Existence of Solutions to Underdetermined Equations and Spherical Designs

Xiaojun Chen Hirosaki University

Rob Womersley
University of New South Wales

July 2006

to appear in SIAM J. Numer. Anal.

Underdetermined Equations

 $c: \mathbb{R}^n \to \mathbb{R}^m$ is continuously differentiable, m < n.

$$c(x) = 0 \tag{1}$$

2

Suppose

$$c(\hat{x}) \approx 0$$

and $c'(\hat{x})$ has full row rank, i.e

$$\operatorname{rank}(c'(\widehat{x})) = m.$$

We are interested in the existence of a solution of (1) in a neighborhood of \hat{x} .

Underdetermined equations arising in construction of spherical *t*-design on the unit sphere

$$\mathbf{S^2} = \{ y \in R^3 : ||y||_2 = 1 \}$$

 \mathbf{P}_t : polynomials in 3 variables, restricted to S^2 .

A spherical t-design(Delsarte-Goethals 1977)

is a set of N points $\{y_1, y_2, \dots, y_N\} \subset S^2$ such that

$$\int_{S^2} p(y) dy = \frac{4\pi}{N} \sum_{j=1}^{N} p(y_j)$$

for every polynomial $p \in \mathbf{P}_t$.

A quadrature rule, exact for all $p \in P_t$

The existence of a spherical t-design was proved (Seymour-Zaslavsky, 1984).

Open Questions:

For Given t, number of points?

how to find $\{y_1, y_2, \dots, y_N\}$.

Our interest

What is the best choice of points on the sphere for interpolatory integration rule

The dimension of the space P_t is $(t+1)^2$.

Lower bound on the smallest number N_t^st of points required to give a spherical t-design are

$$N_t^* \ge \frac{(t+1)(t+3)}{4}$$
 if t is odd
$$N_t^* \ge \frac{(t+2)^2}{4}$$
 if t is even.

Our aim

Prove the existence of spherical t-designs with $(t+1)^2$ points and good conditioning interpolation matrix.

Main Results

- 1 Verify the existence of solutions to (1) using the Brouwer fixed point theorem.
- 2 Reformulate the problem finding a spherical t-design with $(t+1)^2$ points as underdetermined equations (1) with $m=(t+1)^2-1$ and $n=2(t+1)^2-3$.
- **3** Provide error bounds of a computed spherical t-design to an exact spherical t-design.
- **4** Apply to high-order numerical integration on the sphere.

1. Verification method for c(x) = 0

 \hat{x} : a computed solution of c(x) = 0.

 \mathcal{B} : an index set $\{k_1, k_2, \dots, k_m\}$ such that $c'_{\mathcal{B}}(\widehat{x}) \in R^{m \times m}$ is nonsingular.

$$\mathcal{N} = \{1, 2, \dots, n\}/\mathcal{B}.$$

$$X = \{ x \mid ||x_{\mathcal{B}} - \hat{x}_{\mathcal{B}}|| \le r_1, ||x_{\mathcal{N}} - \hat{x}_{\mathcal{N}}|| \le r_2 \}.$$

Theorem 1 Suppose that $c: \mathbb{R}^n \to \mathbb{R}^m$ is continuously differentiable, $c'(\widehat{x}) = m$ and

$$||c'_{\mathcal{B}}(x) - c'_{\mathcal{B}}(\hat{x})|| \le K||x - \hat{x}||, \text{ for } x \in X.$$

Let

$$h := \|c_{\mathcal{B}}'(\hat{x})^{-1}\|(\frac{1}{2}K(r_1 + r_2)r_1 + \max_{x \in X} \|c_{\mathcal{N}}'(x)\|r_2).$$

- There is a solution of (1) in X if $||c'_{\mathcal{B}}(\hat{x})^{-1}c(\hat{x})|| + h \leq r_1$.
- There is no solution of (1) in X if $\|c'_{\mathcal{B}}(\hat{x})^{-1}c(\hat{x})\| h > r_1$.

2. Reformulation

Given positive integer t

$$d_t = (t+1)^2 := \dim P_t$$

A set of points $Y = \{y_1, \dots, y_{d_t}\} \subset S^2$

A spherical parametrization $\theta_j \in [0, \pi]$

and $\phi_j \in [0, 2\pi]$ of Y has

$$n = 2d_t - 3$$

variables as

$$y_j = \begin{bmatrix} \cos \phi_j \sin \theta_j \\ \sin \phi_j \sin \theta_j \\ \cos \theta_j \end{bmatrix},$$

$$\theta_1 = 0, \phi_1 = 0 \text{ and } \phi_2 = 0 \text{ and }$$

$$(\theta_2, \phi_3, \dots, \phi_{d_t}, \theta_{d_t}) =: x = (x_1, x_2, \dots, x_n).$$

2. Reformulation

Let

$$J_t(z) = \frac{1}{4\pi} \sum_{i=0}^t (2i+1)L_i(z), \quad z \in [-1,1],$$

where $L_j: [-1,1] \to R$ is the Legendre polynomial.

The Gram matrix $G(x) \in R^{d_t \times d_t}$

$$G_{i,j}(x) = J_t(y_i^T y_j) \quad x \in \mathbb{R}^{2d_t - 3}$$

Let

$$E = \begin{pmatrix} 1 & -1 & 0 & \dots & 0 \\ 1 & 0 & -1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 1 & 0 & \dots & 0 & -1 \end{pmatrix} \quad R^{(d_t - 1) \times d_t}$$

and

$$e = (1, 1, \dots, 1)^T$$
 R^{d_t}

2. Reformulation

Theorem 2 Suppose that $G(x^*)$ is nonsingular. Then x^* corresponds to a spherical t-design with $(t+1)^2$ points if and only if x^* is a solution of

$$c(x) = EG(x)e = 0.$$

Image Spherical 16-design with 289 points

3. Error bounds for Computed Spherical Designs

Find spherical designs near the extremal points $ar{Y}$:

$$logdetG(\bar{Y}) = \max_{Y \subset S^2} logdet(G(Y)).$$

 $G(\bar{Y})$ is symmetric positive definite.

$$logdetG(\bar{Y}) \approx (\leq) (t+1)^2 log(\frac{(t+1)^2}{4\pi})$$

Let

 $ar{x}$ correspond to the extremal points $ar{Y}$

 x^* correspond to the exact spherical designs Y^*

 \widehat{x} correspond to the computed spherical designs \widehat{Y} .

3. Error bounds for Computed Spherical Designs

Starting from \bar{x} , we find \hat{x} such that

 $G(\widehat{x})$ is nonsingular, and

$$\rho := K \|c_{\mathcal{B}}'(\widehat{x})^{-1} c(\widehat{x}) \| \|c_{\mathcal{B}}'(\widehat{x})^{-1} \| \le \frac{1}{2}$$

Then

$$\|\hat{Y} - Y^*\|_{\infty} \le 2\|\hat{x} - x^*\|_{\infty} \le 2r_1$$

where

$$r_1 = \frac{1 - \sqrt{1 - 2\rho}}{K \|c_{\mathcal{B}}'(\hat{x})^{-1}\|}.$$

4. Numerical integration on the sphere

The condition for the integration rule

$$Q_{d_t}(f) = \sum_{i=1}^{d_t} w_i f(\hat{y}_i)$$

to be exact for all polynomials in \mathbf{P}_t is that w is the solution of

$$G(\hat{x})w = e.$$

Theorem 3. Suppose that $G(\hat{x})$ is nonsingular.

Let
$$w = G(\hat{x})^{-1}e$$
. Then

$$\max_{1 \le i \le d_t} |w_1 - w_i| \le \frac{4}{\|G(\widehat{x})e\|_{\infty}} \|G(\widehat{x})^{-1}\|_{\infty} \|c(\widehat{x})\|_{\infty}.$$

Our Numerical results

$$|w_i - \frac{4\pi}{d_t}| \le \max_{1 \le i \le d_t} |w_1 - w_i| \le 10^{-13}$$

for t < 20.

Weights are positive and almost same!

4. Numerical integration on the sphere

Sloan-Womersley (2004) The worst-case for the interpolatory integration rule

$$\left| \int_{S^2} f(y)d(y) - \frac{4\pi}{d_t} \sum_{j=1}^{d_t} f(\hat{y}_j) \right| = 4\pi D(\hat{Y}) =: e(E_t),$$

where $D(\hat{Y})$ is the Cui-Freeden generalized discrepancy for the points \hat{Y}

$$D(\hat{Y}) = \frac{1}{2\sqrt{\pi}d_t} \left[\sum_{j=1}^{d_t} \sum_{i=1}^{d_t} \left(1 - 2\log(1 + \sqrt{(1 - \hat{y}_i^T \hat{y}_j)/2}) \right) \right]^{1/2}$$

Numerical results

$$D(\widehat{Y}) < D(\overline{Y}) < D(CF(Y))$$

Table 1 :Extremal point \bar{x} , computed spherical design \hat{x} , exact spherical design x^* , $\|\hat{x} - x^*\| \le r_1$, $x \in R^{2(t+1)^2-3}$

t	$\ c(\hat{x})\ $	$\mathrm{logdet}G(\bar{x})$	$\mathrm{logdet}G(\hat{x})$	r_1
2	4.4e-16	-3.21	-3.21	1.0e-15
3	2.6e-15	3.38	2.57	2.3e-15
4	7.3e-15	16.13	15.93	1.8e-14
5	7.5e-15	36.17	35.48	1.3e-14
6	2.6e-14	64.09	62.64	3.4e-14
7	6.0e-14	100.69	100.41	5.0e-14
8	1.9e-13	146.19	144.36	1.1e-13
9	4.5e-13	201.55	186.22	1.8e-13
10	8.0e-13	266.31	265.50	6.1e-11
11	2.7e-12	342.15	341.67	1.8e-13
12	6.0e-12	428.03	427.41	1.4e-12
13	1.4e-11	525.16	524.27	2.4e-11
14	3.7e-11	633.52	632.71	5.5e-11
15	9.6e-11	753.48	752.48	3.08e-11

Table 2: Worst case for the equal-weight rule E_t and generalized discrepency for Computed spherical designs

t	d_t	$e(E_t)$	$D(\hat{Y})$
2	9	0.349478	0.027811
3	16	0.229009	0.018239
4	25	0.162440	0.012927
5	36	0.123579	0.009834
6	49	0.098188	0.007814
7	64	0.079817	0.006352
8	81	0.067223	0.005349
9	100	0.058809	0.004680
10	121	0.049576	0.003945
11	144	0.043472	0.003459
12	169	0.038495	0.003063
13	196	0.034438	0.002741
14	225	0.031033	0.002469
15	256	0.028180	0.002242