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In this paper, we consider a class of constrained optimization problems where the feasible set is a general
closed convex set and the objective function has a nonsmooth, nonconvex regularizer. Such regularizer
includes widely used SCAD, MCP, logistic, fraction, hard thresholding and non-Lipschitz Lp penalties as
special cases. Using the theory of the generalized directional derivative and the tangent cone, we derive a
first order necessary optimality condition for local minimizers of the problem, and define the generalized
stationary point of it. We show that the generalized stationary point is the Clarke stationary point when
the objective function is Lipschitz continuous at this point, and satisfies the existing necessary optimality
conditions when the objective function is not Lipschitz continuous at this point. Moreover, we prove the
consistency between the generalized directional derivative and the limit of the classic directional derivatives
associated with the smoothing function. Finally, we establish a lower bound property for every local minimizer
and show that finding a global minimizer is strongly NP-hard when the objective function has a concave
regularizer.
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1. Introduction In this paper, we consider the following constrained optimization problem

min
x∈X

f(x) := Θ(x) + c(h(x)), (1)

where Θ :Rn→R and c :Rm→R are continuously differentiable, h :Rn→Rm is continuous, and
X ⊂ Rn is a nonempty closed convex set. Of particular interest of this paper is when h is not
convex, not differentiable, or even not Lipschitz continuous at some points, and f has at least
one local minimizer over X . Problem (1) includes many problems in practice. For instance, the
following minimization problem

min
l≤x≤u,Ax≤b

f(x) := Θ(x) +
m∑
i=1

ϕ(‖DT
i x‖pp) (2)

is a special case of (1), where l ∈ (R ∪ {−∞})n, u ∈ (R ∪ {∞})n,A ∈ Rt×n, b ∈ Rt, Di ∈ Rn×r,
p ∈ (0,1] and ϕ :R+→R+ is continuous. Such problem arises from image restoration (Chan and
Liang [16], Chen et al. [22], Nikolova et al. [44]), signal processing (Bruckstein et al. [12]), variable
selection (Fan and Li [27], Huang et al. [33], Huang et al. [35], Zhang [55]), etc. Another special
case of (1) is the following problem

min
x∈X

f(x) := Θ(x) +
m∑
i=1

ϕ(max{αi− dTi x,0}p), (3)
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with αi ∈R and di ∈Rn, which has attracted much interest in machine learning, wireless commu-
nication (Liu et al. [39, 40]), information theory, data analysis (Fan and Peng [28], Huber [34]),
etc. Moreover, a number of constrained optimization problems can be reformulated as problem (1)
by using the exact penalty method with nonsmooth or non-Lipschitz continuous penalty functions
(Auslender [3]).

The generic nature of the first and second order optimality conditions in nonlinear programming
are treated by Spingarn and Rockafellar [49]. When f is locally Lipschitz continuous and X =Rn,
x∗ is called a Clarke stationary point of (1) if

f◦(x∗;v)≥ 0, ∀v ∈Rn, (4)

where f◦(x∗;v) is the Clarke generalized directional derivative of f at x∗ in direction v (Clarke
[24]), defined by

f◦(x∗;v) = limsup
y→x∗,t↓0

f(y+ tv)− f(y)

t
. (5)

From the following relation between the Clarke generalized directional derivative and Clarke sub-
differential (Clarke [24])

∂f(x) := {s∈Rn : f◦(x;v)≥ vT s, ∀v ∈Rn} and f◦(x;v) = max{vT s : ∀s∈ ∂f(x)},

condition (4) is equivalent to 0∈ ∂f(x∗).
For the constrained optimization, a Clarke stationary point of locally Lipschitz continuous func-

tion f over X is defined by the existence of ξ ∈ ∂f(x∗) satisfying

〈ξ,x−x∗〉 ≥ 0, ∀x∈X . (6)

Then, the Clarke generalized directional derivative in (5) is generalized by Jahn [36] and used in
Audet and Dennis [2], Jahn [36] for Lipschitz constrained optimization problem, defined by

f◦(x∗;v;X ) = lim sup
y→ x∗, y ∈X
t ↓ 0, y+ tv ∈X

f(y+ tv)− f(y)

t
. (7)

Based on the directional derivative in (7), Jahn [36, Theorem 3.46] presented a necessary optimality
condition for a local minimizer x∗ of f over X , i.e.

f◦(x∗;x−x∗;X )≥ 0, ∀x∈X . (8)

When int(TX (x∗)) 6= ∅, the necessary optimality conditions in (6) and (8) are equivalent to

f◦(x∗;v;X )≥ 0, ∀v ∈ TX (x∗), (9)

where TX (x∗) is the tangent cone to X at x∗.
Due to the non-Lipschitz continuity of the objective function f in (1), the Clarke optimal-

ity conditions in (6), (8) or (9) cannot be directly applied to problem (1). For a proper, lower
semi-continuous function f :Rn→R (possibly non-Lipschitz), the limiting (Mordukhovich) subd-
ifferential and horizon subdifferential (Rockafellar and Wets [47]) are defined respectively as

∂̄f(x) = {v : ∃xk f−→ x, vk→ v with lim infz→xk
f(z)−f(xk)−〈vk,z−xk〉

‖z−xk‖ ≥ 0, ∀k},

∂∞f(x) = {v : ∃xk f−→ x, λkvk→ v, λk ↓ 0 with lim infz→xk
f(z)−f(xk)−〈vk,z−xk〉

‖z−xk‖ ≥ 0, ∀k},
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where λk ↓ 0 means λk > 0 and λk→ 0, and xk
f−→ x means xk→ x and f(xk)→ f(x). Based on the

following constraint qualification

− ∂∞f(x̄)
⋂
NX (x̄) = {0}, (10)

for x̄ to be a local minimizer of (1) it is necessary that

0∈ ∂̄f(x̄) +NX (x̄) (11)

(Rockafellar and Wets [47, Theorem 8.15]). The constraint qualification (10) holds naturally if f
is locally Lipschitz continuous at x̄ or x̄ is an interior point of X (can be non-Lipschitz continuous
at x̄). When X = Rn and c(h(x)) := ‖x‖pp (0 < p < 1), the affine scaled first and second order
necessary optimality conditions for local minimizers of (1) are established in Chen et al. [23]. By
using subspace techniques, Chen et al. [21] extended the first and second order necessary optimality
conditions to problem (1) with X = Rn and c(h(x)) := ‖Dx‖pp. Some other necessary optimality
conditions for some special formats of (2) and (3) are studied in Bian and Chen [6, 8], Bian et al.
[9], Ge et al. [30], Liu et al. [40]. However, the optimality conditions in Bian and Chen [6, 8], Bian
et al. [9], Chen et al. [21, 23], Ge et al. [30], Liu et al. [40] are weaker than the Clarke optimality
conditions given in (6), (8) and (9) for p= 1. The minimizers of problem (1) in practical problems
are often the non-Lipschitz point and on the boundary of X , which may lead to the unsatisfaction
of quality (10). In this paper, we will derive a necessary optimality condition for the non-Lipschitz
constrained optimization problem (1), which holds without the constraint qualification (10) and
reduces to the Clarke optimality condition when the objective function in (1) is locally Lipschitz
continuous at this point.

When f is locally Lipschitz continuous, from Theorem 9.61 and Corollary 8.47 (b) in Rockafellar
and Wets [47], the subdifferential associated with a smoothing function

Gf̃ (x) = con{v |∇xf̃(xk, µk)→ v, for xk→ x, µk ↓ 0},

is nonempty and bounded, and ∂f(x) ⊆ Gf̃ (x), where “con” denotes the convex hull. In Burke
and Hoheisel [13], Burke et al. [14], Chen [19], Rockafellar and Wets [47], it is shown that many
smoothing functions satisfy the gradient consistency

∂f(x) =Gf̃ (x). (12)

The gradient consistency is an important property of the smoothing methods, which guarantees
the convergence of smoothing methods with adaptive updating schemes of smoothing parameters
to a stationary point of the original problem.

In this paper, we extend the directional derivative in Jahn [36] to the constrained optimization
problem (1), whose objective function may not be Lipschitz continuous at some points. Using the
extended directional derivative and the tangent cone, we derive a necessary optimality condition
for local minimizers of problem (1), and define the generalized stationary point of (1). We show
that the generalized stationary point is the Clarke stationary point when the objective function is
Lipschitz continuous at this point defined in (6), (8) and (9), and satisfies the existing necessary
optimality conditions when the objective function is not Lipschitz continuous at this point defined
in Bian and Chen [6, 8], Bian et al. [9], Chen et al. [21, 23], Ge et al. [30], Liu et al. [40]. Moreover,
we establish the consistency between the generalized directional derivative and the limit of the
classic directional derivatives associated with the smoothing function. The directional derivative
consistency guarantees the convergence of smoothing methods to a generalized stationary point of
(1).
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Problem (1) includes the regularized minimization problem as a special case when Θ(x) is a
data fitting term and c(h(x)) is a regularization term (also called a penalty term in some articles).
In sparse optimization, nonconvex non-Lipschitz regularization provides more efficient models to
extract the essential features of solutions than the convex regularization (Bian and Chen [6], Char-
trand and Staneva [17], Chen [19], Chen et al. [22], Fan and Li [27], Huang et al. [33], Huang et
al. [35], Loh and Wainwright [41], Lu [42], Nikolova et al. [44], Wang et al. [53], Zhang [55]). The
SCAD penalty function in Fan and Li [27] and the MCP function in Zhang [55] have various desir-
able properties in variable selection. Logistic and fraction penalty functions yield edge preservation
in image restoration (Nikolova et al. [44]). The lp norm penalty function with 0< p< 1 possesses
the oracle property in statistics (Fan and Li [27], Knight and Fu [37]). Nonconvex regularized
M -estimator is proved to have the statistical accuracy and prediction error estimation in Loh and
Wainwright [41]. Moreover, the lower bound theory of the l2-lp regularized minimization problem
in Chen et al. [22, 23], a special case of (1), states that the absolute value of each component of
any local minimizer of the problem is either zero or greater than a positive constant. The lower
bound theory not only helps us to distinguish zero and nonzero entries of coefficients in sparse
high-dimensional approximation (Chartrand and Staneva [17], Huang et al. [33]), but also brings
the restored image closed contours and neat edges (Chen et al. [22]). In this paper, we extend the
lower bound theory of the l2-lp regularization minimization problem to problem (1) with constraints
{x :Ax≤ b}, which includes the most widely used models in statistics and sparse reconstruction as
special cases. From the new bound theory, we can derive many interesting lower and upper bound
results for different special problems. Moreover, we prove the strong NP-hardness of problem (1)
via a special model of it, which generalizes the computational complexity results in Chen et al.
[20], Ge et al. [30], Liu et al. [40]. Such extensions are not trivial because of the general constraints
in problem (1). We show that the concavity of the regularization term is a key property for both
the lower bound theory and the strong NP hardness of (1). The bound property gives the positive
news of problem (1) in applications, while the strong NP-hardness indicates its negative aspect in
numerical computation, which further illustrates the importance and necessity for presenting good
necessary optimality conditions of (1).

The rest of this paper is organized as follows. In section 2, we first define a generalized directional
derivative and present its properties. Next, we derive a necessary optimality condition for the
local minimizers of problem (1), and prove the directional derivative consistency associated with
smoothing functions. In section 3, we present the numerical properties of problem (1) with a special
constraint from the bound property of its local minimizers and its computational complexity.

In our notation, R+ = [0,∞), R++ = (0,∞) and N = {1,2, . . .}. For x ∈ Rn, 0 < p <∞ and
δ > 0, ‖x‖pp =

∑n

i=1 |xi|p, Bδ(x) means the open ball centered at x with radius δ. For a set Ω⊆Rn,
int(Ω) means the interior of Ω, cl(Ω) means the closure of Ω, |Ω| stands for its cardinality and
and PΩ[x] = arg min{‖z−x‖2 : z ∈Ω} denotes the orthogonal projection from Rn to Ω. For locally
Lipschitz continuous function φ :Rn→R, φ′(s+) and φ′(s−) indicate the derivative of φ at s on
the right hand side and left hand side, respectively. For Π consisted by a class of column vectors
of Rn, spanΠ indicates the subspace of Rn spanned by the elements in Π.

2. Optimality conditions Inspired by the generalized directional derivative and the tangent
cone, we present a first order necessary optimality condition for local minimizers of the constrained
optimization problem (1), which reduces to the Clarke necessary optimality condition at Lipschitz
continuous point and to the necessary optimality conditions in the existing literatures (Bian and
Chen [6, 8], Bian et al. [9], Chen et al. [21, 23], Ge et al. [30], Liu et al. [40]) at non-Lipschitz points.
Thus, the generalized stationary point based on the derived necessary optimality condition provides
a unified form for the stationary points of problem (1) with a continuous objective function. At
the end of this section, we prove the directional directive consistency associated with smoothing
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functions, which gives some hints on how to find a generalized stationary points of (1) in numerical
computation.

We suppose the function h in (1) has the following representation

h(x) := (h1(DT
1 x), h2(DT

2 x), . . . , hm(DT
mx))T (13)

where Di ∈Rn×r, hi(i= 1, . . . ,m) :Rr→R is continuous, but not necessarily Lipschitz continuous.

2.1. Tangent cone Since X is a nonempty closed convex subset of Rn, the tangent cone to X
at x∈X , denoted as TX (x), is the set consisting of all tangent vectors [47, Proposition 6.2], where
we call a vector v ∈Rn a tangent vector to X at x, if there are a sequence {xk} of elements in X
converging to x and a sequence {λk} of positive numbers converging to 0 such that

v= lim
k→∞

xk−x
λk

.

Assumption 1. Assume that X can be expressed by X =X1∩X2 with a nonempty closed convex
set X1, X2 := {x :Ax≤ b} and int(X1)∩X2 6= ∅, where A∈Rt×n and b∈Rt.

Denote ATi and bi the ith row of A and b, and let Cx̄ = {i : ATi x̄ − bi = 0} for x̄ ∈ X2. Under
Assumption 1, we can obtain the following properties of the tangent cones to X1, X2 and X .

Lemma 1. Suppose Assumption 1 holds. Then the following statements hold.
(1) TX2

(x) = {v :ATi v≤ 0, ∀i∈ Cx̄}, ∀x∈X2;
(2) int(TX1

(x))∩TX2
(x) 6= ∅, ∀x∈X ;

(3) TX1∩X2
(x) = TX1

(x)∩TX2
(x), ∀x∈X .

Proof. (1) and (3) can be obtained by Borwein and Lewis [10, Corollary 6.3.7] and Rockafellar
and Wets [47, Theorem 6.42] respectively.

Fix x̄ ∈ X . By int(X1) 6= ∅ and from Rockafellar and Wets [47, Example 6.22,Example 6.24],
int(TX1

(x̄)) 6= ∅ and x̂ − x̄ ∈ int(TX1
(x̄)) with x̂ ∈ int(X1). Using Assumption 1 and (1), we get

x̂− x̄∈ int(TX1
(x̄))∩TX2

(x̄) with x̂∈ int(X1)∩X2. �

2.2. Generalized directional derivative
Definition 1. A function φ : Rn → R is said to be Lipschitz continuous at(near) x ∈ Rn if

there exist positive numbers Lx and δ such that

|φ(y)−φ(z)| ≤Lx‖y− z‖2, ∀y, z ∈Bδ(x).

Otherwise, φ is said to be not Lipschitz continuous at x.
For a fixed x̄∈Rn, denote

Ix̄ = {i∈ {1,2, . . . ,m} : hi is not Lipschitz continuous at DT
i x̄}, (14)

Vx̄ = {v :DT
i v= 0, i∈ Ix̄}, (15)

and define

hx̄i (D
T
i x) :=

{
hi(D

T
i x) i 6∈ Ix̄

hi(D
T
i x̄) i∈ Ix̄,

which is Lipschitz continuous at DT
i x̄, i= 1,2, . . . ,m. In particular, we let Vx̄ =Rn when Ix̄ = ∅.

And then we define
fx̄(x) := Θ(x) + c(hx̄(x)), (16)
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with hx̄(x) := (hx̄1(DT
1 x), hx̄2(DT

2 x), . . . , hx̄m(DT
mx))T .

We notice that the generalized directional derivative of f at x̄ ∈X in direction v defined in (7)
involves only the behavior of f around x̄ in X . Moreover, f◦(x̄;v;X ) exists for any v ∈ TX (x̄) if f
is Lipschitz continuous at x̄. In particular, when x̄ ∈ int(X ), f◦(x̄;v) = f◦(x̄;v;X ). However, the
objective function f in (1) may not be Lipschitz continuous at some points, which implies that
f◦(x̄;v;X ) may not exist for some x̄∈X and v ∈ TX (x̄). So, we consider the generalized directional
derivative of f over X in directions v ∈ TX (x̄)∩Vx̄ when f is not Lipschitz continuous at x̄.

There are various generalized directional derivatives, such as the lower subderivative d−f(x)(v),
upper subderivative d+f(x)(v) and regular subderivative d̂f(x)(v) for the extended real-valued
function defined in Rockafellar and Wets [47] and the Clarke directional derivative in (7) for real-
valued function. When f(x1, x2) =

√
|x1− 1| −

√
|x2| and X = Rn, which is an example modeled

by the objective function in (1), f◦(x̄;v;X ) = − 1
2
, but d+f(x̄)(v) = +∞ for x̄ = (1,1) and v =

(0,1)∈ Vx̄; f◦(x̄;v;X ) = 1
2
, but d−f(x̄)(v) = d̂f(x̄)(v) =−∞ for x̄= (2,0) and v = (1,0)∈ Vx̄. This

motivates us to use the Clarke generalized directional derivative with the constraints in (7) for
problem (1) and we will prove the existence of f◦(x̄;v;X ) for any x̄∈X and v ∈ TX (x̄)∩Vx̄.

Proposition 1. For any x̄∈X and v ∈ TX (x̄)∩Vx̄,

f◦(x̄;v;X ) = lim sup
y→ x̄, y ∈X
t ↓ 0, y+ tv ∈X

f(y+ tv)− f(y)

t
exists (17)

and equals f◦x̄(x̄;v;X ) defined in (7).

Proof. Fix x̄∈X and v ∈ Vx̄. For y ∈Rn and t > 0, there exists z between h(y) and h(y+ tv) such
that

c(h(y+ tv))− c(h(y)) =∇c(z)T (h(y+ tv)−h(y))
=∇c(z)T (hx̄(y+ tv)−hx̄(y)).

Then,
f(y+ tv)− f(y)

t
=

Θ(y+ tv)−Θ(y) +∇c(z)T (hx̄(y+ tv)−hx̄(y))

t
.

By the Lipschitz continuity of Θ and hx̄ at x̄, there exist δ > 0 and L> 0 such that
∣∣∣ f(y+tv)−f(y)

t

∣∣∣≤
L, ∀y ∈Bδ(x̄), t∈ (0, δ). Thus, the generalized directional derivative of f at x̄∈X in the direction
v ∈ Vx̄ defined in (17) exists.

Let {yj} and {tj} be the sequences such that yj ∈X , tj ↓ 0, yj→ x̄, yj + tjv ∈X and

lim
j→∞

f(yj + tjv)− f(yj)

tj
= f◦(x̄;v;X ).

Using the Lipschitz continuity of hx̄ at x̄ again, we can get the subsequences {yjk} ⊆ {yj} and
{tjk} ⊆ {tj} such that

lim
k→∞

hx̄(yjk + tjkv)−hx̄(yjk)

tjk
exists. (18)

By the above analysis, then

f◦(x̄;v;X ) = lim
k→∞

f(yjk + tjkv)− f(yjk)

tjk

=∇Θ(x̄) +∇c(z)Tz=h(x̄) lim
k→∞

hx̄(yjk + tjkv)−hx̄(yjk)

tjk
.

(19)
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By virtue of (17), we have

f◦x̄(x̄;v;X )≥ lim
k→∞

fx̄(yjk + tjkv)− fx̄(yjk)

tjk

=∇Θ(x̄) +∇c(z)Tz=hx̄(x̄) lim
k→∞

hx̄(yjk + tjkv)−hx̄(yjk)

tjk
.

(20)

Using h(x̄) = hx̄(x̄), (19) and (20), we obtain f◦x̄(x̄;v;X )≥ f◦(x̄;v;X ).
On the other hand, by extracting the sequences {yjk} and {tjk} such that the upper limit in

(7) holds for fx̄ and the limit in (18) exists with them, similar to the above analysis, we find that
f◦(x̄;v;X )≥ f◦x̄(x̄;v;X ). Therefore, f◦(x̄;v;X ) = f◦x̄(x̄;v;X ). �

2.3. Necessary optimality condition Denote

r-int(TX (x)) = int(TX1
(x))∩TX2

(x).

By Lemma 1 (2), r-int(TX (x)) is not empty for any x∈X .
For a vector v ∈ int(TX1

(x)), there exists a scalar δ1 > 0 such that

y+ tw ∈X1, for all y ∈X1 ∩Bδ1(x), w ∈Bδ1(v) and 0≤ t < δ1.

We often call int(TX1
(x)) the hypertangent cone to X1 at x. Whenever int(TX1

(x)) 6= ∅,
cl(int(TX1

(x))) = TX1
(x) and cl(r-int(TX (x))) = TX (x) (Rockafellar [48]).

By Lemma 1 (1), for v ∈ TX2
(x), there is δ2 > 0 such that y+ tv ∈X2, ∀y ∈X2∩Bδ2(x), 0≤ t < δ2.

Therefore, for any vector v ∈ r-int(TX (x)), there exists a scalar ε > 0 such that

y+ tv ∈X , for all y ∈X ∩Bε(x), 0≤ t < ε. (21)

Since f in (1) may not be locally Lipschitz continuous at some points, the calculus theory
developed in Audet and Dennis [2] cannot be directly applied. The next lemma extends calculus
results for the unconstrained case in Clarke [24] and the constrained case in Audet and Dennis [2].

Lemma 2. For x̄∈X and v ∈ TX (x̄)∩Vx̄, if r-int(TX (x̄))∩Vx̄ 6= ∅, then

f◦(x̄;v;X ) = lim
w→ v

w ∈ r-int(TX (x̄))∩Vx̄

f◦(x̄;w;X ).

Proof. By the locally Lipschitz continuity of hx̄, there are ε > 0 and Lx̄ > 0 such that

‖hx̄(x)−hx̄(y)‖2 ≤Lx̄‖x− y‖2, ∀x, y ∈Bε(x̄). (22)

Let {wk} ⊆ r-int(TX (x̄))∩Vx̄ be a sequence of directions converging to a vector v ∈ TX (x̄)∩Vx̄.
By {wk} ⊆ r-int(TX (x̄)) and (21), there exists εk > 0 such that x+ twk ∈ X whenever x ∈ X ∩

Bεk(x̄) and 0≤ t < εk. Then, for all wk, it gives

f◦(x̄;v;X ) = lim sup
x→ x̄, x∈X
t ↓ 0, x+ tv ∈X

f(x+ tv)− f(x)

t

= limsup
x→ x̄, x∈X
t ↓ 0, x+ tv ∈X
x+ twk ∈X

f(x+ tv)− f(x)

t

= limsup
x→ x̄, x∈X
t ↓ 0, x+ tv ∈X
x+ twk ∈X

f(x+ twk)− f(x)

t
+
f(x+ tv)− f(x+ twk)

t
.

(23)
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Let δ > 0 be such that x+ twk ∈Bε(x̄) for any x ∈Bδ(x̄), 0≤ t < δ and k ∈N. By the Lipschitz
property in (22), we have∥∥∥∥hx̄(x+ tv)−hx̄(x+ twk)

t

∥∥∥∥
2

≤Lx̄‖v−wk‖2, ∀x∈Bδ(x̄),0< t< δ,k ∈N.

From the mean value theorem, there exists z between h(x+ tv) and h(x+ twk) such that

f(x+ tv)− f(x+ twk)
=Θ(x+ tv)−Θ(x+ twk) +∇c(z)T (h(x+ tv)−h(x+ twk))
=Θ(x+ tv)−Θ(x+ twk) +∇c(z)T (hx̄(x+ tv)−hx̄(x+ twk)).

Then, for any x∈Bδ(x̄) and t∈ (0, δ), we have∣∣∣∣f(x+ tv)− f(x+ twk)

t

∣∣∣∣≤LΘ‖v−wk‖2 +LcLx̄‖v−wk‖2,

where LΘ = sup{‖∇Θ(y)‖2 : y ∈Bε(x̄)} and Lc = sup{‖∇c(z)z=h(y)‖2 : y ∈Bε(x̄)}.
Thus, (23) implies

f◦(x̄;wk;X )−LΘ‖v−wk‖2−LcLx̄‖v−wk‖2 ≤ f◦(x̄;v;X )
≤f◦(x̄;wk;X ) +LΘ‖v−wk‖2 +LcLx̄‖v−wk‖2,∀k ∈N.

As k goes to infinity, the above inequality gives f◦(x̄;v;X ) = limk→∞ f
◦(x̄;wk;X ). Since {wk} is an

arbitrary sequence in r-int(TX (x̄))∩Vx̄ converging to v, we obtain the result in this lemma. �
Note that the limit in Lemma 2 is not necessarily true when r-int(TX (x̄)) is empty, even for the

case Vx̄ =Rn. A similar example can be given following the idea in Audet and Dennis [2, Example
3.10]. Some other conditions on X to ensure that the set consisting of the vectors v satisfying
(21) is not empty can be used to obtain the limit in Lemma 2. A sufficient condition for (21) is
int(X1)∩X2 6= ∅. Based on Lemmas 1-2, the following theorem gives the main theoretical result of
this section.

Theorem 1. Suppose the function h in (1) has the form in (13) and Assumption 1 holds for
X . If x∗ is a local minimizer of (1) and r-int(TX (x∗)) ∩ Vx∗ 6= ∅, then f◦(x∗;v;X ) ≥ 0 for every
direction v ∈ TX (x∗)∩Vx∗.

Proof. Suppose x∗ is a local minimizer of f over X and let w ∈ r-int(TX (x∗))∩Vx∗ .
Since w ∈ r-int(TX (x∗)), by (21), there exists ε > 0 such that

x+ tw ∈X ,∀x∈X ∩Bε(x∗),0≤ t≤ ε.

And there exist ε̄∈ (0, ε] and Lx∗ > 0 such that f(x∗)≤ f(x), ∀x∈X ∩Bε(x∗), and

‖hx∗(x)−hx∗(y)‖2 ≤Lx∗‖x− y‖2, ∀x, y ∈X ∩Bε(x∗). (24)

Then, we can choose δ ∈ (0, ε̄] such that x,x+tw,x∗+tw ∈Bε(x∗)∩X ,∀x∈Bt2(x∗)∩X , 0≤ t < δ.
By (24), for all x∈Bt2(x∗)∩X , 0< t< δ, we obtain∥∥∥∥hx∗(x+ tw)−hx∗(x∗+ tw)

t
− hx

∗(x)−hx∗(x∗)
t

∥∥∥∥
2

≤ 2Lx∗
‖x−x∗‖2

t
≤ 2Lx∗t.

Thus,

lim
x∈B

t2
(x∗)∩X

x+ tw ∈X , t ↓ 0

hx∗(x+ tw)−hx∗(x∗+ tw)

t
− hx

∗(x)−hx∗(x∗)
t

= 0. (25)
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From the mean value theorem, there exist z1 between h(x) and h(x+ tw), and z2 between h(x∗)
and h(x∗+ tw) such that

|(c(h(x+ tw))− c(h(x)))− (c(h(x∗+ tw))− c(h(x∗)))|
=|∇c(z1)T (h(x+ tw)−h(x))−∇c(z2)T (h(x∗+ tw)−h(x∗))|
=|∇c(z1)T (hx∗(x+ tw)−hx∗(x))−∇c(z2)T (hx∗(x

∗+ tw)−hx∗(x∗))|.
(26)

Using (25), (26) and the continuous differentiability of Θ, we have

lim
x∈B

t2
(x∗)∩X

x+ tw ∈X , t ↓ 0

[
f(x+ tw)− f(x)

t
− f(x∗+ tw)− f(x∗)

t

]
=∇c(z)Tz=h(x∗) lim

x∈B
t2

(x∗)∩X
x+ tw ∈X , t ↓ 0

[
hx∗(x+ tw)−hx∗(x)

t
− hx

∗(x∗+ tw)−hx∗(x∗)
t

]
=0.

Thus,

limsup
x→ x∗, x∈X
t ↓ 0, x+ tw ∈X

[
f(x+ tw)− f(x)

t
− f(x∗+ tw)− f(x∗)

t

]
≥ 0. (27)

By f(x∗+ tw)− f(x∗)≥ 0 for 0≤ t < ε̄, (27) implies

f◦(x∗;w;X ) = limsup
x→ x∗, x∈X
t ↓ 0, x+ tw ∈X

f(x+ tw)− f(x)

t
≥ 0.

By Lemma 2, we can give that f◦(x∗;v;X )≥ 0 for any v ∈ TX (x∗)∩Vx∗ . �
Based on Theorem 1, we give a new definition of the generalized stationary point of problem (1).
Definition 2. x∗ ∈X is said to be a generalized stationary point of (1), if r-int(TX (x∗))∩Vx∗ =

∅ or f◦(x∗;v;X )≥ 0 for every v ∈ TX (x∗)∩Vx∗ .
TX (x)∩Vx is nonempty for any x ∈X , but f◦(x∗;v;X )≥ 0, ∀v ∈ TX (x∗)∩Vx∗ is not necessarily

true at the local minimizer x∗ of f over X when r-int(TX (x∗))∩Vx∗ = ∅. For example, if f(x1, x2) =√
|x1− 2|+ 4

√
|x2− 1| and X = {(x1, x2) : (x1− 1)2 + (x2− 2)2 ≤ 1}, then f◦(x∗;v;X ) =− 1

2
, where

x∗ = (1,1)T is the global minimizer of f over X and v = (1,0)T ∈ TX (x∗)∩Vx∗ . So Definition 2 is
reasonable and robust.

We call f Lipschitz continuous at x̄∈X in direction v, if there exist L> 0 and ε > 0 such that

|f(x̄+ tv)− f(x̄)| ≤Lt‖v‖2, ∀t∈ (0, ε).

When Assumption 1 holds, if f is not Lipschitz continuous at x̄∈X in direction x− x̄ for any x∈X ,
r-int(TX (x))∩Vx = ∅ or TX (x)∩Vx = {0}, which implies that x̄ is a trivial generalized stationary
point of (1).

Corollary 1. Suppose the function h in (1) has the form in (13) and Assumption 1 holds.
Then the following statements hold.
(1) When f is Lipschitz continuous at x∗ ∈X , x∗ is a generalized stationary point of (1) defined

in Definition 2 if and only if it is a Clarke stationary point of (1).
(2) When X := {x :Ax≤ b} with A∈Rt×n and b∈Rt, x∗ is a generalized stationary point of (1)

defined in Definition 2 if and only if

f◦(x∗;v;X )≥ 0, for every v ∈ TX (x∗)∩Vx∗ .
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Proof. When f is Lipschitz continuous at x∗ ∈ X , by r-int(TX (x)) 6= ∅ and Vx∗ = Rn, x∗ is a
generalized stationary point of (1) if and only if

f◦(x∗;v;X )≥ 0 for every v ∈ TX (x∗),

which means that x∗ is a Clarke stationary point of (1).
When X := {x :Ax≤ b}, by letting X1 =Rn and X2 = {x :Ax≤ b}, we find that r-int(TX (x∗)) =

TX2
(x∗) and then 0∈ r-int(TX (x∗))∩Vx∗ . So statement (2) is true. �
Remark 1. Suppose hi is regular in {DT

i x : x∈X\Ni}, where

Ni = {x∈X : hi is not Lipschitz continuous at DT
i x}, i= 1,2, . . . ,m.

Then, the statement in Theorem 1 holds with Ṽx∗ instead of Vx∗ , where

Ṽx∗ ={v : for any i∈ Ix∗ , there exists δ > 0 such that
hi(D

T
i (x∗+ tv)) = hi(D

T
i x
∗) holds for all 0≤ t≤ δ}. (28)

Since Vx∗ ⊆ Ṽx∗ , the generalized stationary point defined in Definition 2 can be more robust with
Ṽx∗ instead of Vx∗ for some cases. For example, if f is modeled by (2), Ṽx∗ = Vx∗ ; however, if f is
defined as in (3),

Ṽx∗ = {v : dTi v≥ 0, ∀ i∈ {i : dTi x
∗ = αi}}, (29)

which includes Vx∗ = {v : dTi v= 0, ∀i∈ {i : dTi x
∗ = αi}} as a proper subset.

Other necessary optimality conditions for the special cases of (1) are studied by Bian and Chen
[6, 8], Bian et al. [9], Chen et al. [21], Ge et al. [30], Liu et al. [40]. Bian and Chen [8] considered
a special case of (1) modeled by (2) with l= (−∞)n, u=∞n and r= 1, that is

min f(x) := Θ(x) +
m∑
i=1

ϕ(|dTi x|p)

s.t. x∈X := {x :Ax≤ b}.
(30)

Recall Cx̄ = {i : ATi x̄− bi = 0}. If x̄ ∈ X is a local minimizer of (30), there exists a nonnegative
vector γ ∈R|Cx̄| such that

ZTx̄ (∇Θ(x̄) +
∑
i 6∈Ix̄

pϕ′(s)s=|dTi x̄|p
|dTi x̄|p−1sign(dTi x̄)di +

∑
i∈Cx̄

γiAi) = 0, (31)

where Ix̄ = {i : dTi x̄= 0} and Zx̄ is a matrix whose columns form an orthogonal basis of the null
space of {di : dTi x̄= 0} (Bian and Chen [8]). Most recently, Liu et al. [40] considered a special case
of (1) modeled by (3) with ϕ(t) := t and X := {x :Ax≤ b}. They called x̄∈X a KKT point of (3),
if there exists a nonnegative vector λ̄∈R|Ix̄| such that

x̄= PX (x̄−∇L(x̄, λ̄)), (32)

where L(x,λ) = Θ(x) +
∑

i∈Jx̄(αi − dTi x)p +
∑

i∈Ix̄ λi(αi − d
T
i x) with Jx̄ = {i : αi − dTi x̄ > 0} and

Ix̄ = {i : αi− dTi x̄= 0}.
For problems (30) and (3), the next proposition shows the expressions of the optimality conditions

in Bian and Chen [8] and Liu et al. [40] with the generalized directional derivative and tangent
cone.

Proposition 2. (1) When problem (1) reduces to problem (30), for x̄∈X , there holds

f◦(x̄;v;X )≥ 0, ∀v ∈ TX (x̄)∩ Ṽx̄ ⇐⇒ (31) holds with a nonnegative vector γ ∈R|Cx̄|;

(2) When problem (1) reduces problem (3) with X := {x :Ax≤ b}, for x̄∈X , there holds

f◦(x̄;v;X )≥ 0, ∀v ∈ TX (x̄)∩ Ṽx̄ ⇐⇒ (32) holds with a nonnegative vector λ̄∈R|Ix̄|.
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Proof. First, we establish the direction ”⇐= ” in statement (1). From the definition of fx̄ in (16)
for (30), we can easily verify that

∇fx̄(x̄) =∇Θ(x̄) +
∑
i 6∈Ix̄

pϕ′(s)s=|dTi x̄|p
|dTi x̄|p−1sign(dTi x̄)di.

If x̄ satisfies (31) with a nonnegative vector γ ∈R|Cx̄|, by the definition of Zx̄, we obtain

∇fx̄(x̄) +
∑
i∈Cx̄

γiAi ∈ span{di : i∈ Ix̄},

which implies the existence of a nonnegative vector κ∈R|Ix̄| such that

∇fx̄(x̄) +
∑
i∈Cx̄

γiAi =
∑
i∈Ix̄

κidi.

Since TX (x̄) = {v :ATi v≤ 0,∀i∈ Cx̄}, Ṽx̄ = {v : dTi v= 0,∀i∈ Ix̄} and γ ≥ 0, for any v ∈ TX (x̄)∩Ṽx̄,
by Proposition 1, it gives

f◦(x̄;v;X ) = 〈∇fx̄(x̄), v〉= 〈
∑
i∈Ix̄

κidi−
∑
i∈Cx̄

γiAi, v〉 ≥ 0.

Then, we prove the direction ” =⇒ ” in statement (1). Denote S = {x : dTi x = 0, i ∈ Ix̄}. By
Ṽx̄ = TS(x̄) and Proposition 1, f◦(x̄;v;X )≥ 0, ∀v ∈ TX (x̄)∩ Ṽx̄, implies

〈∇fx̄(x̄), v〉 ≥ 0, ∀v ∈ TX (x̄)∩TS(x̄). (33)

Since TX∩S(x̄)⊆TX (x̄)∩TS(x̄), (33) gives

−∇fx̄(x̄)∈NX∩S(x̄).

From the definition of X and S, NX∩S(x̄)⊆NX (x̄) +NS(x̄) = {
∑

i∈Cx̄ γiAi : γi ≥ 0}+ {
∑

i∈Ix̄ λidi :
λi ∈R}, which ensures the existence of a nonnegative vector γ ∈R|Cx̄| such that

−∇fx̄(x̄)−
∑
i∈Cx̄

γiAi ∈ {
∑
i∈Ix̄

λidi : λi ∈R}.

Thus,
ZTx̄ (∇fx̄(x̄) +

∑
i∈Cx̄

γiAi) = 0.

Next, we show the second statement in this proposition. For problem (3), Ṽx̄ = {v : dTi v≥ 0, ∀ i∈
Ix̄}.

Suppose x̄∈X satisfies (32) with λ̄≥ 0, by the projection inequality, it holds

〈∇Θ(x̄)−
∑
i∈Jx̄

p(αi− dTi x̄)p−1di−
∑
i∈Ix̄

λ̄idi, x− x̄〉 ≥ 0, ∀x∈X , (34)

which implies
〈∇Θ(x̄)−

∑
i∈Jx̄

p(αi− dTi x̄)p−1di−
∑
i∈Ix̄

λ̄idi, v〉 ≥ 0, ∀v ∈ TX (x̄).

By the definition of Ṽx̄ and Ix̄, we obtain

〈∇Θ(x̄)−
∑
i∈Jx̄

p(αi− dTi x̄)p−1di, v〉 ≥ 0, ∀v ∈ TX (x̄)∩ Ṽx̄. (35)
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Proposition 1 gives

f◦(x̄;v;X ) = 〈∇Θ(x̄)−
∑
i∈Jx̄

p(αi− dTi x̄)p−1di, v〉. (36)

Then, (35) and (36) guarantee

f◦(x̄;v;X )≥ 0, ∀v ∈ TX (x̄)∩ Ṽx̄.

Conversely, by (36), similar to the analysis for the first statement, f◦(x̄;v;X )≥ 0, ∀v ∈ TX (x̄)∩Ṽx̄,
implies

−∇Θ(x̄) +
∑
i∈Jx̄

p(αi− dTi x̄)p−1di ∈NX (x̄) +NS(x̄),

where NS(x̄) = {
∑

i∈Ix̄ λi(−di) : λi ≥ 0} with S = {x : αi − dTi x≤ 0,∀i ∈ Ix̄}. Then, there exists a
nonnegative vector λ̄∈R|Ix̄| such that

−∇Θ(x̄) +
∑
i∈Jx̄

p(αi− dTi x̄)p−1di +
∑
i∈Ix̄

λ̄idi ∈NX (x̄).

Thus,

〈∇Θ(x̄) +
∑
i∈Jx̄

p(αi− dTi x̄)p−1di−
∑
i∈Ix̄

λ̄idi, x− x̄〉 ≥ 0, ∀x∈X ,

which implies x̄ satisfies (32) with a nonnegative vector λ̄. �
When problem (1) reduces to (30) and (3), by Remark 1, the necessary optimality condition

given in Theorem 1 holds with Ṽx∗ instead of Vx∗ . And from Corollary 1, the optimality conditions
in Bian and Chen [8] and Liu et al. [40] are equivalent to the necessary optimality conditions
given in this paper for problems (30) and (3). Similarly, the generalized stationary point defined
in Definition 2 reduces to the first order necessary optimality conditions given or used in Bian and
Chen [6], Bian et al. [9], Chen et al. [21, 23], Ge et al. [30] for the special cases of (2) with 0< p< 1.
Thus, Definition 2 provides a uniform version of the existing necessary optimality conditions for
the Lipschitz and non-Lipschitz problems modeled by (1). In computation, by the properties of
generalized directional derivative and tangent cone, some closed forms can be derived from our
optimality condition for different special cases. However, when p = 1 in (2) or (3), a generalized
stationary point defined in Definition 2 is a Clarke stationary point, while the scaled stationary
point, first-order stationary point, scaled KKT point and KKT point in Bian and Chen [6, 8], Bian
et al. [9], Chen et al. [21, 23], Ge et al. [30], Liu et al. [40] are not necessarily Clarke stationary
points. All of these not only show the robustness of the optimality conditions given in this paper,
but also illustrate the superiority of the generalized direction derivative defined in (17) for studying
the optimality conditions of problem (1).

For a locally Lipschitz function f , we have

∂f(x) = con∂̄f(x),

where ∂ is the Clarke subdifferential, ∂̄ is the limiting (Mordukhovich) subdifferential and “ con”
denotes the convex hull (Rockafellar and Wets [47, Theorem 8.49]). Thus a Clarke stationary point
defined in (6) is necessary but not sufficient to be a limiting (Mordukhovich) stationary point
defined in (11) when f is locally Lipschitz continuous. Some interesting results on this topic can
also be found in Burke et al. [15]. When the constraint qualification (10) holds, the necessary
optimality condition given in this paper is also weaker than condition (11). However, the constraint
qualification (10) is likely to be unsatisfied for many non-Lipschitz optimization problems and
∂̄f(x) may be empty at some non-Lipschitz points of f .
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2.4. Directional derivative consistency In this subsection, we show that the generalized
directional derivative of f defined in (17) can be represented by the limit of a sequence of direc-
tional derivatives of a smoothing function of f . This property is important for the development of
numerical algorithms in nonsmooth optimization.
Definition 3. Let φ :Rn→R be a continuous function. We call φ̃ :Rn× [0,∞)→R a smooth-

ing function of φ, if φ̃(·, µ) is continuously differentiable for any fixed µ> 0 and limz→x,µ↓0 φ̃(z,µ) =
φ(x) holds for any x∈Rn.

When φ is Lipschitz continuous at x̄, we call the gradient consistency associated with the smooth-
ing function φ̃ holds at x̄, if

{ lim
z→x̄,µ↓0

∇xφ̃(z,µ)} ⊆ ∂φ(x̄). (37)

Some conditions to guarantee (37) can be found in Chen [19], Burke and Hoheisel [13], Burke et
al. [14], Rockafellar and Wets [47].

Let h̃(x,µ) := (h̃1(DT
1 x,µ), h̃2(DT

2 x,µ), . . . , h̃m(DT
mx,µ))T , where h̃i is a smoothing function of hi

in (13) and the gradient consistency associated with h̃i holds at its Lipschitz continuous points.
Then f̃(x,µ) := Θ(x) + c(h̃(x,µ)) is a smoothing function of f .

Since f̃(·, µ) is continuously differentiable for any fixed µ> 0, the generalized directional deriva-
tive of it with respect to x can be given by

f̃◦(x,µ;v;X ) = lim sup
y→ x, y ∈X
t ↓ 0, y+ tv ∈X

f̃(y+ tv,µ)− f̃(y,µ)

t
= 〈∇xf̃(x,µ), v〉. (38)

Theorem 2. Suppose the function h in (1) has the form in (13), and hi is continuously
differentiable at DT

i x for x ∈ X\Ni with Ni = {x : hi is not Lipschitz continuous at DT
i x}, i ∈

{1,2, . . . ,m}, then
lim
xk ∈X ,

xk→ x̄, µk ↓ 0

〈∇xf̃(xk, µk), v〉= f◦(x̄;v;X ), ∀v ∈ Vx̄. (39)

Proof. Let xk be a sequence in X converging to x̄ and {µk} be a positive sequence converging to
0. For v ∈ Vx̄, by the differentiability of f̃(xk, µk), we have

〈∇xf̃(xk, µk), v〉= 〈∇Θ(xk),w〉+ 〈∇c(z)z=h̃(xk,µk),∇xh̃(xk, µk)
Tv〉, (40)

where
∇xh̃(xk, µk)

Tv= (∇xh̃1(DT
1 xk, µk)

Tv, . . . ,∇xh̃m(DT
mxk, µk)

Tv)T .

For i∈ Ix̄, by v ∈ Vx̄, we obtain DT
i v= 0, then ∇xh̃i(DT

i xk, µk)
Tv=∇zh̃i(z,µk)Tz=DTi xkD

T
i v= 0.

Define

h̃x̄i (D
T
i x,µ) :=

{
h̃i(D

T
i x,µ) i 6∈ Ix̄,

h̃i(D
T
i x̄, µ) i∈ Ix̄,

i= 1,2, . . . ,m.

Denote h̃x̄(x,µ) = (h̃x̄1(DT
1 x,µ), h̃x̄2(DT

2 x,µ), . . . , h̃x̄m(DT
mx,µ))T . Then,

∇xh̃(xk, µk)
Tv=∇xh̃x̄(xk, µk)Tv.

Thus, coming back to (40), we obtain

〈∇xf̃(xk, µk), v〉=〈∇Θ(xk), v〉+ 〈∇c(z)z=h̃(xk,µk),∇xh̃x̄(xk, µk)Tv〉
=〈∇Θ(xk) +∇xh̃x̄(xk, µk)∇c(z)z=h̃(xk,µk), v〉.

(41)

Since hi is continuously differentiable at DT
i x̄ for i 6∈ Ix̄ and hx̄(x̄) = h(x̄), we obtain

lim
k→∞
∇Θ(xk) +∇xh̃x̄(xk, µk)∇c(z)z=h̃(xk,µk)

=∇Θ(x̄) +∇hx̄(x̄)∇c(z)z=h(x̄) =∇fx̄(x̄),
(42)
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where fx̄ is defined in (16).
Thus,

f◦(x̄;v;X ) = f◦x̄(x̄;v;X ) = 〈∇fx̄(x̄), v〉
= 〈 lim

k→∞
∇Θ(xk) +∇xh̃x̄(xk, µk)∇c(z)z=h̃(xk,µk), v〉

= lim
k→∞
〈∇xf̃(xk, µk), v〉, (43)

where the first equation uses Proposition 1, the third uses (42) and the fourth uses (41). �
Now we give another consistency result on the subspace Vx.

Lemma 3. Let {xk} be a sequence in X with a limit point x̄. For w ∈ Vx̄, there exists a sequence
{xkl} ⊆ {xk} such that w ∈ Vxkl , ∀l ∈N.

Proof. If this lemma is not true, then there is K ∈N such that

w 6∈ Vxk , ∀k≥K.

By the definition of Vxk , there exists ik ∈ Ixk such that

DT
ik
w 6= 0, ∀k≥K.

From Ixk ⊆ {1,2, . . . ,m}, there exist j ∈ {1,2, . . . ,m} and a subsequence of {xk}, denoted as
{xkl}, such that j ∈ Ixkl and DT

j w 6= 0.

Note that j ∈ Ixkl implies hj is not Lipschitz continuous at DT
j xkl . Since the non-Lipschitz points

of hj is a closed subset of Rn, hj is also not Lipschitz continuous at DT
j x̄, which means j ∈ Ix̄.

By w ∈ Vx̄, we obtain DT
j w = 0, which leads to a contradiction. Therefore, the statement in this

lemma holds. �
For x̄∈X , from the definitions of r-int(TX (x̄)) and Vx̄, r-int(TX (x̄))∩Vx̄ 6= ∅ implies r-int(TX (x̄))∩

Vx̄ ∩ B1(0) 6= ∅. Based on the consistency results given in Theorem 2 and Lemma 3, we give a
corollary to show the generalized stationary point consistency of the smoothing functions.

Corollary 2. Suppose the function h in (1) has the form in (13). Let {εk} and {µk} be
positive sequences converging to 0. With the conditions on h in Theorem 2, if xk ∈X satisfies

r-int(TX (xk))∩Vxk = ∅ or 〈∇xf̃(xk, µk), v〉 ≥−εk, ∀v ∈ TX (xk)∩Vxk ∩B1(0), (44)

then any accumulation point of {xk} is a generalized stationary point of (1).

Proof. Let x̄ be an accumulation point of {xk}. Then, there exists a subsequence of {xk} (also
denoted as {xk}) converging to x̄, i.e. limk→∞ xk = x̄.

Without loss of generality, we suppose r-int(TX (x̄))∩Vx̄ 6= ∅. If not, by Definition 2, the statement
in this corollary holds naturally.

First, we will show that there is a subsequence of {xk} (also denoted as {xk}) such that
r-int(TX (xk)) ∩ Vxk 6= ∅. Denote v̄ ∈ r-int(TX (x̄)) ∩ Vx̄. By Lemma 3, we can suppose v̄ ∈ Vxk . v̄ ∈
int(TX1

(x̄)) guarantees the existence of K ∈ N such that v̄ ∈ int(TX1
(xk)), ∀k ≥K. Since Cxk and

Cx̄ are the subsets of {1,2, . . . , t}, by their definitions, there exists a subsequence of {xk} (also
denoted as {xk}) such that Cxk ⊆Cx̄. From Lemma 1 (1), we obtain TX2

(x̄)⊆TX2
(xk). Thus, there

is a subsequence of {xk} (also denoted as {xk}) such that v̄ ∈ r-int(TX (xk))∩Vxk .
For w ∈ r-int(TX (x̄))∩Vx̄ ∩B1(0), from Lemma 3, we can suppose

w ∈ Vxk , ∀k ∈N.
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By w ∈ r-int(TX (x̄)), there exists ε > 0 such that

x+ sw ∈X , ∀x∈X ∩Bε(x̄), 0≤ s≤ ε. (45)

Since xk converges to x̄, there exists K ∈N such that xk ∈X ∩Bε(x̄), ∀k≥K. By (45), we have
xk + sw ∈X , ∀k≥K, 0≤ s≤ ε. From the convexity of X , we obtain w ∈ TX (xk).

From Theorem 2, we have f◦(x̄;w;X )≥ 0. Then, for any ρ> 0, we have

f◦(x̄;ρv;X ) = lim sup
y→ x̄, y ∈X

t ↓ 0, y+ tρv ∈X

f(y+ tρv)− f(y)

t

=ρ limsup
y→ x̄, y ∈X

s ↓ 0, y+ sv ∈X

f(y+ sv)− f(y)

s
= ρf◦(x̄;v;X )≥ 0.

(46)

Thus, f◦(x̄;v;X )≥ 0 for every v ∈ r-int(TX (x̄))∩Vx̄ ∩B1(0) implies f◦(x̄;v;X )≥ 0 for every v ∈
r-int(TX (x̄))∩Vx̄. By Lemma 2, it is easy to verify that f◦(x̄;v;X )≥ 0 holds for any v ∈ TX (x̄)∩Vx̄,
which means that x̄ is a generalized stationary point of (1). �

From Corollary 2, it is easy to prove that any accumulation point of the generalized stationary
points of minx∈X f̃(x,µk) defined by the gradient of f̃(x,µ) is a generalized stationary point of (1)
defined in Definition 2 as µk tends to 0.
Remark 2. Similar to the proof for Theorem 2 and Corollary 2, the consistence result in them

holds with Ṽx instead of Vx, which is defined in (28) and comes from the necessary optimality
condition for the minimizers of (1) in Remark 1.
Remark 3. The gradient consistency of h̃i at its Lipschitz continuous points implies

{ lim
z→x̄,µ↓0

∇Θ(z) +∇xh̃x̄(z,µ)∇c(y)y=h̃x̄(z,µ)} ⊆ ∂fx̄(x̄). (47)

Since fx̄ is Lipschitz continuous at x̄, it gives

f◦x̄(x̄;w;Rn) = max{〈ξ,w〉 : ξ ∈ ∂fx̄(x̄)}. (48)

Similar to the calculation in (43), by (47) and (48), we obtain

f◦(x̄;w;Rn) = f◦x̄(x̄;w;Rn) =max{〈ξ,w〉 : ξ ∈ ∂fx̄(x̄)}
≥ limsup

k→∞
〈∇Θ(xk) +∇xh̃x̄(xk, µk)∇c(z)z=h̃(xk,µk),w〉

=lim sup
k→∞

〈∇xf̃(xk, µk),w〉.

Thus, when X =Rn, if xk satisfies 〈∇xf̃(xk, µk), v〉 ≥−εk for every v ∈ TX (xk)∩Vxk ∩B1(0), the
conclusions in Theorem 2 and Corollary 2 can be true without the continuous differentiability of
hi at DT

i x for x∈X\Ni, ∀i∈ {1,2, . . . ,m}.
In particular, when the function h in f has the form

h(x) := (h1(dT1 x), h2(dT2 x), . . . , hm(dTmx))T

with di ∈ Rn, by Clarke [24, Theorem 2.3.9 (i)], the regularity of hi(d
T
i x) in X\Ni is a sufficient

condition for the statement in Theorem 2 and Corollary 2.
The statement that xk is an approximate stationary point of f̃(x,µk) over X , i.e.

〈∇xf̃(xk, µk), v〉 ≥−εk for every v ∈ TX (xk)∩B1(0)

is a sufficient condition for (44). Corollary 2 shows that one can find a generalized stationary point of
(1) by using the approximate stationary points of minx∈X f̃(x,µ) defined by the gradient of f̃(x,µ).
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Since f̃(·, µ) is continuously differentiable for any fixed µ> 0, many numerical algorithms can find
a stationary point of minx∈X f̃(x,µ) (Beck and Teboulle [4], Curtis and Overton [25], Levitin and
Polyak [38], Nocedal and Wright [46], Ye [54]). In what follows, we use one example to show the
validity of the first order necessary optimality condition in Theorem 1 and the consistency result
given in Corollary 2.
Example 1. Consider the following minimization problem

min f(x) := (x1 + 2x2− 1)2 +λ1

√
max{x1 +x2 + 1,0}+λ2

√
|x2|,

s.t. x∈X := {x∈R2 :−1≤ x1, x2 ≤ 1}. (49)

This problem is an example of (1) with Θ(x) = (x1 + 2x2 − 1)2, c(y) = λ1y1 + λ2y2, h1(DT
1 x) =√

max{x1 +x2 + 1,0} and h2(DT
2 x) =

√
|x2|, where D1 = (1,1)T , D2 = (0,1)T .

Define the smoothing function of f as

f̃(x,µ) = (x1 + 2x2− 1)2 +λ1

√
ψ(x1 +x2 + 1, µ) +λ2

√
θ(x2, µ),

with ψ(s,µ) = 1
2
(s+
√
s2 + 4µ2) and θ(s,µ) =

 |s| |s|>µ,
s2

2µ
+
µ

2
|s| ≤ µ.

Here, we use the classical projected algorithm with Armijo line search to find an approximate gen-
eralized stationary point of minx∈X f̃(x,µ). There exists α> 0 such that x̄−PX [x̄−α∇xf̃(x̄, µ)] = 0
if and only if x̄ is a generalized stationary point of minx∈X f̃(x,µ), which is also a Clarke station-
ary point of minx∈X f̃(x,µ) for any fixed µ > 0. We call xk an approximate stationary point of
minx∈X f̃(x,µk), if there exists αk > 0 such that ‖xk − PX [xk − αk∇xf̃(xk, µk)]‖2 ≤ µk, which can
be found in a finite number of iterations by the analysis in Bertsekas [5].

Choose initial iterate x0 = (0,0)T and let the iteration be terminated when µk ≤ 10−6. For
different values of λ1 and λ2 in (49), the simulation results are listed in Table 1, where f∗ indicates
the optimal function value of (49). In what follows, we will show that the accumulation points
in Table 1 are the generalized stationary points of (49) defined in Definition 2. Moreover, it is
interesting that these points are global minimizers of (49).

λ1 λ2 accumulation point x∗ Ix∗ Vx∗ f(x∗) f∗

8 2 (−1.000,0.000)T {1} {v= (a,−a)T : a∈R} 4.000 4.000
0.1 0.2 (0.982,0.000)T {2} {v= (a,0)T : a∈R} 0.141 0.141
0.5 0.1 (−1.000,0.962)T ∅ R2 0.594 0.594

Table 1. Simulation results in Example 1

When λ1 = 8 and λ2 = 2, since h2(DT
2 x) is continuously differentiable at x∗, for v ∈ Vx∗ , by

h1(DT
1 (x∗+ tv)) = h1(DT

1 x
∗), ∀t > 0, we obtain

f◦(x∗;v;X ) = 〈∇Θ(x∗) +λ2h
′
2(DT

2 x
∗)D2, v〉=−4v1− 550.473v2,

where v1 =−v2 by v ∈ Vx∗ , and v1 ∈R+ by v ∈ TX (x∗). Then, f◦(x∗;v;X )≥ 0, ∀v ∈ TX (x∗)∩Vx∗ ,
which means that (−1.000,0.000)T is a generalized stationary point of (49). Similarly,
• when λ1 = 0.1 and λ2 = 0.2:

f◦(x∗;v;X ) = 〈∇Θ(x∗) +λ1h
′
1(DT

1 x
∗)D1, v〉=−0.036v2,

where v2 = 0 by v ∈ TX (x∗)∩Vx∗ ;
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Figure 1. Trajectory of xk in Example 1 with λ1 = 8 and λ2 = 2

• when λ1 = 0.5 and λ2 = 0.1:

f◦(x∗;v;X ) = 〈∇Θ(x∗) +λ1h
′
1(DT

1 x
∗)D1 +λ2h

′
2(DT

2 x
∗)D2, v〉= 0.102v1,

where v1 ∈R+ by v ∈ TX (x∗)∩Vx∗ .
This gives f◦(x∗;v;X )≥ 0, for all v ∈ TX (x∗)∩Vx∗ . Furthermore, the trajectory of xk of the smooth-
ing algorithm for (49) with λ1 = 8 and λ2 = 2 is pictured in Figure 1 with the isolines of f in X .

From Example 1, we find that the proposed algorithm with the classical projected algorithm for
finding the approximated generalized stationary point can find a global minimizer of problem (49),
which is of course a generalized stationary point of it. Finding global minimizers via generalized
stationary points for problm (1) is an interesting problem for further study.

3. Numerical properties In this section, we focus on the numerical properties of problem
(1) with the lower bound property of its local minimizers and its computational complexity.

It is known that problem (2) with X =Rn, ϕ(t) := t and p ∈ (0,1) enjoys lower bound property
(Chen et al. [23]) but is strongly NP-hard (Chen et al. [20]). Owning to the better numerical
properties of different penalty functions or regularization terms in various applications and the
importance of the lower bound property in practice, we will explore a wider bound property and
the computational complexity of (1) with X := {x :Ax≤ b}, where A= (A1, . . . ,At)

T ∈Rt×n with
Ai ∈Rn, i= 1,2, . . . , t, and b= (b1, b2, . . . , bt)

T ∈Rt. In this section, we suppose the function h in
(1) can be represented as

h(x) := (h1(dT1 x), h2(dT2 x), . . . , hm(dTmx))T , (50)

with di ∈Rn.

3.1. Bound property For x∈X , let Cx = {j ∈ {1,2, . . . , t} :ATj x−bj = 0} be the set of active
inequality constraints at x, Lx be the index set such that hi is not LC1 at dTi x for i∈Lx, where we
call a function φ :Rn→R is LC1 (or C1,1) at x, if φ is continuously differentiable and its gradient
is locally Lipschitz continuous at x (Hiriart-Urruty et al. [32]). For a function φ :Rn→R of LC1,
∂2φ(x) is the generalized Hessian matrix of φ at x, which is the generalized derivative of ∇φ(x) in
Clarke’s sense (Clarke [24]), i.e.

∂2φ(x) = con{M : ∃xk→ x with φ twice differentiable at xk and ∇2φ(xk)→M }.
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Let M be the set of local minimizers of problem (1).
To show the local minimizers of problem (1) own the lower bound property, we need the following

assumptions.

Assumption 2. There exists β ≥ 0 such that supx∈M ‖∇2Θ(x)‖2 ≤ β.

Assumption 3. Function h in (1) has the form in (50), the points at which hi is not LC1 are
finite and {η ∈ ∂2hi(y)y=dTi x

: x∈X} is non-positive, i= 1,2, . . . ,m.

Assumption 4. Function c is of LC1 on its domain, ∇c(s)s=h(x) ≥ 0, ∀x∈X , and all elements
in {C ∈ ∂2c(s)s=h(x) : x∈X} is negative semi-definite.

Remark 4. When Θ(x) := ‖Hx−ω‖22 or Θ(x) := log(‖Hx−ω‖22 + 1) with H ∈Rs×n and ω ∈
Rs, Assumption 2 holds naturally with β = 2‖HTH‖2. And the boundedness ofM also guarantees
Assumption 2.

Assumptions 3 and 4 for c(h(x)) are also satisfied by many models. For example, let c(y) =∑m

i=1 yi, hi(z) =ϕ(|z|p) or hi(z) =ϕ(max{0, z}p), i= 1,2, . . . ,m, then c(h(x)) with 0< p≤ 1 satis-
fies Assumptions 3 and 4 when ϕ is with one of the following expressions
• soft thresholding penalty function (Tibshirani [51]): ϕ1(s) = λs,
• logistic penalty function (Nikolova et al. [44]): ϕ2(s) = λ log(1 + as),
• fraction penalty function (Nikolova et al. [44]): ϕ3(s) = λ as

1+as
,

• hard thresholding penalty function (Fan [26]): ϕ4(s) = λ2− (λ− s)2
+,

• smoothly clipped absolute deviation (SCAD) penalty function (Fan and Li [27]):

ϕ5(s) = λ

∫ s

0

min{1, (a− t/λ)+

a− 1
}dt,

• minimax concave penalty (MCP) function (Zhang [55]):

ϕ6(s) = λ

∫ s

0

(1− t

aλ
)+dt,

with λ> 0 and a> 0.

Theorem 3. Suppose Assumptions 2-4 hold. Then, for any a∈R and i∈ {1,2, . . . ,m}, if there
exists αi > 0 such that ∇ic(s)s=h(x) ≥ αi, ∀x ∈ X , then there exist θi > 0 and κi > 0 such that any
local minimizer x∗ of (1) with X := {x :Ax≤ b} satisfies
(1) |h′′i (a+)|>κi =⇒ either dTi x

∗ ≥ a+ θi or dTi x
∗ ≤ a;

(2) |h′′i (a−)|>κi =⇒ either dTi x
∗ ≤ a− θi or dTi x

∗ ≥ a.

Proof. By Cx ⊆ {1,2, . . . , t} and Lx ⊆ {1,2, . . . ,m}, we divide M into the finite disjoint sets
M1,M2, . . . ,Ms, such that for each Mi, Cx and Lx are the same for all elements x∈Mi.

Then, Wx = {v : dTi v = 0 for i ∈ Lx andATk v ≤ 0 fork ∈ Cx} is the same for all elements x in each
set M1,M2, . . . ,Ms. So, we let Ck, Lk and Wk denote Cx, Lx and Wx for x ∈Mk, k = 1,2, . . . , s,
respectively.

For ī ∈ {1,2, . . . ,m}, we first prove the statement (1) holds for any x∗ ∈M1. If ī ∈ L1, then
statement (1) holds naturally by Assumption 3. Next, we consider it for ī 6∈ L1.

Let x̄∈M1 and define hx̄(x) := (hx̄1(dT1 x), hx̄2(dT2 x), . . . , hx̄m(dTmx)) with

hx̄i (d
T
i x) =

{
hi(d

T
i x) i 6∈ L1

hi(d
T
i x̄) i∈L1.

Then, there exists δ > 0 such that

f(x̄) =min{Θ(x) + c(h(x)) : ‖x− x̄‖2 ≤ δ, Ax≤ b}
=min{Θ(x) + c(hx̄(x)) : ‖x− x̄‖2 ≤ δ, Ax≤ b, dTi x= dTi x̄ for i∈L1},
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which implies that x̄ is a local minimizer of the following constrained minimization problem

min fx̄(x) := Θ(x) + c(hx̄(x))
s.t. Ax≤ b, dTi x= dTi x̄, i∈L1.

(51)

Since fx̄ is LC1 at x̄, by the second order necessary optimality condition for the minimizers
of (51) given by Hiriart-Urruty et al. [32, Corollary 3.1] and the finite sum rule in Clarke [24,
Proposition 2.3.3], for every v ∈ W1, there exist Cv ∈ ∂(∇c(s))s=h(x̄) and ηvi ∈ ∂2hx̄i (z)z=dTi x̄

for

i 6∈ L1 such that

vT∇2Θ(x̄)v+ vT∇hx̄(x̄)Cv(∇hx̄(x̄))Tv+
∑
i6∈L1

∇ic(s)s=h(x̄)η
v
i |dTi v|2 ≥ 0, (52)

where the constraint qualification can be ignored for (51) (Sun and Yuan [50, Definition 8.2.8,
Corollary 8.2.9]).

By Assumptions 2-4, we obtain

−αīηvī |dTī v|2 ≤ vT∇2Θ(x̄)v≤ β‖v‖22, ∀v ∈W1. (53)

Without loss of generality, we suppose that there are infinite elements inM1, which means that
there exists two elements inM1 with different values of dTī x, and the same values of dTi x for i∈L1,
denoted as x̄ and x̂. If not, the result in statement (1) holds naturally.

Consider the following constrained convex optimization

min ‖v‖22
s.t. v ∈W1

ī = {v : dTī v= 1andv ∈W1}. (54)

By 1
dT
ī
x̄−dT

î
x̂
(x̄− x̂) ∈W1

ī , unique existence of the optimal solution of (54) is guaranteed, denoted

by v1
ī . Let v= v1

ī in (53), then we have
− ηvī ≤ κī, (55)

with κī = β‖v1
ī ‖22/αī.

If |h′′ī (a+)|>κī, by Assumption 3, which means h′′ī (a+)<−κī, let

θī = inf{t > 0 : h′′ī (a+ t) exists and h′′ī (a+ t)≥−κī}. (56)

By the upper semicontinuity of ∂(h′ī(t)) around dTī x̄ and ηvī ∈ ∂(h′ī(s))s=dT
ī
x̄, (55) implies

either dTī x̄≥ a+ θī or dTī x̄≤ a.

By the randomicity of x̄∈M1 and the invariance of κ1
ī and θ1

ī for all elements inM1, the state-
ment in (1) holds for the elements in M1. Similar analysis can be given for M2,...,Ms. Therefore,
we can complete the proof for statement (1).

Statement (2) can be shown by using the same arguments. �
From the proof for Theorem 3, we find that the concavity of c(h(x)) is the key condition to

guarantee the results in Theorem 3. Based on the results in Theorem 3, we study the following
special case of (1)

min
Ax≤b

f(x) := Θ(x) +
m∑
i=1

ϕ(max{αi− dTi x,0}p), (57)

with αi ∈R and di ∈Rn, i= 1,2, . . . ,m.

Assumption 5. ϕ : R+ → R+ is continuously differentiable, non-decreasing and concave on
R++, and ϕ′ is locally Lipschitz continuous on R++.
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By Assumption 5, we can obtain the following lower bound results for problem (57).

Corollary 3. Suppose Θ satisfies Assumption 2 and ϕ satisfies Assumption 5.
(1) For 0< p< 1, if ϕ′(0+)> 0, then there exists a constant θ > 0 such that any local minimizer

x∗ of (57) satisfies

either αi− dTi x∗ ≥ θ or αi− dTi x∗ ≤ 0, ∀i∈ {1,2, . . . ,m}; (58)

(2) For p = 1, there exist constants θ > 0 and κ > 0 such that if |ϕ′′(0+)| > κ, then any local
minimizer x∗ of (57) satisfies (58).

Proof. Define c(y) =
∑m

i=1 yi and hi(d
T
i x) = ϕ(max{αi − dTi x,0}p), i = 1,2, . . . ,m. It is easy to

verify that functions c and hi, i= 1,2, . . . ,m, satisfy Assumptions 3 and 4. For i= 1,2, . . . ,m, we
have h′′i (αi−) =−∞ when 0< p< 1, and h′′i (αi−) =ϕ′′(0+) when p= 1, by Theorem 3 with a= αi,
which implies the statements in this corollary. �

When problem (1) reduces to the following special case:

min
Ax≤b

f(x) := Θ(x) +
m∑
i=1

ϕ(|dTi x|p). (59)

Denote c(y) =
∑m

i=1 yi and hi(d
T
i x) = ϕ(|dTi x|p), i= 1,2, . . . ,m. Suppose ϕ satisfies Assumption 5,

then h′′i (0+) = h′′i (0−) =−∞ for (59) with 0< p< 1, and h′′i (0+) = h′′i (0−) =ϕ′′(0+) for (59) with
p= 1. Therefore, the results in Corollary 3 hold for problem (59) when (58) is replaced by

either |dTi x∗| ≥ θ or |dTi x∗|= 0, ∀i∈ {1,2, . . . ,m}. (60)

If there exists a constant κ > 0 such that |ϕ′′(0+)| ≥ κ, by the concavity of ϕ and ϕ′ ≥ 0,
ϕ′(0+)> 0 holds obviously. However, the converse does not hold. So both (57) and (59) can own the
lower bound property based on the weaker condition for 0< p< 1 than for p= 1, which shows the
superiority of the non-Lipschitz regularization in sparse reconstruction. For the potential functions
in Remark 5, only ϕ2, ϕ3, ϕ4 and ϕ6 may meet the conditions in Corollary 3 for p= 1, but all of
them satisfy the conditions in Corollary 3 for 0< p< 1.

Moreover, the bound result in Theorem 3 can also be extended to the problem modeled by

min
Ax≤b

f(x) := Θ(x) +
m∑
i=1

ϕi(‖DT
i x‖pp), (61)

with 0< p≤ 1 and Di ∈Rn×r, i= 1,2, . . . ,m. Also with the conditions in Corollary 3, we can obtain
the following estimation

either ‖DT
i x
∗‖p ≥ θ or ‖DT

i x
∗‖p = 0, ∀i∈ {1,2, . . . ,m}. (62)

Similar extension can also be done for

min
Ax≤b

f(x) := Θ(x) +
m∑
i=1

ϕi(‖max{0,DT
i x}‖p).

The lower bound result in Chen et al. [23] is meaningful, since it not only indicates the existence
of the lower bound property for any local minimizers of the unconstrained l2-lp minimization with
0< p< 1, but also presents a lower bound value. Due to the generality of the considered model in
(1), Theorem 3 only proves the existence of the bound property for problem (1) with general affine
inequality constraints. However, following the proof of Theorem 3, we can obtain explicit values of
κi and θi in Theorem 3 in the following two steps.
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(i) find the points at which hi is not LC1;
(ii) for all possible cases of Wx, which is finite, if {v : v ∈Wx, d

T
i v 6= 0} is empty, find all possible

points in M with this Wx, otherwise, evaluate an upper bound of

inf{‖v‖22/|dTi v|2 : v ∈Wx, d
T
i v 6= 0}. (63)

So we can derive explicit bounds for some special cases. Specially, an upper bound of (63) can be
obtained by finding an element in {v : v ∈Wx, d

T
i v 6= 0}.

For example, consider the following special case of problem (1)

min
x∈X

f(x) := ‖Hx−w‖22 +
n∑
i=1

ϕ(xpi ) (64)

with H ∈Rs×n, ω ∈Rs, 0< p≤ 1 and X = {x : x≥ 0, eTx= 1}, where e denotes the vector whose
elements are all 1 and ϕ is defined by one of the potential functions in Remark 5. Model (64)
is often used in portfolio selections(Brodie et al. [11], Chen et al. [18]). For this example, β in
Assumption 2 can be defined by 2‖HTH‖2. When β = 0, by φ′ ≥ 0 and the concave property of φ,
it is easy to verify that the column vectors of the n-dimensional identity matrix are the solutions
of (64). In what follows, we consider the case β > 0.

For x∈X , Lx = {i : xi = 0} and Wx in the proof of Theorem 3 can be expressed by

Wx = {v : eTv= 0, and vi = 0forxi = 0}.

Suppose x̄∈M. Denote

M1 = {x∈M : x has only one nonzero element}.

If x̄∈M1, owning to the constraint eT x̄= 1, we get that

either x̄i = 0 or x̄i = 1, ∀i∈ {1,2, . . . , n}. (65)

On the other hand, if x̄ 6∈M1, then {v : v ∈Wx̄, vi 6= 0} 6= ∅ for any i 6∈ Lx̄, and 2 is an upper bound
of (63), which gives that 2β ≥ κi, i= 1,2, . . . , n. Thus, when 0< p < 1, any local minimizer x∗ of
(64) satisfies

either x∗i = 0 or x∗i ≥ θ, ∀i∈ {1,2, . . . , n}, (66)

where θ= min{1, inf{t > 0 : minξ∈∂2ϕ(tp) ξ ≥−2β}} is a positive constant. On the other hand, when
p= 1, then any local minimizer of (64) satisfies (66) under one of the following condition:
• ϕ :=ϕ2 and λa2 > 2β;
• ϕ :=ϕ3 and 2λa2 > 2β;
• ϕ :=ϕ4 and 2> 2β;
• ϕ :=ϕ6 and 1

a
> 2β.

Specially, if we can find a continuous function g :R+→R+ and a positive constant τ ∈ (0,1] such
that g(0+)<−2β and g(t)≥minξ∈∂2ϕ(tp) ξ, ∀t∈ (0, τ ], then it is clear that

θ≥min{τ, inf{t > 0 : g(t)≥−2β}} .

Thus, we can give explicit values of θ in the bound property (66) for the different cases, which are
shown in Table 2.

In this subsection, we prove the existence of the lower bound for local minimizers of problem (1)
under some appropriate conditions, which shows the superiority of problem (1) for sparse solutions.
We also show how to find an explicit value of the lower bound for problem (1) with some widely
used potential functions.
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ϕ θ
0< p< 1 p= 1

ϕ1 min{( 2β
λp(1−p))

1
p−2 ,1} -

ϕ2 min{( 2(1+a)2β

λap(1−p)+λa2p
)

1
2p−2 ,1} min{((λa2

2β
)

1
2 − 1)/a,1}

ϕ3 min{( 2(1+a)3β

λap(1−p)+λa2p(1+p)
)

1
2p−2 ,1} min{(( 2λa2

2β
)

1
3 − 1)/a,1}

ϕ4 min{( 2β
λp(1−p)+2p2 )

1
2p−2 , (λ

2
)

1
p ,1} min{λ,1}

ϕ5 min{( 2β
λp(1−p))

1
p−2 , λ

1
p ,1} -

ϕ6 min{( 4aβ
λap(1−p)+2p2 )

1
2p−2 , (aλ

2
)

1
p ,1} min{aλ,1}

Table 2. Explicit values of θ in the bound property (66) with β = 2‖HTH‖2

3.2. Computational complexity In terms of the above positive result for problem (1), we
will present a negative result for it in this part. From complexity theory perspective, an NP-
hard optimization problem with a polynomially bounded objective function does not admit a
polynomial-time algorithm, and a strongly NP-hard optimization problem with a polynomially
bounded objective function does not even admit a fully-polynomial-time approximation scheme,
unless P=NP (Vazirani [52]). Regarding the computational complexity, the minimization problem
with l0 norm was proved to be NP-hard by Natarajan [43]. Due to the strictness of the conditions
for equivalently relaxing l0 norm to l1, one considered the lp regularization with 0< p< 1 for the
problem with l0 norm. However, Ge et al. [30] showed that the lp (0< p < 1) norm minimization
with affine equality constraints is also strongly NP-hard, and so is its smoothed version. Then, the
strong NP-hardness of unconstrained lq-lp problem with q ≥ 1 and 0≤ p < 1 was shown by Chen
et al. [20]. Most recently, Liu et al. [40] extended this statement to problem (3) with ϕ(t) := t
and a polyhedral set X by its special case with Θ(x) = 0, ϕ(t) := t and X =Rn. However, to the
best of our knowledge, the computational complexity of (1), particularly modeled by (2) and (3)
with 0< p≤ 1, remains an open problem. In what follows, we will show the strong NP-hardness of
problem (1) via the following special model of it

min ‖Hx−ω‖22 +
n∑
i=1

ϕ(|xi|p), (67)

where H ∈Rs×n, ω ∈Rs and 0< p≤ 1.

Lemma 4. When ϕ :R+→R+ is non-decreasing and concave on R+, then

ϕ(|s|p) +ϕ(|t|p)≥ϕ(|s+ t|p), ∀s, t∈R, 0< p≤ 1.

Proof. Define ψ(α) =ϕ(α+ |s|p)−ϕ(α) on R+. Then from the concavity of ϕ, ψ′(α+) =ϕ′+((α+
|s|p)+)− ϕ′+(α+) ≤ 0, which implies ψ(|t|p) ≤ ψ(0). Thus, ϕ(|t|p + |s|p) ≤ ϕ(|t|p) + ϕ(|s|p). Since
|t+ s|p ≤ |t|p + |s|p and ϕ is non-decreasing on R+, we obtain ϕ(|t+ s|p)≤ϕ(|t|p) +ϕ(|s|p). �

First, we give one preliminary result for proving the strong NP-hardness of (67) with 0< p≤ 1.

Lemma 5. Let 0 < p ≤ 1 and suppose ϕ : R+→ R+ is non-decreasing and concave on R+. If
φ, (φ(s) := ϕ(sp)), is twice continuously differentiable on [τ1, τ2] with 0< τ1 < τ2, then there exists
γ̄ > 0 such that when γ > γ̄, the minimization problem

min
z∈R

g(z) = γ|z− τ1|2 + γ|z− τ2|2 +ϕ(|z|p) (68)

has a unique solution z∗ ∈ (τ1, τ2).
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Proof. Since ϕ is twice continuously differentiable on [τ p1 , τ
p
2 ], there exists α > 0 such that 0 ≤

ϕ′(s)≤ α and −α≤ϕ′′(s)≤ 0, ∀s∈ [τ p1 , τ
p
2 ].

Note that g(z) > g(0) = γτ 2
1 + γτ 2

2 for all z < 0, and g(z) > g(τ2) = γ(τ2 − τ1)2 + ϕ(τ p2 ) for all
z > τ2. Then, the minimum point of g(z) must lie within [0, τ2].

By g( τ1+τ2
2

) = γ
2
(τ1− τ2)2 +ϕ(( τ1+τ2

2
)p), and g(z)≥ γ(τ2− τ1)2, ∀z ∈ [0, τ1], when γ >

2ϕ((
τ1+τ2

2 )p)

(τ2−τ1)2
,

g(z)> g(
τ1 + τ2

2
), ∀z ∈ [0, τ1].

Thus, the minimum point of g(z) must lie within (τ1, τ2].

To minimize g(z) on (τ1, τ2], we check its first and second derivatives. If γ >
pατ

p−1
1

2(τ2−τ1)
, we

have g′(τ1) = 2γ(τ1 − τ2) + pϕ′(τ p1 )τ p−1
1 < 0. By ϕ′(τ p2 ) ≥ 0, we get g′(τ2) = 2γ(τ2 − τ1) +

pϕ′(τ p2 )τ p−1
2 > 0. And we calculate that g′′(z) = 4γ + p2ϕ′′(zp)z2p−2 + p(p− 1)ϕ′(zp)zp−2 > 0 when

γ >
p2ατ

2p−2
1 +p(1−p)ατp−2

1
4

. Thus, when

γ > γ̄ := max{
2ϕ(( τ1+τ2

2
)p)

(τ2− τ1)2
,
2ϕ(( τ1+τ2

2
)p)

(τ2− τ1)2
,
pατ p−1

1

2(τ2− τ1)
},

by g′(τ1) < 0, g′(τ2) > 0 and g′′(z) > 0, ∀z ∈ (τ1, τ2), there exists a unique z̄ ∈ (τ1, τ2) such that
g′(z̄) = 0, which is the unique global minimizer of g(z) in R. �

Theorem 4. Suppose ϕ satisfies Assumption 5 and φ (φ(s) =ϕ(sp)) is strongly concave on an
open interval of R+, then minimization problem (67) is strongly NP-hard for any given 0< p≤ 1.

Proof. Now we present a polynomial time reduction from the well-known strictly NP-hard parti-
tion problem (Garey and Johnson [29]) to problem (67). The 3-partition problem can be described
as follows: given a multiset S of n= 3m integers {a1, a2, . . . , an} with sum mb, is there a way to
partition S into m disjoint subsets S1, S2, . . . , Sm, such that the sum of the numbers in each subset
is equal?

If φ is strictly concave on an open interval of R+, denoted as (τ , τ̄) with τ̄ > τ > 0, by the locally
Lipschitz continuity of ϕ′ on R++, there exist τ1 > 0 and τ2 > τ1 with [τ1, τ2]⊆ (τ , τ̄) such that φ is
strictly concave and twice continuously differentiable on [τ1, τ2].

Given an instance of the partition problem with a = (a1, a2, . . . , an)T ∈ Rn. We consider the
following minimization problem in form (67):

min
x

P (x) =
m∑
j=1

|
n∑
i=1

aixij − b|2 + γ
n∑
i=1

|
m∑
j=1

xij − τ1|2

+ γ
n∑
i=1

|
m∑
j=1

xij − τ2|2 +
n∑
i=1

(
m∑
j=1

ϕ(|xij|p)),
(69)

where parameter γ satisfies the supposition in Lemma 5.
From Lemma 4, we have

min
x
P (x)

≥min
xij

γ
n∑
i=1

|
m∑
j=1

xij − τ1|2 + γ
n∑
i=1

|
m∑
j=1

xij − τ2|2 +
n∑
i=1

(
m∑
j=1

ϕ(|xij|p))

=
n∑
i=1

(
min
xij

γ|
m∑
j=1

xij − τ1|2 + γ|
m∑
j=1

xij − τ2|2 +
m∑
j=1

ϕ(|xij|p)

)

≥
n∑
i=1

min
z
γ|z− τ1|2 + γ|z− τ2|2 +ϕ(|z|p).

(70)
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ϕ1 ϕ4 ϕ5 ϕ6

p= 1 τ1 none (0, λ) (λ,aλ) (0, aλ)
τ2 none (τ1, λ) (τ1, aλ) (τ1, aλ)

0< p< 1 τ1 (0,∞) (0, λ) (λ,∞) (0, λ) (λ,aλ) (aλ,∞) (0, aλ) (aλ,∞)
τ2 (τ1,∞) (τ1, λ) (τ1,∞) (τ1, λ) (τ1, aλ) (τ1,∞) (τ1, aλ) (τ1,∞)

Table 3. Optimal parameters for different potential functions in Remark 5

To make the last inequality of (70) hold with equality, by Lemma 5, we can always choose one of
xij to be z∗( 6= 0) and the others are 0 for any i= 1,2, . . . , n. Then,

P (x)≥ ng(z∗).

Now we claim that there exists an equitable partition to the partition problem if and only if
the optimal value of (69) equals ng(z∗). First, if S can be evenly partitioned into m sets, then
we define xik = z∗, xij = 0 for j 6= k if ai belongs to Sk. These xij provide an optimal solution to
P (x) with optimal value ng(z∗). On the other hand, if the optimal value of P (x) is ng(z∗), by the
strict concavity of φ on [τ1, τ2], then in the optimal solution, for each i, there is only one element
in {xij : 1≤ j ≤m} is nonzero. And we must also have

∑n

i=1 aixij − b= 0 for any 1≤ j ≤m, which
implies that there exists a partition to set S into m disjoint subsets such that the sum of the
numbers in each subset is equal. Thus this theorem is proved. �

Theorem 4 implies the strong NP-hardness of problem (1), since (67) is a special case of it.
Through the problems considered in Chen et al. [20], Ge et al. [30], Liu et al. [40] can also imply
the strong NP-hardness of problem (1), they cannot imply the strong NP-hardness of (2) with
0< p≤ 1, when ϕ is defined by ϕ2, ϕ3, ϕ4, ϕ5 or ϕ6 in Remark 4.

Remark 5. The conditions in Theorem 4 are satisfied by many penalty functions for 0< p≤ 1,
such as the logistic penalty function in Nikolova et al. [44], fraction penalty function in Nikolova
et al. [44], hard thresholding penalty function in Fan [26], SCAD function in Fan and Li [27] and
MCP function in Zhang [55], while these conditions are satisfied by the soft thresholding penalty
function in Tibshirani [51], Huang et al. [33] only for 0< p < 1. For ϕ2 and ϕ3 in Remark 4, all
choices of τ1 and τ2 in R++ with τ1 < τ2 satisfy the conditions in Theorem 4. For the other four
penalty functions in Remark 4, the optional parameters of τ1 and τ2 are given in Table 3.

While our paper Bian and Chen [7](2014) was under review, we became aware of an independent
line of related work on computational complexity by Ge et al. Ge et al. [31](2015). Our contribution
is different in that we show that the concavity of penalty functions is a key property not only for
the strong NP-hardness but also for the nice lower bound theory.

4. Conclusions In Theorem 1, we derive a first order necessary optimality condition for local
minimizers of problem (1) based on the new generalized directional derivative (17) and the tangent
cone. The generalized stationary point that satisfies the given necessary optimality condition is
a Clarke stationary point when the objective function f is locally Lipschitz continuous at this
point, and satisfies the first order necessary optimality condition given or used in Bian and Chen
[6], Bian et al. [9], Bian and Chen [8], Chen et al. [21], Ge et al. [30], Liu et al. [40] if f is not
Lipschitz continuous at the point. Moreover, in Theorem 2 we establish the directional derivative
consistency associated with smoothing functions and in Corollary 1 we show that the consistency
guarantees the convergence of smoothing algorithms to a generalized stationary point of problem
(1). For problem (1) with special constraints, the lower bound property of its local minimizers and
its computational complexity are also studied to illustrate the positive and negative news of it with
concave regularization in applications.
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