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AN AUGMENTED LAGRANGIAN METHOD FOR TRAINING
RECURRENT NEURAL NETWORKS*

YUE WANG', CHAO ZHANG?!, AND XIAOJUN CHENS$

Abstract. Recurrent Neural Networks (RNNs) are widely used to model sequential data in a
wide range of areas, such as natural language processing, speech recognition, machine translation,
and time series analysis. In this paper, we model the training process of RNNs with the ReLU acti-
vation function as a constrained optimization problem with a smooth nonconvex objective function
and piecewise smooth nonconvex constraints. We prove that any feasible point of the optimiza-
tion problem satisfies the no nonzero abnormal multiplier constraint qualification (NNAMCQ), and
any local minimizer is a Karush-Kuhn-Tucker (KKT) point of the problem. Moreover, we propose
an augmented Lagrangian method (ALM) and design an efficient block coordinate descent (BCD)
method to solve the subproblems of the ALM. The update of each block of the BCD method has a
closed-form solution. The stop criterion for the inner loop is easy to check and can be stopped in
finite steps. Moreover, we show that the BCD method can generate a directional stationary point
of the subproblem. Furthermore, we establish the global convergence of the ALM to a KKT point
of the constrained optimization problem. Compared with the state-of-the-art algorithms, numerical
results demonstrate the efficiency and effectiveness of the ALM for training RNNs.

Key words. recurrent neural network, nonsmooth nonconvex optimization, augmented La-
grangian method, block coordinate descent

MSC codes. 65K05, 90B10, 90C26, 90C30

1. Introduction. Recurrent Neural Networks (RNNs) have been applied in a
wide range of areas, such as speech recognition [15, 27], natural language processing
[22, 28] and nonlinear time series forecasting [1, 23]. In this paper, we focus on the
Elman RNN architecture [13], one of the earliest and most fundamental RNNs, and
use Elman RNNs to deal with the regression task with the least squares loss function.

Given input data z; € R™ and output data y, € R™, ¢t =1,...,T, a widely used
minimization problem for training RNNs is represented as (see [14, pp. 381])

2

Y — (Ao(W(...a(Vxl b)) + Vg +b) + c)

1 T
1.1 i —
ORI 9 D3

where W € R™" V € R™*™ and A € R™*" are unknown weight matrices, b € R" and
¢ € R™ are unknown bias vectors, and ¢ : R — R is a nonsmooth activation function
that is applied component-wise on vectors and transforms the previous information
and the input data z; into the hidden layer at time ¢. The training process by (1.1)
can be interpreted as looking for proper weight matrices A, W, V, and bias vectors b,
¢ in RNNs to minimize the difference between the true value y; and the output from
RNNSs across all time steps. It is worth mentioning that the Elman RNNs in (1.1)
shares the same weight matrices and bias vectors at different time steps [14, pp. 374].
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2 YUE WANG, CHAO ZHANG, AND XIAOJUN CHEN

When the traditional backpropagation through time (BPTT) method is used to
train RNNs, the highly nonlinear and nonsmooth composition function presented
in (1.1) poses significant challenges. Gradient descent methods (GDs), as well as
stochastic gradient descent-based methods (SGDs), are widely used to train RNNs in
practice [8, 30], but the “gradient” of the loss function associated with the weighted
matrices via the “chain rule” is calculated even if the “chain rule” does not hold. The
“gradients” might exponentially increase to a very large value or shrink to zero as time
t increases, which makes RNNs training with large time length 7' very challenging
[4]. To overcome this shortcoming, various techniques have been developed, such
as gradient clipping [22], gradient descent with Nesterov momentum [3], initialization
with small values [24], adding sparse regularization [2], and so on. Because the essence
of the above methods is to restrict the initial values of weighted matrices or gradients,
they are sensitive to the choice of initial values [18]. Moreover, GDs and SGDs for
training RNNs lack rigorous convergence analysis.

The objective function in (1.1) is nonsmooth nonconvex and has a highly com-
posite structure. In this paper, we equivalently reformulate (1.1) as a constrained
optimization problem with a simple smooth objective function by utilizing auxiliary
variables to represent the composition structures and treating these representations
as constraints. Moreover, we propose an augmented Lagrangian method (ALM) for
the constrained optimization problem with ¢5-norm regularization, and design a block
coordinate descent (BCD) method to solve the subproblem of the ALM at every iter-
ation. The solution of the subproblems of the BCD method is very easy to compute
with a closed-form. Utilizing auxiliary variables to reformulate highly nonlinear com-
posite structured problems as constrained optimization problems has been adopted
for training Deep Neural Networks (DNNs) [7, 12, 19, 20, 31]. However, these algo-
rithms for DNNs cannot be used for RNNs directly because of the difference between
their architectures. In fact, RNNs share the same weighted matrices and bias vec-
tors across different layers, whereas DNNs have distinct weighted matrices and bias
vectors in different layers. In DNNs, the weighted matrices and bias vectors can be
updated layer by layer, allowing for the separation of the gradient calculation across
different layers. However, in RNNs, the weighted matrices and bias vectors need to
be updated simultaneously. Therefore, it is necessary to establish effective algorithms
tailored to the characteristics of RNNs. To the best of our knowledge, the proposed
ALM in this paper is the first first-order optimization method for training RNNs with
solid convergence results.

Recently, several augmented Lagrangian-based methods have been proposed for
nonconvex nonsmooth problems with composite structures. In [9], Chen et al. pro-
posed an ALM for non-Lipschitz nonconvex programming, which requires the con-
straints to be smooth. Hallak and Teboulle in [16] transformed a comprehensive
class of optimization problems into constrained problems with smooth constraints
and nonsmooth nonconvex objective functions, and proposed a novel adaptive aug-
mented Lagrangian-based method to solve the constrained problem. The assumption
on the smoothness of constraints in [9, 16] is not satisfied for the optimization prob-
lem arising in training RNNs with nonsmooth activation functions considered in this
paper.

Our contributions are summarized as follows:

e We prove that the solution set of the constrained problem with /5 regulariza-
tion is nonempty and compact. Furthermore, we prove that any feasible point
of the constrained optimization problem satisfies the no nonzero abnormal
multiplier constraint qualification (NNAMCQ), which immediately guaran-
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ALM FOR TRAINING RNNS 3

tees any local minimizer of the constrained problems is a Karush-Kuhn-Tucker
(KKT) point.

e We show that any accumulation point of the sequence generated by the BCD
method is a directional stationary point of the subproblem. Moreover, we
show that in the k-th iteration of the ALM, the stopping criterion of the BCD
method for solving the subproblem can be satisfied within O(1/(ex—1)?) finite
steps for any ex_1 > 0.

e We show that there exists an accumulation point of the sequence generated by
the ALM for solving the constrained optimization problem with regularization
and any accumulation point of the sequence is a KKT point.

e We compare the performance of the ALM with several state-of-the-art meth-
ods for both synthetic and real datasets. The numerical results verify that
our ALM outperforms other algorithms in terms of forecasting accuracy for
both the training sets and the test sets.

The rest of the paper is organized as follows. In section 2, we equivalently refor-
mulate problem (1.1) as a nonsmooth nonconvex constrained minimization problem
with a simple smooth objective function. Then we show that the solution set of the
constrained problem with regularization is nonempty and bounded, and give the first-
order necessary optimality conditions for the constrained problem and the regularized
problem. We propose the ALM for the constrained problem with regularization, as
well as the BCD method for the subproblems of the ALM in section 3. We estab-
lish the convergence results of the BCD method, and the ALM in section 4. Finally,
we conduct numerical experiments on both the synthetic and real data in section 5,
which demonstrate the effectiveness and efficiency of the ALM for the reformulated
optimization problem.

Notation and terminology. Let N denote the set of positive integers. For col-

umn vectors mq, o, . .., 7, let us denote by m := (m1;me;...;m) = (7] ,7g, ..., 7 )"
a column vector. For a given matrix D € R**! we denote by D ; the j-th column
of D and use vec(D) = (D.1;D.;...; D) € R* to represent a column vector. For a

given vector g, we use diag(g) to represent the diagonal matrix, whose (i,7)-entry is
the i-th component g; of g. We use e; to represent the vector of all ones in R!. For
v € R, [v] refers to the smallest integer that is greater than v. For a given N € N |
we denote [N] :={1,2,...,N}. We use || - || and || - || to denote the f3-norm and
infinity norm of a vector or a matrix, respectively. We denote by | - || the Frobenius
norm of a matrix.

Let f: R™ — R be a proper lower semicontinuous function defined on R™. The

notation z* % 7 means that 2* — 7 and f(x¥) — f(Z). The Fréchet subdifferential
Of(z) and the limiting subdifferential 0f(z) of f at € R™ are defined as

3ﬂ@:—{g€Rm:hmmff@y_ﬂ@_%%x_f>20}

T—T,TAT ||.73 — j”

of(z) := {g cR™ : 3k L z,¢" — g with ¢* € éf(:rk), Vk},

by [17, Definition 1.1] and [26, Definition 8.3, pp. 301], respectively. A point Z is
said to be a Fréchet stationary point of min f(z) if 0 € df(z), and Z is said to be a
limiting stationary point of min f(z) if 0 € f(Z). By [11, pp. 30], the usual (one-side)
directional derivative of f at x in the direction d € R™ is

Ve d) e Tip ] & T AD) — f(2)

b
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4 YUE WANG, CHAO ZHANG, AND XIAOJUN CHEN

when the limit exists. According to [25, Definition 2.1], we say that a point z € R™
is a d(irectional)-stationary point of min f(x) if

F(&;d) >0, VdeR™,

2. Problem reformulation and optimality conditions. For simplicity, we
focus on the activation function o : R — R as the ReLU function, i.e.,

(2.1) o(u) = max{u,0} = (u)+.

Our model, algorithms and theoretical analysis developed in this paper can be gener-
alized to the leaky ReLU and the ELU activation functions. Detailed analysis for the
extensions will be given in section 4.3.

2.1. Problem reformulation. We utilize auxiliary variables h, u and denote
vectors w, a, z,s as

h = (hy;ho;.ihy) €R™, u = (ugjug;..jur) € R,
w = (vec(W);vec(V);b) € RM  a= (vec(A);c) € RN=,
z = (w;a) € RNwiNa, s = (z;h;u) € RNVwHNat2rT

where Ny = r2 +rn +r and N, = mr + m.
We reformulate problem (1.1) as the following constrained optimization problem:

T
. 1 2
min — — (Ah; +
in 3 = (4 )
(2.2) =

s.t. up = Wht_l + Vl't + b,
ho = 0, ht = (ut)+, t= 1,2, ...,T.

Problems (1.1) and (2.2) are equivalent in the sense that if (A*, W* V* b* c¢*) is
a global solution of (1.1), then s* = (z*;h*;u*) is a global solution of (2.2) where
z* is defined by (A*, W* V* b* ¢*) and h*, u* satisfy the constraints of (2.2) with
W*,V* b*. Conversely, if s* is a global solution of (2.2), then z* is a global solution
of (1.1).

Let us denote the mappings ® : R” + R™*Na and W : R™" s R™T*Nw 55

0] @I, =2 @I,

I,
hiel, x5l I

(23)  ®(h) = (W @ L Ln], W(h)=
hp @1, x24I, I,
where ® represents the Kronecker product, I, and I,,, are the identity matrices with

dimensions r and m respectively, and 0, is the zero vector with dimension r. Thus,
the objective function and constraints in problem (2.2) can be represented as

(2.4) Us) = % ; lye — ®(hy)al|,
Ci(s):=u—-¥(h)w =0, Ca(s):=h—(u)y =0.

This manuscript is for review purposes only.
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To mitigate the overfitting, we further add a regularization term
(2.5)  P(s) == M AIE + A WIE + A3 [[VIE + Aallbl* + Asllel® + s [[ull?

with \; > 0,7 =1,2,...,6 in the objective of problem (2.2), and consider the following
problem:

min  R(s) := £(s) + P(s)

(2.6) st. seF:={s:Ci(s) =0, Ca(s) =0}.

2.2. Optimality conditions. Problem (2.2) and problem (2.6) have the same
feasible set F. The constraint function C; is continuously differentiable, while the other
constraint function Cs is linear in h and piecewise linear in u. We denote by JCi(s)
the Jacobian matrix of the function C; at s, and by J,Ci(s), JuCi(s), JuCi(s) the
Jacobian matrix of function C; at s with respect to the block z, h and u, respectively.
Similarly, we use JuCa(s) to represent the Jacobian matrix of Cy at s with respect to
h. Moreover, for a fixed vector ¢ € R™”, we use 3(CTC2(S)) to denote the limiting
subdifferential of (TCy at s and Jy (C TCQ(S)) to denote the limiting subdifferential of
(TCy at s with respect to u.

The following lemma shows that the NNAMCQ [29, Definition 4.2, pp. 1451]
holds at any feasible point s € F. The proofs of all lemmas are given in Appendix A.

LEMMA 2.1. The NNAMCQ holds at any s € F, i.e., there exist no nonzero
vectors € = (£1; &5 ..;67) €R™ and ¢ = (¢15Co;..; (1) € R™T such that
(2.7) 0€ JCi(s)TE+0(¢TCals)).

DEFINITION 2.2. We say that s € F is a KKT point of problem (2.2) if there
exist £ € R™T and ¢ € R™" such that

0 € Vi(s) + JCi(s) € + O(CTCa(s)).

We say that s € F is a KKT point of problem (2.6) if there exist £ € R™T and ¢ € R™T
such that
0 € VR(s) + JCi(s) "¢+ 9(¢TCa(s)).
Now we can establish the first order necessary conditions for problem (2.2) and
problem (2.6).

THEOREM 2.3. (i) If s is a local solution of problem (2.2), then s is a KKT point
of problem (2.2). (i) If § is a local solution of problem (2.6), then s is a KK T point
of problem (2.6).

Proof. Note that the objective functions of problem (2.2) and problem (2.6) are
continuously differentiable. The constraint functions C; is continuously differentiable,
and Cs is Lipschitz continuous at any feasible point s € . By Lemma 2.1, NNAMCQ
holds at any 5 € F. Therefore, the conclusions of this theorem hold according to [29,
Remark 2 and Theorem 5.2]. 0

2.3. Nonempty and compact solution set of (2.6). Let S; be the solution
set of problem (2.6), and denote the level set

(2.8) Dr(p) == {s € F : R(s) < p}
with a nonnegative scalar p.

LEMMA 2.4. For any p > R(0), the level set Dg(p) is nonempty and compact.
Moreover, the solution set S of (2.6) is nonempty and compact.

This manuscript is for review purposes only.
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6 YUE WANG, CHAO ZHANG, AND XIAOJUN CHEN

3. ALM with BCD method for (2.6). To solve the regularized constrained
problem (2.6), we develop in this section an ALM. The subproblems of ALM are
approximately solved by a BCD method whose update of each block owns a closed-
form expression. This is not an easy task due to the nonsmooth nonconvex constraints.
The framework of the ALM is given in Algorithm 3.1, in which the updating schemes
for Lagrangian multipliers and penalty parameters are motivated by [9]. It is worth
mentioning that in [9], the constraints are smooth. In problem (2.6), the constraints
are nonsmooth nonconvex. For solving the subproblems in the ALM, we design the
BCD method in Algorithm 3.2 and provide the closed-form expression for the update
of each block in the BCD. Due to the nonsmooth nonconvex constraints in (2.6), the
convergence analysis is complex, which will be given in section 4.

The augmented Lagrangian (AL) function of problem (2.6) is

31 L(s:€,¢7)
= R(s) + (& u—TM)w) + ((h = (W) + F Ju— T()w|* + b - (w)4 ]

gl ¢ ‘ ¢|I® _ nen* el

gl w2 + = () + 2| - BL B

2 Y 2y 2y
where ¢ = (£1;&2;...:¢7) € R™T and ¢ = (¢1;Co;...; (1) € R"T are the Lagrangian mul-
tipliers, and v > 0 is the penalty parameter for the two quadratic penalty terms
of constraints u = ¥(h)w and h = (u);. For convenience, we will also write
L(z,h,u,&,(,7) to represent L(s,&,(,7) when the blocks of s are emphasized.

We develop some basic results in the following two lemmas relating to the AL
function £. The explicit formulas for the gradients of £ with respect to z and h in
Lemma 3.1 (iii) and (iv) will be used for obtaining the closed-form updates for the z
and h blocks in the BCD method, respectively. The Lipschitz constants L; (&, ¢, 7, )
and Ly (€, ¢,7,7) in Lemma 3.2 are essential to design a practical stopping condition
(3.17) of the BCD method in Algorithm 3.2. The results will also be used for the
convergence results of the BCD method in Theorems 4.3 and 4.4.

=R(s) +

)

LEMMA 3.1. For any fized v,& and (, the following statements hold.
(i) The AL function L is lower bounded that satisfies

I€n® — li<h®
L(S,f,g,’}/)z— 27 - 27

(ii) For any § and T > 7 := L(8,€,(,7), the level set
Qe (l) = {s : £(s,6,¢,7) < T}

is nonempty and compact.
(iii) The AL function L is continuously differentiable with respect to z, and the
gradient with respect to z is

for all s.

vzﬁ(za h? u? 67 C’ 7) =

where

Ql(saé.vC»’Y) = V\P(h)T\P( ) + 2A1’ (jl(s’ganPY) = 7\Il(h)T(€ +7u)
T T
Qa(s,€,¢,) Z (h) @) + 28, a(5,€,C7) =~ D2 @) e
P} t=1

A= diag(()\gerz i A3€,,; A4e,.)>, Ay = diag(()\lerm; )\5em)).
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(iv) The AL function L is continuously differentiable with respect to h, and the
gradient with respect to h is

th(Z,h7u7€,<,’7)
= (VhIE(Z, h,u,§,(,7); Vi, L(z,h,u,8,(,7); - s Vi L(z,h, 0, &, C,'Y)),
where

_ D (87§7<a7)h —d (S7£a<77)a lfte[T_IL
VhtE(L h, 11757 Ca7> - { D;(S,S,C,’Y)h; _ dl;T(S,fa Ca’Y)v ift="T

Di(8,6,¢,7) =YW W + ZATA+~1,,
Da(s,€,¢,7) = 2AT A+ 41,

d1e(s,6,¢,7) = W (1 +Y(usr — Ve —0) +y(u)y — G+ 2A7 (g — 0),
dar(s,€,¢,7) = y(ur)y — o+ 2A" (yr —¢).

LEMMA 3.2. For any z,h,u,h’ u’ in the level set Q- (), we have

(32)  |Vallz W W.6.Cy) ~ Vallzhw & () < Lu&.Corn || o T |
(33) ||vh£(z7h7u/7§7 Ca’Y) - VhE(Z, ha ua§7<77)” S L2(€7 Ca’%’ﬁ) ||11/ - uH 9
where

(3.4) L1(§,¢, %f) = V2max{y61, 62 + 63 + 61}, La(¢,¢,7,7) = 75,

with X = (x1;22;...;2

RnT
e 2K ||<||2 \f Vol s = e xED,

rd [rd
0y = 2v01y | ———+——, O3 = + —
2 Y01 in{)\g,/\g,/\4}’ 3 \/;HfH Y Ao’

0y = i\/FT% (2\/m(58 + 14/ mm{i,%} 1glta<XT”yt”> » 05 =4/ 6(T/\7;1) +VT.

3.1. ALM for the regularized RNNs. To solve the regularized constrained
problem (2.6), we propose the ALM in Algorithm 3.1. The ALM first approximately
solves (3.5) that aims to minimize the AL function with the fixed Lagrange multi-
pliers ¢¥~1 and ¢*~!, and the fixed penalty parameter v,_; for the quadratic terms,
until s* satisfies the approximate first-order optimality necessary condition (3.6) with
tolerance €;_1. Then the Lagrange multipliers are updated, and the tolerance e
is reduced so that in the next iteration the subproblem is solved more accurately.
Moreover, the penalty parameter v, is unchanged if the feasibility of s* is sufficiently
improved compared to that of s*~!, otherwise, 7y is increased.

Remark 3.3. The main operation of Algorithm 3.1 is to approximately solve the
subproblem (3.5). Furthermore, to show that Algorithm 3.1 is well-defined requires
that the algorithm for solving the subproblem (3.5) can be terminated within finite
steps to meet the stopping condition in (3.6).

In section 3.2, we will design a BCD method to solve the subproblem (3.5). The
update of each block of the BCD method owns a closed-form formula, which makes
the BCD method efficient. Moreover, the stopping condition (3.6) can be replaced by
a simpler condition (3.17) as will be shown in Theorem 4.3.

This manuscript is for review purposes only.
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Algorithm 3.1 The augmented Lagrangian method (ALM) for (2.6)

1: Set an initial penalty parameter vy > 0, parameters 71,712,114 € (0,1) and 3 > 1,
an initial tolerance €0 > 0, vectors of Lagrangian multipliers €9, ¢Y% and a feablble
initial point s° = (2%, h, u) where hg = 0, @i = Why_1 + Vay + b and hy = (@) 1
for t € [T7.

2: Set k:=1.

3: Step 1: Solve

(3.5) min  £(s, €1, ¢ )

to obtain s¥ satisfying the following condition

(3.6) dist (0, 0L(s", & 71, ¢F 1 v ) < en-e

4: Step 2: Update €, = nuep_1, €71 and ¢F1 as
(3.7) F =T py (W -wmHWY), F =+ (W - (0h)s).
5: Step 3: Set v, = v,_1, if the following condition is satisfied

(3.8)  max {[|CL(s")[], IC2(s")I|} < mymax {[ICo(s* YL, C2(s* )1} -

6: Otherwise, set

(3.9) Ve = Iax {’kal/nz, HngHns 7 HCkHHns} ‘

7: Let k —1:=k and go to Step 1.

3.2. BCD method for subproblem. To solve the nonsmooth nonconvex prob-
lem (3.5) in Step 1 of Algorithm 3.1, we propose a BCD method in Algorithm 3.2 to
solve the subproblem at the k-th iteration in the ALM by alternatively updating the
blocks in the order of z, h, and u in s, respectively. Let us choose a constant I' such
that

(3.10) I'>L(s%,¢%,¢% ).

Because at the k-th iteration of the ALM, ¢¢=1 ¢F=1 ~,_; are fixed, we just
write &, (,v in the BCD method for brevity. Furthermore, for the BCD solving the
subproblem appeared at the k-th iteration of the ALM, we define

(3.11) shLd 1= (gL, ph1d= 1 gk L1y gh=li _ (gh1d, k=1, gk 1i-1)

to denote the point obtained after updating the z block, and updating the h block at
the j-th iteration of the BCD method, and we use

(312) Sk—l,j — (Zk—l,j;hk—l,j;uk—l,j)

to represent the point obtained at the j-th iteration of the BCD method after updating
the u block.

This manuscript is for review purposes only.
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Algorithm 3.2 Block Coordinate Descent (BCD) method for (3.5)
1: Set the initial point of BCD algorithm as

s?, otherwise.

(3.13) Gh—1.0 _ {Sk_l, if k>1and £(s*',¢,¢,v) <T,

Compute Thk—1 = E(Sk_1707§a<a7)5 L17k_1 = Ll(&a(a'yﬂqk—l) and LQ,k_l =
L2(&, ¢, 7y, r—1) by formula (3.4).
2: Set j:=1.
3: while the stop criterion is not met do
Step 1: Update blocks z*~17, h*~1J and u*~!J separately as
(3.14) zh—1J — argmzin ﬁ(z,hkil’jfl,ukil’jfl,f,c,’y),
(3.15) h*1J = argm}}n £(zkil’j,h,ukil’jfl,ﬁ,g,'y),

(3.16) w*1 € argmin £ (22 0N 0,6, Cy) + 4 flu— b
u

Then set sF~ 17 = (zF~1J; hF—1J; ub—17),
5:  Step 2: If the stop criterion

3.17 k=1, _ gk=1j-1|| < €L—_1
( ) ||S S || — ma'X{Ll,krflyLZk;fl,/Ja}?

is not satisfied, then set j := 7+ 1 and go to Step 1.
6: end while
7. return sk =sF1J,

Condition (3.6) is satisfied when (3.17) holds, which will be proved in Theorem
4.3. The closed-form solutions of problems (3.14), (3.15) and (3.16) are provided
below.

Update z"~!: Problem (3.14) is an unconstrained optimization problem with
smooth and strongly convex objective function. By employing Lemma 3.1 (iii) and
solving

V. L(sE1 ¢ ¢ y) =0,

the unique global minimizer z*¥~17 = (wF=17;a*~1J) can be computed as

L ) L 1,

Wk Li = *Ql(slzc LJaganﬁ)/) ql(sf 1,j;€,<"/y),
L o -1, 41

ab Tt = —Qa(sE 71, 6,¢,7) Galsi T E,¢,).

Update h*~1J: The objective function of (3.15) is also strongly convex and

smooth. By employing Lemma 3.1 (iv) and solving Vhﬁ(sﬁfl’j,f, ¢,v) = 0, we get

its unique global minimizer, given by

1 —1 1 .
(3 ].8) hk*l,j _ D1<Sfl 1,]7574-)7) 1d1t<Sf} 1’]7574-77)7 ifte [T_ 1]7
. : = L _ ] '

Dy(sy "7,6,¢,7) dar(sy 7,€,¢), ift=T.

Update u*~1J: Although problem (3.16) is nonsmooth nonconvex, one of its
global solutions is accessible, because the objective function of problem (3.16) can be
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separated into 1" one-dimensional functions with the same structure. Thus, we aim
to solve the following one-dimensional problem:

(3.19) 21161]% (u) == Z(u—01)" + L(02 — (u)1+)* + &(u— 03)% + \eu?,

where 01,605,603 € R are known real numbers. Denote

(3.20) ut = argming(u) and wu” := argmin p(u).
u€ER u€ER_

By direct computation,

01 + 0> + ub .
YL Y92 MY if 701 + v0s + s > 0,

(3.21) ut = 2y +2 ¢ +
0, otherwise,
and
701 + pbs
_ ————— ify0; + pb3 <0,
(3.22) =S g 2hg ol AT
0, otherwise.

Then a solution of (3.19) can be given as

m:{utiwmﬂS¢w»
u~, otherwise.
By setting
- k—1,j\e k—1,j &i k-1, G o k—1,j-1
01—(\:[/(11 )W )7;7*, gg—hz +*, og—ui s
Y Y
uf_l’] =u*, w=u", w =u",
we obtain a closed-form solution of problem (3.16) as
Gt ot ife(uf) < e(uy),
g u; , otherwise, i=1,...,rT.

Remark 3.4. Tt is important to mention that the solution set of problem (3.16)

may not be a singleton. To ensure the selected solution is unique, we set ui“l h

when ¢(u) = p(u;) for every i € [rT].

J_u

4. Convergence analysis. In this section, we show the convergence results of
both the BCD method for the subproblem of the ALM, as well as the ALM for (2.6).

4.1. Convergence analysis of Algorithm 3.2. It is clear that

(4.1) L(s,6,¢,7) =9(s,6,7) +a(s,(,7),
where
2 2
(4.2 o(5.67) = R(s) + 3 Ju— wiaw+ £ - I
2 2
(43) (5.9 = 3o -y + £ - L
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The function g is smooth but nonconvex, because it contains the bilinear structure
U(h)w. The function ¢ is nonsmooth nonconvex.

For the convergence analysis below, we further use S(J ) and sflj ) to represent
sk=1J and sk L3 in (3.11), and use s) to represent s*~ 17 in (3.12) for brevity. We

emphasize that the point s* is generated by the ALM in Algorithm 3.1, while the point
s(9) is generated by the BCD method in Algorithm 3.2 for solving the subproblem in
the ALM at the k-th iteration.

The following two lemmas will be used in proving the convergence results of the
BCD method.

LEMMA 4.1. Let {s(j)} represent the sequence generated by Algorithm 3.2. Then
{sU)} belongs to the level set Q(T), which is compact.

LEMMA 4.2. The AL function L is locally Lipschitz continuous and directionally
differentiable on Q. (T).

We can now show that the stop criterion (3.17) in Algorithm 3.2 can be stopped
in finite steps, and condition (3.6) in Algorithm 3.1 is satisfied when (3.17) holds.
These results guarantee that the ALM in Algorithm 3.1 is well-defined, when the
subproblems are solved by the BCD method in Algorithm 3.2.

THEOREM 4.3. At the k-th iteration of ALM in Algorithm 3.1, the BCD method
in Algorithm 3.2 for the subproblem (3.5) can be stopped within finite steps to satisfy
the stop criterion in (3.17), which is of order O(1/(€x_1)?). Moreover, condition (3.6)
of the ALM in Algorithm 3.1 is satisfied at the output s* of Algorithm 3.2.

Proof. Since L is strongly convex with respect to the blocks z and h, respectively,
from (3.14) and (3.15), we obtain

(4.4) L(sUTV6,¢y) = L8P, 6,¢,7) = Gl=0 70 — 207,
(4.5) L(s,€,¢,7) = L£(s,€,¢,7) > % [00~Y — 0%,

where o and as are the minimum eigenvalues of the Hessian matrices V2L(s, &, (,7)
and Vi L(s,£,¢,7) for all s in the compact set Q.(I"), respectively. Furthermore, by
(3.16), we have

(46) £60.6,67) ~ L69,6,¢7) 2 4 [u w6

It follows that

L(sYU7,6,¢,7) = L(sY),€,¢,7)

(LsY™,6,¢7) = L(8Y),6,¢,7) + (L9, €,¢,7) — L(s,€,¢,7))
+ (L (sh J6,67) = L(8Y,6,¢,7))

> %”z —zU7Y)2 ¢ %”h(j) —hU=Y)2 4 %”u(j) —ul=Y2
> max{, g, 5}[s¥ — sV

Summing up L£(sU=Y,€,¢,v) — L(sY),€,¢,5) from j = 1 to .J, we have
J
(4.7) L(,6,¢7) = L(7,€,¢,7) 2 max{g, %, 5} Y [sV) —sU7|?
Jj=1

> Jmax{%, %, ‘2‘ n{||s(j) — s(j_1)||2}.
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This, together with Lemma 3.1 (i), yields that

L(s©,&,¢,7) +

2
041&&
20272

mln{Hs(]) — gD || } <

2
gl
Jel] J max }

It follows that the stop criterion (3.17) holds, as long as

(48) J> J = (E(S(O)’S’C’V) + ”ﬂ + Hzg )(max{L1 k=1, Lo - 1, 1})?
- %%, 5 en1)?

Therefore, at the k-th iteration of the ALM in Algorithm 3.1, the BCD method in
Algorithm 3.2 can be stopped in at most J iterations defined in (4.8) and output s*,
which is of order O(1/(ex—1)?).

Once condition (3.17) is satisfied, condition (3.6) in Algorithm 3.1 also holds,
which will be proved in the following. By Step 1 in Algorithm 3.2, the first order
optimality condition of the three blocked subproblems (3.14), (3.15) and (3.16) are

0= VaL(s{).£.C7), 0= Vnllsy £.¢.7),
0 € Vug(sY,€,7) + 0aq(sV), ¢, 7) + p(u?) — ul=D).

Furthermore, the limiting subdifferential of the function £ at sU) can be written as

L, €,¢,7) = (VoY) €,C,7): Vil(sD),£,¢,7); Vug(s?,€) + dua(sV), O))

Hence
ViL(sY,6,¢,7) -V c(SS ) |
VnL(sW),€,¢,7) — Vnl(sY €,¢,y) | € 0L(sY),&,¢,7).
—p(u® —G-D)

By Lemma 3.2, we obtain

| VLY, £,¢,7) ~ ﬁ(sé”,é )
dist(0,0L(s9),€,¢,7)) < || VnL(sW),&,¢,7) = Vl(s?, €, ¢,7)
—p(u?) —ul-1)

< max{Ly 1, Loj_1, pu}[s¥) —sUV.

Thus condition (3.17) that [|s¥) —sU=Y|| < ¢,y /max{L; 1, Laj_1,u}, together
with s = s() | implies dist(0,0L(s®), &, ¢, 7)) < €41 in condition (3.6). 0

Theorem 4.3 above guarantees that the BCD method in Algorithm 3.2 terminates
within finite steps to meet the stop criterion (3.17) for a fixed €x_1 > 0. In the rest
of this subsection, we discuss the convergence of Algorithm 3.2 for the case ¢x_1 = 0,
i.e., we replace the stop criterion (3.17) by

(4.9) |s4 19— sb-1a-1 ) = 0,

We will show in Theorem 4.6 that the BCD method converges to a d-stationary point
if €1 = 0. For this purpose, we first show the following theorem that provides the
convergence of the sequences of the function values £ with respect to the three blocks,
as well as the convergence of the subsequences of the iterative points with respect to
the three blocks.
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THEOREM 4.4. Suppose that (3.17) is replaced by (4.9) in Algorithm 3.2. If there
is j such that (4.9) holds, then

(4.10) LY, 6,¢7) = LT, 6,¢,9) = L£(sD),£,¢,7) and sP) =) = s0),

Otherwise, Algorithm 3.2 generates infinite sequences {sz )} {S(J)} and {sY)}, and
the following statements hold
(i) The sequences {E(sz 66,7} {E( ) ¢.¢, Y and {L(sD) &,¢,4)} all con-
verge to a constant L*.
(i) There exists a subsequence {j;} C {j} such that {s(m}, {sg")} and {sU)}
converging to the same point.

Proof. 1f there is j such that (4.9) holds, then (4.10) is derived directly from

sk=1J = gh=1J=1 and (3.14)-(3.16).

If there is no j such that (4.9) holds, then Algorithm 3.2 generates infinite se-
quences {s } {s } and {s()}.

(i) By Lemma 4.1, there exists an infinite subsequence {j;} C {j} such that
sUi) — 5 as j; — oo. Let £L* = L(5). We can easily deduce that statement (i)
holds, by the descent inequality (A.14) and the lower boundedness of {£(sV), &, ¢, v)}
according to Lemma 3.1 (i).

(ii) To further prove that {sz } and {s } also converge to §, it is sufficient to
prove

=0

(@.1) lim 509~ s =0, Tim 509 s
1— 00 71— 00

Letting J go to infinity and replacing (j) in (4.7) by (j;), it is easy to have that
S22 18V — sUi=1) |12 < oo, Hence,

(4.12) lim [|sY) —sUi=b| =0,

i—00

which together with

sV —sUD || < [hU) — nUi=Y || 4 [ubd) — b=,

599 — s99|| < [u¥®) — ubi=1), 0

implies the validity of (4.11).

Now we turn to show that Algorithm 3.2 generates a d-stationary point of problem
(3.5). For convenience, when considering the directional derivative of a function with
respect to a direction and we want to emphasize the blocks of the direction, we adopt
a simple expression. For example, if d = (d,; dp; du), we also write L£/(s,&,(,v;d) =
L'(s,¢,¢,7; (dg, dn, dy)) instead of L'(s, &, ¢, 7; (dg; dn; du))-

LEMMA 4.5. If the directional derivatives of L at § € Qz(T) satisfy
L'(8,€,¢,7:(ds,0,0)) >0, L'(8,£,¢,7:(0,dn, 0)) >0, L'(5,€,¢,7;(0,0,dy)) >0,
along any d, € RNw+tNa dy € R™ and d, € R™T, then

L5, Cyd) >0, VdeRNwHNat2rT
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As problem (3.5) is nonsmooth nonconvex, there are many kinds of stationary
points for it, such as a Fréchet stationary point, a limiting stationary point, and a d-
stationary point. It is known that a Fréchet stationary point is a limiting stationary
point, and a d-stationary point is a limiting stationary point, but not vise versa
[19]. The theorem below guarantees that either the BCD method terminates at a
d-stationary point of problem (3.5) in finite steps, or any accumulation point of the
sequence generated by the BCD method is a d-stationary point of problem (3.5).

THEOREM 4.6. Suppose that (3.17) is replaced by (4.9) in Algorithm 3.2. If there
is j such that (4.9) holds, then s\9) is a d-stationary point of problem (3.5). Otherwise,
Algorithm 3.2 generates an infinite sequence {s(j)} and any accumulation point of
{sWY is a d-stationary point of problem (3.5).

Proof. 1f there is j such that (4.9) holds, then s~ 17 = k=171 je s0) = g—1).
This, combined with (4.10) of Theorem 4.4, yields that s¥) = sg) =s@) = gG-1),
Thus by (3.14)-(3.16) in Algorithm 3.2, we have for any A > 0 and any d, € RVw+Na,
dn € R d, e R'T,

L(sD,€,¢,7) < L(sY) + A(dg,0,0),£,¢,7),
L£(89,6,¢,7) < L(s9 +A(0,dn,0),€,¢,7),
L£(s9,6,¢,7) <LV +A(0,0,du),€,¢,7).

By Lemma 4.2 and the definition of the directional derivative, we get for any d, dy,
du,

L'(89,€,¢,7; (dy,0,0)) > 0, L'(59,€,¢,7;(0,dn, 0)) >0,
L9 €,¢,7;(0,0,dy)) > 0

The above inequalities, along with Lemma 4.5, yields that L£'(s9),€,¢,v;d) > 0 for
any d € RNVw+Nat2'T Hence, sU) is a d-stationary point of problem (3.5).

If there is no j such that (4.9) holds, then Algorithm 3.2 generates an infinite
sequence {s\)}. By (3.16), we have

£(67.€.67) < £67,€,¢7) + G = a7 < £(s7.6.69),

Letting j — oo in the above inequalities and using Theorem 4.4 (i), we have

lim ||u(J) (j—l)” =0.
]—)

By Theorem 4.4 (ii), let {sU")}, {sﬁji)} and {sU9)} be any convergent subsequences
with limit §. Furthermore, by (3.14)-(3.16) in Algorithm 3.2, we have for any A > 0
and any d, € RVN+Na gy ¢ R"™T d, € R™T,

L(s99,6,¢,7) < L(sY) + A(dy,0,0),€,(,7),

L(s9V,6,¢,7) < L(s + A0, dn,0),&,¢,7),
L£(sY9,6,¢,7) < L9 + (0,0, du).£,¢,7) + § [0 + Ady — a0 D2,

As i — oo, the above equality and inequalities imply that for any A > 0 and any d,,
dha du7

L(5,6,¢,7) < L(5+ Mdy,0,0),,¢,7), L£(5,£,¢,7) < L(5+ A\0,dn,0),&,¢,7),
L(5,6,¢,7) < LE+N0,0,du), & ¢, ) + 222 dul>.
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By Lemma 4.2 and the definition of directional derivative, it follows that

L'(8,€,¢,7(dz,0,0)) > 0, L(8,£,¢,7:(0,dn,0)) =0, L'(8,¢,¢,7:(0,0,du)) >0,

for any d,, dy and dy. The above inequalities, along with Lemma 4.5, yield that s is
a d-stationary point of problem (3.5). d

4.2. Convergence analysis of Algorithm 3.1. By Theorem 4.3, the ALM in
Algorithm 3.1 is well-defined, since Step 1 can always be fulfilled in finite steps by the
BCD method in Algorithm 3.2.

It is well known that the classical ALM may converge to an infeasible point. In
contrast, the following theorem guarantees that any accumulation point of the ALM
in Algorithm 3.1 is a feasible point. The delicate strategy for updating the penalty
parameter v in Step 3 of Algorithm 3.1 plays an important role in the proof of the
theorem.

THEOREM 4.7. Let {Sk} be the sequence generated by Algorithm 3.1. Then the
following statements hold.
(i) limy_o0 [[u* — T (B*)WF|| = 0 and limj—o ||B¥F — (u¥) || = 0.
(ii) There exists at least one accumulation point of {s¥}, and any accumulation
point is a feasible point of (2.6).

Proof. (i) Let the index set

(413) K i= {k <y = max{y_ /m, €41, 1))

If K is a finite set, then there exists K € Ny, such that for all £ > K,

max {[[C1(s) [, [C2(s®) I} < mmax {[IC1(s* )], [IC2(s" )1}
(4.14) < ™% max {[|Cy () [, IC2(s™) 1 } -
Since 1 € (0,1), we get limy_,o, max {[[u” — U(h*)w"|,||h* — (u¥), ||} = 0. The

statement (i) can thus be proved for this case.
Otherwise, K is an infinite set. Then for those k — 1 € I,

— — —n. —12 c—1|2 1—n
max{ e [ler 1||} < ('yk_l)1+’733 , maX{”fk l ||Ck11||} < (%_1)1+n2 _

Ye—1 ' Vk—1 Ye—1 7 Vk—

The above inequalities, together with n3 > 1 yields that

k—1 k—1 k—1]|2 k—1]|2
i) - m{us [ s T H}_Q

b
k—oo,k—1€K Ye—1 Ye—1 Ve—1 V-1

Recalling (3.1), and employing condition (A.15) and Step 1 of Algorithm 3.2, we have

0 <[[u* — U)Wk + |7+ [0* — (uh) + S|
o <t (T=Re) + (5207 (1520°
Then by (4.15) and the lower boundedness of {R(s")}, we have
(4.17) lim [uf — (L") w"| =0 and lim |h* — ("), | = 0.

k—o00,k—1€K k—o00,k—1€K
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199 To extend the results in (4.17) to any k > K, let I, denote the largest element in
500 K satisfying I, < k. If [, = k — 1, the limitations are the same as (4.17). If I, < k—1,
501 let us define an index set Zj := {i:l; <4 < k}. The updating rule for the penalty
502 parameter, as stated in (3.9), implies that v; = 4, . This, combined with the updating
503 rules for the Lagrangian multipliers, yields that for all i € 7y, the following holds:

i i i—1
o (1) I _ 1€ I g

Vi Yi-1 Yi—

% i i—1

() IS _ ISl e || N

i Yi—1 Yi—
506  Summing up inequalities (4.18) and (4.19) for every i € Ty, we have

klkl

[l IIE"CII

507 (4.20) - E — U(h*Hwh|,
||Ck_1\| ||Cl"|\ ke

508 (4.21 h"™" — .

08 (4.21) — + E | )+

509 By the updating rule of 7, in (3.8), (4.20) and (4.21), we obtain

€5 _ lIg™ Il m L+l ety Lt L+l I+l
510 P < - Jrl_mmax{Huk —Uh*")wk H,Hhk — (u'* )+H},
- k
k—1 U,
s B I e - ettt — gt )
- k

512 This, together with (4.15), (4.17) and n; € (0,1), yields that

k—1 k—1
s (492) i B g 1

k— oo V-1 k—oco V-1

=0.

514 By the inequality (4.16) and nondecreasing sequence {v,}, we conclude that

515 (4.23) lim [u* — ¥(h*)wF| =0, lim |b* - (u") | =0,

k—o0 k—o0
516 using the same manner for showing (4.17).
517 (ii) When K is finite, there exists a constant K such that «y,_, = 7, for those
518 k> K. Then, we turn to consider the boundedness of {¢*~1} and {¢¥*~'}. Summing
519 up (3.7) for those k > K, and using (3.8), we find
520 max{{[|* |, 1"~}

. Yy

o0 S ma LI+ T e {0 — ()}
522 From the above, the boundedness of {¢¥=1} and {¢*~'} are thus proved. Together
523 with 7,_, = 7, for those k > K, we can further deduce that |¢*~!||2/,_, and
524 [|¢*7Y|2 /.-, are bounded for those k € N .
525 When the set K is infinite, by (4.15) we know that ||¢¥~1(|2/7,_, and ||¢¥ (|2 /y._,
526 are bounded for k — 1 € K. Therefore, no matter K is finite or infinite, ||€¥=1||2/7,_,
527 and ||[¢¥71||?/5,_, are bounded for k — 1 € K.

This manuscript is for review purposes only.



528
529

549

v Ot
ot Ot

ALM FOR TRAINING RNNS 17

Moreover, we can deduce the following inequality according to the expression of
L1, condition (A.15), and sk = sk=1J:

k—112 k—112
R(Sk) + Ve—1 ‘I’(hk)wk + g + V-1 hk _ (uk)+ + C
(4 24) 2 V-1 2 V-1
’ s s
<T + .
o 27,4 2754

The above inequality, along with the boundedness of {Hﬁk_l||2/’71~c71}k71€,C and
{H(’“’le/%_l}k_len, yields the boundedness of {s*};_icx by the same manner

in Lemma 3.1 (ii). Hence there exists at least one accumulation point of {s*}.
Any accumulation point is a feasible point of (2.6), which can be derived imme-
diately by (i), because of the continuity of the functions in the constraints of (2.6).0

Below we show the main convergence result of the ALM.

THEOREM 4.8. Every accumulation point of {sk} generated by Algorithm 3.1 is
a KKT point of problem (2.6).

Proof. Let {s*'} be a subsequence of {s*} converging to 5. Then 5 € F by
Theorem 4.7. We claim that

ﬁ(ski’gkifl, Ckifl,,yki_l)
= VR(H) + T ({65 — W) 25— wkw
00 (64— () 2 ) )
= VR(s%) +JC (%) T + 0 (%) Ta(sh))

)

(4.25)

where C; and Cs are defined in (2.4).
First, by employing (3.7) and by direct computation, we have

Ve (R ub — w(nk)wh >+ e T )
= JCi(s") T (€M 4y, (0 = w(E)wh)) = JCi(sM) Ter
Then, it remains to verify that
(427)  Bs((¢P RS — (uM)y) + PR — (04 )?) = a((Cki)TC2(Ski))'

To verify (4.27), it can be divided into the subdifferential associated with h and u.
We first prove that (4.27) is satisfied associated with h. By simple computation,

(4.26)

vh(«kifl,hki _ (uki)+> k —1 ||hk uk1 +||2)
(4.28) = JnCa(z", bk u’“)T(c’“ +% (M= (u),)
= JhCQ( hk’ 11 ) Ckz = (<Ck hk (uk1)+>)

Then we prove that (4.27) is satisfied associated with u, which can be replaced
by proving rT one dimensional equations with the similar structure as follows:

(4:29) B, (0 = (uf)4) + 257 (0 — () 4)?) = 0, (¢ b = @) ),
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where j = 1,2,...,7T. When uf # 0, equation (4.29) can be easily deduced by the

same proof method as in (4.28). When uf = 0, the validity of (4.29) can be proved
as follows:

O, (G5 M = (ul)4) + 25 (0 (uf))?)

= {Ov_C?I:lill — ’Ykifl(h];:i _ 2&)}7 if 7k171h21 _|_Cj:171 Z 0,
(4.30) [0, =G = a0 =], iy byt G <0,
. k; . ki
{O,_CJ }, if CJ > 0)

B {[o, ~cM], i <o,
= O, (¢ (0 = (b))
Combining (4.26) and (4.27) yields the validity of (4.25).

Up to now, we have verified that equation (4.25) holds. Thus, there exists a
sequence {¢¥i} satisfying ||c*|| < ¥ such that

(4.31) F € VR(SH) +JC (s Tk +0((¢F)Tea(sh)).

However, the boundedness of {¢¥:} and {¢*} in (4.31) are still not sure. Define o’
= max{[|¥||s0, |(*|loo} and assume that {o'} is unbounded. It is trivial to have
bounded sequences {¢¥:/o'} and {¢*¢/o'} according to the definition of o’. Without
loss of generality, we assume {£¥ /o'} — ¢ and {¢*/o'} — ( as k — oo and thus have

(4.32) max{||€]loc, [Clloc} = 1.

Dividing by o' on both sides of (4.31) and taking i — oo, and using the facts that the
limiting subdifferential is outer semicontinuous [26, Proposition 8.7], and ¢* — 0 as
i — 00, we derive that

(4.33) 0eJCi(s) €+ a(éTCQ(s)).

Combining (4.33) and Lemma 2.1 yields that £ = 0 and ¢ = 0, which contradicts
(4.32). Therefore, {€¥'} and {¢*'} are bounded. Without loss of generality, we assume
{€ki} — ¢ and {¢¥} — ( as i — oco. Letting i — oo in (4.31), we obtain

0€ VR(S)+JCi(s)TE+ a(éTcg(s)).

Therefore, s is a KKT point of problem (2.6). d

4.3. Extensions to other activation functions. Now we discuss the possible
extensions of our methods, algorithms and theoretical analysis, using other activation
functions rather than the ReLLU.

First, we claim that the activation functions are required to be locally Lipschitz
continuous, because the locally Lipschitz continuity of the ReLU function is used
in Lo(&,¢,v,7) of Lemma 3.2 that depends on the Lipschitz constant of the ReLU
function on a compact set. Then we find that in the analysis above only the following
two places make use of the special piecewise linear structure of the ReLLU function:

P1. Explicit formula for u*~1 in (3.16) of the BCD method in Algorithm 3.2.

P2. Equations (4.30) for proving (4.29) in the proof of Theorem 4.8.
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For P1, even if the activation function in (2.1) is replaced by others, the objective
function in problem (3.16) can still be separated into rT one-dimensional functions,
which is obtained by substituting the ReLU function (u)4 in (3.19) by a more general
activation function. For P2, if an arbitrary smooth activation function is considered,
then (4.29) holds obviously because the limiting subdifferential reduces to the gradient.
Below we illustrate in detail the leaky ReLLU and the ELU activation functions as
examples for extensions. It is clear that the expression of Lo(€,(,7,#) in Lemma 3.2
remains unchanged for the two activation functions because they all have Lipschitz
constant 1, the same as that of the ReLU.

Extension to the leaky ReLU. Let us replace the ReLU activation function
o(u) = (u)s with the leaky ReLU activation function defined by

O1Re (1) := max{u, wu},

where w € (0,1) is a fixed parameter. The leaky ReLU activation function has been
widely used in recent years. With regard to P1, by direct computation, a closed-form
global solution of

(4.34) min gire () i= 3(u—01)" + 3 (02 — o1me(w))* + § (u = 03)” + v,
can be obtained similarly using the procedures for ReLU in (3.20)-(3.22), except that
the expression u~ of (3.22) changes to

701 + ywwbs + plb3

(4.35) uT =9 y+yw?+2X e+ p
0, otherwise.

, ifv01 4+ pbs <0,

For P2, (4.30) is modified as follows: when u?'i =0,

00, (G (07 = o) + 2557 (0 — e ())?)

_ {{—wcfi,—c;?i1—vk7.,1(h§i—u§i), if 5, b+ > 0,

ki ki— ki k 3 ki ki—
[_w ; ,_Cj I—Vkifl(hj —uj )]7 1ffyki71hj —|—Cj 1 <0,

(4.36) oo
_ {_nglu_Cjz}? if le =0,

= 0, (¢ (b — omme(ul))).

Extension to the ELU. Let us replace the ReLU activation function with the
convex and smooth activation function ELU defined by

U if u >0,
e*—1 ifu<O.

JELU(U) = {

When v > 0, the ELU activation function is the same as the ReLU function. Thus
for P1, the solution of (4.34) can be obtained similarly as the ReLU case, except that
we do not have the explicit formula of »~, which is a global solution of

(437) | min pao(u) = Fu—0)° + 30 — (€~ 1) + §(u— 05)° + dows’,
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20 YUE WANG, CHAO ZHANG, AND XIAOJUN CHEN

due to the presence of the exponential function in the ELU activation function.

Now we illustrate that u~ can be obtained numerically through solving several
one-dimensional minimization problems. First, using the formula of g,y (u) and the
fact that pgrLu(u) = +00 as u — —oo, we can easily find a lower bound u < 0 such
that (4.37) is equivalent to

(4.38) min pgrLu(u).

u€[u,0]

The objective function ¢y y(u) is smooth on (—o0,0]. We thus calculate the second-
order derivative of g (u) as

(4.39) O o(u) = 2ve®™ — y(f2 + 1)e™ + p+ v + 2)6.

Let z = e*. (4.39) can be represented as

(4.40) Peru(2) 1= 272" —9(02 + 1)z + p+ 7 + 2,

which is a quadratic function. Hence there are at most two distinct roots of

YELU(2) =0,

and consequently at most two distinct roots for ¢”(u) = 0 on [u,0]. Hence the
convexity and concavity can only be changed at most three times in [u,0]. That is,
we can divide [u,0] into at most three closed intervals, and in each interval pgLu
is either convex or concave. We minimize the objective function @gpu in each of
those intervals that ¢gpy is convex, and obtain a global solution in each interval
numerically. Then, we select a point among those solutions, 0, and u that has the
minimal objective value. This point is a global solution of (4.37).

5. Numerical experiments. We employ a real world dataset, Volatility of
S&P index, and synthetic datasets to evaluate the effectiveness of our reformulation
(2.6) and Algorithm 3.1 with Algorithm 3.2. To be specific, we first use RNNs with
unknown weighted matrices to model these sequential datasets, and then utilize the
ALM with the BCD method to train RNNs. After the training process, we can predict
future values of these sequential datasets using the trained RNNs.

The numerical experiments consist of two components. The first part involves
assessing whether the outputs generated by the ALM adhere to the constraints in (2.6).
The second part is to compare the training and forecasting performance of the ALM
with state-of-the-art gradient descent-based algorithms (GDs). All the numerical
experiments were conducted using Python 3.9.8. For the datasets, Synthetic dataset
(T = 10) and Volatility of S&P index, experiments were carried out on a desktop
(Windows 10 with 2.90 GHz Inter Core i7-10700 CPU and 32GB RAM). Additionally,
experiments for Synthetic dataset (7' = 500) were implemented on a server (2 Intel
Xeon Gold 6248R CPUs and 768GB RAM) at the high-performance servers of the
Department of Applied Mathematics, the Hong Kong Polytechnic University.

5.1. Datasets. The process of generating synthetic datasets is as follows. We
randomly generate the weighted matrices A, W, V, the bias vectors l;, ¢, and the noises
€, t =1,2,...,T, and the input data X with some distributions. Then we calculate
the output data Y = (y1;...;4:) by ye = (AW (...(Va1 +b)4..) + Var+b)y +é) + &
for t € [T]. In the numerical experiments, we generate two synthetic datasets with
T =10 and T = 500. The detailed information of the two synthetic datasets is listed
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Table 1: Synthetic datasets

Distributions
T n m T
weight matrices the noise the input data
0|5 |3 4 N(0,0.8) N(0,1073) Uu(-1,1)
500 | 80 | 30 | 100 N(0,0.05) N(0,1075) Uu-1,1)

in Table 1. Moreover, the ratio of splitting for the training and test sets is about 9 : 1.

The dataset, Volatility of S&P index, consists of the monthly realized volatility
of the S&P index and 11 corresponding exogenous variables from February 1973 to
June 2009, totaling 437 time steps, i.e., T'= 437, n = 11 and m = 1. The dataset was
collected in strict adherence to the guidelines in [6] and contains no missing values. In
the dataset, the monthly realized volatility of S&P index is appointed as the output
variable, while 11 exogenous variables are input variables. For training the RNNs, we
first standardize the dataset as zero mean and unit variance, and then allocate 90%
of the dataset, consisting of 393 time steps, as the training set, while the remaining
44 time steps are the test set. Moreover, we have r = 20 for the real dataset.

5.2. Evaluations. We define FeasVio := max{|ju — ¥(h)w||,|h — (u)4|} to
evaluate the feasibility violation for constraints u = ¥(h)w and h = (u);. Moreover,
the training and test errors are used to evaluate the forecasting accuracy of RNNs in
training and test sets denoted as

T1
1
TrainErr := T Z lye = (AW (...(Vay +b)4..) + Va, +b) 4 +c?,
L=

Ty +T2
1
TestErr := ? Z ly: — (AW (o..(Vzy +b)y.) + Vg +b) 4 + o)),
t=Ty+1

where T7 and T, are the time lengths of the training set and test set, and A, W, V,
b and c are the output solutions from ALM.

5.3. Investigating the feasibility. In this subsection, we aim to verify the out-
puts from the ALM satisfying the constraints of (2.2) through numerical experiments,
while we have already proved the feasibility of any accumulation point of a sequence
generated by the ALM in section 4. Initial values of weight matrices A°, W0, V0 are
randomly generated from the standard Gaussian distribution A (0,0.1). Moreover,
the bias b° and ¥ are set as 0. For all three datasets, we stop the outer loop (ALM)
when it reaches 100 iterations, and the inner loop (BCD method) terminates at 500
iterations. Other parameters are listed in Table 2.

From Figure 1, we observe that the feasibility violation in each dataset is very
small at the beginning, which implies that the selected initial point is feasible. As it
turns to the first iteration, the feasibility violation goes to a large value. After that,
the value goes to exhibit an oscillatory decrease and tends to zero. This indicates
that the points generated by the ALM gradually satisfy the constraint conditions as
the number of iterations increases.

5.4. Comparisons with state-of-the-art GDs. In this subsection, we com-
pare the training and forecasting accuracy of RNNs using different methods. Specifi-
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Table 2: Parameters of the ALM: the parameters for the given datasets are set as
1 =1¢6 =0 =0 ¢ =01T=10° p =107 A\ = 7/rm, dy = 7/1%,
A3 = T/T?’L, Ay = T/’r’, A5 = T/m, A6 = 10~8.

Datasets Regularization parameters | Algorithm parameters
Synthetic dataset (T = 10) T=12 m = 0.99, n2 = 5/6,
Volatility of S&P index r=1 n3 = 0.01, n4 = 5/6.

. _ _ n1 = 0.90, n2 = 0.90,
Synthetic dataset (7" = 500) 7 =500 s = 0.015, na = 0.8,

FeasVio

0 20 0 80 100 0 20 80 100 o 2 0 0 80 100

40 40 0
Iterations. Iterations. Iterations.

(a) Synthetic dataset (T' = 10) (b) Synthetic dataset (T'= 500) (c) Volatility of S&P index

Fig. 1: The feasibility violation of the ALM in different datasets

cally, we compare our ALM with the state-of-the-art GDs and SGDs with special tech-
niques, i.e., gradient descent (GD), gradient descent with gradient clipping (GDC),
gradient descent with Nesterov momentum (GDNM), Mini-batch SGD and Adam.

For the initial values of A°, W°, V9 we use the following initialization strategies:
random normal initialization [2] with zero mean and standard deviations of 1073 and
10—, He initialization [32], Glorot initialization [33], and LeCun initialization [34].
Notably, the initial values of bias, b° and c?, were both set to 0 according to [14, pp.
305].

We search the learning rates for GDs and SGDs over {1074, 1073, 1072, 107}, 1},
as well as the clipping norm of GDC over {0.5,1,1.5,2, 3,4, 5,6}. We employ the leave-
P-out cross validation and repeated each method 30 trials with P = 1 in Synthetic
dataset (7' = 10), and P = 10 in Volatility of S&P index and Synthetic dataset
(T = 500). We then select the learning rates and clipping norm with the best test
error averaged over 30 trials, which are recorded in Table 4 of Appendix B. The batch
size for SGDs is set to 2 for Synthetic dataset (7' = 10), 50 for Volatility of
S&P index, and 100 for Synthetic dataset (7' = 500). We employ the Keras API
[10] running on TensorFlow 2 to implement the GDs and SGDs. Additionally, the
parameters for the ALM are listed in Table 2.

To evaluate the performance of different methods under various initialization
strategies, we conducted the following experiments: each method was repeated 10
times under each initialization strategy. In each repetition, we recorded the final
test error and the training error. We then calculated their means (TrainErr and
TestErr) and the corresponding standard deviations, and listed them in Table 3.
Each row records the results for a certain optimization method from different ini-
tialization strategies, with the best TrainErr or TestErr highlighted in bold. Each

This manuscript is for review purposes only.



column provides the results of all the optimization methods with the same initial

ALM FOR TRAINING RNNS

values, where the best TrainErr and TestErr are highlighted underline.

Table 3a and Table 3¢ demonstrate that for Synthetic dataset (7' = 10) and
Synthetic dataset (7" = 500), no matter which initialization strategy is employed,
our ALM method achieves the best TrainErr and TestErr among all the methods.
Table 3b illustrates that our ALM achieves the best TrainErr under two types of
initialization strategies, and obtains the best TestErr under three types of initializa-
tion strategies for Volatility of S&P index. For any of the three datasets, our ALM
achieves the best TrainErr and TestErr among all combinations of optimization

methods and initialization strategies, which we highlight in blue.

Table 3: Results of training Elman RNNs using different optimization methods and

initialization strategies across multiple trials.

(a) Synthetic dataset (7' = 10): For the ALM method, the maximum iteration for
the outer loop is 50 and 10 for the inner loop. For GDs and SGDs, the number of epochs
is set to 500.

He N(0,1073) | N(0,107 1) Glorot LeCun
ALy | TrainErr| 0.345 4 0.24 | 0.113 + 0.03 |0.143 4 0.04| 0.206 4 0.10 | 0.279 £ 0.22
TestErr | 4.770 £ 1.25 | 4.437 4 0.28 [4.660 + 0.35| 4.628 & 1.17 | 4.650 £ 0.62
ap |TrainErr| 4.459 +0.77 |2.747 4 1.5¢-6|2.768 + 0.01] 1.814 4 0.27 |1.604 + 0.17
TestErr | 6.432 + 2.15 |5.311 4 9.3¢-6[5.057 + 0.07|4.696 + 0.90| 5.056 + 1.10
ape | TrainErr|1.479 4 0.32]2.769 + 1.4e-6|2.768 + 0.01| 1.684 4 0.23 | 1.502 + 0.26
TestErr | 5.376 + 0.88 |5.079 4 1.0e-6|5.057 4 0.07(4.922 4+ 1.20| 5.266 =+ 0.96
apny| TrainErr| 2.689 4 0.40 |2.769 + 1.4e-6|2.768 + 0.01 3.340 + 0.54 |0.801 + 0.60
TestErr | 6.169 £ 2.06 |5.079 & 1.0e-6|5.057 £ 0.07| 7.469 & 2.30 |4.844 4 0.64
sop |TrainErr|2.224 4+ 0.02| 2.247 +0.02 |2.232 4 0.02| 2.238 4 0.02 | 2.225 £ 0.02
TestErr | 6.455 + 0.23 | 6.230 4 0.23 [6.373 + 0.18| 6.543 & 0.23 | 6.446 + 0.18
Adap |TrainErr| 2.283 4+ 0.07 | 2.244 +0.02 |2.237 +0.02|2.231 + 0.01) 2.239 + 0.03
TestErr [6.335 + 0.61| 6.432 & 0.27 |6.411 4 0.25| 6.508 = 0.14 | 6.406 =+ 0.20

(b) Volatility of S&P index: For the ALM method, the maximum iteration for the outer loop
is 200 and 500 for the inner loop. For GDs and SGDs, the number of epochs is set to 5000.

He N(0,1073) N(0,1071) Glorot LeCun

ALy | TrainErr| 0.058 £0.02 | 0.004 & 3.6e-5 |0.003 & 1.4e-4| 0.009 £ 0.002 | 0.013 + 0.002
TestErr | 0.229 +0.13 | 0.041 + 4.7e-4 | 0.032 £ 0.005 | 0.064 & 0.04 | 0.053 £ 0.03

ap |TrainErr|0.005 +0.001 | 0.015 4 1.8¢-4 | 0.012 4 9.2¢-4 | 0.020 4 0.003 | 0.025 + 0.006
TestErr | 0.1244+0.10 | 0.077 +0.03 |0.0429 4+ 0.01| 0.206 4 0.20 | 0.307 + 0.20

ape | TrainErr| 0567 +0.47 | 0.015 + 1.8e-4 | 0.016 +0.009 |0.003 & 5.6e-4] 0.011 + 0.003
TestErr | 1.13540.55 | 0.077 +0.03 | 0.047£0.02 | 0.107 +0.03 | 0.041 + 0.01
GpNy | TrainErr| 0.005 +0.001 | 0.015 4 1.8¢-4 | 0.012 4 9.2¢-4 |0.003 + 5.8¢-4| 0.004  6.6e-4
TestErr | 0.124+0.10 | 0.077 +0.03 | 0.043 +0.01 | 0.097 £0.03 | 0.102 %+ 0.02

sqp | TrainErr|0.005 & 1.8e-4| 0.006 & 0.002 | 0.006 4 0.002 | 0.006 & 0.002 | 0.006 4 0.002
TestErr | 0.072 £ 0.01 | 0.09540.02 | 0.08640.02 | 0.085=+0.01 | 0.096 + 0.01

Adap | TrainErr| 0.006 4 0.001 |0.005 + 7.6e-4) 0.006 +0.002 | 0.006 +0.001 |0.005 + 7.6¢-4
TestErr | 0.079 4 0.01 | 0.074+0.01 | 0.084£0.01 | 0.080 4 0.02 | 0.080 % 0.02
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(c) Synthetic dataset (7" = 500): For the ALM method, the maximum iteration for the outer
loop is 100 and 500 for the inner loop. For GDs and SGDs, the number of epochs is set to 1000.

He N(0,1073) N(0,1071) Glorot LeCun
ALM TrainErr| 4.639 +0.78 3.461 + 0.06 3.472 + 0.05 3.472 + 0.06 3.475 + 0.06
TestErr 14.77 £ 0.93 12.418 £ 0.16 | 12.407 +£0.27 | 12.394 £+ 0.22 12.517 £ 0.16
GD TrainErr| 58.137 +2.42 | 30.010 + 0.003 | 30.013 + 0.008 | 30.000 £ 0.008 |29.985 + 0.007
TestErr | 58.314 +£2.76 | 28.644 4+ 0.006 | 28.641 + 0.009 | 28.630 + 0.006 |28.626 + 0.009
GDC TrainErr|250.471 + 399.70{30.004 £+ 0.003| 30.144 + 0.001 | 30.143 £ 8.8e-4 | 30.144 + 0.001
TestErr | 119.007 4+ 66.71 |28.640 £+ 0.007| 28.723 + 0.007 | 28.730 + 0.006 | 28.725 + 0.01
GDNM TrainErr| 58.137 +2.42 | 30.010 = 0.003 | 30.013 = 0.008 | 30.000 + 0.008 |29.985 + 0.007
TestErr | 58.314 +2.76 | 28.644 + 0.006 | 28.641 +0.009 | 28.730 &+ 0.006 |28.626 + 0.009
SGD TrainErr|30.142 + 3.5e-6 | 30.142 4= 4.7e-6 |30.142 £ 5.2e-6| 30.142 £ 4.4e-6 | 30.142 £ 4.8e-6
TestErr |28.725 £ 3.2e-5| 28.725 £ 4.4e-5 |28.725 £ 4.7e-5| 28.725 £ 3.9e-5 | 28.725 £ 4.1e-5
Adam TrainErr| 30.142 4 7.1e-5 | 30.142 £ 6.5e-5 |30.142 £ 7.3e-5|30.142 £ 5.1e-5| 30.142 4+ 5.7e-5
TestErr | 28.726 4 6.1e-4 | 28.725 £ 5.0e-4 |28.726 £ 5.9e-4| 28.726 £ 5.0e-4 |28.725 + 4.8¢e-4
—4= ALm D —A- GDC e~ GDNM  —v- SGD - Adam —4= ALm GD - GDC e~ GDNM v~ SGD e~ Adm
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(b) Synthetic dataset (T = 500)

Fig. 2: Comparisons of the performance of the ALM, GDs and SGDs across different
datasets.

723 We plot in Figure 2 the TrainErr and TestErr versus CPU time measured in
724 seconds using Volatility of S&P index and Synthetic dataset (T = 500). Each
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line corresponds to a certain optimization method as indicated in the legend, with
its most appropriate initialization strategy that leads to the final TestErr in bold
as outlined in Table 3. For the real world dataset, Volatility of S&P index, the
ALM achieves the smallest test error among all the methods. For the larger-scale
Synthetic dataset (7' = 500) with Ny, = 1.81 x 10%, N = 3.03 x 10 and r = 500,
the ALM exhibits superior performance in terms of both training and test errors.

6. Conclusion. In this paper, the minimization model (1.1) for training RNNs
is equivalently reformulated as problem (2.2) by using auxiliary variables. We propose
the ALM in Algorithm 3.1 with Algorithm 3.2 to solve the regularized problem (2.6).
The BCD method in Algorithm 3.2 is efficient for solving the subproblems of the
ALM, which has a closed-form solution for each block problem. We establish the solid
convergence results of the ALM to a KKT point of problem (2.6), as well as the finite
termination of the BCD method for the subproblem of the ALM at each iteration.
The efficiency and effectiveness of the ALM for training RNNs are demonstrated by
numerical results with real world datasets and synthetic data, and comparison with
state-of-art algorithms. An interesting further study is to extend our algorithm to a
stochastic algorithm that is potential to deal with problems of huge samples efficiently.
We believe that it is possible to extend our method and its corresponding analysis
to other more complex RNN architectures, such as LSTMs, and we will give rigorous
analysis in the near future.

Acknowledgments. We are grateful to Prof. M. Mahoney and the anonymous
referees for valuable comments.

Appendix A. Proofs of the lemmas.
A.1. Proof of Lemma 2.1.

Proof. By direct computation,
chl (S)Tg

(A1) JC1(s) "€+ 0(CTC2(s)) = | JuCi(s)TE + JnCa(s)TC |
JuCi(s) "€+ 0 (¢ Ca(s))

where
(A.2) JnCi(s) €+ InCa(s) "¢ = [-W & + Gy =W e + (ro1; )
(A.3) JuC1(s) "€+ 04 (CTCa(s)) = &+ Ou(—(T (u)4).

In order to achieve 0 € JCy(s) T €+0(¢TCa(s)), it is necessary to require (7 = 0, which
is located in the last row of J,C1(s) "€ + JuCa(s) T¢. Using (r = 0 and (A.3), we find
&1 = 0. Substituting the results into (A.2) and (A.3) recursively and using (A.2) and
(A.3) equal 0, we can derive that there exist no nonzero vectors ¢ and ¢ such that

0e JC1(S)T£ + 6(CTC2(S)) 0
A.2. Proof of Lemma 2.4.
Proof. Tt is clear that 0 € Dg(p) and consequently Dg (p) is nonempty. Moreover,

(A.4) IAIE < p/A (IWIE < p/ X2, IVIE < p/ s,
161 < o/ X4, llell® < p/As, [ull® < p/ s,
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from R(s) < p, £(s) > 0 and P(s) > 0. Hence for s = (z;h;u) € Dg(p), z and u are
bounded, and consequently h is also bounded because h = (u).

Up to now, we have obtained the boundedness of Dz (p). By the continuity of
R(s), we can assert that Dg(p) is closed according to [26, Theorem 1.6]. Thus we
can claim that the level set D (p) is nonempty and compact for any p > R(0). Then
the solution set S; is nonempty and compact according to [5, Proposition A.8]. ]

A.3. Proof of Lemma 3.1.

Proof. Statement (i) can be easily obtained by the expression of L(s,&,(,v) in
(3.1) and the nonnegativity of R(s) in (2.6).

For statement (ii), the nonemptyness and closedness of the level set Q1 (f‘) are
obvious. Moreover, we have R(s) and ||h — (u)4 + %H are upper bounded for all s

in Q,(I'). The function R(s) is upper bounded implies that w,a,u are bounded.
Then the boundedness of ||h — (u); + %H indicates that h is also bounded. Thus, s
is bounded and statement (ii) holds.

Statements (iii) and (iv) can be obtained by direct computation. |

A.4. Proof of Lemma 3.2.

Proof. Using Lemma 3.1 (iii), we have
(A.5) VaL(z,h' 0, ¢, ¢, y) = VaL(z,h,u,£,¢,7)
vArw — (¥(h') = ¥(h))" & —7A;
FEAoja— 20 (B(0) — 2(h) we

where Ay = U(h')"¥(h') — U(h)"¥(h) and As; = ®(h})T®(h}) — P(ht) T P(ht) and
Az =T(h')u’ — ¥(h)u. It is easy to see that

1AL = [[®(h")"¥(h') — ¥ (h')"¥(h) + T(h')"¥(h) —¥(h)"¥(h)|
(A.6) < (e + [ m)) [[®(h') — ¥ (h)].

Similarly, we have

(A7) 182l < (2R + 2RI [|@(ht) — D(he), VE € [T,
(A.8) 1As]l < [[®h)][[[a" =l + [[ul|[¥(h) — ¥(h)]].

Since s,s’ € Q. ('), we know that

2 2
gl £ v ¢
Lllu— s Llh— 2l <.

L(s)+ P(s) + ik \I/(h)WJrW + 2Hh (u)++’y <4

This, together with the expressions of £(s ) and P(s ), yields

(A9 Wl <55 8l <y s W< ey Sy

Moreover, since ||h|| — ||(u)4 — 7|| <|h—(u)y+ %H < «/276, we find

(A.10) [[h[] < do.
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Using (2.3), we can easily obtain that
(A11) [[(h) = ()| < Vr[h =hll, [®(h) = (k)| < Vmllht — hell,
(A.12) [eM)[| = vr(m]2 + X2 +T), (@)l = v/m([lhe> + 1)

Using the facts that for any ¢1,¢1,...,¢; € R, any ¢1,92,...,9; € R"", and any
matrices By, Ba, ..., B; € R"*" ||Bq| < ||Bi1]|r, and

() J J
(AL3) 1) 5 Bigil < X lesllBslllgsll, D lleagill < 1Jrgiau<><j{|u|}\/fll(gu 99
i=1 i=1 i=1 ==

taking the norm of both sides of (A.5), and employing (A.6)-(A.12), we can get (3.2)
with the expression of Lq(&,(,7,7) in (3.4) as desired.
Using Lemma 3.1 (iv), we have by direct computation

Vhﬁ(z7 h7 ulv é-v C7 ’7) - VhE(Z, h7 u, 57 <7 ,7)

T-1 T
=AW (g —upy) + 7 Y () g — () 1)

Taking the norm of both sides of the above system of equations, employing (A.9),
(A.13), and the facts ||(ue)+ — (up)+]] < ||uj — ue] for each ¢, we can get (3.3) with
Lo(€,¢,v,7) in the form of (3.4) as desired. d

A.5. Proof of Lemma 4.1.
Proof. By (3.14), (3.15) and (3.16), we know that for any j € N:

(A.14) L£(s9,€,¢,7) < L(s),€.6,7)<L(P),6,¢,7) <L, €,¢,9).
By the definition of " in Algorithm 3.2 and (A.14), we can deduce that
(A.15) L(sD,¢,¢r) <T, VjeN.

By the definition of Q.(I") and Lemma 3.1 (ii), the proof is completed. O
A.6. Proof of Lemma 4.2.

Proof. Tt is clear that Q,(T") is compact by Lemma 3.1 (ii). For the smooth part g
in £, its gradient for those s € Q. (T") is upper bounded. Now, let us turn to consider
the nonsmooth part ¢ in £. Let s = (z;h;u) and s’ = (2’;h’;u’) be any two points
in Q.(T). We have

{Q(s/7<a'7) - Q(Sa<77)|
o
3B = )+ = (h = (w))[|[|[b — (u)5 +h— ()1 + 25|

(27 max {|[hloc + [lulloc} + ||C||> (Ih" = h[| + [[u" — ul]).
SGQL;(F)

IN

IN

IN

Up to now, we have proved the Lipschitz continuity of g and ¢ on Q,(T"), which implies
that £ is Lipschitz continuous on Q. (T).

The above result, together with the piecewise smoothness of function £, yields
that £ is directionally differentiable on . (T") by [21]. d
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828 A.7. Proof of Lemma 4.5.

829 Proof. By (4.1), the directional derivative of £ at § along d € RNw+Na®+2rT" peferg
830 to L'(8,€,¢(,v;d) = ¢'(5,&,7;d) + ¢'(§,(,v;d). Tt is clear that

831 (A16)  ¢'(8,&,7:d) = (Vog(5,6,7), du) + (Vg(5,€,7), dn) + (Vug(5,£,7), du).

832 It remains to consider the directional derivative of nonsmooth part ¢. The function ¢
833 can be separated into T one dimensional functions with the same structure, i.e.,

834 ¢(7l,ﬂ):(ﬁ—(ﬂ)++yl)2—y%,

835 where h, % € R are variables and v; € R is a constant. The directional derivative of
836 ¢ along the direction (di;dz) € R? can be represented as the sum of the directional
837  derivatives of ¢ along (d;;0) and (0;dz) by the definition of directional derivative,
838 i.e.,

_ _ _ 2 _ 2
h+Adi — (t+ Md +uv1) —(h—(u), +v
839 (;5/(}_1,’11; (Jl,JQ)) — lim ( 1 ( 2)+ 1) ( ( )+ 1)

L0 A
S - P - o 22di (w4 Ad2)+ — (u
840 = &/ (b5 (31,0)) + ¢ (B, 0,2)) —lim 1(( )\2)+ (u)+)
841 where
_ _ 5 _ )
o e (A = (@) 4 1) = (b= (@)4 4 1)
842 ¢ (ha U3 (d170)) - 1)}% Y
7 7 2 _ (7 2 _ T \(
» i B A ) () 20 (@)
ALO A
844
_ _ 9 _ )
845 "F o (htvi = (@ Ad)y)” — (A = (a)4)
845 (rb (h7ua (07 dQ)) - 1)}?01 A
" — lim (u+ )\Jg)i — (ﬂ)i —2(h+ 1/1)((12 + Ad2) 4 — (ﬂ)+)
o o A ’

847 and lim)\¢0 2)\d_1((u+)\§2)+—(u)+) =0. By setting i_l = }_li, U= fll', Jl = (dh)i, dg = (du)i;

848 vy = %, we have

rT
849 q’(g, ¢ J) = %Z ¢’ (l_lz', u;; ((dn)i, (du)l))

i=1

~y rT B B

850 =3 > ¢ (hi, 155 ((dn)i, 0)) + ¢ (i, 53 (0, (dw)s))

i=1
851 =q'(8,¢,7:(0,dn,0)) +¢'(5,¢,7: (0,0, du)).
852 This, along with (A.16), yields that
853 L'(8,&,¢,7:d)
854 = <vzg(§7 57 7)7 dZ> + <th(§, 57 7)7 dh> + <Vug(§a 57 7)3 du>
855 +4'(5,¢,7; (0,dn,0)) +¢'(5,¢,7; (0,0, dw))
856 =L'(5,£,¢,7;(d5,0,0)) + L'(5,£,¢,7;(0,dn,0)) + L'(5,£,¢,7; (0,0, du)).
857 Hence Lemma 4.5 holds. O
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Appendix B. Parameters for numerical experiments in section 5.4. The
final selected learning rates for GDs and SGDs, as well as the clipping norm for GDC,
are listed in Table 4.

He |AN(0,1073)|N(0,1071)| Glorot | LeCun
GD | Synthetic dataset (7' = 10) | 1le-4 le-3 le-4 1 1
Volatility of S&P index le-4 0.01 0.01 0.01 0.01
Synthetic dataset (7' = 500)| 0.01 0.01 0.01 le-3 le-3
GDC | Synthetic dataset (T'=10) | 1 (6) le-4 (1) le-4 (1) 1 (6) 1 (6)
Volatility of S&P index |le-4 (3)| 0.01 (1) 0.1 (1) 0.1 (4) | 0.1 (1)
Synthetic dataset (T = 500)|1le-4 (1)| 0.01 (1) 0.01 (4) ]0.01 (1.5)|0.1 (0.5)
GDNM| Synthetic dataset (T = 10) | 1le-3 le-4 le-4 le-4 0.1
Volatility of S&P index le-4 0.01 0.01 0.01 0.01
Synthetic dataset (7= 500)| 0.01 0.01 0.01 0.01 0.01
SGD | Synthetic dataset (7' = 10) 0.1 0.1 0.1 0.1 0.1
Volatility of S&P index 0.01 0.01 0.01 0.01 0.01
Synthetic dataset (7' = 500)| 0.01 le-3 0.01 0.01 0.01
Adam | Synthetic dataset (7" = 10) 0.1 0.01 0.01 0.01 0.01
Volatility of S&P index 0.01 0.01 0.01 0.01 0.01
Synthetic dataset (T = 500)| 0.01 0.01 0.01 0.01 0.01

Table 4: The learning rates for GDs and SGDs, and the clipping norm value for
GDC (the second number in each cell for parameters) under different initialization

strategies.
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