

xx ¼ f Tx;u
T
x

� �T ¼ VT
x;u

T
x

� 	T
is unique for each scenario, according to Theorem 6.2 of Aashtiani and Magnanti (1981). That

is, Sxj ¼ xxjf g is a singleton for j = 1,2,3 and

E½kx� xxk� ¼ E½distðx; SxÞ�:
Moreover, rU(f,x) is strictly row diagonally dominant for each x and hence Hx(x) is BD-regular. Thus Assumption 3 holds,
and there must exist a positive scalar g such that

E½distðx; SxÞ� 6 g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min
x2Rnþ

gðxÞ
r

:

We find from Table 4 that the SPG method reduces greatly the function value g(x) at xERM from the initial point xEV. Table 4
shows that xERM has much smaller expected distance to Wardrop’s user equilibrium assignments for all possible scenarios
than xEV and xBW. We also notice that from this example the stochastic link flow eVðxÞ obtained from the deterministic flow
pattern xERM is closer to Vx under realizations than that from xEV as well as xBW.

4.2. Example 2: the Nguyen and Dupuis network

We also illustrate and compare the models by the Nguyen and Dupuis network shown in Fig. 2, which contains 13 nodes,
19 directed links, and 4 OD movements 1? 2, 1? 3, 4? 2, and 4? 3. The free-flow travel time t0a , and the mean of link
capacity E[Ca(x)] of the network are the same as those used by Yin et al. (2009).

Table 1
Input network data.

Parameter Link no.

1 (L1) 2 (L2) 3 (L3) 4 (R1) 5 (R2)

t0a 1000 950 1500 1000 1300
Ca(x)�1 10 + 40a(x) 15 + 60b(x) 10 20 + 80a(x) 25 + 100b(x)

Table 2
Various deterministic traffic assignment patterns.

Path flow (link sequence) Traffic assignment patterns

Travel cost (OD) xx1 xx2 xx3 xBW xEV xERM

f1 (L1) 132.5 122.4 15.1 0.0 61.9 107.5
f2 (L2) 95.0 15.2 102.0 9.4 52.5 78.7
f3 (L3) 32.5 22.4 42.9 250.6 95.6 8.8
f4 (R1) 107.8 65.3 16.9 97.4 71.7 73.2
f5 (R2) 62.2 4.7 53.1 72.6 48.3 34.7
u1 (W? E) 1662.5 1612.1 1714.7 2753.1 1978.1 1540.9
u2 (E?W) 2077.8 1653.2 1964.2 5872.2 2558.8 1733.3
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Suppose the planner would like to forecast the robust traffic equilibrium pattern in the next ten years. According to the
prediction of economic tendency, the demand vector (with the components following the order of OD movements 1? 2,
1? 3, 4? 2, and 4? 3) have three possible scenarios

Q 1 ¼ ½800 800 1200 1200�T ; Q 2 ¼ ½400 1600 600 400�T ; Q 3 ¼ ½200 400 300 100�T ;
with probabilities p1 ¼ 1

4 ; p2 ¼ 1
4, and p3 ¼ 1

2. Here Q1 and Q2 correspond to the optimistic predictions that the economy will
flourish and a new port will be built at either destination 2 or 3, respectively. The demand Q3 corresponds to the pessimistic
estimation of future economy.

The link capacity Ca(x) follows a log-normal distribution Ca(x) � LN(lc,a,rc,a). The probability density function of the log-
normal distribution is

PrðCaðxÞjlc;a;rc;aÞ ¼ 1
CaðxÞrc;a

ffiffiffiffiffiffiffi
2p

p exp
�ðlnCaðxÞ � lc;aÞ2

2r2
c;a

 !
:

From the mean E[Ca(x)] and the coefficient of variation CV[Ca(x)] in Table 5, we can obtain the parameters lc,a and rc,a by

Table 3
Various vectors of path choice proportions.

Path flow Traffic assignment patterns

Travel cost xx1 xx2 xx3 xBW xEV xERM

p11 0.5096 0.7651 0.0943 0.0000 0.2949 0.5515

p12 0.3654 0.0947 0.6373 0.0361 0.2498 0.4035

p13 0.1250 0.1401 0.2684 0.9639 0.4553 0.0450

p24 0.6340 0.9331 0.2410 0.5732 0.5979 0.6786

p25 0.3660 0.0669 0.7590 0.4268 0.4021 0.3214

Table 4
Robust criteria of various traffic assignment patterns.

Various criteria Traffic assignment patterns

xx1 xx2 xx3 xBW xEV xERM

g 2.05e4 3.06e5 7.94e5 2.60e7 1.50e6 1.15e4
E[kx � xxk] 158.94 311.13 188.00 4086.10 703.27 295.43
E[kV � Vxk] 64.36 92.93 113.51 262.83 108.72 76.89
E[ku � uxk] 138.15 295.65 144.39 4077.61 694.42 281.69

E½keVðxÞ � Vxk� 39.48 99.18 120.98 218.56 99.39 55.42

4

9

5

1

13

10

6

12

3

11

7

2

8

2

18

753 9

12 14 15

19

1 17

16

6 8 10 114

13

Origin

Origin

Destination

Destination

Fig. 2. Nguyen and Dupuis network.

546 C. Zhang et al. / Transportation Research Part B 45 (2011) 534–552



lc;a ¼ lnðE½CaðxÞ�Þ � 1
2
lnð1þ ðCV ½CaðxÞ�Þ2Þ and rc;a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1þ ðCV ½CaðxÞ�Þ2Þ

q
:

We choose for this example the GBPR link travel time function

TaðV ;xÞ ¼ t0a 1þ 0:15
Va

CaðxÞ
� �4

 !
;

and the nonadditive path travel cost function

Ukðf ;xÞ ¼
X

da;kTaðDf ;xÞ þ ð
X

da;kTaðDf ;xÞÞ2 þKkðf ;xÞ:

We consider three cases of stochastic environment for the Nguyen and Dupuis network. The coefficients of variation for
Ca(x) are listed in Table 5 for the three cases. In Cases 1 and 2, the path-specific cost Kk(f,x) = 0 for all paths, while
Kk(f,x) = 200 for paths k = 1, 9, 14, 20 and zero for other paths in Case 3.

For the expectation operators appeared in EV and ERM, the Monte-Carlo method is employed to randomly generate
N = 1000 samples of (Q(xi),C(xi)) for i = 1,2, . . . ,N, where Q(xi) are chosen from Q1, Q2, Q3 with the given probability, and
each entry of C(xi) follows the respective log-normal distribution independently. GN(x) and gN(x) are used to approximate
E[G(x,x)] and g(x) in the EV and ERM models respectively by

GNðxÞ :¼ 1
N

XN
i¼1

Gðx;xiÞ; gNðxÞ :¼ 1
N

XN
i¼1

kminðx;Gðx;xiÞÞk2:

We record the computational results for traffic assignment patterns xEV and xERM in Table 6, and link flow patterns vEV = DfEV
and vERM = DfERM in Table 7. Furthermore, we list some robust indicators in Table 8. We do not provide xBW since it is in gen-
eral difficult to solve, as we mentioned at the end of Section 2.2.

From Table 6 both traffic flow patterns fEV and fERM depend heavily on paths k = 1, 2, 9, 10, 14, 15, 20. The difference lies in
that in all of the three cases fERM tends to employ more paths than fEV, which alleviates the burden on the above heavily used
paths. Moreover, the tendency is strengthened as the variation of link capacity increases in Case 2 and the path-specific cost
is involved in Case 3. The ERM model suggests lower travel cost than the EV model. In Table 7, we find that the link flow
pattern VEV never uses links 8 and 17 in the three cases, which may due to the relatively high free-flow travel time and lim-
ited mean link capacity of the two links. In contrast, the link flow pattern VERM pays more attention on the two links as the
variation of capacity increases and the path-specific cost is added in Case 2 and Case 3. We try to explain the above phenom-
enon as follows.

The EV model only considers the expected travel cost in deciding which path (eventually which link) to be used. The ERM
model considers the weighted distance from the solution sets, that is, ERM considers both probability andmagnitude (of flow
and minimum cost). Under the ERM, the realization with a low probability may be highly influential on the solution due to
the high value of demand and/or minimum travel cost. When the capacity variation is high (i.e. Cases 2 and 3), the realization
with a very low capacity and low probability may have the same level of impact on the solution of ERM compared to the
realization with an average capacity but higher chance. This is due to the fact that ERM considers both the probability of

Table 5
Link cost parameters.

Link Free-flow
travel time

Link capacity, Ca

t0a Mean Coefficient of variation

Case 1 Case 2 Case 3

1 7.0 800 0.10 0.30 0.30
2 9.0 400 0.10 0.10 0.10
3 9.0 200 0.10 0.10 0.10
4 12.0 800 0.10 0.30 0.30
5 3.0 350 0.10 0.10 0.10
6 9.0 400 0.10 0.10 0.10
7 5.0 800 0.10 0.10 0.10
8 13.0 250 0.10 0.10 0.10
9 5.0 250 0.10 0.10 0.10

10 9.0 300 0.10 0.10 0.10
11 9.0 550 0.10 0.30 0.30
12 10.0 550 0.10 0.30 0.30
13 9.0 600 0.10 0.10 0.10
14 6.0 700 0.10 0.30 0.30
15 9.0 500 0.10 0.30 0.30
16 8.0 300 0.10 0.10 0.10
17 7.0 200 0.10 0.10 0.10
18 14.0 400 0.10 0.10 0.10
19 11.0 600 0.10 0.10 0.10
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the realization and the magnitude of the violation of the equilibrium condition of the ERM solution. In this case, the low
capacity scenario may yield a high travel cost in which the violation of the UE condition under this realization may have
a significant influence on the objective function of the ERM (despite its low probability). Thus, it is natural to observe the
result in which the ERM spread flows on a larger set of paths.

Now we turn our attention to the data shown in Table 8. It is easy to see that the SPG method succeeds in decreasing the
objective function g(x) of the ERMmodel at xERM from the initial point xEV. Before analyzing the expected distance, we obtain
by direct computation that the Jacobian matrix of the path cost function U(f,x) is

Table 6
Traffic assignment patterns of EV and ERM.

Path flow (link sequence) xEV xERM

Travel cost (OD) Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

f1(2 � 18 � 11) 365.9 382.1 364.5 276.1 212.9 203.3
f2(1 � 5 � 7 � 9 � 11) 34.1 17.9 35.5 34.1 29.0 57.3
f3(1 � 5 � 7 � 10 � 15) 0 0 0 0 0 31.8
f4(1 � 5 � 8 � 14 � 15) 0 0 0 0 0 21.1
f5(1 � 6 � 12 � 14 � 15) 0 0 0 0 0 0
f6(2 � 17 � 7 � 9 � 11) 0 0 0 30.2 42.0 23.7
f7(2 � 17 � 7 � 10 � 15) 0 0 0 5.5 10.5 9.0
f8(2 � 17 � 8 � 14 � 15) 0 0 0 0 2.4 0
f9(4 � 12 � 14 � 15) 550.2 531.3 529.6 483.2 366.0 214.1
f10(3 � 5 � 7 � 9 � 11) 249.8 268.7 270.4 236.5 216.4 139.1
f11(3 � 5 � 7 � 10 � 15) 0 0 0 0 22.8 128.4
f12(3 � 5 � 8 � 14 � 15) 0 0 0 0 14.5 117.7
f13(3 � 6 � 12 � 14 � 15) 0 0 0 0 0 65.3
f14(1 � 6 � 13 � 19) 310.5 311.4 289.9 287.3 273.8 316.9
f15(1 � 5 � 7 � 10 � 16) 289.5 288.6 310.1 262.0 226.2 85.0
f16(1 � 5 � 8 � 14 � 16) 0 0 0 0 0.3 56.1
f17(1 � 6 � 12 � 14 � 16) 0 0 0 0 0 3.7
f18(2 � 17 � 7 � 10 � 16) 0 0 0 14.5 32.7 52.3
f19(2 � 17 � 8 � 14 � 16) 0 0 0 7.7 24.7 33.2
f20(4 � 13 � 19) 200.0 200.0 200.0 162.9 145.3 114.9
f21(4 � 12 � 14 � 16) 0 0 0 0 0 0
f22(3 � 6 � 13 � 19) 0 0 0 0 0 0
f23(3 � 5 � 7 � 10 � 16) 0 0 0 0 0 41.6
f24(3 � 5 � 8 � 14 � 16) 0 0 0 0 0 30.9
f25(3 � 6 � 12 � 14 � 16) 0 0 0 0 0 0
u1(OD1? 2) 1449.6 1892.3 2053.6 1249.1 1169.4 1347.4
u2(OD1? 3) 1870.6 2435.8 2620.8 1656.3 1593.4 1821.5
u3(OD4? 2) 1540.6 1574.5 1750.0 1451.4 1433.9 1737.8
u4(OD4? 3) 1279.2 1430.6 1580.6 1182.6 1140.8 1322.3

Table 7
Link flow patterns of EV and ERM.

Link vEV vERM

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

1 634.1 617.9 635.5 583.4 529.3 571.8
2 365.9 382.1 364.5 334.1 325.1 321.4
3 249.8 268.7 270.4 236.5 253.6 523.0
4 750.2 731.3 729.6 646.2 511.3 329.0
5 573.4 575.2 616.1 532.6 509.1 709.0
6 310.5 311.4 289.9 287.3 273.8 385.9
7 573.4 575.2 616.1 582.9 579.5 568.1
8 0 0 0 7.7 41.8 259.0
9 284.0 286.6 305.9 300.8 287.4 220.1

10 289.5 288.6 310.1 282.1 292.1 348.0
11 649.8 668.7 670.4 576.9 500.2 423.4
12 550.2 531.3 529.6 483.2 366.0 283.1
13 510.5 511.4 489.9 450.2 419.1 431.8
14 550.2 531.3 529.6 490.9 407.9 542.1
15 550.2 531.3 529.6 488.7 416.1 587.4
16 289.5 288.6 310.1 284.3 283.9 302.7
17 0 0 0 57.9 112.3 118.2
18 365.9 382.1 364.5 276.1 212.9 203.3
19 510.5 511.4 489.9 450.2 419.1 431.8
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rUðf ;xÞ ¼ ðI þ 2diagðDTTðV ;xÞÞÞDTrTðV ;xÞD;
where diag(DTT(V,x)) is the diagonal matrix with ith diagonal element of (DTT(V,x))i for i = 1,2, . . . , jKj, and rT(V,x) is the
Jacobian matrix of the link cost function T(V,x) with respect to the link flow vector V. ClearlyrU(f,x) is not a positive semi-
definite matrix and hence U(f,x) is not monotone. Without monotonicity, Sx may not be a singleton, and the algorithm for
solving NCP(G(x,x)) may become inefficient for some realizations x. The inefficiency of the semismooth Newton method is
also verified in our computational experience.

Fortunately, the link flow patterns Vx and the minimum travel cost ux are unique in the first two cases, since NCP(G(x,x))
is equivalent to a monotone NCP with additive path travel cost function by Theorem 3.1 of Agdeppa et al. (2007). On the
other hand, the uniqueness of Vx in Case 3 cannot be guaranteed because of the nonzero path-specific cost K(f,x). The ex-
pected distances E[kV � Vxk] and E[ku � uxk] in the first two cases indicate that (VERM,uERM) is closer to (Vx,ux) under dif-
ferent scenarios compared to (VEV,uEV). The ERM model thus provides more robust traffic assignment patterns under
stochastic environment in these two cases.

4.3. Example 3: the Sioux Falls network

We demonstrate that our ERMmodel and SPG algorithm are promising for planning applications in practice by testing on
a larger network in this subsection. The well-known Sioux Falls network as shown in Fig. 3 is adopted, which consists of 24
nodes, 76 links, 528 ODmovements. The total of 1179 paths are pre-generated as possible travel routes between different OD
pairs. For this example, we adopt the GBPR link travel cost function

TaðV ;xÞ ¼ t0a 1þ 0:15
Va

Ca

� �2
 !

;

Table 8
Robust indicators of various traffic assignment patterns for Example 2.

Various criteria xEV xERM

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

g 5.39e5 1.54e6 1.73e6 5.04e5 5.75e5 5.87e5
E[kV � Vxk] 1.19e3 1.19e3 1.19e3 1.18e3 1.17e3 1.31e3
E[ku � uxk] 5.04e3 1.14e4 1.14e4 5.00e3 1.13e4 1.13e4

E½keVðxÞ � Vxk� 468.0 489.6 555.5 468.4 515.3 906.3
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The parameters of the GBPR functions follow those adopted in Suwansirikul et al. (1987). For simplicity, we choose the addi-
tive path travel cost function

Uðf ;xÞ ¼ DTTðDf ;xÞ;

and assume that each OD travel demand is an independent random variable, following a log-normal distribution, with the
mean OD demand as those used in Suwansirikul et al. (1987). We consider three cases of stochastic settings for the stochastic
OD demand. The coefficients of variation for each Qr(x) are supposed to be 0.1, 0.2 and 0.3 in three cases, respectively.

The objective function of the ERM model involves multi-dimensional expectation operator. We use the sample average
approximation (SAA) method by Monte-Carlo technique for approximating the objective function. A large number of
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Fig. 4. ERM flows for three tests (CV = 0.1, 0.2, 0.3) with unit 1.0 e3.
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sampling can guarantee the given accuracy requirement of approximation. The sufficient number of sampling relates to the
dimension and the distribution of the random vector. For this example, we generate N = 10,000 samples of Q(xi) for
i = 1,2, . . . ,N, where each entry follows the respective log-normal distribution independently.

The MSAmethod is used to solve the EV model (to obtain xEV) where the path travel cost is additive. The link flow patterns
of the ERMmodel for the three different cases are displayed in Fig. 4a–c. Here the link flow is displayed on each link with the
unit 1.0 e3, and the width of each link is proportional to the link flow.

In this test, the OD demands are stochastic elements whereas the link capacities are considered deterministic. We list
some useful aggregated information of the ERM solutions under the three cases below.

Here the mean ratio of link flow VERM to VEV is defined by

meanðVERM:=VEV Þ ¼ 1
76

X76
i¼1

VERMðiÞ=VEV ðiÞ:

From Table 9, we find that the SPG algorithm largely reduces the objective value of the ERMmodel at the computed solution
xERM from the initial point xEV in each case. It is reasonable that the objective value g(xERM) increases as the coefficient of var-
iation increases from Case 1 to Case 3, because it is harder to find a solution that takes into account all the equilibrium con-
ditions when larger variation of random OD demand is considered. Furthermore, from the planners’ perspective, it is safer to
expect heavier link flow when larger variation might occur.

Fig. 5 depicts the convergence behavior of the SPG algorithm for finding a minimizer of the ERM model tested on the
Sioux Falls network with CV of 0.1, 0.2, and 0.3, respectively. Note that we generate a sample {x1,x2, . . . ,xN} of
N = 10,000 by Monte-Carlo sampling techniques for each case. Hence most computation time is used to obtain the values
of the objective function and its gradient at each iteration. The steepest descent direction adopted for line search in step
2 of the SPG algorithm ensures the convergence, but the line search step also uses considerable computation time. The algo-
rithm terminated after reaching the 5000 maximum iterations. The figure shows that under each stochastic setting the trend
of the objective value of the ERMmodel which decreased with the number of the iterations of the algorithm. Specifically, the
value is reduced substantially in the first 500 iterations. When the function values are close to the minimum one, the reduc-
tion became slow. The test was carried out on a Dell PC (3.00 GHz, 2.00GB of RAM) with the use of Red Flag Linux Desktop 6.0
and Matlab R2009a (Version 7.8.0.347). The CPU times for the Sioux Falls network are 1.23 e3, 1.21 e3, and 1.19 e3 minutes
under the three different settings of CV = 0.1, 0.2, and 0.3, respectively.

Table 9
Comparison of xERM in three cases for Example 3.

Various criteria xERM

Case 1 (CV = 0.1) Case 2 (CV = 0.2) Case 3 (CV = 0.3)

g(xEV) 8.68e8 8.83e8 9.08e8
g(xERM) 1.47e5 3.58e5 7.77e5
mean(VERM�/VEV) 1.24 1.58 1.96
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Fig. 5. Convergence of the proposed SPG algorithm for the Sioux Falls network.
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5. Conclusions and further studies

In this paper, we consider Wardrop’s user equilibrium assignment under stochastic environment. We focus on the ERM
model, which is flexible to accommodate nonadditive path travel cost and endogenous uncertainties in both the demand and
supply sides. By using the ERM model, a deterministic traffic assignment pattern is provided, as well as a stochastic traffic
flow pattern by further employing the technique of path choice proportion. We show theoretically the existence and robust-
ness of the solution obtained by the ERM model under some conditions.

Compared with the EV and BW models for traffic assignment under uncertainty, the robustness of xERM is provided the-
oretically for the first time in the sense that the expected distance E[dist(xERM,Sx)] tends to be small. We apply the SPGmeth-
od for solving the ERM model. Numerical experiments on the two small-size examples and a moderate-size example show
that the SPG method is effective. Moreover, we found that the traffic assignment patterns from the EV, BW and ERM models
are quite different, and the pattern from the ERM model is more robust than that from the EV and the BW models.

There exist some future extensions worth pursuing based on this paper. Firstly, mild assumptions to guarantee Assump-
tion 3 are needed to make the robustness of the ERMmodel more applicable. Secondly, it is an interesting task to modify the
formulation of the objective function of the model to reduce the effect of the magnitude of violation from a realization with
low probability on the final solution. Thirdly, it is also worthwhile to develop a more efficient SPG algorithm for real-sized
network by taking into account the special traffic network structure. Fourthly, how to generate appropriate probabilities and
scenarios for the ERM model in realistic network deserves deep investigation.
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