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Abstract. We consider the expected residual minimization formulation of the stochastic R0
matrix linear complementarity problem. We show that the involved matrix being a stochastic R0
matrix is a necessary and sufficient condition for the solution set of the expected residual minimization
problem to be nonempty and bounded. Moreover, local and global error bounds are given for the
stochastic R0 matrix linear complementarity problem. A stochastic approximation method with
acceleration by averaging is applied to solve the expected residual minimization problem. Numerical
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1. Introduction. Let (Ω,F , P ) be a probability space, where Ω is a subset of
Rm, and F is a σ-algebra generated by {Ω∩U : U is an open set in Rm}.We consider
the stochastic linear complementarity problem (SLCP):

x ≥ 0, M(ω)x+ q(ω) ≥ 0, xT (M(ω)x+ q(ω)) = 0,

where M(ω) ∈ Rn×n and q(ω) ∈ Rn for ω ∈ Ω. We denote this problem by
SLCP(M(ω), q(ω)) for short. Throughout this paper, we assume that M(ω) and
q(ω) are measurable functions of ω with the following property:

E{kM(ω)TM(ω)k} <∞ and E{kq(ω)k2} <∞,

where E stands for the expectation. If Ω only contains a single realization, then the
SLCP reduces to the standard LCP. For the standard LCP, much effort has been made
in developing theoretical analysis for the existence of a solution, numerical methods for
finding a solution, and applications in engineering and economics [5,7,9]. On the other
hand, in many practical applications, some data in the LCP cannot be known with
certainty. The SLCP is aimed at a practical treatment of the LCP under uncertainty.
However, only a little attention has been paid on the SLCP in the literature.

In general, there is no x satisfying the SLCP(M(ω), q(ω)) for almost all ω ∈ Ω.
A deterministic formulation for the SLCP provides a decision vector which is optimal
in a certain sense. Different deterministic formulations may yield different solutions
that are optimal in different senses.

Gürkan,Özge and Robinson [12] considered the sample-path approach for stochas-
tic variational inequalities and provided convergence theory and applications for the
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approach. When applied to the SLCP(M(ω), q(ω)), the approach is the same as
the Expected Value (EV) method, which uses the expected function of the random
function M(ω)x+ q(ω) and solves the deterministic problem

x ≥ 0, E{M(ω)x+ q(ω)} ≥ 0, xTE{M(ω)x+ q(ω)} = 0.

Using a simulation-based algorithm in [12], we can find a solution of this problem.
Recently, Chen and Fukushima [3] proposed a new deterministic formulation

called the Expected Residual Minimization (ERM) method, which is to find a vector
x ∈ Rn+ that minimizes the expected residual of the SLCP(M(ω), q(ω)), i.e.,

min
x∈Rn+

E{kΦ(x,ω)k2}, (1.1)

where Φ : Rn × Ω→ Rn is defined by

Φ(x,ω) =

⎛⎜⎝ φ([M(ω)x]1 + q1(ω), x1)
...

φ([M(ω)x]n + qn(ω), xn)

⎞⎟⎠ ,
and [x]i denotes the ith component of the vector x. Here φ : R2 → R is an NCP
function which has the property

φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0.

Various NCP functions have been studied for solving complementarity problems [7].
In this paper, we will concentrate on the “min” function

φ(a, b) = min(a, b).

Similar results can be obtained for other NCP functions, such as the Fischer-Burmeister
(FB) function [10], which have the same growth behavior as the “min” function.

Let ERM(M(·), q(·)) denote problem (1.1) and define

G(x) =

Z
Ω

kΦ(x,ω)k2dF (ω), (1.2)

where F (ω) is the distribution function of ω. Then ERM(M(·), q(·)) is rewritten as

minimize G(x) subject to x ≥ 0. (1.3)

Recall that an n× n matrix A is called an R0 matrix if

x ≥ 0, Ax ≥ 0, xTAx = 0 =⇒ x = 0.

It is known [5, Theorem 3.9.23] that the solution set of the standard LCP(A, b)

x ≥ 0, Ax+ b ≥ 0, xT (Ax+ b) = 0

is bounded for every b ∈ Rn, if and only if A is an R0 matrix. In addition, when
A is a P0 matrix, the LCP(A, b) has a nonempty solution set if and only if A is
an R0 matrix [5, Theorem 3.9.22]. Example 1 in [3] shows that the solution set
of LCP(M(ω̄), q(ω̄)) being nonempty and bounded for some ω̄ ∈ Ω does not imply
that the ERM(M(·), q(·)) has a solution. The following results on the existence of a
solution of ERM(M(·), q(·)) are given in [3].
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(i) If M(·) is continuous in ω and there is an ω̄ ∈ Ω such that M(ω̄) is an R0
matrix, then the solution set of ERM(M(·), q(·)) is nonempty and bounded.

(ii) When M(ω) ≡ M , the solution set of ERM(M(·), q(·)) is nonempty and
bounded for any q(·) if and only if M is an R0 matrix.

In this paper, we substantially extend and refine the results established in [3]. In
particular, we introduce the concept of a stochastic R0 matrix and show that M(·)
being a stochastic R0 matrix is a necessary and sufficient condition for the solution
set of ERM(M(·), q(·)) to be nonempty and bounded. Moreover, we will extend the
local and global error bound results for the R0 matrix LCP given by Mangasarian
and Ren [16] to the stochastic R0 matrix LCP in the ERM formulation.

Throughout the paper, the norm k · k denotes the Euclidean norm and Rn+ =
{x ∈ Rn : x ≥ 0}. For a given vector x ∈ Rn, we denote I(x) = {i : xi = 0}
and J(x) = {i : xi 6= 0}. For vectors x, y ∈ Rn, min(x, y) denotes the vector with
components min(xi, yi), i = 1, · · · , n.

The remainder of the paper is organized as follows: In Section 2, the definition
and some properties of a stochastic R0 matrix are given. In Section 3, we show a nec-
essary and sufficient condition for the existence of a minimizer of the ERM problem
with an arbitrary q(·) is that M(·) is a stochastic R0 matrix. In Section 4, the dif-
ferentiability of G is considered. Some optimality conditions and error bounds of the
ERM problem are given in Section 5. In Section 6, we use a stochastic approximation
method [2,14] with acceleration by averaging [18] to solve the general ERM problem,
and use a Newton-type method to solve the ERM problem withM(ω) ≡M . Further-
more, applications to traffic equilibrium and system control are provided. Preliminary
numerical results show that the ERM formulation has various advantages.

2. Stochastic R0 matrix. A stochastic R0 matrix is formally defined as follows.
Definition 2.1. M(·) is called a stochastic R0 matrix if

x ≥ 0, M(ω)x ≥ 0, xTM(ω)x = 0, a.e. =⇒ x = 0.

If Ω only contains a single realization, then the definition of a stochastic R0 matrix
reduces to that of an R0 matrix.

LetG be defined by (1.2). We call x∗ ∈ Rn+ a local solution of the ERM(M(·), q(·)),
if there is γ > 0 such that G(x) ≥ G(x∗) for all x ∈ Rn+ ∩B(x∗, γ) := {x : kx− x∗k ≤
γ}, and call x∗ a global solution of ERM(M(·), q(·)), if G(x) ≥ G(x∗) for all x ∈ Rn+.

Theorem 2.2. The following statements are equivalent.
(i) M(·) is a stochastic R0 matrix.
(ii) For any x ≥ 0 (x 6= 0), at least one of the following two conditions is satisfied:

(a) P{ω : [M(ω)x]i 6= 0 } > 0 for some i ∈ J(x);
(b) P{ω : [M(ω)x]i < 0} > 0 for some i ∈ I(x).

(iii) ERM(M(·), q(·)) with q(ω) ≡ 0 has zero as its unique global solution.
Proof. The proof is given in the order (i) ⇒ (iii) ⇒ (ii) ⇒ (i).
(i) ⇒ (iii): It is easy to see that zero is a global solution of ERM(M(·), q(·)) with

q(ω) ≡ 0, since G(x) ≥ 0 for all x ∈ Rn+ and G(0) = 0. Now we show the uniqueness of
the solution. Let x̄ ∈ Rn+ be an arbitrary vector such that G(x̄) = 0. By the definition
of G, we have

Φ(x̄,ω) = min(M(ω)x̄, x̄) = 0, a.e.,

which implies

x̄ ≥ 0, M(ω)x̄ ≥ 0, x̄TM(ω)x̄ = 0, a.e.
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By the definition of a stochastic R0 matrix, we deduce x̄ = 0.
(iii)⇒ (ii): Suppose (ii) does not hold, that is, there exists a nonzero x0 ≥ 0 such

that

P{ω : [M(ω)x0]i = 0} = 1 for all i ∈ J(x0),
P{ω : [M(ω)x0]i ≥ 0} = 1 for all i ∈ I(x0).

Then it follows from q(ω) ≡ 0 that G(x0) = 0. Moreover, it is easy to see that for
any λ > 0, λx0 is a solution of ERM(M(·), 0), i.e., zero is not the unique solution of
ERM(M(·), 0).

(ii) ⇒ (i): Assume that there exists x 6= 0 such that x ≥ 0, M(ω)x ≥ 0 and
xTM(ω)x = 0, a.e. Then, since xTM(ω)x = 0, we have for almost all ω, [M(ω)x]i = 0
for all i ∈ J(x) and [M(ω)x]i ≥ 0 for all i ∈ I(x). This contradicts (ii).

For ν > 0, let us denote BΩ(ω̄, ν) := {ω : kω − ω̄k < ν} and

suppΩ := {ω̄ ∈ Ω :
Z
BΩ(ω̄,ν)∩Ω

dF (ω) > 0 for any ν > 0}.

Here suppΩ is called the support set of Ω. When Ω consists of countable discrete
points, i.e., Ω = {ω1, · · · ,ωi, · · · } and P (ωi) = pi > 0 for all i, we have suppΩ = Ω.
In the case that there is a density function ρ such that dF (ω) = ρ(ω)dω, we have
suppΩ = S̄, where S̄ is the closure of set S = {ω ∈ Ω : ρ(ω) > 0}.

Corollary 2.3. Suppose that M(ω) is a continuous function of ω. Then M(·)
is a stochastic R0 matrix if and only if for any x ≥ 0 (x 6= 0), at least one of the
following two conditions is satisfied:

(a) there exists ω̄ ∈ suppΩ such that [M(ω̄)x]i 6= 0 for some i ∈ J(x);
(b) there exists ω̄ ∈ suppΩ such that [M(ω̄)x]i < 0 for some i ∈ I(x).
Proof. By the continuity of M(ω) and the definition of suppΩ, conditions (a) and

(b) in this corollary imply (a) and (b) in Theorem 2.2 (ii), respectively.
Corollary 2.4. Suppose that M(ω) is a continuous function of ω and M(ω̄) is

an R0 matrix for some ω̄ ∈ suppΩ. Then M(·) is a stochastic R0 matrix.
The following example shows that the condition that M(·) is a stochastic R0

matrix is weaker than the condition that M(ω) is continuous in ω and there is an
ω̄ ∈ suppΩ such that M(ω̄) is an R0 matrix.

Example 2.1. Let

M(ω) =

⎛⎝ −2ω ω − |ω| 0
0 ω + |ω| −2ω
0 0 0

⎞⎠ ,
where ω ∈ Ω = [−0.5, 0.5] and ω is uniformly distributed on Ω. Clearly, for ω < 0,

M(ω) =

⎛⎝ −2ω 2ω 0
0 0 −2ω
0 0 0

⎞⎠ . Then x = (1, 1, 0)T satisfies M(ω)x = 0. On the

other hand, for ω > 0, M(ω) =

⎛⎝ −2ω 0 0
0 2ω −2ω
0 0 0

⎞⎠ . Then x = (0, 1, 1)T satisfies
M(ω)x = 0. In this example, there is no ω ∈ Ω such that M(ω) is an R0 matrix.
However M(·) is a stochastic R0 matrix as verified by Theorem 2.2 (ii). For any
x ≥ 0 with x 6= 0, if x1 6= 0, then for any ω > 0, [M(ω)x]1 = −2ωx1 < 0. If x1 = 0
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but x2 6= 0, then for any ω < 0, [M(ω)x]1 = 2ωx2 < 0. If only x3 6= 0, then for any
ω > 0, [M(ω)x]2 = −2ωx3 < 0.

The following proposition shows a relation between M(·) and M̄ := E{M(ω)}.
Proposition 2.5. If M̄ is an R0 matrix, then M(·) is a stochastic R0 matrix.
Proof. If M(·) were not a stochastic R0 matrix, then by Theorem 2.2 (ii), there

exists x ≥ 0 such that x 6= 0 and, for almost all ω, [M(ω)x]i = 0 for i ∈ J(x) and
[M(ω)x]i ≥ 0 for i ∈ I(x). Therefore, [M̄x]i = 0 for i ∈ J(x) and [M̄x]i ≥ 0 for
i ∈ I(x). This is impossible, since M̄ is an R0 matrix.

This proposition implies that for any given M̃, if M̃ is an R0 matrix, thenM(·) =
M̃ + M0(·) with E{M0(ω)} = 0 is a stochastic R0 matrix. The converse of this
proposition is not true. The next proposition gives a way to construct a stochastic
R0 matrix M(·) from a given M̃ which is not necessarily an R0 matrix. Let

Ξ(M) := {x : x ≥ 0, x 6= 0, [Mx]i = 0, i ∈ J(x) and [Mx]i ≥ 0, i ∈ I(x)}. (2.1)

Obviously, if Ξ(M̃) = ∅, then M̃ is an R0 matrix, and hence, by Proposition 2.5,
M(·) = M̃ +M0(·) with E{M0(ω)} = 0 is a stochastic R0 matrix.

Proposition 2.6. Let M̃ and M0(·) be such that Ξ(M̃) 6= ∅ and E{M0(ω)} = 0.
Suppose that for any x ∈ Ξ(M̃), at least one of the following two conditions is satisfied:

(1) For some i ∈ J(x), E{([M0(ω)x]i)
2} > 0;

(2) For some i ∈ I(x), P{ω : [M0(ω)x]i < −b} > 0 for any b > 0.
Then M(·) = M̃ +M0(·) is a stochastic R0 matrix.

Proof. For x ∈ Ξ(M̃), these two conditions imply that the conditions in Theorem
2.2 (ii) hold for M(·). For x 6∈ Ξ(M̃), the same conditions also hold trivially. So M(·)
is a stochastic R0 matrix.

This proposition suggests a way to obtain a stochastic R0 matrix M(·) from an
arbitrary matrix M̃ . Specifically, we can construct a simple stochastic matrix M0(·)
such that M̃+M0(·) is a stochastic R0 matrix, as illustrated in the following example.

Example 2.2. We consider the following matrix [3]:

M̃ =

⎛⎜⎜⎜⎜⎝
0 0 1 −2 −3
0 0 1 −6 −3
−1 −1 0 0 0
2 6 0 0 0
3 3 0 0 0

⎞⎟⎟⎟⎟⎠ ,

which arises from a linear programming problem in [13]. Clearly, M̃ is not an R0
matrix, and Ξ(M̃) = {x : x = (0, 0,λ,α,β)T ,λ > 0,α,β ≥ 0,λ − 6α − 3β ≥ 0}. Let
ω0 be a random variable whose distribution is N (0, 1). Let

M0(ω0) =

⎛⎜⎜⎜⎜⎝
0 0 0.5ω0 0 0
0 0 0 0 0

−0.5ω0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎠ .

Then for any b > 0, P{ω0 : [M0(ω0)x]1 < −b} > 0 holds for any x ∈ Ξ(M̃). Hence,
by Proposition 2.6, M̃ +M0(·) is a stochastic R0 matrix.

The following proposition shows that the sum of a stochastic R0 matrixM(·) and
a matrix M1(·) with E{M1(ω1)} = 0 yields a stochastic R0 matrix.
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Proposition 2.7. Let ω = (ω0,ω1) and M̂(ω) = M(ω0) +M1(ω1), where M(·)
is a stochastic R0 matrix, E{M1(ω1)} = 0, and M(ω0) is independent of M1(ω1).
Then M̂(·) is a stochastic R0 matrix.

Proof. If M̃ := E{M(ω0)} is an R0 matrix, then from E{M1(ω1)} = 0 and
Proposition 2.5, M(·) +M1(·) is a stochastic R0 matrix. Otherwise, let M0(ω0) =
M(ω0)−M̃ and choose any x ∈ Ξ(M̃). Suppose that the first condition of Proposition
2.6 holds for M0(ω0). Since M(ω0) is independent of M1(ω1), we have

E{([(M0(ω0) +M1(ω1))x]i)
2} = E{([M0(ω0)x]i)

2}+ E{([M1(ω1)x]i)
2} > 0

for some i ∈ J(x). Now, suppose that the second condition of Proposition 2.6 holds
for M0(ω0), i.e., P{ω0 : [M0(ω0)x]i < −b} > 0 for some i ∈ I(x). Note that

P{ω : [(M0(ω0) +M1(ω1))x]i < −b}
≥ P{(ω0,ω1) : [M0(ω0)x]i < −b and [M1(ω1)x]i ≤ 0}
= P{ω0 : [M0(ω0)x]i < −b}P{ω1 : [M1(ω1)x]i ≤ 0}.

Since E{[M1(ω1)x]i} = 0, we have P{ω1 : [M1(ω1)x]i ≤ 0} > 0. Thus, we have

P{ω : [(M0(ω0) +M1(ω1))x]i < −b} > 0,

i.e., the second condition of Proposition 2.6 also holds for M0(ω0 +M1(ω1). Since

M̂(ω) =M(ω0) +M1(ω1) = M̃ +M0(ω0) +M1(ω1),

Proposition 2.6 ensures that M̂(·) is a stochastic R0 matrix.
3. Boundedness of solution set. In this section, the boundedness of the so-

lution set of the ERM problem (1.3) is studied.
Theorem 3.1. Let q(·) be arbitrary. Then G(x)→∞ as kxk→∞ with x ∈ Rn+

if and only if M(·) is a stochastic R0 matrix.
Proof. First we prove the “if” part. For simplicity, we denote |x| = (|x1|, · · · , |xn|)T

and sign(x) = (sign(x1), · · · , sign (xn))T for a vector x, where

sign(xi) =

⎧⎨⎩ 1, xi > 0,
0, xi = 0,
−1, xi < 0.

Note that for any a, b ∈ R, we have

2min(a, b) = a+ b− sign(a− b)(a− b)
= (1− sign(a− b))a+ (1 + sign(a− b))b

and

4(min(a, b))2 = a(1− sign(a− b))2a+ b(1 + sign(a− b))2b+ 2b(1− sign2(a− b))a
= 2a(1− sign(a− b))a+ 2b(1 + sign(a− b))b.

For any x ∈ Rn and ω ∈ Ω, we define the diagonal matrix

D(x,ω) = diag(sign(M(ω)x+ q(ω)− x)).
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Then we have

kΦ(x,ω)k2 = 1

2
[(M(ω)x+ q(ω))T (I −D(x,ω))(M(ω)x+ q(ω))

+ xT (I +D(x,ω))x]. (3.1)

Consider an arbitrary x ≥ 0 with kxk = 1. Suppose condition (a) in Theorem
2.2 (ii) holds. Choose i ∈ J(x) such that P{ω : [M(ω)x]i 6= 0} > 0. Then there exists
a sufficiently large K > 0 such that P{ω : [M(ω)x]i 6= 0, |qi(ω)| ≤ K} > 0.

First consider the case where P{ω : [M(ω)x]i < xi, |qi(ω)| ≤ K} > 0. Let

Ω1 := {ω : [M(ω)x]i < (1− δ)xi, |qi(ω)| ≤ K},

where δ > 0. Then we have P{Ω1} > 0 whenever δ is sufficiently small. Moreover,
for any sufficiently large λ > 0, sign(λ[M(ω)x]i + qi(ω)− λxi) = −1 for any ω ∈ Ω1.
Therefore, by (1.2) and (3.1), we have

G(λx) ≥
Z
Ω1

(λ[M(ω)x]i + qi(ω))
2dF (ω)→∞ as λ→∞. (3.2)

Next, consider the case where P{ω : [M(ω)x]i > xi, |qi(ω)| ≤ K} > 0. Let

Ω2 := {ω : [M(ω)x]i > (1 + δ)xi, |qi(ω)| ≤ K}.

Then we have P (Ω2) > 0 for a sufficiently small δ > 0. Moreover, for any sufficiently
large λ > 0, sign(λ[M(ω)x]i + qi(ω)− λxi) = 1 for ω ∈ Ω2. Hence we have

G(λx) ≥
Z
Ω2

(λxi)
2dF (ω)→∞ as λ→∞. (3.3)

Finally consider the case where P{ω : [M(ω)x]i = xi, |qi(ω)| ≤ K} > 0. Let

Ω3 := {ω : [M(ω)x]i = xi, |qi(ω)| ≤ K}.

Then we have

G(λx) ≥
Z
Ω3

{(λxi + qi(ω))21{qi(ω)<0} + (λxi)21{qi(ω)≥0}}dF (ω)→∞ as λ→∞.
(3.4)

Combining (3.2)—(3.4), we see that G(λx)→∞ as λ→∞.
Now, suppose condition (b) in Theorem 2.2 (ii) holds. Choose i ∈ I(x) such that

P{ω : [M(ω)x]i < 0} > 0. Let

Ω4 := {ω : [M(ω)x]i < −δ, |qi(ω)| < K}.

Then we have P{Ω4} > 0 for any sufficiently small δ > 0 and sufficiently large K > 0.
Moreover, for any λ > 0 large enough, λ[M(ω)x]i + qi(ω) < 0 for ω ∈ Ω4. Thus we
have

(1− sign(λ[M(ω)x]i + qi(ω)))(λ[M(ω)x]i + qi(ω))2 = 2(λ[M(ω)x]i + qi(ω))2,

which yields

G(λx) ≥
Z
Ω4

(λ[M(ω)x]i + qi(ω))
2dF (ω)→∞ as λ→∞.



8 HAITAO FANG, XIAOJUN CHEN, AND MASAO FUKUSHIMA

Since x is an arbitrary nonzero vector such that x ≥ 0, we deduce from the above
arguments that G(x) → ∞ as kxk → ∞ with x ≥ 0, provided the statement (ii) in
Theorem 2.2 holds.

Let us turn to proving the “only if” part. Suppose that M(·) is not a stochastic
R0 matrix, i.e., there exists x ≥ 0 with x 6= 0 such that [M(ω)x]i = 0 for all i ∈ J(x)
and [M(ω)x]i ≥ 0 for all i ∈ I(x), a.e. For any λ > 0, from (1.2) and (3.1), we have

G(λx) =
1

2

nX
i=1

E{(1− sign(λ[M(ω)x]i + qi(ω)− λxi))(λ[M(ω)x]i + qi(ω))2

+ (1 + sign(λ[M(ω)x]i + qi(ω)− λxi))(λxi)2}. (3.5)

The ith term of the right-hand side of (3.5) with xi 6= 0 equals

E{(1− sign(qi(ω)− λxi))qi(ω)2 + (1 + sign(qi(ω)− λxi))(λxi)2}
= 2E{qi(ω)21{qi(ω}≤λxi} + (λxi)21{qi(ω)>λxi}} ≤ 2E{qi(ω)2},

while the ith term of the right-hand side of (3.5) with xi = 0 equals

E{(1− sign(λ[M(ω)x]i + qi(ω)))(λ[M(ω)x]i + qi(ω))2}
= 2E{(λ[M(ω)x]i + qi(ω))21{λ[M(ω)x]i<−qi(ω)}} ≤ 2E{qi(ω)2},

where the last inequality follows from 0 > λ[M(ω)x]i + qi(ω) ≥ qi(ω), implying
(λ[M(ω)x]i + qi(ω))

2 ≤ qi(ω)2. So, we obtain
G(λx) ≤ E{kq(ω)k2} for any λ > 0.

Since x ≥ 0 with x 6= 0, this particularly implies that G is bounded above on a
nonnegative ray in Rn+. This completes the proof of the “only if ” part.

The solution set of ERM(M(·), q(·)) may be bounded even ifM(·) is not a stochas-
tic R0 matrix. It depends on the distribution of q(ω), as shown in the following two
propositions.

Proposition 3.2. If M(·) is not a stochastic R0 matrix, P{ω : qi(ω) > 0} > 0
for some i ∈ J(x), and P{ω : qi(ω) ≥ 0} = 1 for all i ∈ I(x), where x 6= 0 is any
nonnegative vector at which the conditions (a) and (b) in Theorem 2.2 (ii) fail to hold,
then the solution set of ERM(M(·), q(·)) is bounded.

Proof. Note that

G(0) = E{kΦ(0,ω)k2} =
nX
i=1

E{qi(ω)21{qi(ω)<0}}. (3.6)

For any nonnegative vector x 6= 0 satisfying the conditions (a) and (b) in Theorem
2.2 (ii), the proof of Theorem 3.1 indicates that

G(λx)→∞ as λ→ 0. (3.7)

Let x 6= 0 be any nonnegative vector which does not satisfy the conditions (a)
and (b) in Theorem 2.2 (ii), i.e., [M(ω)x]i = 0 for i ∈ J(x), and [M(ω)x]i ≥ 0 for
i ∈ I(x), a.e. Then by (3.1), we have

G(λx) =
X
i∈J(x)

E{[(1− sign(qi(ω)− λxi))qi(ω)2 + (1 + sign(qi(ω)− λxi))(λxi)2]/2}

=
X
i∈J(x)

{E{qi(ω)2}− E{1{qi(ω)−λxi>0}[qi(ω)2 − (λxi)2]}}, (3.8)
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where the first equality follows from the assumption that P{ω : qi(ω) ≥ 0} = 1 for
i ∈ I(x) and hence [M(ω)x]i + qi(ω) ≥ 0, a.e., for i ∈ I(x). Note that

0 ≤ E{1{qi(ω)−λxi>0}[qi(ω)2 − (λxi)2]} = E{1{qi(ω)>λxi}[qi(ω)2 − (λxi)2]}
≤ E{1{qi(ω)>λxi}qi(ω)2}→ 0 as λ→∞,

which together with (3.8) implies

lim
λ→∞

G(λx) =
X
i∈J(x)

E{qi(ω)2}. (3.9)

On the other hand, for any nonzero x ≥ 0, we have
nX
i=1

E{qi(ω)21{qi(ω)<0}} =
X
i∈J(x)

E{qi(ω)21{qi(ω)<0}} <
X
i∈J(x)

E{qi(ω)2}, (3.10)

where the equality follows from the assumption that P{ω : qi(ω) ≥ 0} = 1 for all i ∈
I(x) and the strict inequality follows from the assumption that P{ω : qi(ω) > 0} > 0
for some i ∈ J(x). Combining (3.6), (3.9), and (3.10), we have

G(0) < lim
λ→+∞

G(λx). (3.11)

Let Λ := {x ∈ Rn+ : G(x) ≤ G(0)}. From (3.7) and (3.11), we have supx∈Λ kxk < +∞.
Since any solution belongs to Λ, this implies that the solution set is bounded.

Proposition 3.3. If M(·) is not a stochastic R0 matrix and, for any i, P{ω :
−b ≤ qi(ω) < 0} = 1 for some b > 0 and P{ω : qi(ω) 6= 0 and [M(ω)x0]i = 0} = 0,
where x0 6= 0 is any nonnegative vector at which the conditions (a) and (b) in Theorem
2.2 (ii) fail to hold, then the solution set of ERM(M(·), q(·)) is empty or unbounded.

Proof. Let x0 6= 0 be any nonnegative vector which does not satisfy the conditions
(a) and (b) in Theorem 2.2 (ii). From (1.2) and (3.1), we have

G(λx0) =

nX
i=1

E{[(1− sign(λ[M(ω)x0]i + qi(ω)− λx0i ))(λ[M(ω)x0]i + qi(ω))2

+ (1 + sign(λ[M(ω)x0]i + qi(ω)− λxi))(λx0i )2]/2}. (3.12)

For every i ∈ J(x0), we have [M(ω)x0]i = 0 and qi(ω) = 0, a.e., and hence the ith
term of the right-hand side of (3.12) is zero for any λ > 0. For every i ∈ I(x0), we
have [M(ω)x0]i ≥ 0 and qi(ω) < 0, a.e., which implies

E{(1− sign(λ[M(ω)x0]i + qi(ω)))(λ[M(ω)x0]i + qi(ω))2}
= 2E{(λ[M(ω)x0]i + qi(ω))21{λ[M(ω)x0]i<−qi(ω),[M(ω)x0]i>0}}

+ 2E{q2i (ω)1{[M(ω)x0]i=0}}. (3.13)

By assumption, the second term on the right-hand side of (3.13) is zero for any λ > 0,
and

E{(λ[M(ω)x0]i + qi(ω))21{λ[M(ω)x0]i<−qi(ω),[M(ω)x0]i>0}}
≤ b2P{ω : 0 < λ[M(ω)x0]i < b}→ 0 as λ→∞.
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Therefore, we obtain

lim
λ→+∞

G(λx0) = 0,

but for any x ∈ Rn+, G(x) ≥ 0. So for any γ > 0, the level set Λγ := {x : G(x) ≤ γ} is
unbounded, which means the solution set is unbounded if it is not empty.

From Theorem 3.1, we have the following necessary and sufficient condition for
the solution set of ERM(M(·), q(·)) to be bounded for any q(·).

Theorem 3.4. The solution set of ERM(M(·), q(·)) is nonempty and bounded
for any q(·) if and only if M(·) is a stochastic R0 matrix.

4. Differentiability of G. The objective function G of ERM(M(·), q(·)) is, in
general, not convex. If G is differentiable at x, then min(∇G(x), x) = 0 implies that
x is a stationary point of ERM(M(·), q(·)). The differentiability of G is studied in [3]
for the special case where M(ω) ≡ M , q(ω) = q̄ + Tω with M ∈ Rn×n, q̄ ∈ Rn,
T ∈ Rn×m being constants and T having at least one nonzero element in each row.

In this section, we will give a condition for the function G to be differentiable
under a general setting. The continuity of M(·) and q(·) is not assumed.

Definition 4.1. We say that the strict complementarity condition holds at x
with probability one if

P{ω : [M(ω)x]i + qi(ω) = xi} = 0, i = 1, · · · , n.

Obviously this definition is a generalization of the strict complementarity condition for
the LCP. The proof for the differentiability of G at x under the strict complementarity
condition with probability one is not trivial.

For any fixed ω, if [M(ω)x]i+ qi(ω)− xi 6= 0 for all i, then kΦ(x,ω)k2 is differen-
tiable at x and

∇xkΦ(x,ω)k2 =M(ω)T (I −D(x,ω))(M(ω)x+ q(ω)) + (I +D(x,ω))x.

To simplify the notation, we define

f(x,ω) :=M(ω)T (I −D(x,ω))(M(ω)x+ q(ω)) + (I +D(x,ω))x. (4.1)

Theorem 4.2. The function g(x) :=
R
Ω
f(x,ω)dF (ω) is continuous at x if the

strict complementarity condition holds at x with probability one.
Proof. We will show that kg(x+ h)− g(x)k→ 0 as h→ 0. Since

f(x,ω)− f(x+ h,ω) = (M(ω)T (I −D(x,ω))M(ω) + I +D(x,ω))h
+M(ω)T (D(x+ h,ω)−D(x,ω))(M(ω)(x+ h) + q(ω))
− (D(x+ h,ω)−D(x,ω))(x+ h),

there exist some constants c1, c2 > 0 such that

kg(x+ h)− g(x)k = k
Z
Ω

[f(x+ h,ω)− f(x,ω)]dF (ω)k

≤ c1khk+ c2
Z
Ω

kD(x+ h,ω)−D(x,ω)kdF (ω).

Then we just need to show thatZ
Ω

kD(x+ h,ω)−D(x,ω)kdF (ω)→ 0 as h→ 0.
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Note that

{ω : kD(x+ h,ω)−D(x,ω)k 6= 0} ⊂ ∪ni=1{Ai ∪Bi},

where

Ai := {ω : [M(ω)x]i + qi(ω)− xi ≥ 0, [M(ω)(x+ h)]i + qi(ω)− xi − hi ≤ 0},
Bi := {ω : [M(ω)x]i + qi(ω)− xi ≤ 0, [M(ω)(x+ h)]i + qi(ω)− xi − hi ≥ 0}.

For any ε > 0, since the strict complementarity condition holds at x with probability
one, there is a δ > 0 such that

P{ω : |[M(ω)x]i + qi(ω)− xi| < δ} < ε/2. (4.2)

Let

Ci := {ω : [M(ω)x]i + qi(ω)− xi ≥ δ, [M(ω)(x+ h)]i + qi(ω)− xi − hi ≤ 0}.

Then, we have

Ai ⊂ Ci ∪ {ω : |[M(ω)x]i + qi(ω)− xi| < δ},
Ci ⊂ {ω : [M(ω)h]i − hi ≤ −δ}.

Applying a similar procedure to Bi, we have

P{Ai ∪Bi} ≤ P{ω : |[M(ω)h]i − hi| ≥ δ}+ P{ω : |[M(ω)x]i + qi(ω)− xi| < δ}.

By the Chebychev inequality, there is an h0 > 0 such that for any h with khk < h0,

P{ω : |[M(ω)h]i − hi| ≥ δ} < ε/2.

This together with (4.2) implies that g is continuous at x.
Theorem 4.3. If the strict complementarity condition holds at any x in an open

set U ⊂ Rn with probability one, then G is Fréchet differentiable at x ∈ U and

∇G(x) =
Z
Ω

f(x,ω)dF (ω). (4.3)

Proof. First, we will show that for almost all ω, µ{x ∈ U : [M(ω)x]i + qi(ω) =
xi} = 0 for any i, where µ is Lebesgue measure. If it were no true, then for some i

P{ω : µ{x ∈ U : [M(ω)x]i + qi(ω) = xi} > 0} > 0,

which implies Z
Ω

Z
U

1{[M(ω)x]i+qi(ω)=xi}dxdF (ω) > 0. (4.4)

But from the assumption and the Fubini Theorem [11], we obtainZ
Ω

Z
U

1{[M(ω)x]i+qi(ω)=xi}dxdF (ω) =
Z
U

Z
Ω

1{[M(ω)x]i+qi(ω)=xi}dF (ω)dx = 0.

This contradicts (4.4), and hence for almost all ω, µ{x ∈ U : [M(ω)x]i + qi(ω) =
xi} = 0 for any i.
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Note that, for any ω ∈ Ω, kΦ(x,ω)k2 is locally Lipschitz and hence absolutely con-
tinuous with respect to x. For any (x,ω) such that [M(ω)x]i+ qi(ω) 6= xi, kΦ(x,ω)k2
is differentiable with respect to x. Therefore by the Fundamental Theorem of Calculus
for Lebesgue Integrals [11], for any x, we have

kΦ(x+ hiei,ω)k2 − kΦ(x,ω)k2 =
Z hi

0

[f(x+ sei,ω)]ids (4.5)

for almost all ω, where ei = (0, · · · , 0, 1
i
, 0, · · · , 0)T . Thus

G(x+ h)−G(x) =
nX
i=1

Z
Ω

(kΦ(x+
nX
k=i

hkek,ω)k2 − kΦ(x+
nX

k=i+1

hkek,ω)k2)dF (ω).

(4.6)

By (4.5), (4.6), and the Fubini Theorem, we deduce thatZ
Ω

Z hi

0

[f(y + sei,ω)]idsdF (ω) =

Z hi

0

Z
Ω

[f(y + sei,ω)]idF (ω)ds

for any i and y ∈ B(x, khk) ⊂ U, and hence

G(x+ h)−G(x)− hT
Z
Ω

f(x,ω)dF (ω)

=

nX
i=1

Z hi

0

Z
Ω

[f(x+

nX
k=i+1

hkek + sei,ω)]idF (ω)ds−
nX
i=1

Z hi

0

Z
Ω

[f(x,ω)]idF (ω)ds

=
nX
i=1

Z hi

0

Z
Ω

([f(x+
nX

k=i+1

hkek + sei,ω)]i − [f(x,ω)]i)dF (ω)ds

=
nX
i=1

Z hi

0

(gi(x+
nX

k=i+1

hkek + sei)− gi(x))ds,

where g is defined in Theorem 4.2. From Theorem 4.2, for any ε > 0, there exists a
sufficiently small h0 > 0 such that for any h with khk < h0,

|G(x+ h)−G(x)− hT
Z
Ω

f(x,ω)dF (ω)| < εkhk,

which implies

|G(x+ h)−G(x)− hT
R
Ω
f(x,ω)dF (ω)|

khk → 0 as khk→ 0.

Therefore, G is Fréchet differentiable at x and (4.3) holds.
Remark. When M(ω) ≡ M and q(ω) = q̄ + Tω, if [Tω]i has no mass at any

point for each i, i.e., P{ω : [Tω]i = a} = 0 for any a ∈ R, then P{ω : [M(ω)x]i +
qi(ω) = xi} = 0, i = 1, · · · , n. Therefore, if T has at least one nonzero element in
each row [3], then for all x ∈ Rn, the strict complementarity condition holds with
probability one, and G is differentiable in Rn+. This indicates that the result shown in
Theorem 4.3 contains the results established in [3].
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Let Fqi(s) be the distribution function of qi(ω), i.e., Fqi(s) = P{ω : qi(ω) ≤ s}.
Suppose M(ω) ≡M . Then, we have

G(x) =

Z +∞

−∞

nX
i=1

(min([Mx]i + s, xi)
2dFqi(s)

=

nX
i=1

Z [(I−M)x]i

−∞
([Mx]i + s)

2dFqi(s) +

nX
i=1

x2i (1− Fqi([(I −M)x]i)). (4.7)

It is shown in [3] that for some special distribution functions, G(x) can be computed
without using discrete approximation. The following proposition shows that, under
some conditions, we can also compute ∇G(x) without using discrete approximation.

Proposition 4.4. If M(ω) ≡ M and Fqi(s) is a continuous function for all i,
then

∇G(x) = 2MTH(x)x+ 2(I −H(x))x− 2MT v(x), (4.8)

where

H(x) := diag(Fq1([(I −M)x]1), · · · , Fqn([(I −M)x]n),

v(x) := (

Z [(I−M)x]1

−∞
Fq1(s)ds, · · · ,

Z [(I−M)x]n

−∞
Fqn(s)ds)

T .

Proof. If M(ω) ≡M and Fqi(s) is continuous for all i, then P{ω : qi(ω) = a} = 0
for any a ∈ R, and hence P{ω : [Mx]i + qi(ω) = xi} = 0 for each x ∈ Rn+. Then, by
Theorem 4.3, G(x) is differentiable at any x ∈ Rn+ and

∇G(x) =
Z
Ω

[MT (I −D(x,ω))(Mx+ q(ω)) + (I +D(x,ω))x]dF (ω)

=MT [

Z
Ω

(I −D(x,ω))dF (ω)Mx+
Z
Ω

(I −D(x,ω))q(ω)dF (ω)]

+ (

Z
Ω

(I +D(x,ω))dF (ω))x

= 2MTH(x)Mx+ 2MTR(x) + 2(I −H(x))x, (4.9)

where

R(x) := (

Z [(I−M)x]1

−∞
sdFq1(s), · · · ,

Z [(I−M)x]n

−∞
sdFqn(s))

T .

By integration by parts, we haveZ [(I−M)x]i

−∞
sdFqi(s) = [(I −M)x]iFqi([(I −M)x]i)−

Z [(I−M)x]i

−∞
Fqi(s)ds.

This implies that

R(x) = (

Z [(I−M)x]1

−∞
sdFq1(s), · · · ,

Z [(I−M)x]n

−∞
sdFqn(s))

T = H(x)(I −M)x− v(x).

Combining this with (4.9), we have the desired formula (4.8).
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From (4.8), we see that the smoothness of G(·) depends on the smoothness of
Fqi(·), i = 1, · · · , n. If for all i, Fqi(·) is differentiable at [(I −M)x]i and ρi(·), the
derivative of Fqi(·), is continuous at [(I−M)x]i, then the Hessian matrix of G(x) can
be written as

∇2G(x) = 2MTH(x)M + 2(MTS(x) + S(x)M)− 2MTS(x)M + 2(I − S(x)−H(x))
= 2MTH(x)M + 2(I −H(x))− 2(I −M)TS(x)(I −M), (4.10)

where

S(x) := diag(x1ρ1([(I −M)x]1), · · · , xnρn([(I −M)x]n)).

5. Optimality conditions and error bounds. In numerical algorithms, resid-
ual functions play an important role in terminating iterations and verifying accuracy
of a computed solution. The following theorem shows the basic properties of the
residual function defined by

r(x) = kmin(∇G(x), x)k.

Theorem 5.1. Suppose that the strict complementarity condition holds at any x
in an open set U with probability one. Then the following statements are true.

(1) If x̄ ∈ U is a local solution of ERM(M(·), q(·)), then r(x̄) = 0.
(2) If G(·) is twice continuously differentiable at x̄ ∈ Rn+ where r(x̄) = 0 and the

Hessian matrix ∇2G(x̄) is positive definite, then there are an open set Ū ⊂ U
and a constant τ > 0 such that x̄ is a unique local solution of ERM(M(·), q(·))
in Ū , and for all x ∈ Ū

kx− x̄k ≤ τr(x). (5.1)

Proof. From Theorem 4.3, we can write the first order optimality condition for the
ERM problem (1.3) as r(x) = 0. Now we show (5.1). Since G(·) is twice continuously
differentiable at x̄ and ∇2G(x̄) is positive definite, there is an open set Ū ⊂ U such
that ∇G(x) is a locally Lipschitz continuous and uniform P function in Ū . Applying
Proposition 6.3.1 in [7] to the nonsmooth equation min(x,∇G(x)) = 0, we obtain
(5.1).

Corollary 5.2. If Ω = {ω1, · · · ,ωN}, and the strict complementarity condition
holds at x ∈ Rn+ with probability one, then r(x) = 0 implies x is a local solution of
ERM(M(·), q(·)).

Proof. Since the strict complementarity condition holds at x ∈ Rn+ with proba-
bility one, by (3.1), for each i, kΦ(x,ωi)k2 is twice continuously differentiable and

∇2G(x) =
NX
i=1

[M(ωi)
T (I −D(x,ωi))M(ωi) + (I +D(x,ωi))].

Since the Hessian matrix ∇2G(x) is positive semidefinite, and G(x) is a quadratic
function in B(x, ν) for a sufficiently small ν > 0, x is a local solution.

Now we consider error bounds for the case whereG is not necessarily differentiable.
Let

s(x) = G(x)− min
x∈Rn+

G(x).
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When Ω = {ω1, · · · ,ωN}, we can write

G(x) =

NX
j=1

nX
i=1

|min([M(ωj)x+ q(ωj)]i, xi)|2p(ωj),

where p(ωj) is the probability of ωj . Clearly, there exist finitely many convex poly-
hedra such that G is a convex quadratic function on each polyhedron, i.e., G is a
piecewise convex quadratic function. By Theorem 2.5 in [15], we have the following
local error bound result:

Proposition 5.3. If Ω = {ω1, · · · ,ωN}, then there exist constants τ > 0 and
ε > 0 such that for any x ∈ Rn+ with s(x) ≤ ε

kx− x∗(x)k ≤ τs(x)1/2,

where x∗(x) is a global solution of ERM(M(·), q(·)) closest to x under the norm k · k.
Let us denote sγ(x) = s(x)

γ for γ > 0. For a general continuous distribution of
ω, G may not be a piecewise convex function. The following example shows that the
function sγ provides a local error bound for the ERM(M(·), q(·)) with various values
of γ depending on the distribution of ω.

Example 5.1. Consider the SLCP(M(ω), q(ω)) with

M(ω) ≡

⎛⎝ 1 1 1
1 1 −1
1 0 −1

⎞⎠ , q(ω) =
⎛⎝ −1−1

ω

⎞⎠ ,
where ω is a random variable with suppΩ ⊂ [−1, 0]. It is easy to check thatM(ω) is an
R0 matrix. For any ω, the solution set of LCP(M(ω), q(ω)) is {(x1, 1− x1, 0)T : x1 ∈
[−ω, 1]}∪{(− 12ω+ 1

2 , 0,
1
2ω+

1
2 )
T }. Let ρ(ω) be the density function of ω.We consider

the following two cases: ρ(ω) ≡ 1 and ρ(ω) = 2(ω + 1). Clearly, x∗ = (1, 0, 0)T is the
unique global solution of ERM(M(·), q(·)) and r(x∗) = 0 for these two cases. But for
any x = (x1, 1− x1, 0)T with x1 ∈ [0, 1], if ρ(ω) ≡ 1, then s(x) = (1− x1)3/2/

√
3, but

if ρ(ω) = 2(ω + 1), then s(x) = (1− x1)2/
√
6. Noticing that kx− x∗k =

√
2(1− x1),

we have kx− x∗k ≤ τsγ(x), where γ depends on the distribution of ω. So the general
form of local error bound for ERM(M(·), q(·)) with continuous random variables is
difficult to obtain unless the information on the distribution of ω is known.

Theorem 5.4. Let M(·) be a stochastic R0 matrix. Then for any ε > 0, there
exists τ > 0 such that for each x ∈ Rn+ with s(x) > ε

kx− x∗(x)k ≤ τs(x)1/2,

where x∗(x) is a global solution of ERM(M(·), q(·)) closest to x under the norm k · k.
Proof. If the assertion were not true, then for any positive integer k, there exists

xk with s(xk) > ε such that

kxk − x∗(xk)k > ks(xk)1/2 > kε1/2.

Since M(·) is a stochastic R0 matrix, by Theorem 3.4, the global solution set of
ERM(M(·), q(·)) is nonempty and bounded. Therefore kxkk→∞ as k →∞, and

s(xk)1/2

kxkk ≤ kx
k − x∗(xk)k
kkxkk → 0 as k →∞. (5.2)
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Let {xnk/kxnkk} be a convergent subsequence of {xk/kxkk}. Note that

lim
k→∞

s(xnk)1/2

kxnkk = lim
k→∞

(G(xnk)−minx∈Rn+ G(x))1/2
kxnkk = lim

k→∞
G(xnk)1/2

kxnkk

= lim
k→∞

(

Z
Ω

nX
i=1

|min( [M(ω)x
nk ]i + qi(ω)

kxnkk ,
xnki
kxnkk )|

2dF (ω))1/2.

Since for any x with kxk = 1Z
Ω

nX
i=1

|min([M(ω)x]i + qi(ω), xi)|2dF (ω) ≤
Z
Ω

(kM(ω)k2 + kq(ω)k2)dF (ω) + 1 <∞,

by the dominated convergence theorem, we obtain

lim
k→∞

s(xnk)1/2

kxnkk = (

Z
Ω

nX
i=1

|min([M(ω)x̂]i, x̂i)|2dF (ω))1/2 <∞,

where x̂ is an accumulation point of {xnk/kxnkk}. This, together with (5.2) and
s(xnk)1/2/kxnkk ≥ 0, yieldsZ

Ω

nX
i=1

|min([M(ω)x̂]i, x̂i)|2dF (ω) = 0,

which implies that x̂ is a solution of the ERM(M(·), 0). Since kx̂k = 1, this contradicts
the assumption that M(·) is a stochastic R0 matrix from Theorem 2.2 (iii).

Remark If Ω contains only one element ω and LCP(M(ω), q(ω)) has a solution,
then error bounds in Theorem 5.1 and Theorem 5.4 reduce to the local and global error
bounds for the R0 matrix LCP given in [16]. Hence the two theorems are extensions
of error bounds for the R0 matrix LCP given in [16] to the stochastic R0 matrix LCP
in the ERM formulation.

6. Examples and numerical results. In this section, we report numerical
results of four examples of the stochastic R0 matrix LCP in the ERM formulation.

Let the measure of feasibility of x ∈ Rn+ with tolerance ε ≥ 0 be defined by

relε(x) = P{ω : [M(ω)x]i + qi(ω) ≥ −ε, i = 1, · · · , n}. (6.1)

This measure indicates how much we may expect that x satisfies the constraints
M(ω)x+ q(ω) ≥ 0 (with some tolerance).

Example 6.1. We use M̃ and M0(ω0) given in Example 2.2, and

M1(ω
0) =

⎛⎜⎜⎜⎜⎝
0 0 0 −ω1 0
0 0 0 0 −0.4− 0.4 lnω2
0 0 0 0 0

ω1 0 0 −2
√
3ω3 −2

√
3ω3

0 0.4 + 0.4 lnω2 0 −3ω4 3ω4

⎞⎟⎟⎟⎟⎠ ,

where ω0 = (ω1, · · · ,ω4)T with the distributions of ω1, ω2, ω3, ω4 being U [−0.8, 0.8],
U [0, 1], N (0, 1) and N (0, 1), respectively. Let ω = (ω0,ω1, · · · ,ω4)T and M(ω) =
M̃ +M0(ω0)+M1(ω

0). From Example 2.2, we know that M̃ +M0(ω0) is a stochastic
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R0 matrix. It is easy to verify that E{M1(ω
0)} = 0. Hence by Proposition 2.7, M(·)

is a stochastic R0 matrix.
We set q(ω) = q̃ + q0(ω), where q̃ is a constant vector and E{q0(ω)} = 0. In this

example, we choose

q0(ω) = (0.1ω0, 0.1ω0, 0,−2
√
3ω3,−3ω4)T

with three different cases for q̃,

q̃1 = (2, 3, 100,−180,−162)T , q̃2 = (−5,−5, 0, 10, 10)T , q̃3 = (−5,−5,−5,−5,−5)T .

The deterministic LCP(M̃, q̃i), i = 1, 2, 3, have a unique solution (36, 18, 0, 0.25, 0.5)T ,
multiple solutions (0, 0,λ, 0, 0)T with λ ≥ 5, and no feasible solution, respectively.

For all qi(ω), we can check that for any x = (x1, · · · , x5)T ∈ R5+ with xi 6=
0, i = 1, 2, the strict complementarity condition holds at x with probability one,
and so ∇G(x) exists at these points. Hence we can use a stochastic approximation
algorithm [2,14,18] to find a minimizer of G(x) in Rn+. The iterative formula is given
by

xk+1 = max(xk − akf(xk,ωk), 0), (6.2)

where f(x,ω) is defined by (4.1), ak is a stepsize satisfying
P∞

k=1 ak =∞ and ak → 0,
and ωk is the kth sample of ω. By the convergence theorems of stochastic approx-
imation algorithms ( [2, Theorem 2.2.1] and [14, Theorem 5.2.1]), the generated
sequence {xk} will converge to a connected set S such that every x̄ ∈ S satisfies
min(g(x̄), x̄) = 0 with g(x) defined in Theorem 4.2. If x̄i 6= 0, i = 1, 2, then by
Theorem 4.3, ∇G(x̄) = g(x̄). In this example, ak is chosen as

ak =

⎧⎪⎪⎨⎪⎪⎩
0.003, k ≤ 104,
0.0025, 104 < k ≤ 105,
0.002, 105 < k ≤ 5× 105,
1
k0.6 , 5× 105 < k ≤ 2× 106.

When k ≥ 5× 105, we use the averaging technique proposed by [18] to accelerate the
convergence.

The stochastic approximation algorithm is a local optimization algorithm. To
avoid being trapped in a local minimum, for each q̃i, i = 1, 2, 3, we executed 36 times
simulation from different initial points x0 = (10l, 10l0, 0, 0, 0)T , l, l0 ∈ {0, 1, · · · , 5}.
The step size ak and initial points were chosen based on suggestions for stochastic
approximation algorithms in [14].

For each q̃i, the information on the last iterate xkmax, where kmax = 2 × 106,
obtained by (6.2) is shown in Table 6.1. The columns labeled as “G(x)” and “r(x)”
show the respective values obtained by the Monte Carlo method with 106 samples.
The row labeled as “average” shows the average of the values obtained from 36 dif-
ferent initial points. The rows labeled as “min” and “max” indicate the interval of
those values, which represents the variability of the values obtained from 36 different
initial points.

Recall that the EV method solves the deterministic LCP(M̃, q̃). Let x̃ be a
solution of LCP(M̃, q̃). For q̃2 = (−5,−5, 0, 10, 10)T , since there are multiple solutions
(0, 0,λ, 0, 0)T with λ ≥ 5, G(x) and r(x) are evaluated at x̃ = (0, 0, 5, 0, 0)T . There is
no feasible solution of LCP(M̃, q̃) with q̃3 = (−5,−5,−5,−5,−5)T .
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Table 6.1
Simulation results for Example 6.1 where E{M(ω)} is not an R0 matrix.

x1 x2 x3 x4 x5 G(x) r(x)

q̃1 = (2, 3, 100, −180, −162)T
min 39.5439 23.298 0 0.2079 0.345 7.2405 0.0115

max 40.1396 23.5793 0.0096 0.3804 0.5413 7.5741 0.6486

average 39.7865 23.4563 0.0014 0.2610 0.4635 7.413 0.15826

x̃ 36 18 0 0.25 0.5 197.03 12025

q̃2 = (−5, −5, 0, 10, 10)T
min 0.0004 0.0044 11.4092 0 0 1.8518 0

max 0.0030 0.0154 11.6959 0 0 1.9037 0.002

average 0.0008 0.0068 11.5410 0 0 1.8747 4.44× 10−5
x̃ 0 0 5 0 0 3.1428 0.5718

q̃3 = (−5, −5, −5, −5, −5)T
min 0.004 1.3915 5.7993 0.0005 0.1137 51.652 0.0440

max 0.0377 1.5017 5.896 0.0186 0.2343 51.943 5.2424

average 0.011 1.4347 5.8414 0.003 0.1555 51.734 1.2536

Table 6.2
relε(x̃) and average of relε(xkmax) for Example 6.1 with q̃1 in Table 6.1

ε 0.0 0.1 0.2 0.5 1

rel²(x̃) 0.0018 0.0581 0.2971 0.3236 0.3417

ave.rel²(x
kmax) 0.3084 0.7190 0.9007 0.9488 0.9518

By using the Monte Carlo method with 106 samples, we evaluated the measure
of feasibility relε defined by (6.1) for the case of q̃

1 = (2, 3, 100,−180,−162)T , at
x̃ = (36, 18, 0, 0.25, 0.5)T and at the last iterates obtained by the iterative formula
(6.2) from 36 different initial points. The results are presented in Table 6.2. The row
labeled as “ave.rel²” shows the average values of relε(x

kmax) obtained at the 36 last
iterates xkmax. For each q̃i and initial points, the computational time for obtaining
the values in Table 6.1 is about 185 second by Matlab 7.0 at computer with P4 3.06
GHz CPU.

Example 6.2. In this example, we consider the case where M(ω) ≡ M̃ is
a P matrix and q(ω) has continuous distribution. In this case, the EV formulation
LCP(M̃, q̃) has a unique solution x̃. The objective function G of the ERM formula-
tion is twice continuously differentiable and the values of G(x), ∇G(x), and ∇2G(x)
can be computed by (4.7), (4.8), (4.10), respectively, without resorting to stochastic
approximation.

Let q(ω) = q̃ + q0(ω), where q̃ = E{q(ω)}, q0(ω) = Bω, ω = (ω1,ω2,ω3)
T ∈

N (0, I), B ∈ Rn×3 is 100% dense, and the elements of B are randomly generated
with the uniform distribution U(0, 5). We use Example 4.4 of [4] to generate M̃ and
q̃. First, we randomly generate 100% dense A ∈ Rn×n and q̄ ∈ Rn whose elements
are uniformly distributed in (−5, 5). Then we use the QR decomposition of A to get
an upper triangular matrix N , and obtain a triangular matrix M̃ by replacing the
diagonal elements of N by their absolute values.

We first use Lemke’s method [8] to find a solution x̃ of LCP(M̃, q̃), and then take
x̃ as an initial point to find a local solution x̄ of the ERM formulation by applying
the semismooth Newton method [7] to the equation min(∇G(x), x) = 0.

The numerical experiments were carried out for n = 20, 50, and 100. For each n,
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Table 6.3
Simulation results for Example 6.2 where E{M(ω)} is a P matrix

n = 20 n = 50 n = 100
r(x) G(x) r(x) G(x) r(x) G(x)

x̃ 97.39 180.77 168.04 427.58 307.42 823.8
x̄ 6.17× 10−8 75.78 5.14× 10−8 167.07 1.34× 10−7 293.72
kx̃− x̄k 7.51 21.03 38.18

Table 6.4
relε(x̃) and relε(x̄) for Example 6.2

n = 20 n = 50 n = 100
ε 0 1 5 0 1 5 0 1 5
relε(x̃) 0.2507 0.3387 0.6615 0.2072 0.2930 0.6152 0.1856 0.2709 0.5934
relε(x̄) 0.3863 0.4955 0.8049 0.2712 0.3713 0.7225 0.2208 0.3193 0.6723

we generated 100 problems and solved them by the above-mentioned procedure. The
figures presented in Table 6.3 are the average of the results obtained in this manner.

The measures relε of feasibility at x̃ and x̄ obtained by the EV method and the
ERM method, respectively, are presented in Table 6.4.

Example 6.3. To illustrate the application of stochastic R0 matrix linear
complementarity problems, we use a simple transportation network shown in Figure 1,
which is based on an example of the deterministic traffic equilibrium network model
in [6].

W E

L1

L2

L3

R1

R2

Fig. 6.1. Road Network

In the network, two cities West and East are connected by two two-way roads
and one one-way road. More specifically, the network consists of five links, L1, L2,
L3, R1, R2, where L1, L2, L3 are directed from West to East, and R1 and R2 are
the returns of L1 and L2, respectively. L1-R1 is a mountain road, and L2-R2 and L3
are sea-side roads. We are interested in the traffic flow between the two cities. The
Wardrop equilibrium principle states that each driver will choose the minimum cost
route between the origin-destination pair, and through this process the routes that
are used will have equal cost; routes with costs higher than the minimum will have
no flow. In a deterministic model, the parameters in the demand and cost function
are fixed, and the problem can be formulated as a (deterministic) LCP based on the
Wardrop equilibrium principle.

In practice, however, the traffic condition will significantly be affected by some
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uncertain factors such as weather. So we want to estimate the traffic flow and the
travel time that are most likely to occur, before we know such uncertain factors.1

We suppose that there are three possible uncertain weather conditions; sunny,
windy and rainy. On a sunny day, the network is free from traffic congestion, and
the travel times of all roads are constant, which are given as (c1, c2, c3, c4, c5)

T =
(1000, 950, 3000, 1000, 1300)T , where c1, c2, c3, c4, c5 denote the travel times of roads
L1, L2, L3, R1, R2, respectively. On a windy day, the sea-side roads suffer from traffic
jams due to congestions and the travel times of the roads in the whole network are
given by ⎛⎜⎜⎜⎜⎝

c1
c2
c3
c4
c5

⎞⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎝
0 0 0 0 0
0 60 0 0 20
0 0 80 0 0
0 0 0 0 0
0 4 0 0 100

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
v1
v2
v3
v4
v5

⎞⎟⎟⎟⎟⎠+
⎛⎜⎜⎜⎜⎝
1000
950
3000
1000
1300

⎞⎟⎟⎟⎟⎠ ,
where v1, v2, v3, v4, v5 denote the traffic volumes of roads L1, L2, L3, R1, R2, respec-
tively. On the other hand, on a rainy day, the mountain roads suffer from traffic jams
and the travel times of the roads in the whole network are given by⎛⎜⎜⎜⎜⎝

c1
c2
c3
c4
c5

⎞⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎝
40 0 0 20 0
0 0 0 0 0
0 0 0 0 0
8 0 0 80 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
v1
v2
v3
v4
v5

⎞⎟⎟⎟⎟⎠+
⎛⎜⎜⎜⎜⎝
1000
950
3000
1000
1300

⎞⎟⎟⎟⎟⎠ .
Moreover, trip demands between the two cities are higher on a sunny day than on
a windy or rainy day. Specifically, (d1, d2)

T = (260, 170)T on a sunny day and
(d1, d2)

T = (160, 70)T on a windy day and a rainy day, where d1 and d2 are trip
demands from West to East and from East to West, respectively.

It is convenient to represent the travel cost functions and trip demands in a unified
manner as follows:

c(v,ω) = H(ω)v + h,

where

c(v,ω) = (c1(v,ω), . . . , c5(v,ω))
T ,

H(ω) =

⎛⎜⎜⎜⎜⎝
40α(ω) 0 0 20α(ω) 0
0 60β(ω) 0 0 20β(ω)
0 0 80β(ω) 0 0

8α(ω) 0 0 80α(ω) 0
0 4β(ω) 0 0 100β(ω)

⎞⎟⎟⎟⎟⎠ ,

α(ω) =
1

2
ω(ω − 1), β(ω) = ω(2− ω), h = (1000, 950, 3000, 1000, 1300)T .

1It should be noted that we do not intend to construct a traffic equilibrium model in which the
drivers choose their routes under uncertainty.
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Here Ω = {ω1,ω2,ω3} with ω1 = 0, ω2 = 1, ω3 = 2 represents the set of uncertain
events of the weather, {sunny, windy, rainy}, with probabilities p1 = 1

2 , p2 =
1
4 ,

p3 =
1
4 , respectively. Also, the traffic flow v = (v1, v2, v3, v4, v5)

T should satisfy2

v ≥ 0, Bv ≥ d(ω),

where

B =

µ
1 1 1 0 0
0 0 0 1 1

¶
, d(ω) =

µ
260− 100(α(ω) + β(ω))
170− 100(α(ω) + β(ω))

¶
.

By Wardrop’s principle, for each event ω ∈ Ω, the traffic equilibrium problem can
be formulated as LCP(M(ω), q(ω)) with

M(ω) =

µ
H(ω) −BT
B 0

¶
, q(ω) =

µ
h

−d(ω)

¶
.

The solutions x(ωi) of LCP(M(ωi), q(ωi)), i = 1, 2, 3 express the equilibrium traffic
flow on each link as well as the minimum travel time between each origin-destination
pair, on a sunny day, a windy day and a rainy day, respectively. The average traf-
fic flow is given by (E{x1(ω)}, . . . , E{x5(ω)}), and the average travel time on each
direction is given by (E{x6(ω)}, E{x7(ω)}).

On the other hand, the average travel costs and demands are given by

E{c(v,ω)} =

⎛⎜⎜⎜⎜⎝
10 0 0 5 0
0 15 0 0 5
0 0 20 0 0
2 0 0 20 0
0 1 0 0 25

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
v1
v2
v3
v4
v5

⎞⎟⎟⎟⎟⎠+
⎛⎜⎜⎜⎜⎝
1000
950
3000
1000
1300

⎞⎟⎟⎟⎟⎠ ,

E{d(ω)} =
µ
210
120

¶
,

which are exactly the same as those of the five-link example in [6].
Below we compare the estimates of the traffic flows and travel time obtained by

the EV formulation and the ERM formulation.
The solution of the EV formulation, LCP(E{M(ω)}, E{q(ω)}), is denoted by x̃.

The ERM formulation for this example is the problem of minimizing the function

G(x) =
3X
i=1

pi||min(x,M(ωi)x+ q)||2.

We denote the solution by x̄. In Table 6.5, we report numerical results.
It is observed from x̃3 = x(ω

i) = 0, i = 1, 2, 3 in Table 6.5 that the user-optimal
load pattern estimated from the EV formulation has no flow on L3, which is the same
as the user-optimal traffic pattern estimated from the LCPs for a sunny day, a windy
day and a rainy day, respectively. However, the estimated total travel time x̃6+ x̃7 =
5190 from the EV formulation is larger than the total travel time obtained from the
LCP for any day. On the other hand, the user-optimal traffic pattern estimated from

2For the purpose of our presentation, we may replace the equality constraint Bv = d(ω) by the
inequality constraint. In practice, this change will not affect the solution of the problem.
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Table 6.5
Traffic flow and travel time for Example 6.3

EV solution x̃ (120, 90, 0, 70, 50, 2550, 2640)
ERM solution x̄ (84, 84, 21, 80, 20, 975, 1000)
x(ω1) (0, 260, 0, 170, 0, 950, 1000)
x(ω2) (955/6, 5/6, 0, 70, 0, 1000, 1000)
x(ω3) (0, 160, 0, 3.75, 66.75, 950, 1300)
E{x(ω)} (39.8, 170.2, 0, 103.4, 16.6, 962.5, 1075)
E{||x(ω)− x̃||}, kE{x(ω)}− x̃|| 2239.66, 2232.60
E{||x(ω)− x̄||}, kE{x(ω)}− x̄|| 222.42, 127.16

the ERM formulation has light flow on L3 and the total travel time x̄6 + x̄7 = 1975
is close to x6(ω

i) + x7(ω
i), i = 1, 2, 3.

The two formulations yield different estimates of the user-optimal traffic pattern
and the travel time, and both solutions, x̄ and x̃, try to explain the phenomenon in
the real world. The EV formulation uses the average of data to estimate the user-
optimal traffic pattern. The ERM formulation uses the least square method to find
a traffic pattern which has minimum total error to each user-optimal traffic pattern
for each day. It is worth mentioning that, as far as this example is concerned, x̄ may
be considered closer to the realized traffic patterns than x̃ because E{kx(ω)− x̃k} >
E{kx(ω)− x̄k} and kE{x(ω)}− x̃k > kE{x(ω)}− x̄k.

Now, we use this example to show that the theoretical results given in this paper
substantially extend the results in [3]. It is easy to verify that the matrix E{M(ω)} is
an R0 matrix. By Proposition 2.5,M(·) is a stochastic R0 matrix. Hence by Theorem
3.1 the solution set of ERM(M(·), q(·)) is nonempty and bounded. However, for each
ωi, M(ωi) is not an R0 matrix. Hence the statement on the solution set cannot be
obtained by using the results in [3].

Example 6.4. The last example is a simplified control problem: Let ω̂ ∈ Rn
be the system parameter. Based on prior experience, we assume that ω̂ is generated
from N (a,B). At each time t, we have the following observer:

yt+1 = Xtω̂ + Ftvt, (6.3)

where Xt ∈ Rm×n is a known input, Ft ∈ Rm×r is a known matrix, and vt ∈ Rr
is an unknown noise which is independent identically and normally distributed with
E{vt} = 0, E{vtvTt } = I.

Suppose B Â 0 and FtF
T
t º 0. By the Kalman filter theory [1], we have the

following recursive estimation for the parameter ω̂:

ωt+1 = ωt +Kt+1(yt+1 −Xtωt)
Kt+1 = BtX

T
t (XtBtX

T
t + FtF

T
t )

+

Bt+1 = Bt −BtXT
t K

T
t+1 (6.4)

ω0 = a, B0 = B,

where A+ denotes the pseudo-inverse of matrix A. Then the posterior distribution of
ω̂ is given by N(ωt, Bt). The control law ut is obtained as a solution of the following
convex quadratic program:

min ct(ω̂)
Tu+

1

2
uTQt(ω̂)u

s.t. At(ω̂)u ≤ bt(ω̂) (6.5)

u ≥ 0,
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where Qt(ω̂), At(ω̂) are matrices and ct(ω̂), bt(ω̂) are vectors. The first order opti-
mality condition of (6.5) is equivalent to the LCP(Mt(ω̂), qt(ω̂)) with

Mt(ω̂) =

µ
Qt(ω̂) At(ω̂)

T

−At(ω̂) 0

¶
, qt(ω̂) =

µ
ct(ω̂)
bt(ω̂)

¶
.

In traditional adaptive control, we replace the unknown parameter ω̂ by its estimate
ωt in the quadratic program (6.5) to obtain an approximation ǔt of the control law
ut for each t, that is, ǔt is the vector whose elements are the first n components of
the solution of the LCP(Mt(ωt), qt(ωt)).

If ωt is far away from the parameter ω̂, the error of ǔt is big and will cause
trouble in some situations. Hence we take the variance of the estimate into account
by using the solution ūt of the ERM formulation for SLCP(Mt(ω), qt(ω)) with ω ∼
N (ωt, Bt). Here we report numerical results for a tracking problem with the ARX
model yt+1 = ω̂(1)yt + ω̂(2)ut + vt. The controller ut would be designed so that yt+1
can track a given trajectory exp(0.5t). Let the performance function be p(ut,ω) :=
(ω(1)yt + ω(2)ut − exp(0.5t))2. Then, from

p(ut,ω) = (ω
(2))2u2t − 2(exp(0.5t)− ω(1)yt)ω(2)ut + (exp(0.5t)− ω(1)yt)2,

we have ct(ω) = −2(exp(0.5t) − ω(1)yt)ω
(2), Qt(ω) = 2(ω

(2))2. We set Xt = (yt, ut)

and choose a = (0, 1)T , B =

µ
0.25 0
0 4

¶
, Ft = 1, At(ω) ≡ 1, bt(ω) = 4 + 2(ω(2))2.

For k ≥ 1, we generate a true parameter ω̂k from N (1, 1) and noise {vt} from
N (0, 1). We solve the ERM formulation for SLCP(Mt(ω), qt(ω)) with ω ∼ N (ωt, Bt)
to obtain ūkt . We then set Xt = (y

k
t , ū

k
t ) and use (6.3) and (6.4) to obtain y

k
t+1, ωt+1

andBt+1. We also solve LCP(Mt(ωt), qt(ωt)) and the EV formulation of SLCP(Mt(ω), qt(ω))
with ω ∼ N (ωt, Bt) to get ǔkt and ũkt , respectively.

For the purpose of comparison, we define the average performance (for k =
1, 2, . . . , 100) of these formulations by

σ̄t :=
1

100

100X
k=1

(ūkt − u∗t (ω̂k))2, t = 1, 2, 3, 4, 5

σ̌t :=
1

100

100X
k=1

(ǔkt − u∗t (ω̂k))2, t = 1, 2, 3, 4, 5

σ̃t :=
1

100

100X
k=1

(ũkt − u∗t (ω̂k))2, t = 1, 2, 3, 4, 5,

where u∗t (ω̂
k) is obtained by solving LCP(Mt(ω̂

k), qt(ω̂
k)) with true parameter ω̂k.

From the results shown in Table 6.6, we find that the ERM formulation has
better performance than LCP(Mt(ωt), qt(ωt)) and the EV formulation in the sense
that σ̄t < σ̌t and σ̄t < σ̃t hold for all t = 1, 2, 3, 4, 5. This suggests that ū

k
t is a better

control law for ω̂k than ũkt and ū
k
t in all cases.

7. Final remark. This paper proves that a necessary and sufficient condition
for the ERM(M(·), q(·)) having a nonempty and bounded solution set is that M(·)
is a stochastic R0 matrix. Proposition 2.5 shows that if the matrix E{M(ω)} is an
R0 matrix, then M(·) is a stochastic R0 matrix. Moreover, Example 6.1 shows that
there are many cases where M(·) is a stochastic R0 matrix, but E{M(ω)} is not an
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Table 6.6
Average performance for Example 6.4

t 1 2 3 4 5

σ̄t 1.0103 1.9764 2.286 1.6755 1.8693

σ̌t 1.7053 3.0257 2.3345 1.7385 1.8918

σ̃t 1.2425 2.5505 2.3852 1.8015 2.0903

R0 matrix, and the EV formulation LCP(E{M(ω)}, E{q(ω)}) either has no solution
or has an unbounded solution set. Therefore, the condition for the ERM(M(·), q(·))
having a nonempty and bounded solution set is weaker than the condition for the
EV formulation having a nonempty and bounded solution set. Furthermore, when
ERM(M(·), q(·)) has a solution x̄ and LCP(E{M(ω)}, E{q(ω)}) has a solution x̃, the
residuals always satisfy

G(x̄) = E{kmin(M(ω)x̄+ q(ω), x̄)k2} ≤ E{kmin(M(ω)x̃+ q(ω), x̃)k2} = G(x̃).
Example 6.1 shows that G(x̄) can be much smaller than G(x̃). Moreover, the values
of relε shown in Table 6.2 reveal that, for each tolerance level ε ≥ 0, the number
of ωi at which M(ωi)x̄ + q(ωi) < −ε holds is much less than the number of ωi
at which M(ωi)x̃ + q(ωi) < −ε holds. Example 6.2 shows that a local solution x̄
of ERM(M(·), q(·)) may conveniently be obtained from a solution x̃ of the EV for-
mulation. Example 6.3 and Example 6.4 show that the EV formulation and ERM
formulation express different concerns in our real life. Solving the EV formulation is
usually less expensive computationally than solving the ERM formulation. Neverthe-
less, since x̄ is generally expected to have better reliability than x̃, we may recommend
the ERM method to those decision makers who do not want to take high risk of vio-
lating the conditions M(ω)x+ q(ω) ≥ 0.
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