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Underdetermined Equations

c: R" — R™ iIs continuously differentiable, m < n.

c(r) =0 (1)
Suppose
c(z) ~ 0

and ¢ (z) has full row rank, i.e
rank(c(z)) = m.

We are interested in the existence of a solution

of (1) in a neighborhood of z. 2



Underdetermined equations arising in construction

of spherical t-design on the unit sphere

S*={ye R’ : |yll2=1}

P; :polynomials in 3 variables, restricted to 52,




A spherical t-design(Delsarte-Goethals 1977)
is a set of N points {y1,y,... ,yn} C S?

such that
Ty — ar N |
/52 p(y)dy = le(yg)
J:

for every polynomial p € Py.

A quadrature rule, exact for all p € F

T he existence of a spherical t-design was proved
(Seymour-Zaslavsky,1984).

Open Questions:

For Given t, number of points 7

how to find {y1,y2,... ,yn}- 4



Our interest

What is the best choice of points on the

sphere for interpolatory integration rule

The dimension of the space P; is (¢t + 1)<.
Lower bound on the smallest number N of

points required to give a spherical t-design are

if ¢ is odd

> (t+1{4(t+3)

2
S (t+2)
= 4

Nf

N} if t is even.




Our aim

Prove the existence of spherical t-designs with (t41)2
points and good conditioning interpolation matrix.

1 Verify the existence of solutions to (1) using
the Brouwer fixed point theorem.

2 Reformulate the problem finding a spherical t-design
with (¢ + 1)2 points as underdetermined equations
(1) with m=((+1)2—1and n=2(t+ 1)? — 3.

3 Provide error bounds of a computed spherical
t-design to an exact spherical t-design.

4 Apply to high-order numerical integration on the
sphere. 6



1. Verification method for c¢(z) =0

. a computed solution of ¢(z) = 0.
B: an index set {kqi,ko,...,km} such that
cg(Z) € R™*™ is nonsingular.

N ={1,2,... ,n}/B.

X=A{x]|lep—2gl| < ri,llen — 2l < r2}

Theorem 1 Suppose that e: R™ — R™ is continuously

differentiable, ¢/(z) = m and
lcg(z) — cg(@)|| < K|z — Z|, for z € X.
Let .
hi= 1les@ HIGK (r 4 r2)r1 + max|ldy (@)]r2).
reX
. There is a solution of (1) in X if ||cg(@) " te(@)|| + h < rq.

. There is no solution of (1) in X if [|[cg(@) " te(@)|| —h > rq.



2. Reformulation

Given positive integer t
dy = (t+ 1)? := dimPy

A set of points Y = {y1,... ,yq,} C 5°

A spherical parametrization 6; € [0, 7]
and ¢; € [0,27] of Y has

n=2d —3

variables as
- COos¢;sing; |

y; = | Sing;sing; |,
cost

01 = 0,61 =0 and ¢» = 0 and

(927¢33 s ’édt’edt) —=. T = (33133327 cee 75871)'




2. Reformulation
Let

t
W)= Y Qi+ DLG),  zel-1,1]
1=0

where L; : [-1,1] — R is the Legendre polynomial.

The Gram matrix G(z) € R%xdt,

Gij(x) = Ji(yly;) « € R*47

Let
/(1 -1 0 ... 0)
p=|t Ot | REsDxd
\i 0 0 —1 )
and

e=(1,1,..., )T R%



2. Reformulation

Theorem 2 Suppose that G(z*) is nonsingular.
Then z* corresponds to a spherical t—design with

(t + 1)2 points if and only if z* is a solution of

c(r) = EG(x)e = O.
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Image Spherical 16-design with 289 points
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3.Error bounds for Computed Spherical Designs

Find spherical designs near the extremal points Y

logdetG(Y) = max logdet(G(Y)).
Y CS?

G(Y) is symmetric positive definite.

(t+ 1)°

T

logdetG(Y) ~ (<) (t + 1)?log( )

Let
r correspond to the extremal points Y

x* correspond to the exact spherical designs Y*

7 correspond to the computed spherical designs Y.
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3.Error bounds for Computed Spherical Designs

Starting from x, we find x such that

G(z) is nonsingular, and

JOEE TR . 1
p = K|lcp(@ " e@|lllep@ I < 5
Then

1Y = Yoo < 2|12 — 2[Joo < 271

where

C1-y1I=2p
K||cg(@)~1||

r1
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4. Numerical integration on the sphere

The condition for the integration rule
dy

Qa,(f) = ) wif(F:)

=1
to be exact for all polynomials in P is that w is
the solution of
G(Z)w = e.
Theorem 3. Suppose that G(z) is nonsingular.
Let w = G(zZ) le. Then

4
max |wy — w;| <
1gz'gdtl 1 il S 1G(2)e||o

Our Numerical results
41
w; — —| < max |wy —w;| < 10713
dy 1<:<dy

1G(@) ™ Hloolle(@) ] oo-

for ¢t < 20.
Weights are positive and almost same!
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4. Numerical integration on the sphere

Sloan-Womersley (2004) The worst-case

for the interpolatory integration rule

dy
[, F@dw) =255 (@] = 4nD(9) =: e(B),
t j=1

where D(Y) is the Cui-Freeden generalized

discrepancy for the points Y

. dy 1/2
o | 5 (12000 + Va2

_17/_
Numerical results
DY) < D(Y) < D(CF(Y)) "

D(Y) =



Table 1 :Extremal point x, computed spherical design x,exact

spherical design z*, |7 — 2*|| < r1, « € R2(t+1)*-3

t | |e(z) | logdetG(z) | logdetG(z) 1

2 | 4.4e-16 -3.21 -3.21 1.0e-15
3 | 2.6e-15 3.38 2.57 2.3e-15
4 | 7.3e-15 16.13 15.93 1.8e-14
5 | 7.5e-15 36.17 35.48 1.3e-14
6 | 2.6e-14 64.09 62.64 3.4e-14
7 | 6.0e-14 100.69 100.41 5.0e-14
8 | 1.9e-13 146.19 144.36 1.1e-13
9 | 4.5e-13 201.55 186.22 1.8e-13
10 | 8.0e-13 2606.51 265.50 6.1e-11
11 | 2.7e-12 342.15 341.67 1.8e-13
12 | 6.0e-12 428.03 427.41 1.4e-12
13 | 1.4e-11 525.16 524.27 2.4e-11
14 | 3.7e-11 633.52 632.71 5.5e-11
15 | 9.6e-11 753.48 7H2.48 3.08e-11
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Table 2: Worst case for the equal-weight rule E; and

generalized discrepency for Computed spherical designs

t | dy e(Ey) D(Y)

2 | 9 | 0.349478 | 0.027811
3 | 16 | 0.229009 | 0.018239
4 | 25 | 0.162440 | 0.012927
5 | 36 | 0.123579 | 0.009834
6 | 49 | 0.098188 | 0.007814
7 | 64 | 0.079817 | 0.006352
8 | 81 | 0.067223 | 0.005349
9 | 100 | 0.058809 | 0.004680
10 | 121 | 0.049576 | 0.003945
11 | 144 | 0.043472 | 0.003459
12 | 169 | 0.038495 | 0.003063
13 | 196 | 0.034438 | 0.002741
14 | 225 | 0.031033 | 0.002469
15 | 256 | 0.028180 | 0.002242




