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NEWTON’S METHOD FOR MONTE CARLO–BASED RESIDUALS∗
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Abstract. We analyze the behavior of inexact Newton methods for problems where the nonlinear
residual, Jacobian, and Jacobian-vector products are the outputs of Monte Carlo simulations. We
propose algorithms which account for the randomness in the iteration, develop theory for the behavior
of these algorithms, and illustrate the results with an example from neutronics.

Key words. Newton’s method, Monte Carlo simulation, JFNK methods, neutron transport

AMS subject classifications. 45L10, 65H10, 82D75

DOI. 10.1137/130905691

1. Introduction. We consider the solution of systems of nonlinear equations

(1.1) F (u) = 0,

when the residual, F (u), Jacobian, and Jacobian-vector products are not computed
directly but are instead approximated with a Monte Carlo (MC) simulation using a
number of trials which one may vary during an inexact Newton iteration. Such prob-
lems arise, for example, in neutronics [26, 17], and we will use an example from [26]
in section 5 as an example in this paper. We propose and analyze an inexact Newton
method and show how the MC error affects the iteration. The theory will provide
guidance in managing the number of trials in the MC simulation as the iteration
progresses.

The results in this paper are very different from results which consider determin-
istic errors in residuals, Jacobians, and Jacobian-vector products [6, 13, 14, 5, 4, 15,
16, 7], some of which we review in section 2. An important feature of these previous
papers is that the errors have upper bounds which can be used in the analysis. The er-
rors in the problems considered here do not have upper bounds but rather have small
variances. This leads to significant differences in both the theory and the algorithms.

The randomness implies that one cannot prove asymptotic convergence results
without letting the number of trials increase very rapidly, which is an impractical
approach. Hence we prove results about how well an iteration based on MC approx-
imations tracks a finite part of the idealized iteration using the true function and
Jacobian. Therefore we use the term “tracking” instead of convergence.

We will consider local theory in this paper, so we assume that the standard
assumptions for local quadratic convergence [13, 9] hold for the function F and the
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initial iterate u0. We will assume that the errors in the MC simulations behave
like those from an MC method for computing integrals [21]. So, when we ask for
the residual F , the Jacobian F ′, or a Jacobian-vector product, the output of the
simulation is centered at the correct value with a variance inversely proportional to
the square root of the number of trials. This is not the same as saying the error is
inversely proportional to the square root of the number of trials, which is a case one
can understand with existing theory (see [13] and section 2).

The results in this paper explain the behavior of the algorithm reported in [26]
and improve that algorithm by better management of the number of MC trials. The
algorithm in [26] modifies a Jacobian-free Newton–Krylov (JFNK) iteration by testing
for random errors which, for example, cause the norm of the nonlinear residual to fail
to decrease after a Newton step or a linear iteration for an inexact Newton step to
fail to converge. The new approach in this paper increases the number of MC trials
with every nonlinear iteration.

In section 2 we will establish notation and formally state our assumptions. Then
we will review some of the local theory for Newton’s method. In section 3 we will
state the assumptions on the MC simulations and connect those assumptions to the
concept of consistency from stochastic optimization [21].

In section 4 we will state and prove two tracking theorems. Theorem 4.1 is for the
idealized case where we can approximate residuals and Jacobians equally well. We can
directly apply the results in section 2 to this case because we can explicitly estimate the
moduli of continuity of a single inexact Newton iteration as a function of the residual
and Jacobian (see Theorem 2.2). Theorem 4.2 is for the particular JFNK method
we used in [26], which uses GMRES as the linear solver and MC approximations of
the Jacobian-vector product. In this case we do not have an explicit expression of
the continuity properties of the iteration as a function of the residual and sequence of
Jacobian-vector products in the linear iteration.

Finally we illustrate the results by solving one of the problems from [26] with
several variations of the algorithm.

2. Nonlinear solver preliminaries. We begin by setting the notation for non-
linear equations and reviewing the local convergence theory for Newton’s method.
We give the estimate from [13] on the effects of errors in the function and Jacobian
evaluations on inexact Newton methods. The results in this section are either known
[13, 9, 18] or direct consequences of known results, but our use of them is new, so we
present them in some detail.

We will let ‖ · ‖ denote any weighted inner product norm on RN . We will use the
inner product only in our discussion of Newton–Krylov methods, Newton-GMRES in
particular, in section 4.2. Elsewhere the norm could be any norm. We will also use
‖ · ‖ to denote the matrix norm induced by the vector norm and κ(·) to denote the
condition number relative to the norm.

2.1. Convergence of Newton’s method. We will let u∗ ∈ RN be a solution of
(1.1) at which the standard assumptions for local quadratic convergence of Newton’s
method hold. These assumptions are as follows.

Assumption 2.1.

• F (u∗) = 0.
• F ′(u∗) is nonsingular.
• F ′ is locally Lipschitz continuous near u∗ with Lipschitz constant γ.
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Here F ′ is the Jacobian of F and the final assumption is that

(2.1) ‖F ′(u)− F ′(v)‖ ≤ γ‖u− v‖
for all u, v sufficiently near u∗. Now let

(2.2) ρ ∈
(
0,

1

2γ‖F ′(u∗)−1‖
)

be such that (2.1) holds for all u, v in the set

(2.3) B(ρ) = {z | ‖z − u∗‖ ≤ ρ}.
As is standard [13, 9] we will describe iterative methods in terms of the transition

from uc, the current approximation to u∗, to a new approximation, u+. Newton’s
method is

(2.4) u+ = uc − F ′(uc)−1F (uc).

Theorem 2.1 is taken from several results in [13]. Beyond the convergence result, we
also include some estimates that we will use in the rest of the paper. In the statement,
and in the rest of the paper, we use the standard notation

e = u− u∗.
Theorem 2.1. Assume that the standard assumptions hold. Let uc ∈ B(ρ). Then
• F ′(uc) is nonsingular and

(2.5) ‖F ′(uc)−1‖ ≤ 2‖F ′(u∗)−1‖;
•

(2.6)
3

4‖F ′(u∗)−1‖‖ec‖ ≤ ‖F (uc)‖ ≤
5‖F ′(u∗)‖

4
‖ec‖;

• the Newton iterate u+ ∈ B(ρ) satisfies
‖e+‖ ≤ ‖ec‖/2 and ‖e+‖ ≤ γ‖F ′(u∗)−1‖‖ec‖2.

We must deal with errors in both the function and the Jacobian and with an
inexact solution of the linear equation for the Newton step. The iteration of interest
is

(2.7) u+ = uc + s,

where for some 0 ≤ ηc < 1,

‖Jcs+ F̃c‖ < ηc‖F̃c‖,(2.8)

Jc = F ′(uc) + Δc, and F̃c = F (uc) + εc.(2.9)

The condition on the step (2.8) is analogous to the classic inexact Newton condition
[8, 13]

(2.10) ‖F ′(uc)s+ F (uc)‖ < ηc‖F (uc)‖.
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Theorem 2.2, taken from [13], summarizes the effects of all the above deviations from
(2.4).

We depart from convention here by making the inequalities in (2.8) and (2.10)
strict. We will only need this in the proof of Corollary 2.5. This change does not alter
the standard convergence theory or analysis.

Theorem 2.2. Let the assumptions of Theorem 2.1 hold. Assume that ηc < 1
and

(2.11) ‖Δc‖ ≤ 1

4‖F ′(u∗)−1‖ .

Then Jc is nonsingular and u+, as defined by (2.7), satisfies

(2.12) ‖e+‖ ≤ γ‖F ′(u∗)−1‖‖ec‖2 + (CJ‖Δc‖+ CIηc)‖ec‖+ CF ‖εc‖,

where

(2.13) CJ = 6‖F ′(u∗)−1‖, CI = 5κ(F ′(u∗)), and CF = 8‖F ′(u∗)−1‖.

We have expressed our convergence results in terms of a general norm. Inexact
Newton methods can be formulated in the context of the norm

‖ · ‖∗ = ‖F ′(u∗) · ‖

[8, 10]. With this choice of norm, any η ∈ [0, 1) will lead to a locally q-linearly
convergent iteration. We have elected to use a general norm ‖ ·‖. Our reasons for this
are that (1) most solvers either use the �2 norm or allow the user to select a norm
and (2) the ‖ · ‖∗ norm is not the norm associated with the scalar product in a Krylov
linear solver.

2.2. A tracking theorem for inexact Newton methods. Theorem 2.2 quan-
tifies explicitly how the inexact Newton iteration depends continuously on the residual
and Jacobian. That continuity will be critical to the results in this paper. The algo-
rithms we propose in this paper manage the errors in the Jacobian and the residual
as the iteration progresses and attempt to track the performance of a pure Newton
iteration. To that end we let {uνn} be the sequence of Newton iterations starting with
u0 ∈ B(ρ). Theorem 2.1 is applicable and hence (2.5) holds. One may either attempt
to manage the errors so that superlinear convergence is preserved or, as we advo-
cate in this paper, preserve q-linear convergence. Our reason for this choice is that
rapidly increasing the accuracy via MC trials could be prohibitively expensive. We
will discuss the alternative of preserving superlinear convergence later in this section.

Theorem 2.1 implies that

(2.14) ‖eνn+1‖ ≤ rNewton‖eνn‖,

where

rNewton = ‖e0‖‖F ′(u∗)−1‖γ ≤ ρ‖F ′(u∗)−1‖γ ≤ 1/2,

by the choice of ρ. Note that rNewton depends on the quality of the initial iterate.
The proof of our tracking theorems will depend on two corollaries of Theorem 2.2.

The first, Corollary 2.3, requires a bound on the error in the Jacobian. Corollary 2.5
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is more specific and directed at an iteration which uses GMRES as the linear solver
with approximate Jacobian-vector products.

Corollary 2.3. Let the assumptions of Theorem 2.2 hold. Let an integer K ∈
[0,∞] and r ∈ (rNewton, 1) be given. Then there are ε0, η̄, and Δ̄ so that for all
u0 ∈ B(ρ) the sequence

un+1 = un + sn, 0 ≤ n ≤ K,

from the iteration (2.7)–(2.9) satisfies

(2.15) ‖en‖ ≤ rn‖e0‖

if

(2.16) ηn ∈ [0, η̄], ‖Jn − F ′(un)‖ ≤ Δ̄, and ‖F̃n − F (un)‖ ≤ ε0rn

for all 0 ≤ n ≤ K − 1.
Proof. We begin with the error-free case where Jn = F ′(un) and F̃n = F (un)

(i.e., Δ = 0 and ε = 0). Our target will be an iteration {uιn} that converges q-linearly
with q-factor rη ∈ (rNewton, r), i.e.,

(2.17) ‖eιn+1‖ ≤ rη‖eιc‖.

Since Δ = 0 and ε = 0 in the error-free case, we can apply Theorem 2.2 and can
combine (2.12) and (2.14) to obtain

(2.18) ‖eιn+1‖ ≤ rNewton‖eιn‖+ CIηn‖eιn‖.

We will have (2.17) if we pick ηn so that

‖eιn+1‖ ≤ rNewton‖eιn‖+ CIηn‖eιn‖ ≤ rη‖eιn‖.

This requires that

(2.19) ηn ≤ η̄ ≡ rη − rNewton

CI
=
rη − rNewton

5κ(F ′(u∗))

for all n. We will manage η in the following sections by insisting on (2.19).
While one could manage the sequence of Jacobian errors {Δn} and the forcing

terms simultaneously, we will not do that because we control them in different ways.
We choose to manage the forcing term first because we can do that independently of
the methods we use to approximate the residual and Jacobian. Now suppose εn = 0
for all n. In that case we can obtain a q-factor rΔ ∈ (rη , r) by requiring that

CJ‖Δn‖+ rη ≤ rΔ.

Hence we will require that

(2.20) ‖Δn‖ ≤ Δ̄ ≡ rΔ − rη
CJ

=
rΔ − rη

6‖F ′(u∗)−1‖ .

So, if the errors in the residual are zero, we can obtain q-linear convergence with
a q-factor that is as close to rNewton as we like. To move beyond that to superlinear
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or quadratic convergence, we would have to let Δn → 0 and ηn → 0. We do not think
that is practical in the MC setting of this paper.

Finally we consider reduction in the residual error. Convergence requires that the
residual errors {εn} converge to zero. A q-linear convergence estimate would require
that

εn = O(‖en‖) = O(‖F (un)‖)
with a sufficiently small constant in the O-term. An r-linear convergence estimate
would need

εn = O(rn)

for some r ∈ (0, 1). We will take the latter approach and seek r-linear convergence
with an r-factor r, i.e.,

(2.21) ‖en‖ ≤ rn‖e0‖.
We can use Theorem 2.2 again to obtain (2.21). Beginning with u0 ∈ B(ρ) and

requiring that (2.19) and (2.20) hold, we will obtain (2.21) as well as {un} ⊂ B(ρ) if
(2.22) ‖en+1‖ ≤ rΔ‖e0‖rn + CF ‖εn‖ ≤ ‖e0‖rn+1,

which is satisfied if

(2.23) ‖εn‖ ≤ ε0rn,
where

(2.24) ε0 ≤ ‖e0‖r − rΔ
CF

= ‖e0‖ r − rΔ
8‖F ′(u∗)−1‖ .

Our plan for the analysis in section 4.1 is to require (2.19) and then to manage
the number of MC trials to force (2.20) and (2.23) to hold with high probability,
and thereby obtain (2.21). The difficulty is that one can do this only for a finite
subsequence of the iteration (so K <∞), as we will see in the proof of Theorem 4.1.

If one wanted to track superlinear convergence, one would have to reduce the
errors in residuals superlinearly and drive the Jacobian error to zero. For example, if
one demanded that

lim
n→∞

‖εn+1‖
‖εn‖ = 0 and lim

n→∞ ‖Δn‖ = 0,

then one could easily extend the analysis above to show that the iteration was su-
perlinearly convergent if u0 were sufficiently near u∗. This is, in our opinion, too
costly if residuals, Jacobians, and Jacobian-vector products are approximated with
MC simulations.

2.3. A tracking theorem for JFNK methods. In this section we consider a
matrix-free method. By this we mean that we compute only approximate Jacobian-
vector products within the linear solver, and we do not apply the linear solver to
an approximate Jacobian matrix. The details differ from the analysis in section 2.2
because we cannot consider the error in an approximate Jacobian directly, but must
instead analyze the sequence of approximate matrix-vector products within the inner
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iteration. We will consider only Newton-GMRES in this section. The analysis applies
to other Krylov methods, such as conjugate gradient, which are continuous in their
data. The results in this section are significantly more detailed than those in section
6.2.1 of [13].

Suppose one can approximate only a Jacobian-vector product and not a complete
Jacobian. One example of this situation is using a finite-difference Jacobian-vector
product in a Newton–Krylov method [13]. For definiteness, we will use GMRES [20]
throughout this paper. We will denote the approximate Jacobian-vector by

Jp(u, v) ≈ F ′(u)v.

The difference in the iteration from Corollary 2.3 is only that the inexact Newton
condition is realized by a Newton-GMRES iteration with Jp(u, v) used for all the
Jacobian-vector products. In the case of finite-difference Jacobian-vector products

Jp(u, v) =
F (u+ hv)− F (u)

h

for a properly chosen difference increment h [13].
The effect of the approximate Jacobian-vector product is well understood [13,

4] for a finite-difference directional derivative, and the results in this section apply
directly to that case. As is the case for a finite-difference directional derivative, one
must scale the direction to obtain good results. For a finite-difference approximation
[13] we choose the difference increment proportional to ‖u‖/‖v‖ if v 
= 0. In this paper,
the approximation of a Jacobian-vector product is via a Monte Carlo simulation, and
there is no difference increment. For example, in the Monte Carlo case we consider
in section 5 we only evaluate Jp(u, v) for unit vectors v and define the approximation
in the general case by

(2.25) Jp(u, αv) = αJp(u, v)

for all scalars α, vectors u, and unit vectors v. One could envision a case where one
should use vectors v of the size of ‖u‖, as one does in the finite-difference case, but
that would depend on the nature of the MC approximation and is not appropriate for
the example in section 5. We will use (2.25) in the analysis that follows.

We now restrict our attention to problems which are well-conditioned enough for
the number of Jacobian-vector products per nonlinear iteration in a Newton-GMRES
iteration to be uniformly bounded for the entire nonlinear iteration. So, we will
impose a limit KL on the size of the Krylov subspace, i.e., we will use GMRES(KL)
as the linear solver and limit the number of restarts to KR. We must also keep in
mind that GMRES tests the termination criterion (2.10) indirectly within the linear
iteration. We must now look into the continuity of the linear iteration in the entire
set of Jacobian-vector products.

Let A be a nonsingular matrix. We will denote the output of GMRES(KL) applied
to the linear system Ax = b with at most KR restarts, relative residual tolerance η,
and initial iterate x0 = 0 by

x = GMRES(A, b,KL,KR, η).

Here A may represent either multiplication by the matrix A or application of an
approximate matrix-vector product. Because the initial iterate is x0 = 0, one can see
from the algorithmic description for GMRES that

(2.26) GMRES(A,αb,KL,KR, η) = αGMRES(A, b,KL,KR, η)
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for any α. The most important consequence of this is that if two matrices (or the
related history of matrix-vector products) are close, then the outputs of the iteration
are relatively close. To make this precise, suppose that we compare an “exact” im-
plementation GMRES(A,αb,KL,KR, η) with GMRES(Ap, αb,KL,KR, η), where Ap

is an approximate matrix-vector product function. We state the result as a lemma.
Lemma 2.4. Suppose that

(2.27) Ap(αv) = αAp(v) for all α ≥ 0, v ∈ RN

and that

(2.28) ‖Aw −Ap(w)‖ ≤ Δp

for all unit vectors w; then

(2.29) ‖GMRES(A,αb,KL,KR, η)−GMRES(Ap, αb,KL,KR, η)‖ = ‖b‖|α|o(1)

as Δp → 0. Moreover, if ρ is the computed residual on termination of the iteration
with A and ρp the residual of the iteration with Ap, then

(2.30) |ρ− ρp| = ‖b‖o(1)

as Δp → 0.
Proof. The proof follows from the algorithmic description of a GMRES iteration

[20, 13], which implies that the GMRES iteration is continuous in the matrix and right-
hand side, and the observation [13, 4] that GMRES with an approximate matrix-vector
product Ap(v) is equivalent to GMRES applied to the matrix Ã whose products with

the Krylov vectors {vk} are Ap(vj). It follows from (2.28) that ‖Ã − A‖ = O(Δp).
Then the continuity of the GMRES iteration, (2.28), and (2.27) imply (2.29) and
(2.30).

We remark that if the exact iteration terminates prematurely with a “happy
breakdown,” then (2.29) should be taken to mean that the approximate iteration
remains close to the converged result of the exact iteration.

The method of interest in this section replaces s = −F ′(uc)−1F (uc) in a Newton
iteration with

(2.31) s = GMRES(Jp,−F̃c,KL,KR, η).

We will compare this with an idealized error-free inexact Newton method

(2.32) s = GMRES(F ′(uc),−F (uc),KL,KR, η)

or the step with an approximate residual and an error-free Jacobian-vector product,

(2.33) s = GMRES(F ′(uc),−F̃c,KL,KR, η).

We will assume that the iteration in the error-free case converges sufficiently
rapidly.

Assumption 2.2. There are rGMRES ∈ (rNewton, 1) and ηGMRES ∈ (0, 1) such
that for any η ∈ (0, ηGMRES) and u0 ∈ B(ρ) the sequence {uGn } of Newton-GMRES
iterations using (2.32) as the linear solver converges q-linearly with q-factor at most
rGMRES . Moreover, the internal GMRES solver does not break down.
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We will need this in the second part of the proof of Corollary 2.5. We are also
implicitly assuming that there is no loss of orthogonality within the GMRES itera-
tion. This assumption is needed to guarantee that the residual computed internally
in a GMRES implementation is the same as the actual residual. This is true in exact
arithmetic, of course. One can nearly realize this in practice by either using House-
holder reflections to maintain orthogonality [25] or orthogonalizing twice within each
GMRES iteration [19].

Corollary 2.5. Let Assumption 2.2 and the assumptions of Theorem 2.2 hold.
Let an integer K ∈ [0,∞), r ∈ (rGMRES , 1), and u0 ∈ B(ρ) be given. Assume the
approximate Jacobian-vector product Jp satisfies (2.25).

Then there are ε0, η̄, and Δ̄p so that the sequence

un+1 = un + sn, 0 ≤ n ≤ K,

from the iteration (2.7)–(2.9), with the Jacobian-vector products approximated by
Jp(u, v) satisfies

(2.34) ‖en‖ ≤ rn‖e0‖ for 0 ≤ n ≤ K

if

(2.35) ‖F ′(u)v − Jp(u, v)‖ ≤ Δp

for all u ∈ B(ρ) and unit vectors v, and

‖F̃n − F (un)‖ ≤ ε0rn for 0 ≤ n ≤ K.

Proof. The proof follows directly from Lemma 2.4. The lemma states that if Δp

is sufficiently small, then the linear iteration GMRES(Jp,−F̃c,KL,KR, η̄) will remain

close to those of GMRES(F ′(uc),−F̃c,KL,KR, η̄) and the steps will be near enough
so that

‖F ′(uc)s+ F̃c‖ ≤ η̄ + ηGMRES

2
,

which is sufficient for (2.34) to hold. This completes the proof.

3. Monte Carlo approximations and consistency. In this section we for-
malize our assumptions on the accuracy of the function, Jacobian, and Jacobian-vector
approximations. We then prove a consistency result to explain in what sense the ap-
proximate equations satisfy the hypotheses of the Kantorovich theorem [12, 13]. We
defer the statement and proof of a tracking theorem for a specific algorithm until the
next section.

3.1. Notation and accuracy assumptions. We will approximate each func-
tion, Jacobian, and Jacobian-vector product with a randomized simulation using a
variable number of trials. Our notation will be as follows:

• NMC is the number of trails for the function and NJ
MC the number of trials

for the Jacobian or Jacobian-vector product.
• F̃ (u,NMC) is an outcome of the simulation for the residual F (u).
• J(u,NJ

MC) is an outcome of the simulation for the Jacobian F ′(u).
• Jp(u, v,NJ

MC) is an outcome of the simulation for the Jacobian-vector product
F ′(u)v.



NEWTON’S METHOD 1747

We will refer to the approximations as Monte Carlo approximations because that was
the setting in [26]. We assume that the evaluations of F̃ , J , and Jp are independent.

Recall that B(ρ) (see (2.2), (2.1), and (2.3)) is a set of initial iterates from which
Newton’s method converges. For consistency and the tracking theorems we will require
the following.

Assumption 3.1. There are functions cF and cJ and an open set B′ which
contains B(ρ) such that, for all u ∈ B′ and δ > 0,

(3.1) Prob

(
‖F (u)− F̃ (u,NMC)‖ > cF (δ)√

NMC

)
< δ

and

(3.2) Prob

⎛
⎝‖F ′(u)− J(u,NJ

MC)‖ >
cJ(δ)√
NJ

MC

⎞
⎠ < δ.

For the matrix-free implementation we will replace (3.2) by a similar assumption
on Jacobian-vector products.

Assumption 3.2. There is a function cJv and an open set B′ which contains
B(ρ) such that for all u ∈ B′, unit vectors v ∈ RN , and δ > 0, (3.1) holds and

(3.3) Prob

⎛
⎝‖F ′(u)v − Jp(u, v,NJ

MC)‖ >
cJv(δ)√
NJ

MC

⎞
⎠ < δ.

These assumptions are very weak. One way to think of them is that the function,
Jacobian, and Jacobian-vector products are the outputs of experiments, i.e., vector
or matrix-valued random variables. Hence one cannot say that F̃ , J , or Jp inherit
any continuity properties from F . Our tracking results cannot talk about asymptotic
convergence rates but only describe how an iteration based on F̃ , J , or Jp tracks an
idealized iteration for F itself.

3.2. Consistency results. Consistency results for sequences of nonlinear prob-
lems typically use the Kantorovich theorem [12, 13] to show that the approximate
problems have solutions and that those solutions converge to the solution of the lim-
iting problem. We perform a similar analysis here, but that analysis is complicated
by the MC evaluation of the approximations.

If a sequence of functions {FN} converges to F pointwise and the Jacobians F ′
N

are uniformly Lipschitz continuous and well-conditioned in a neighborhood of u∗, the
Kantorovich theorem implies that FN (u) = 0 has a unique solution near u∗ and that
these solutions converge to u∗. In the present case, however, our assumptions do not
imply any continuity properties of FN or F ′

N .
Theorem 3.1 connects the standard assumptions, which F satisfies, with the ap-

proximations.
Theorem 3.1. Assume that the standard assumptions and Assumption 3.1 hold.

Then for any ε > 0, ω ∈ (0, 1), and u, v ∈ B(ρ) there is N∗
MC such that, for all

NJ
MC , NMC ≥ N∗

MC ,

(3.4) ‖F̃ (u∗, NMC)‖ ≤ ε,

(3.5) ‖J−1(u,NJ
MC)‖ ≤ 4‖F ′(u∗)−1‖,
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and

(3.6) ‖J(u,NJ
MC)− J(v,NJ

MC)‖ ≤ γ‖u− v‖+ ε

with probability at least 1− ω.
Proof. Let ε > 0 and ω ∈ (0, 1) be given. Let N∗

MC be large enough so that

(3.7)
cF (δ)√
N∗

MC

≤ ε

and

(3.8)
cJ(δ)√
N∗

MC

≤ min

(
1

2‖F ′(u)−1‖ ,
ε

2

)
.

Now let

(3.9) δ ≤ 1−√1− ω,
and NMC ≥ N∗

MC . Since δ ≤ ω, (3.1) from Assumption 3.1 and (3.7) imply (3.4)
with probability no less than 1− δ ≥ 1− ω.

Let NJ
MC ≥ N∗

MC . Equation (3.8) implies that, with probability 1− δ ≥ 1− ω,
‖J(u,NJ

MC)
−1‖ ≤ 2‖F ′(u)−1‖.

This and (2.5) imply (3.5) since u ∈ B(ρ).
Since NJ

MC ≥ N∗
MC , Lipschitz continuity of F ′ and (3.8) imply, with probability

at least

(1 − δ)2 ≥ 1− ω,

that

‖J(u,NJ
MC)− J(v,NJ

MC)‖ ≤ ‖F ′(u)− F ′(v)‖+ ε ≤ γ‖u− v‖+ ε.

This completes the proof.

4. Algorithms and tracking theorems. In this section we show how the
MC approximations of functions, Jacobians, and Jacobian-vector products change the
Newton iteration. The theoretical results will then guide the algorithmic discussion.
The algorithms manage the errors in the function, Jacobian, and linear solver by
increasing the number of MC trials as the iteration progresses.

Our results differ from those for problems with deterministic errors because we
cannot compare a point in B to a root of F̃ . In fact, there are no roots of F̃ because
F̃ does not return the same value for successive calls with the same inputs. Hence we
can only assert that, with high probability, the inexact Newton sequence which uses
the approximations tracks the sequence with the exact functions F and F ′ for a given
finite number of iterations.

The JFNK algorithm proposed in [26] tested for stagnation by looking for a de-
crease in the residual norm. If the residual norm failed to decrease, then the algorithm
increased NMC . GMRES was the linear solver. We will discuss a version of that algo-
rithm later in section 4.2. Before that, in section 4.1, we will consider the case where
one uses MC simulations to approximate the entire Jacobian matrix.
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Our tracking results may remind the reader of mesh-independence theorems (see
[2, 1, 11, 16], for example), where one compares a Newton iteration for an infinite-
dimensional problem with one for a discretization as the mesh is refined. We will
sketch a version of such an analysis in section 2.2 to illustrate the kind of result we
seek in this case.

The main tracking results are in sections 4.1 and 4.2.

4.1. Tracking with MC residual and Jacobian approximations. We begin
with the case where the residual and Jacobian come from MC simulations, and we
compute the matrix-vector product used within the inner GMRES iteration as

J(uc, N
J
MC)v

rather than with a MC matrix-vector product

Jp(uc, v,N
J
MC).

In this case Theorem 2.2 and the ideas in section 2.2 can be applied directly. This
is simpler than the case where the matrix-vector product is an MC simulation (see
section 4.2) because estimating the error in the linear solver becomes significantly
more complex both in theory and in practice [24, 23, 22].

We must explicitly show how the number of MC trials fits into the iteration:

(4.1) u+ = uc + s, where ‖J(uc, NJ
MC)s+ F̃ (uc, NMC)‖ ≤ ηn‖F̃ (uc, NMC)‖.

Note that the number of trials NMC for the function need not (and, as we shall see,
should not) be the same as the number NJ

MC for the Jacobian. The reason for that, as
one can see from Theorem 2.2, is that the forcing terms and Jacobian errors influence
the rate of convergence, but not the accuracy of the iteration.

Theorem 2.2, of course, does not apply with certainty if one uses MC residuals and
Jacobian-vector products. We can, however, use Assumption 3.1 and Corollary 2.3 to
adjust NMC and NJ

MC so that a finite number of Newton iterates are approximated
sufficiently well with high probability.

Our primary goal will be tracking r-linear convergence and obtaining (2.21). For
a given finite K > 0, the analysis will show that we can, if the algorithmic parameters
are chosen correctly, obtain (2.21) for the first K iterations.

We will assume that the hypotheses of Corollary 2.3 hold and that ηn ≤ η̄, where
η̄ is defined by (2.19). While we could make the limiting convergence as fast as q-
quadratic by decreasing ηn and increasing the number of MC trials very rapidly, the
work required to capture that convergence rate with the MC-based iteration is far too
much. Hence we will fix NJ

MC in a way that will enable us to bound the Jacobian
error Δn with high probability for the first K iterations.

We must increase NMC as the iteration progresses to obtain the tracking results
we want. To track r-linear convergence we can increase NMC by a factor of at least
r−2 with each iteration.

The iteration is

un+1 = un + s, where

‖J(un, NJ
MC)s+ F̃ (un, N

n
MC)‖ ≤ ηn‖F̃ (un, Nn

MC)‖.
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We formalize this idea in the algorithm Newton-MC. The inputs are an initial
iterate u, NJ

MC , an upper bound η̂ for the forcing term η, an initial value of NMC , the
factor Ninc by which NMC will increase with each iteration, and relative and absolute
termination parameters. Based on Corollary 2.3 and its proof we will require that

(4.2) 0 ≤ η̂ ≤ η̄
where η̄ is defined by (2.19).

Newton-MC (u,NMC , N
J
MC , Ninc, η̂, τr, τa).

Evaluate RMC = F̃ (u,NMC); τ ← τr‖RMC‖+ τa.
while ‖RMC‖ > τ do
Compute J(u,NJ

MC)
Find s which satisfies ‖J(u,NJ

MC)s+ F̃ (u,NMC)‖ ≤ η‖RMC‖ with 0 ≤ η ≤ η̂
u← u+ s
Evaluate RMC = F̃ (u,NMC);
NMC ← NincNMC

end while

The tracking result will follow from Corollary 2.3. We will use the terminology
from section 2.2.

Theorem 4.1. Let the assumptions of Theorems 2.1 and 2.2 hold. Let a positive
integer K, r ∈ (rNewton, 1) and ω ∈ (0, 1) be given. Then there are η̂, NMC , N

J
MC ,

and Ninc such that with probability (1− ω) for all 1 ≤ n ≤ K, the iteration produced
by Newton-MC satisfies

(4.3) ‖en‖ ≤ rn‖e0‖,
and there is KF (depending only on F and u∗) such that

(4.4) ‖F (un)‖ ≤ KF r
n‖F (u0)‖.

Proof. We will prove (4.3). After that, (4.4) will follow from (2.6) and

KF =
5κ(F ′(u∗))

3
.

We will use Corollary 2.3. Let η̄ be the bound from the corollary and let 0 ≤ η̂ ≤ η̄.
Now let Δ̄ be as in Corollary 2.3 and set

(4.5) δ = 1− (1− ω)1/2K .
If we require that

(4.6) NJ
MC ≥

(
cJ (δ)

Δ̄

)2

,

then the choice of NJ
MC implies that

(4.7) ‖F ′(un)− J(un, NJ
MC)‖ ≤ Δ̄

for 0 ≤ n ≤ K − 1 with probability no smaller than

(1 − δ)K =
√
1− ω,

provided un ∈ B(ρ), which will follow from our completion of the proof.
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The next step is to manage NMC and Ninc. Let ε0 be as in Corollary 2.3 and let

(4.8) εn = ε0r
n.

Let N0
MC be the initial value of NMC and assume

(4.9) N0
MC ≥

(
cF (δ)

ε0

)2

.

Then, with probability at least 1− δ,
‖F (u0)− F̃ (u0, N0

MC)‖ ≤ ε0.
This completes the proof if Ninc ≥ r−2 as then

(4.10) ‖F (un)− F̃ (un, Nn
MC)‖ ≤ ε0rn

for all 0 ≤ n ≤ K − 1. Hence, with probability no less than (1 − δ)K , un ∈ B(ρ) for
0 ≤ n ≤ K by (4.3), (4.7), and Corollary 2.3.

We complete the proof by noting that both (4.10) and (4.7) hold with probability
no less than

(1− δ)2K = (1 − ω).
4.2. Matrix-free Newton-GMRES solvers. In this section we apply Corol-

lary 2.5 in the context of MC approximations to the residual and Jacobian-vector
product. We implement a GMRES solver for the linear equation for the nth New-
ton step by using the approximate function F̃ (un, N

n
MC) for the right-hand side and

approximating the Jacobian-vector product F ′(un)v with Jp(u, v,N
J
MC). As was the

case in section 4.1, we must manage the number of trials for the residual computation
Nn

MC as the iteration progresses, but the number of trials for the Jacobian-vector
product need not be increased.

Low accuracy matrix-vector products and their effects on GMRES have been
studied previously [24, 23, 22]. Those papers show the errors in the early matrix-
vector products can accumulate and lead to severe loss of accuracy in the solution
which GMRES returns. The accumulation of errors is especially problematic if we
take many GMRES iterations, as one might for a poorly conditioned problem or when
one wants a significant reduction in the residual norm.

In the context of a Newton-GMRES iteration, this loss of accuracy may result in
the nonlinear residual norm’s not decreasing from one Newton-GMRES iteration to
the next and is especially likely to be the cause of such residual norm behavior when
the iterates are near the solution. We saw such behavior in the computations reported
in [26] and had to apply a line-search [13, 9, 3] to avoid increasing NMC too rapidly.
The authors of [24, 23, 22] recommend that one use higher accuracy matrix-vector
products early in the Krylov iteration, but that is not practical in the problems we
consider here.

The meaning of Assumption 2.2 is that the number of Krylov iterations for each
Newton iteration is uniformly bounded. In practice, in view of the effects of error
propagation, that bound should be small, as it is in our examples. This bound enables
one to prove a tracking theorem because then one can derive a bound on the number
of MC residuals and Jacobian-vector products that one will need for K nonlinear
iterations.



1752 JEFFREY WILLERT, XIAOJUN CHEN, AND C. T. KELLEY

To state the tracking result, Theorem 4.2, we will formulate a JFNK iteration
that explicitly bounds the number of Krylov iterations and restarts. While such
an iteration will not be a general purpose method, it will be effective on suffi-
ciently well-conditioned problems. To that end, as we said above, we constrain the
number KL of GMRES vectors we are willing to store, i.e., to use GMRES(KL)
rather than full GMRES, and limit the number of restarts to KR. The algorithm
JFNK-MC combines these limits with the increments in NMC from the algorithm
Newton-MC.

JFNK-MC (u,NMC , N
J
MC , Ninc, η,KL,KR, τr, τa, Imax).

Evaluate RMC = F̃ (u,NMC); τ ← τr‖RMC‖+ τa.
while ‖RMC‖ > τ do

s = GMRES(Jp(uc, ·, NJ
MC),−F̃c,KL,KR, η)

u← u+ s
NMC ← Ninc ∗NMC ;
Evaluate RMC = F̃ (u,NMC)

end while

Theorem 4.2. Assume that the assumptions of Theorem 2.2 and Corollary 2.5
hold. Let B to B(ρ), a positive integer K, r ∈ (rGMRES , 1) and ω ∈ (0, 1) be given.
Then there are NMC , N

J
MC , and Ninc such that with probability (1− ω) the iteration

produced by JFNK-MC satisfies (4.3) and (4.4) for 0 ≤ n ≤ K.
Proof. The ideas in the proof are similar to that of Theorem 4.1. We use continuity

of the iteration in its data and the fact that we do at most (KLKR+1)K MC residual
or Jacobian-vector product evaluations. The difference is the type of data. Here
the nonlinear iterations are functions of K residual evaluations and at most KLKR

Jacobian-vector products. The continuity implies that if the residuals and Jacobian-
vector products are sufficiently accurate, then at most one additional Jacobian-vector
product after the final restart will be needed to satisfy the inexact Newton condition
(2.10).

So let

(4.11) δ = 1− (1− ω)1/(K[KLKR+1]).

Let Δp and ε0 come from Corollary 2.5 and choose N0
MC to satisfy (4.9), Ninc ≥ r−2,

and

(4.12) NJ
MC ≥

(
cJv(δ)

Δp

)2

.

For 1 ≤ k ≤ K we will show that with probability (1− δ)mk

• uk ∈ B(ρ), so we can attempt the next iteration, and
•

(4.13) ‖F ′(uk)vj − J(uk, vj , NJ
MC)‖ ≤ Δ̄p‖F̃k‖,

so the next GMRES iteration will be accurate enough to invoke (2.25) and
Lemma 2.4 and take the next Newton step.

We will proceed by induction. For k = 0, u0 ∈ B(ρ) by assumption. From that
we conclude that, with probability (1−δ), (4.10) holds. To take the next Newton step
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we need (4.13) to hold for all of the Krylov vectors. Since there are at most KLKR

such vectors, our choice of NJ
MC implies that (4.13) holds for all the Krylov vectors

with probability (1− δ)KLKR . Hence the assumptions of Corollary 2.5 hold for K = 1
and u1 ∈ B(ρ) with probability (1− δ)KLKR+1.

Continuing the induction, we see that if uk ∈ B(ρ) with probability (1 − δ)mk ,
then we can take the next inexact Newton step and apply Corollary 2.5 if (4.13) holds.
Since (4.13) holds for all the Krylov vectors, we have

mk+1 = mk +KLKR + 1.

Therefore, setting k = K− 1 we have that the assumptions of Corollary 2.5 hold with
probability no less than

(1− δ)K(KLKR+1) = 1− ω.
5. Numerical results. In this section we apply Algorithm JFNK-MC with a

variety of choices of the algorithmic parameters η, KL, and KR to an example from
[26]. One should keep in mind that restarting GMRES(KL) has a very low incre-
mental cost if, as is the case here, NJ

MC is fixed at a low value, while NMC increases
throughout the iteration. One conclusion from the testing here is that restarting once
(KR = 2) does no harm, helps one keep both η large and KL small, and can improve
the results in some cases. On the other hand, a value of η that is too small combined
with a limit KL that is too large can lead to the types of errors that were analyzed
in [24, 23, 22] in the linear iteration.

As an example we use the nonlinear system for the nonlinear diffusion acceleration
(NDA) of the equation for neutron transport in one space dimension. We refer the
reader to [17, 26] for the motivation for and the derivation of these equations. We
will describe the continuous form of the equations and not discuss the details of the
discretizations.

The linear equation for the Newton step requires preconditioning before the as-
sumptions of the theory in section 4 hold. We will describe that preconditioner below
and explain how it compactifies the linearized operator.

The NDA equation is for a “low-order” flux φ ∈ C[0, L]. The coefficients and
boundary conditions for the low-order equation depend on a “high-order” equation,
which we will solve with a MC approximation.

The low-order equation is

(5.1)
d

dx

[
− 1

3Σt

dφ

dx
+ D̂HOφ

]
+ (Σt − Σs)φ = q(x).

In (5.1), Σt and Σs are transmission and scattering cross sections and q is a source
term.

The coefficient D̂ depends on the solution of the high-order equation

(5.2) μ
∂ψ

∂x
+Σtψ(x, μ) =

1

2
[Σsφ(x) + q(x)] ,

where μ ∈ [−1, 1] is the angular variable. The boundary conditions for the high-order
equation are the incoming fluxes ψ(0, μ) and ψ(L,−μ) for μ > 0.

We compute D̂ using the high-order flux

(5.3) φHO(x) =

∫ 1

−1

ψ(x, μ′)dμ′



1754 JEFFREY WILLERT, XIAOJUN CHEN, AND C. T. KELLEY

and high-order current

(5.4) JHO(x) =

∫ 1

−1

ψ(x, μ′)μ′dμ′

with the formula

(5.5) D̂ =
JHO + 1

3Σt

dφHO

dx

φHO
.

We can represent this problem as a nonlinear system of equations by writing

(5.6) F (φ) =
d

dx

[
− 1

3Σt

dφ

dx
+ D̂HO(φ)φ

]
+ (Σt − Σs)φ− q.

We write D̂HO(φ) to demonstrate the dependence of D̂HO on φ as is seen in (5.5),
in which φHO and JHO are recovered from the solution to (5.2). Now, we employ
a Newton-GMRES algorithm to solve F (φ) = 0. This algorithm for solving the
transport equation is known as JFNK-NDA(MC) when the computation of D̂ employs
an MC simulation.

Within our Newton-GMRES algorithm there are several parameters which we
may change in order to tune the performance of JFNK-NDA(MC). First, we may
change KL the maximum number of Krylov vectors allowed per linear iteration. We
used KL = 5, 10, 20 in our testing. Second, we may change the forcing term, η, which
for these tests takes on values .1 and .001. Last, we also look at the possibility of
restarting GMRES (KR = 1 or KR = 2). We will see that restarting GMRES(KL)
once (KR = 2) can reduce the storage requirements, as compared to doubling KL and
not restarting, while not degrading the performance of the algorithm.

We will consider a single test problem which is representative, in general, of
problems for which JFNK-NDA(MC) has been employed. In this computation we fix
NJ

MC = 106 and use the zero function as the initial iterate. We present the problem
data in Table 1.

Table 1

Problem data.

Parameter Value
Σt 10
Σs 9.9
τ 1
q .5

Spatial cells 50

In each of the following figures we employ the same structure. On the y-axis
we plot the nonlinear residual, and on the x-axis we plot the cumulative number of
realizations (particle histories) for residual and Jacobian-vector products. We plot
the results of 10 simulations along with a dashed line demonstrating a rate of residual
decrease that tracks 1√

NMC
. We initialized NMC = NJ

MC = 106, held NJ
MC constant

for the entire iteration, and increasedNMC by a factor ofNinc = 2 after each nonlinear
iteration.



NEWTON’S METHOD 1755

We configured the solver to respond to a failure of the linear solver to satisfy the
inexact Newton condition by accepting the step anyway and continuing the nonlinear
iteration. The experiments show that there is little change in performance if one saves
storage, while keeping the number of Jacobian-vector products the same, by setting
KR = 2 and reducing KL by a factor of two.

We begin with a tight (η = .001) tolerance on the linear solver and a limit of
20 Jacobian-vector projects. In Figures 1 and 2 the overall performance of the two
nonlinear iterations is the same. In this set of experiments the linear solver failed
7 times over the 10 simulations for KL = 10 and KR = 2 and never failed for KL = 20
and KR = 1. One would expect that the larger dimension for the Krylov subspace
would lead to fewer failures. However, the failures of the linear solver did not affect
the overall performance of the nonlinear iteration.
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Fig. 1. KL = 10, η = .001, KR = 2.
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Fig. 2. KL = 20, η = .001, KR = 1.

Next we let η = .1 with 10 Jacobian-vector products. We report the convergence
results in Figures 3 and 4. For the 10 simulations and the case KR = 5,KL = 2, the
linear solver failed to converge a total of 102 times for the first pass. After restart,
again for the entire suite of 10 simulations, we recorded 66 failures. Larger forcing
terms need fewer Krylov iterations for each Newton step but could require more
nonlinear iterations. However, when one measures cost in terms of the accumulated
particle histories the cost of the entire iteration is roughly the same as in the η = .001
case.
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Fig. 3. KL = 5, η = .1, KR = 2.
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Fig. 4. KL = 10, η = .1, KR = 1.

All the figures in this section demonstrate that we can track r-linear convergence
by properly increasing the number of particles (realizations) per function evaluation.
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6. Conclusions. In this paper we propose and analyze an inexact Newton algo-
rithm for problems in which residuals, Jacobians, and Jacobian-vector products are
approximated by an MC simulation. For such problems, one may think of a call to
a residual as performing an experiment which does not give reproducible results. We
prove results that show how the iteration tracks an idealized inexact Newton iteration
based on exact residuals, Jacobians, and Jacobian-vector products.

We report on a set of numerical experiments which illustrate the analysis and
show how the theory can provide guidance for an efficient implementation.
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