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Abstract. A smoothing projected gradient (SPG) method is proposed for the minimization
problem on a closed convex set, where the objective function is locally Lipschitz continuous but
nonconvex, nondifferentiable. We show that any accumulation point generated by the SPG method
is a stationary point associated with the smoothing function used in the method, which is a Clarke
stationary point in many applications. We apply the SPG method to the stochastic linear comple-
mentarity problem (SLCP) and image restoration problems. We study the stationary point defined
by the directional derivative and provide necessary and sufficient conditions for a local minimizer of
the expected residual minimization (ERM) formulation of SLCP. Preliminary numerical experiments
using the SPG method for solving randomly generated SLCP and image restoration problems of
large sizes show that the SPG method is promising.
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1. Introduction. The projected gradient (PG) method was originally proposed
by Goldstein [16], and Levitin and Polyak [20] in 1960s, for minimizing a continuously
differentiable mapping f : Rn → R on a nonempty closed convex set X. Probably
since it is quite simple to implement and attractive for large-scale problems with
simple bounds constraints, ever since then, there have been various extensions which
make the PG method more widely applicable and more efficient in computation, e.g.,
[1, 3, 28, 31].

Nonsmooth and nonconvex optimization occurs frequently in practice. The pro-
jected subgradient method [30] extends the PG method to the case that f is non-
smooth, but convex. Recently, Burke, Lewis and Overton [2] introduced a robust
gradient sampling algorithm for solving nonsmooth, nonconvex unconstrained min-
imization problem. Kiwiel [19] slightly revised the gradient sampling algorithm in
[2] and showed that any accumulation point generated by the algorithm is a Clarke
stationary point with probability one.

In this paper, we propose a smoothing projected gradient (SPG) method, which
combines the smoothing techniques and the classical PG method to solve the problems
of the form

min{f(x) : x ∈ X}, (1.1)

where X is a nonempty closed convex set in Rn, and f : Rn → R is locally Lips-
chitzian, but not necessarily differentiable and convex. Many nonsmooth optimiza-
tion problems are of this type, for instance, the expected residual minimization (ERM)
formulation for the SLCP discussed in [6, 9, 14], and the image restoration problems
studied in [15, 23]. However, it is hard to find an efficient numerical method to solve
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(1.1) when n is large. The SPG method is easy to implement. At each iteration,
we approximate the objective function by a smooth function with a fixed smoothing
parameter, and employ the classical PG method to obtain a new point. If a certain
criteria is satisfied, then we update the smoothing parameter using the new point for
the next iteration. In comparison with the gradient sampling algorithm [19], we show
that any accumulation point generated by the SPG method globally converges to a
stationary point associated with the smoothing function used in the method, which
is a Clarke stationary point in many applications.

We apply the SPG method to the stochastic linear complementarity problem
(SLCP) and image restoration problems.

Let (Ω,F ,P) be a probability space, where Ω is the set of random vector ω, F
is the set of events, and P is the probability distribution satisfying P{Ω} = 1. The
stochastic complementarity problem SLCP(M(ω), q(ω)) is defined as

x ≥ 0, M(ω)x + q(ω) ≥ 0, xT (M(ω)x + q(ω)) = 0, ω ∈ Ω. (1.2)

Here M(ω) ∈ Rn×n and q(ω) ∈ Rn are random matrix and random vector for ω ∈
Ω, respectively. Througout the paper, we assume M(ω) and q(ω) are measurable
functions of ω and satisfy

E[‖M(ω)‖2 + ‖q(ω)‖2] < ∞, (1.3)

where E stands for the expectation.
When Ω is a singleton, SLCP(M(ω), q(ω)) reduces to the well-known linear com-

plementarity problem LCP(M, q) with M(ω) ≡ M and q(ω) ≡ q. In general, a
deterministic formulation for the SLCP provides optimal solutions for the SLCP in
some sense. The ERM formulation proposed in [6] is a deterministic formulation for
the SLCP, which is defined as

min
x∈Rn

+

f(x) := E[‖Φ(x, ω)‖2] (1.4)

where

Φ(x, ω) = (φ((M(ω)x + q(ω))1, x1), . . . , φ((M(ω)x + q(ω))n, xn)),

and φ : R2 → R is an NCP function, which has the property

φ(a, b) = 0 ⇔ a ≥ 0, b ≥ 0, ab = 0.

The objective function in the ERM formulation (1.4) is neither convex nor smooth.
Theoretical analysis including the solvability and the robustness for the ERM formu-
lation has been studied, and preliminary numerical results have been given to show
the desirable properties for the solution of the ERM formulation in [6, 9, 14]. Among
various NCP functions, the “min” function

φ(a, b) := min(a, b), for any (a, b) ∈ R2, (1.5)

has various nice properties for (1.4). It is shown in Lemma 2.2 [9] that the ERM for-
mulation defined by the “min” function always has a solution if Ω = {ω1, ω2, . . . , ωN}
is a finite set. However, the ERM formulation defined by the Fischer-Burmister NCP
function is not always solvable. In this paper, we concentrate on the ERM formulation
defined by the “min” function, which can be expressed as

min
x∈Rn

+

f(x) := E[‖min(x,M(ω)x + q(ω))‖2]. (1.6)
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This is a nonsmooth, nonconvex constrained minimization problem.
This paper is organized as follows. In Section 2, we give definition of smoothing

functions and present the SPG method for solving nonsmooth, nonconvex minimiza-
tion problem on a closed convex feasible set. We show that any accumulation point
generated by the SPG method is a stationary point of problem (1.1) associated with
the smoothing function used in the method, which is a Clarke stationary point in
many applications.

In Section 3, we consider the application of the SPG method to the problem
(1.6). We establish a necessary and sufficient condition for f to be differentiable at
a given point x ∈ Rn

+. We show convergence of the SPG method using the class of
the Chen-Mangasarian smoothing function. Moreover, we study standard stationary
point defined by the directional derivative of f . In Section 4, we illustrate the SPG
method by numerical examples of the ERM formulation (1.6) and the image restora-
tion problems. Numerical results demonstrate that the SPG method is promising.

Throughout the paper, ‖ ·‖ represents the Euclidean norm and Rn
++ = {x ∈ Rn :

x > 0}. Let N be the set of all natural numbers ν, and N ]
∞ be the infinite subsets

of N. We use the notation −→
N

to denote the convergence indexed by N ∈ N ]
∞. I

denotes the identity matrix. For a given matrix A = [aij ] ∈ Rn×n, let Ai. be the i-th
row of A. For a given subset Ω̂ of Ω and a function s : Ω → R, we use EΩ̂[s(ω)] to
represent E[s(ω)1{ω∈Ω̂}], where 1{ω∈Ω̂} is the indicator function of the set Ω̂, which

is equal to 1 if ω ∈ Ω̂ and 0 if ω ∈ Ω \ Ω̂.

2. Smoothing projected gradient method. In this section, we present a
smoothing projected gradient method for solving the minimization problem (1.1),
where the objective function f is a general locally Lipschitz continuous function.

Let P [·] denote the orthogonal projection from Rn into X,

P [x] = argmin{‖z − x‖ : z ∈ X}.
Definition 2.1. Let f : Rn → R be a locally Lipschitz continuous function. We

call f̃ : Rn×R+ → R a smoothing function of f , if f̃(·, µ) is continuously differentiable
in Rn for any µ ∈ R++, and for any x ∈ Rn,

lim
z→x, µ↓0

f̃(z, µ) = f(x) (2.1)

and { lim
z→x, µ↓0

∇xf̃(z, µ)} is nonempty and bounded.

The smoothing projected gradient method is defined as follows.

Algorithm 2.1 (Smoothing projected gradient algorithm)
Let γ̂, γ1 and γ3 be positive constants, where γ1 << γ3. Let γ2, σ, σ1 and σ2 be
constants in (0, 1), where σ1 ≤ σ2. Choose x0 ∈ X and µ0 ∈ R++. For k ≥ 0:

1. If ‖P [xk −∇xf̃(xk, µk)]−xk‖ = 0, let xk+1 = xk and go to step 3. Otherwise,
go to step 2.

2. (PG method)
Let y0,k = xk. For j ≥ 0:

yj,k(α) = P [yj,k − α∇xf̃(yj,k, µk)],

and yj+1,k = yj,k(αj,k) where αj,k is chosen so that,

f̃(yj+1,k, µk) ≤ f̃(yj,k, µk) + σ1(∇xf̃(yj,k, µk), yj+1,k − yj,k) (2.2)
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and

γ3 ≥ αj,k ≥ γ1, or αj,k ≥ γ2ᾱj,k > 0, (2.3)

such that ȳj+1,k = yj,k(ᾱj,k) satisfies

f̃(ȳj+1,k, µk) > f̃(yj,k, µk) + σ2(∇xf̃(yj,k, µk), ȳj+1,k − yj,k). (2.4)

If ‖y
j+1,k−yj,k‖

αj,k
< γ̂µk, set xk+1 = yj+1,k and go to step 3.

3. Choose µk+1 ≤ σµk.

The smoothing projected gradient algorithm is well-defined. Note that

‖P [xk −∇xf̃(xk, µk)]− xk‖ = 0

if and only if xk is a stationary point of

min{f̃(x, µk) : x ∈ X}, (2.5)

that is, xk satisfies

(∇xf̃(xk, µk), xk − z) ≤ 0 for any z ∈ X.

If xk is not a stationary point of (2.5), then from the continuous differentiability
of f̃(·, µk) and analysis in [12], the function g : R++ → R defined by

g(α) :=
f̃(xk, µk)− f̃(xk(α), µk)

(∇xf̃(xk, µk), xk − xk(α))

is continuous and satisfies

lim
α→0+

g(α) = 1,

which implies that (2.2) holds for all αj,k sufficiently small. If there is no αj,k ∈ [γ1, γ3]
such that (2.2) holds, then there exist constants α̂, α̃ ∈ (0, γ1), α̂ < α̃ such that

g(α) ≥ σ2 for any α ∈ (0, α̂], and g(α) < σ2 for any α ∈ (α̂, α̃).

Thus it is easy to check that αj,k = γ2ᾱj,k satisfies (2.2)-(2.4) for any

ᾱj,k ∈
(
α̂, α̂ + min(

1− γ2

2γ2
α̂, α̃− α̂)

)
.

Let us state some basic properties about Algorithm 2.1.
Lemma 2.2. [3] Let P [·] be the projection from Rn into X. If z ∈ X, then

(P [x]− x, z − P [x]) ≥ 0 for all x ∈ Rn.

Set x = yj,k − α∇xf̃(yj,k, µk) and z = yj,k in Lemma 2.2. We obtain

(∇xf̃(yj,k, µk), yj,k(α)− yj,k) ≤ −‖y
j,k(α)− yj,k‖2

α
for α > 0. (2.6)
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Given constants µ > 0 and Γ > 0, let us denote the level set

Lµ,Γ = {x | f̃(x, µ) ≤ Γ}.

Assumption 2.1. f̃(·, µ) is bounded below on X, and ∇xf̃(·, µ) is uniformly
continuous on Lµ,Γ, for any µ > 0 and Γ > 0.

Lemma 2.3. Under Assumption 2.1, we have

lim
k→∞

µk = 0.

Proof. For any fixed µ > 0, f̃(·, µ) is continuously differentiable, and (2.2)-(2.4)
coincide with the classical projected gradient method.

From the continuous differentiability of f̃(·, µk), we have for each fixed k,

|f̃(ȳj+1,k, µk)− f̃(yj,k, µk)− (∇xf̃(yj,k, µk), ȳj+1,k − yj,k)|
= |(∇xf̃(θȳj+1,k + (1− θ)yj,k), µk)−∇xf̃(yj,k, µk), ȳj+1,k − yj,k)|

for some θ ∈ [0, 1]. Since {f̃(yj,k, µk)} is a nonincreasing sequence, there must exist
a constant Γ > 0 such that

f̃(θȳj+1,k + (1− θ)yj,k, µk) ≤ Γ,

provided that ‖ȳj+1,k−yj,k‖ → 0. Thus the uniform continuity of ∇xf̃(·, µk) on Lµk,Γ

guaranteed by Assumption 2.1 implies that

|f̃(ȳj+1,k, µk)− f̃(yj,k, µk)− (∇xf̃(yj,k, µk), ȳj+1,k − yj,k)| = o(‖ȳj+1,k − yj,k‖).

Following the proof of Theorem 2.3 [3], we obtain

lim
j→∞

‖yj+1,k − yj,k‖
αj,k

= 0,

and hence lim
k→∞

µk = 0.

Let Df be the subset of Rn where f is differentiable. According to Theorem 2.5.1
[10], the Clarke generalized gradient is defined by

∂f(x) = co{lim∇f(xi) : xi → x, xi ∈ Df}, (2.7)

where “co” represents the convex hull.
Definition 2.4. We say that x∗ is a Clarke stationary point of (1.1) if there is

V ∈ ∂f(x∗) such that

(V, x∗ − z) ≤ 0 for all z ∈ X. (2.8)

If f is continuously differentiable, the Clarke stationary point reduces to the
stationary point for smooth optimization on a convex set. Moreover, if f is a convex
function, then x∗ is a Clarke stationary point if and only if x∗ is a global optimal
solution of problem (1.1).

For any fixed x̄ ∈ X, denote

Gf̃ (x̄) := {V : ∃N ∈ N ]
∞, xν −→

N
x̄, µν ↓ 0 with ∇xf̃(xν , µν) −→

N
V }. (2.9)
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From Definition 2.1, it is clear that Gf̃ (x̄) is a nonempty and bounded set. By
Theorem 9.61 and (b) of Corollary 8.47 in [26], we have

∂f(x̄) ⊆ coGf̃ (x̄).

In many cases the Clarke generalized gradient coincides with coGf̃ (x̄). For instance,
we consider the smoothing function f̃ constructed by the convolution in [26].

Let ψµ : Rn → R+ satisfy
∫

Rn ψµ(z)dz = 1 and Bµ = {z : ψµ(z) > 0} converging
to {0} as µ ↓ 0. In some place, ψµ is called a mollifier. Define the smoothing function
f̃ : Rn ×R++ → R by

f̃(x, µ) :=
∫

Rn

f(x− z)ψµ(z)dz.

Thus by employing Theorem 9.67 [26], we know that

coGf̃ (x) = ∂f(x) for any x ∈ Rn.

In this case,

Gf̃ (x) ⊆ ∂f(x), for any x ∈ Rn.

Definition 2.5. We say that x∗ is a stationary point of (1.1) associated with a
smoothing function f̃ , if there exists V ∈ Gf̃ (x∗) such that

(V, x∗ − z) ≤ 0 for all z ∈ X. (2.10)

Theorem 2.6. Any accumulation point x∗ of {xk} generated by Algorithm 2.1
with a smoothing function f̃ is a stationary point of (1.1) associated with f̃ .

Proof. If there exists K ∈ N ]
∞ such that for each k ∈ K, ‖P [xk −∇xf̃(xk, µk)]−

xk‖ = 0, that is, xk is a stationary point of (2.5), and lim
k→∞, k∈K

xk = x∗, then we

have for any k ∈ K,

(∇xf̃(xk, µk), xk − z) ≤ 0 for any z ∈ X. (2.11)

By Definition 2.1, there exists an infinite subsequence K1 ⊆ K such that

lim
k→∞, k∈K1

∇xf̃(xk, µk) = V ∈ Gf̃ (x∗),

which, combines with (2.11), yields that

(V, x∗ − z) ≤ 0 for any z ∈ X.

Otherwise there exists K̂ ∈ N ]
∞ such that for each k ∈ K̂, ‖P [xk−∇xf̃(xk, µk)]−

xk‖ 6= 0, and lim
k→∞, k∈K̂

xk = x∗. Let us denote K = {k − 1 | k ∈ K̂} and thus

lim
k→∞, k∈K

xk+1 = x∗ and {xk+1}k∈K = {yj+1,k}k∈K .

By step 2 of Algorithm 2.1 and Lemma 2.3, we have

lim
k→∞, k∈K

‖yj+1,k − yj,k‖
αj,k

≤ lim
k→∞, k∈K

γ̂µk = 0, (2.12)
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which, together with αj,k ≤ γ3, implies

lim
k→∞, k∈K

‖yj+1,k − yj,k‖ = 0. (2.13)

From (2.6), we have

(∇xf̃(yj,k, µk), yj+1,k − yj,k) ≤ −‖y
j+1,k − yj,k‖2

αj,k
, k ∈ K.

This, together with (2.2), implies that for k ∈ K,

f̃(yj+1,k, µk)− f̃(yj,k, µk) ≤ σ1(∇xf̃(yj,k, µk), yj+1,k − yj,k)

≤ −σ1
‖yj+1,k − yj,k‖2

αj,k
. (2.14)

From lim
k→∞, k∈K

yj+1,k = x∗ and (2.13), we have lim
k→∞, k∈K

yj,k = x∗. By Definition

2.1, we know that

|f̃(yj+1,k, µk)− f̃(yj,k, µk)| → 0, as k →∞, k ∈ K.

This, together with (2.14), yields

lim
k→∞, k∈K

(∇xf̃(yj,k, µk), yj+1,k − yj,k) = 0. (2.15)

For any z ∈ X, by using Lemma 2.2, we have for k ∈ K,

αj,k(∇xf̃(yj,k, µk), yj+1,k − z) ≤ (yj+1,k − yj,k, z − yj+1,k)
≤ (yj+1,k − yj,k, z − yj,k)
≤ ‖yj+1,k − yj,k‖‖yj,k − z‖.

Hence we have

(∇xf̃(yj,k, µk), yj,k − z) ≤ (∇xf̃(yj,k, µk), yj,k − yj+1,k) +
‖yj+1,k − yj,k‖

αj,k
‖yj,k − z‖,

which, combined with (2.12) and (2.15), implies that

lim sup
k→∞, k∈K

(∇xf̃(yj,k, µk), yj,k − z) ≤ 0 for any z ∈ X. (2.16)

By Definition 2.1, there exists an infinite subsequence K1 ⊆ K such that

lim
k→∞, k∈K1

∇xf̃(yj,k, µk) = V ∈ Gf̃ (x∗), (2.17)

which, together with (2.16), yields that

(V, x∗ − z) ≤ 0 for any z ∈ X.

Hence x∗ is a stationary point of (1.1) associated with f̃ .
Remark 2.1. We develop a global convergent algorithm for solving nonsmooth,

nonconvex constrained optimization, by applying smoothing functions in the PG
method. Algorithm 2.1 and Theorem 2.6 generalize the PG method and its con-
vergence theorem [Theorem 2.3, 3] for continuously differentiable optimization to
nonsmooth, nonconvex optimization.
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3. ERM formulation for SLCP. In this section, we show that the SPG
method can be applied to find a local minimizer of the ERM formulation (1.6) for
SLCP. In particular, we give computable smoothing functions and show all assump-
tions in Section 2 hold. First we consider the functions

H(x) := min(x,Mx + q) and θ(x) :=
1
2
H(x)T H(x). (3.1)

For an arbitrary vector x ∈ Rn, define the index sets

α(x) = {i : xi > (Mx + q)i}
β(x) = {i : xi = (Mx + q)i} (3.2)
γ(x) = {i : xi < (Mx + q)i}.

Lemma 3.1. (Proposition 5.8.4 [11])
(i) The function θ is everywhere directionally differentiable and the directional

derivative of θ at x ∈ Rn along the direction d ∈ Rn is given by

θ′(x, d) =
∑

i∈α(x)

(Mx + q)i(Md)i +
∑

i∈γ(x)

xidi +
∑

i∈β(x)

xi min(di, (Md)i). (3.3)

(ii) The function θ is differentiable at x ∈ Rn if

xi = 0; or Mi. = Ii., for any i ∈ β(x). (3.4)

(iii) The function H is differentiable at x ∈ Rn if and only if Mi. = Ii. for each
i ∈ β(x).

Now we show that (3.4) is not only a sufficient condition for θ being differentiable
at x ∈ Rn

+, but also a necessary condition.
Lemma 3.2. If the function θ is differentiable at x ∈ Rn

+, then (3.4) holds.
Proof. Since θ is differentiable at x, θ′(x, d) is a linear function in d. Hence for

any λ ∈ R, θ′(x, λd) = λθ′(x, d). By noting that the first two parts of the sum (3.3)
in (i) of Lemma 3.1 are both linear in d, we have

∑

i∈β(x)

xi[min(λdi, λ(Md)i)− λ(min(di, (Md)i))] = 0. (3.5)

Moreover, it is easy to show that

min(λa, λb) ≤ λ min(a, b), ∀λ, a, b ∈ R, (3.6)

where the equality holds if and only if λ ≥ 0, or λ < 0 and a = b. This together with
(3.5) and x ∈ Rn

+ yields

xi[min(λdi, λ(Md)i)− λ min(di, (Md)i)] = 0, i ∈ β(x).

Therefore, for any i ∈ β(x), either xi = (Mx + q)i = 0, or

min(λdi, λ(Md)i)− λ min(di, (Md)i) = 0, ∀λ ∈ R, d ∈ Rn.

The latter case implies di− (Md)i = 0 for any d ∈ Rn, which is equivalent to the fact
that the i-th row of M is equal to the i-th unit vector by the arbitrariness of d ∈ Rn,
i.e., Mi. = Ii.. Hence (3.4) holds.
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Lemma 3.3. The function θ′(x, d) is concave in d for any fixed x ∈ Rn
+.

Proof. Note that for any a1, a2, b1, b2 ∈ R,

min(a1 + a2, b1 + b2) ≥ min(a1, b1) + min(a2, b2),

and the equality in (3.6) holds for any λ ∈ R+. Hence for every i ∈ β(x), any
η1, η2 ∈ R+, and any two directions d1, d2 ∈ Rn,

min
(
η1d

1
i + η2d

2
i , η1(Md1)i + η2(Md2)i

)
≥ η1 min

(
d1

i , (Md1)i

)
+ η2 min

(
d2

i , (Md2)i

)
.

Since x ∈ Rn
+, and the first two terms in the sum (3.3) for the directional derivative

are both linear in d, we get

θ′(x, η1d
1 + η2d

2) ≥ η1θ
′(x, d1) + η2θ

′(x, d2). (3.7)

Thus for any λ ∈ (0, 1) and any two directions d1, d2 ∈ Rn,

θ′(x, λd1 + (1− λ)d2) ≥ λθ′(x, d1) + (1− λ)θ′(x, d2),

which implies that θ′(x, d) is concave in d for any fixed x ∈ Rn
+.

3.1. Differentiability. Now we consider the objective function f of the ERM
formulation of SLCP(M(ω), q(ω)). For an arbitrary x ∈ Rn, we define Hω(x), θω(x),
αω(x), βω(x), γω(x) by adding the subscript ω to H(x) and θ(x) in (3.1), α(x), β(x)
and γ(x) in (3.2) when M and q are replaced by M(ω) and q(ω), respectively. Thus
the ERM formulation (1.6) of SLCP(M(ω), q(ω)) can be expressed by

min
x∈Rn

+

f(x) := 2E[θω(x)]. (3.8)

From Chapter 2 in [27], the expectation function g(x) := E[Gω(x)] for any func-
tion Gω : Rn × Ω → R, inherits various properties of the integrand Gω(x) as stated
in Lemma 3.4.

Lemma 3.4. [27] Suppose that for a fixed x ∈ Rn: (i) Gω(x) is measurable
and satisfies E[|Gω(x)|] < ∞, (ii) there exists a random variable zω(x) such that
E[zω(x)] < ∞, and for all x1, x2 in a neighborhood of x,

|Gω(x1)−Gω(x2)| ≤ zω(x)‖x1 − x2‖ for ω ∈ Ω a.e.,

(iii) Gω is directionally differentiable at x for ω ∈ Ω a.e.. Then g is locally Lipschitz
continuous, everywhere directionally differentiable at x, and

g′(x, d) = E[G′ω(x, d)] for all d.

Moreover, if Gω is differentiable at x for ω ∈ Ω a.e., then g is differentiable at x and

∇g(x) = E[∇Gω(x)].

In addition, if G′ω(x, d) is convex in d for ω ∈ Ω a.e., then g is differentiable at x if
and only if Gω is differentiable at x for ω ∈ Ω a.e..

Proposition 3.5. The function f is locally Lipschitz continuous, and everywhere
directionally differentiable with

f ′(x, d) = 2E[θ′ω(x, d)] for all d. (3.9)



10 CHAO ZHANG AND XIAOJUN CHEN

If the following condition holds at x ∈ Rn,

xi = 0; or (M(ω))i. = Ii., for any i ∈ βω(x), ω ∈ Ω a.e., (3.10)

then f is differentiable at x and

∇f(x) = 2E[∇θω(x)]. (3.11)

Moreover, f is differentiable at x ∈ Rn
+ if and only if (3.10) holds.

Proof. For an arbitrary x ∈ Rn, it is obvious that θω(x) is measurable, and
E[|θω(x)|] < ∞ by (1.3). Moreover, it is known that for any fixed ω ∈ Ω, Hω(·) is
globally Lipschitzian [11]. In particular,

‖Hω(y)−Hω(z)‖ ≤ (1 + ‖M(ω)‖)‖y − z‖ for all y, z ∈ Rn,

and for any constant r > 0 and x̃ ∈ B(x, r) := {x̃ : ‖x̃− x‖ ≤ r},
‖Hω(x̃)‖ ≤ (1 + ‖x‖+ r)(1 + ‖M(ω)‖+ ‖q(ω)‖).

The above two inequalities imply that for any ω ∈ Ω, θω(·) is locally Lipschitzian with

|θω(x1)− θω(x2)| ≤ 1
2
(‖Hω(x1)‖+ ‖Hω(x2)‖)(‖Hω(x1)−Hω(x2)‖)

≤ zω(x)‖x1 − x2‖ for any x1, x2 ∈ B(x, r),

where zω(x) = (1+‖x‖+ r)(1+‖M(ω)‖+‖q(ω)‖)2 satisfying E[zω(x)] < ∞ by (1.3).
From Lemma 3.1, θω is everywhere directionally differentiable for all ω ∈ Ω, and if
(3.10) holds, then θω is differentiable at x for ω ∈ Ω a.e. Hence, we get (3.9) and
(3.11) from Lemma 3.4.

Now we only need to show that if f is differentiable at x ∈ Rn
+, then (3.10) holds.

According to Lemma 3.3, θ′ω(x, d) is a concave function of d ∈ Rn for x ∈ Rn
+. That

is, for any λ ∈ (0, 1) and any two directions d1, d2 ∈ Rn,

θ′ω(x, λd1 + (1− λ)d2) ≥ λθ′ω(x, d1) + (1− λ)θ′ω(x, d2).

Hence the function (−θω)′(x, d) = −θ′ω(x, d) is convex in d. From Lemma 3.4, we
know that −f(x) = 2E[−θω(x)] is differentiable at x ∈ Rn

+ if and only if −θω is
differentiable at x for ω ∈ Ω a.e. Note that if f is differentiable at x ∈ Rn

+, then −f is
differentiable at x, and hence θω is differentiable at x for ω ∈ Ω a.e.. Thus by Lemma
3.2, the condition (3.10) holds. The proof is completed.

Remark 3.1. Proposition 3.5 provides a sufficient condition for f being differ-
entiable at x ∈ Rn, which includes Theorem 4.3 [14] as a special case. Moreover, the
sufficient condition is also a necessary condition for f being differentiable at x ∈ Rn

+.

3.2. Smoothing function for ERM. Now we show that smoothing functions
f̃ derived from the Chen-Mangasarian smoothing function [5] satisfy Definition 2.1.
Let ρ : R → [0,∞) be a piecewise continuous density function satisfying

ρ(s) = ρ(−s) and κ :=
∫ ∞

−∞
|s|ρ(s)ds < ∞. (3.12)

The Chen-Mangasarian family of smoothing approximation for the “min” function

min(a, b) = a−max(0, a− b)
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is built as

φ(a, b, µ) = a−
∫ ∞

−∞
max(0, a− b− µs)ρ(s)ds. (3.13)

It is worth mentioning that φ(a, b, µ) is easy to compute, if some concrete density
function is chosen. For instance, if we use the uniform density function

ρ(s) =
{

1 if − 1
2 ≤ s ≤ 1

2 ,
0 otherwise, (3.14)

we get

φ(a, b, µ) =





b if a− b ≥ µ
2 ,

a− 1
2µ (a− b + µ

2 )2 if − µ
2 < a− b < µ

2 ,

a if a− b ≤ −µ
2 .

We refer to [7, 8] for other easily computed φ with concrete density functions.
Employing (3.13) to f , we obtain the smoothing function f̃

f̃(x, µ) = 2E[θ̃ω(x, µ)], (3.15)

where θ̃ω : Rn ×R++ → R is defined by

θ̃ω(x, µ) =
1
2
H̃ω(x, µ)T H̃ω(x, µ),

and H̃ω : Rn ×R++ → Rn is given by

H̃ω(x, µ) =




φ(x1, (M(ω)x + q(ω))1, µ)
...

φ(xn, (M(ω)x + q(ω))n, µ)


 .

It is easy to see that for any x ∈ Rn and µ ∈ R++,

∇xf̃(x, µ) = 2E[∇xθ̃ω(x, µ)] = 2E[∇xH̃ω(x, µ)H̃ω(x, µ)], (3.16)

where for each i = 1, 2, . . . , n,

(∇xH̃ω(x, µ)T )i. = Ii. − [Ii. − (M(ω))i.]
∫ xi−(M(ω)x+q(ω))i

µ

−∞
ρ(s)ds. (3.17)

Let ∂Hω(x) be the generalized Jacobian of Hω at x defined by Clarke [10].
Lemma 3.6. Denote η =

√
nκ. For any ω ∈ Ω and µ ∈ R++,

(i) ‖H̃ω(x, µ)−Hω(x)‖ ≤ ηµ, x ∈ Rn.
(ii) lim

µ↓0
(∇xH̃ω(x, µ))T = H̃o

ω(x) ∈ ∂Hω(x), x ∈ Rn.

(iii) lim
µ↓0

∇xf̃(x, µ) = f̃o(x) ∈ ∂f(x), x ∈ Rn
+.

Proof. The statement (i) comes from Proposition 2.1 (i) in reference [8]. Since
ρ(s) = ρ(−s), we get from Proposition 2.1 (iii) that for any x ∈ Rn,

lim
µ↓0

∇xH̃ω(x, µ)T = H̃o
ω(x),
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where

(H̃o
ω(x))i. =





(M(ω))i. if i ∈ αω(x),
Ii. if i ∈ γω(x),
1
2 [(M(ω))i. + Ii.] if i ∈ βω(x).

(3.18)

Now we show the inclusion H̃o
ω(x) ∈ ∂Hω(x) in statement (ii) holds. Consider an

arbitrary x̂ ∈ Rn. Let DHω
be the set of points in Rn where Hω admits differentia-

bility. Since Hω is locally Lipschitzian in Rn, it is differentiable almost everywhere.
Hence there exists an infinite sequence {xk} ⊂ DHω converging to x̂. It is known [10]
that

∂Hω(x̂) = co{lim∇Hω(zk)T : zk → x̂, zk ∈ DHω}. (3.19)

Let yk = x̂− (xk − x̂) and we immediately find {yk} converging to x̂. Note that
βω(yk) ⊆ βω(x̂) for k sufficiently large. Now we claim that yk ∈ DHω

for such k.
In fact, for sufficiently large k, βω(yk) ⊆ βω(xk) since βω(yk) ⊆ βω(x̂) implies that
(xk − x̂)i = (M(ω)(xk − x̂))i for i ∈ βω(yk), and hence

xk
i = (x̂ + (xk − x̂))i = (M(ω)(x̂ + (xk − x̂)) + q(ω))i = (M(ω)xk + q(ω))i.

By Lemma 3.1 (iii), (M(ω))i. = Ii. for any i ∈ βω(yk), which in turn implies yk ∈ DHω
.

Thus

∇(Hω(yk))T
i = ∇(Hω(xk))T

i =
1
2
[(M(ω))i. + Ii.], i ∈ βω(yk).

By direct computation, we have the index i ∈ γω(xk) if i ∈ αω(yk) ∩ βω(x̂); and
i ∈ αω(xk) if i ∈ γω(yk) ∩ βω(x̂). It is then easy to see that

H̃o
ω(x̂) =

1
2

lim
k→∞

∇Hω(xk)T +
1
2

lim
k→∞

∇Hω(yk)T .

Hence H̃o
ω(x̂) ∈ ∂Hω(x̂) according to (3.19).

Now we show (iii) holds. By noting (3.17) and
∫ xi−(M(ω)x+q(ω))i

µ

−∞ ρ(s)ds ∈ [0, 1], we
have

‖∇xf̃(x, µ)‖ = ‖E[∇xH̃ω(x, µ)H̃ω(x, µ)]‖
≤ E[(2 + ‖M(ω)‖)‖H̃ω(x, µ)‖]
≤

√
E[(2 + ‖M(ω)‖)2]

√
E[‖H̃ω(x, µ)‖2]

≤
√

E[(2 + ‖M(ω)‖)2]
√

f̃(x, µ)
< ∞,

where the second inequality employs the Cauchy-Schwarz inequality and the last in-
equality uses (1.3). Thus by the Lebesgue Dominated Convergence Theorem,

f̃o(x) = lim
µ↓0

∇xf̃(x, µ) = 2 lim
µ↓0

E[∇xH̃ω(x, µ)H̃ω(x, µ)]

= 2E[lim
µ↓0

∇xH̃ω(x, µ)H̃ω(x, µ)]

= 2E[H̃o
ω(x)T Hω(x)].
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For an arbitrary x̂ ∈ Rn
+, using two sequences {xk} ⊂ Df ∩Rn

++ converging to x̂, and
yk = x̂− (xk − x̂), we can show

f̃o(x̂) =
1
2

lim
k→∞

∇f(xk) +
1
2

lim
k→∞

∇f(yk) ∈ ∂f(x̂)

in a similar way as that for (ii) of this lemma. The proof is completed.
Remark 3.2. (ii) of Lemma 3.6 improves the results of the Jacobian consistency

property in [7], which states that for any fixed x,

lim
µ↓0

(∇xH̃ω(x, µ))T = H̃o
ω(x) ∈ ∂CHω(x),

where ∂CHω is the C-generalized Jacobian of Hω defined by

∂CHω(x) = ∂(Hω(x))1 × ∂(Hω(x))2 × · · · × ∂(Hω(x))n.

It is known that ∂Hω(x) ⊆ ∂CHω(x).
Proposition 3.7. The function f̃ defined by (3.15) is a smoothing function of

f and Assumption 2.1 holds. Moreover, if f is differentiable at x ∈ Rn
+, then

{ lim
z→x, µ↓0

∇xf̃(z, µ)} = ∇f(x). (3.20)

Proof. It is obvious from (3.16) that for any µ ∈ R++, f̃(·, µ) is continuously
differentiable in Rn, and for any x ∈ Rn

+,

{ lim
z→x, µ↓0

∇xf̃(z, µ)} ⊆ 2E[∂Hω(x)T Hω(x)]

is a nonempty and bounded set. The expected value multifunctions E[∂Hω(x)T Hω(x)]
is well-defined for any (x, ω) ∈ Rn×Ω according to Theorem 2 [29], since ∂Hω(·)T Hω(·)
is upper semicontinuous at x ∈ Rn for P -almost every ω ∈ Ω, and

‖V T
1 Hω(x)− V T

2 Hω(x)‖ ≤ (1 + ‖M(ω)‖)‖Hω(x)‖, for any V1, V2 ∈ ∂Hω(x).

By the Cauchy-Schwarz inequality and (1.3),

E[(1 + ‖M(ω)‖)‖Hω(x)‖] ≤
√

E[(1 + ‖M(ω)‖)2]
√

E[‖Hω(x)‖2]
=

√
E[(1 + ‖M(ω)‖)2]

√
f(x)

< ∞.

It is also clear that for any fixed z ∈ Rn and µ ∈ R++,

|f̃(z, µ)− f(z)| = |E[‖H̃ω(z, µ)‖2 − ‖Hω(z)‖2]|
≤ E[(‖H̃ω(z, µ)‖+ ‖Hω(z)‖)(‖H̃ω(z, µ)−Hω(z)‖)]
≤ E[(2min(‖H̃ω(z, µ)‖, ‖Hω(z)‖) + ηµ)ηµ]
= E[min(‖H̃ω(z, µ)‖, ‖Hω(z)‖)]2ηµ + η2µ2

≤
√

min(f̃(z, µ), f(z))2ηµ + η2µ2, (3.21)

where the second inequality comes from (i) of Lemma 3.6 and the third inequality
follows from the Cauchy-Schwarz inequality that E[ξ] ≤

√
E[ξ2] for any random

variable ξ. Thus

lim
z→x, µ↓0

f̃(z, µ) = f(x),
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since for any z → x and µ ↓ 0,

|f̃(z, µ)− f(x)| ≤ |f̃(z, µ)− f(z)|+ |f(z)− f(x)|
≤

√
f(z)2ηµ + η2µ2 + |f(z)− f(x)|

→ 0.

Therefore, the function f̃ defined by (3.15) is a smoothing function of f .
Now we begin to show that Assumption 2.1 holds. Obviously, f̃(·, µ) is bounded

below, since f̃(x, µ) ≥ 0 for any x ∈ Rn and µ ∈ R++. We have by simple computation
that for any x, y ∈ Rn,

‖∇xH̃ω(y, µ)‖ ≤ 2 + ‖M(ω)‖,

‖H̃ω(x, µ)− H̃ω(y, µ)‖ ≤ (2 + ‖M(ω)‖)‖x− y‖,

and

‖∇xH̃ω(x, µ)−∇xH̃ω(y, µ)‖ ≤ (1 + ‖M(ω)‖)2
µ

‖x− y‖.

Hence we have

‖∇xf̃(x, µ)−∇xf̃(y, µ)‖
= |2E[∇xH̃ω(x, µ)H̃ω(x, µ)−∇xH̃ω(y, µ)H̃ω(y, µ)]|
≤ 2E[‖∇xH̃ω(y, µ)‖‖H̃ω(x, µ)− H̃ω(y, µ)‖+ ‖H̃ω(x, µ)‖‖∇xH̃ω(x, µ)−∇xH̃ω(y, µ)‖]
≤ 2E[(2 + ‖M(ω)‖)2 +

1
µ
‖H̃ω(x, µ)‖(1 + ‖M(ω)‖)2]‖x− y‖. (3.22)

The above inequality indicates that for any fixed µ > 0 and Γ > 0, ∇xf̃(·, µ) is
uniformly continuous on the level set Lµ,Γ, since E[(2 + ‖M(ω))2] < ∞ according to
(1.3), and

E[‖H̃ω(x, µ)‖(1 + ‖M(ω)‖)2] ≤
√

E[‖H̃ω(x, µ)‖2]
√

E[(1 + ‖M(ω)‖)4]

≤
√

f̃(x, µ)E[(1 + ‖M(ω)‖)2] < ∞,

where the second inequality employs the Jensen’s inequality that
√

E[(1 + ‖M(ω)‖)4] ≤ E[
√

(1 + ‖M(ω)‖)4] = E[(1 + ‖M(ω)‖)2].

Hence Assumption 2.1 holds.
According to Proposition 3.5, f is differentiable at x ∈ Rn

+ if and only if for
ω ∈ Ω a.e., θω(x) is differentiable at x. Since ∂Hω(x)T Hω(x) = ∇θω(x) if θω(x) is
differentiable at x ∈ Rn, we have

2E[∂Hω(x)T Hω(x)] ⊆ 2E[∇θω(x)] = ∇f(x)

provided that f admits differentiability at x ∈ Rn
+. Hence if f is differentiable at

x ∈ Rn
+, then (3.20) holds.
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3.3. Stationary point. From Theorem 2.6, any accumulation point of {xk}
generated by the SPG method is a stationary point of the problem (1.1) associated
with the smoothing function f̃ . For the ERM formulation (1.6) of SLCP, the objective
function f is everywhere directionally differentiable according to Proposition 3.5. The
stationary point [13, pp. 91] of the problem (1.6) is usually defined to be a feasible
vector x ∈ Rn

+ such that

f ′(x, d) ≥ 0, ∀ d ∈ T (x;Rn
+), (3.23)

where T (x;Rn
+) is the tangent cone of Rn

+ at a vector x ∈ Rn
+, that is, the cone

consists of all vectors d ∈ Rn, for which there exist a sequence of vectors {yk} ⊂ Rn
+

and a sequence of positive scalars {τk} such that

lim
k→∞

yk = x, lim
k→∞

τk = 0, and lim
k→∞

yk − x

τk
= d.

Recall that a vector 0 6= d ∈ Rn is called a feasible direction of the nonnegative
orthant Rn

+ at a point x ∈ Rn
+, if there exists a constant δ > 0 such that

x + td ∈ Rn
+ for any t ∈ [0, δ].

For problem (1.6), it is easy to show that (3.23) is equivalent to

f ′(x, d) ≥ 0, ∀ d ∈ F (x;Rn
+), (3.24)

where F (x;Rn
+) is the set of feasible directions d ∈ Rn.

In what follows, we provide an equivalent characterization of the stationary point,
and discuss its relation to the stationary point associated with the f̃ . Denote ei = IT

i.

for i = 1, . . . , n. For an arbitrary x ∈ Rn
+, let us denote the index set Sx = {i : xi >

0} = {s1, s2, . . . , st(x)}, and S̄x = {1, 2, . . . , n}\Sx = {i : xi = 0}, where t(x) is the
number of elements in Sx. Let

Dx = {ei, i = 1, . . . , n} ∪ {−esi , i = 1, . . . , t(x)}. (3.25)

Note that Dx is determined by x, and for any x ∈ Rn, the number of vectors in Dx

satisfies n ≤ |Dx| ≤ 2n, and ‖d‖ = 1 for any d ∈ Dx.
Theorem 3.8. x ∈ Rn

+ is a stationary point of the problem (1.6) if and only if
f ′(x, dl) ≥ 0 for any dl ∈ Dx.

Proof. The “only if” part is obvious true since any direction dl ∈ Dx is a feasible
direction at the point x ∈ Rn

+ on the nonnegative orthant Rn
+. In what follows we

prove for the “if” part.
Note that any feasible direction d = (d1, . . . , dn)T at x ∈ Rn

+ can be expressed as
a nonnegative linear combination of dl ∈ Dx. That is, we can write

d =
∑

dl∈Dx

ηld
l, ηl ≥ 0 for any dl ∈ Dx.

By repeating using (3.7) shown in the proof of Lemma 3.3, we have

θ′ω(x, d) = θ′ω(x,
∑

dl∈Dx

ηld
l) ≥

∑

dl∈Dx

ηlθ
′
ω(x, dl).
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Together with the linearity of the expectation function, we obtain

f ′(x, d) = 2E[θ′ω(x,
∑

dl∈Dx

ηld
l)]

≥ 2E[
∑

dl∈Dx

ηlθ
′
ω(x, dl)]

= 2
∑

dl∈Dx

ηlE[θ′ω(x, dl)]

=
∑

dl∈Dx

ηlf
′(x, dl) ≥ 0,

which implies that x is a stationary point of (1.6).
Corollary 3.9. If Ω = {ω1, ω2, . . . , ωN}, then x ∈ Rn

+ is a local minimizer of
the problem (1.6) if and only if f ′(x, dl) ≥ 0 for any dl ∈ Dx.

Proof. If Ω = {ω1, ω2, . . . , ωN}, then Rn
+ can be divided into finite polyhedron

pieces, and f is a convex quadratic function on each piece. Hence a stationary point
of the problem (1.6) coincides with a local minimizer of f . The corollary follows
immediately from Theorem 3.8.

Remark 3.3. If x∗ is a stationary point of (1.6) associated with f̃ and f is
differentiable at x∗, then (∇f(x∗), x∗−z) ≤ 0 for all z ∈ Rn

+ according to Proposition
3.7. Hence for any d ∈ F (x;Rn

+), there exists a constant δ > 0 such that x + δd ∈ Rn
+

and

f ′(x∗, d) = ∇f(x∗)T d = −1
δ
(∇f(x∗), x∗ − (x∗ + δd)) ≥ 0.

Thus by (3.24), x∗ is a stationary point of (1.6). In addition, if Ω = {ω1, ω2, . . . , ωN}
is a finite set, x∗ is a local minimizer according to Corollary 3.9.

Some mild conditions on initial data M(ω) for ω ∈ Ω can guarantee that f is
differentiable at any local minimizer.

Theorem 3.10. If P{ω : (M(ω))i. 6= Ii., Mii(ω) = 1} = 0 for each i ∈
{1, 2, . . . , n}, then f is differentiable at any local minimizer z ∈ Rn

+.
Proof. Suppose on the contrary that f is not differentiable at a local minimizer

z ∈ Rn
+. According to Proposition 3.5, there exists an index l ∈ {1, 2, . . . , n} such

that zl > 0, and Ω̃l = {ω : (M(ω))l. 6= Il., l ∈ βω(z)} with P{Ω̃l} > 0.
Since zl > 0, both el and −el are feasible directions of Rn

+ at z. For arbitrary
d ∈ Rn, i ∈ {1, 2, . . . , n} and ω ∈ Ω, putting λ = −1 in (3.6), we obtain

min(−di,−(M(ω)d)i) + min(di, (M(ω)d)i) ≤ 0, (3.26)

where the equality holds if and only if di = (M(ω)d)i. For any x ∈ Rn
+ and d ∈ Rn,

we have by direct computation that

f ′(x,−d) = −f ′(x, d) + 2E[
∑

i∈βω(x)

xi(min(−di,−(M(ω)d)i) + min(di, (M(ω)d)i)]

≤ −f ′(x, d). (3.27)

Noting that the local minimizer z is a stationary point, we get from Theorem 3.8 that
0 ≤ f ′(z,−el) ≤ −f ′(z, el) ≤ 0, which implies

f ′(z,−el) = f ′(z, el) = 0. (3.28)
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Setting d = el in (3.26) and (3.27), and employing (3.28), we get

0 = E[
∑

i∈βω(z)

zi(min(−el
i,−(M(ω)el)i) + min(el

i, (M(ω)el)i))]

≤ EΩ̃l
[zl(min(−(el)l,−(M(ω)el)l) + min((el)l, (M(ω)(el)l)))] ≤ 0,

which further implies that Mll(ω) = (M(ω)el)l = (el)l = 1 for ω ∈ Ω̃l a.e.. Hence,

P{ω : (M(ω))l. 6= Il., Mll(ω) = 1} ≥ P{Ω̃l} > 0,

which contradicts to the assumption of this theorem. The proof is completed.

4. Examples and numerical results. In this section, we illustrate the SPG
algorithm and its convergence results using examples of the ERM formulation (1.6) of
SLCPs, as well as image restoration problems. In the SPG algorithm for the numerical
experiment, we set

µ0 = 1, γ1 =
1
2
, γ2 =

1
4
, γ3 = 103, σ =

1
2
.

4.1. ERM formulation of SLCPs. The objective function in the ERM for-
mulation of SLCPs is the expectation functions of the form

f(x) = 2E[θω(x)],

where ω ∈ Ω is a random vector with a given probability distribution P.
When ω is a discrete random variable that takes on the distinct values ω1, . . . , ωN

with probabilities p1, . . . , pN , the function value is defined by

f(x) = 2
N∑

i=1

θωi(x)pi.

If ω is a continuous random variable with probability density function p(ω), the func-
tion value is defined by

f(x) = 2
∫

Ω

θω(x)p(ω)dω,

which, in general, is difficult to compute accurately. By assumption (1.3), the integrals
satisfy the Law of Large Number and hence the integrals can be estimated from large
sample averages. Note that if sampling is used then we do not need a knowledge of
the distribution.

In practice, the sample average approximation (SAA) [18, 27] is usually employed,
which replaces the original objective function by its approximation

f̂N (x) :=
2
N

N∑

i=1

θωi(x).

Here the sample ω1, . . . , ωN is generated by Monte Carlo sampling method, following
the same probability distribution as ω. The smoothing projected gradient method can
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then be applied to solve the approximation problem. The function value and gradient
of the smoothing function are defined by

f̃N (x) :=
2
N

N∑

i=1

θ̃ωi(x, µ)

and

∇xf̃N (x) :=
2
N

N∑

i=1

∇xθ̃ωi(x, µ).

Remark 4.1. The proper sample size may vary for different SLCPs in practice.
The stochastic approximation (SA) method, which originates from [25], and is devel-
oped by [17, 24] etc., seems promising to avoid large sampling. We will investigate
the SA method with the smoothing projected gradient method in our future research.

In our numerical experiment, we use the procedure described in [9] to generate
test problems of monotone SLCP(M(ω), q(ω)), ω ∈ Ω = {ωj , j = 1, . . . , N} with
pj = P{ωj} = 1

N for all j. We call (1.2) a monotone SLCP if E[M(ω)] is positive
semi-definite. Let us recall some notations in the procedure,

x̂ : the nominal seed point in Rn
+

nx : the number of elements in the index set J = {i : x̂i > 0}
Ij : the index set {i : x̂i = 0, (M(ωj)x̂ + q(ωj))i ≥ 0}
[0, β) : the range of (M(ωj)x̂ + q(ωj))i for i ∈ J
(−σ, σ) : the range of elements of matrix E[M(ω)]−M(ωj) for each j.

For each fixed (n, nx, σ), we set x̂i ∈ (0, 20) for i ∈ J , and (M(ωj)x̂+q(ωj))i ∈ [0, 15)
for i ∈ Ij , j = 1, . . . , N . Each random matrix M(ωj) is generated by uniformly
distributed random variables and the QR decomposition, which is a dense matrix.
The condition number of the expectation matrix M̄ = E[M(ω)] is 100 for all the test
problems.

We use the Chen-Mangasarian smoothing function with the uniform density func-
tion in (3.14), and set

γ̂ = 103, σ1 = σ2 = 10−6

in the SPG algorithm. We stop the iteration of the SPG algorithm and set the
computed solution x̃ = xk, if ‖xk − xk−1‖ ≤ 10−12, or “T-iters”, i.e., the number of
the total iteration invoking (2.2)-(2.4) exceeds 4000. We use “O-iters” to represent
the number of outer iterations, i.e., the number k such that x̃ = xk, and ‘cpu’ to
represent the CPU time in seconds. To check the optimality at the terminal point,
we compute

r(x̃) = ‖min(x̃,∇f(x̃))‖
if f is differentiable at x̃. Note that by Proposition 3.5, we can easily check whether
f is differentiable at x̃. By Remark 3.3, if f is differentiable at x̃, then x̃ is a local
minimizer if and only if r(x̃) = 0.

In Table 4.1, we compare the SPG method with the fmincon, a Matlab code for
constrained minimization. For comparison, we fix β = 0, N = 100 and start from the
same randomly generated initial point

x0 = floor(1 + 10 ∗ rand(n, 1)),
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Table 4.1
Finding a global optimal solution

SPG fmincon
(n, nx, σ) f(x̃) cpu(x̃) err(x̃) r(x̃) f(x̌) cpu(x̌) err(x̌) r(x̌)
20, 10, 20 4.30e-22 1.52 2.26e-14 9.29e-10 1.34e-7 9.66 3.75e-7 2.13e-2
20, 10, 10 6.52e-23 1.63 1.66e-14 1.67e-10 1.20e-7 7.66 7.07e-7 9.38e-3
20, 10, 0 8.63e-18 42.9 3.19e-10 4.47e-9 5.91e-7 3.06 3.05e-5 4.34e-3
40, 20, 20 4.03e-22 58.9 8.36e-15 1.77e-9 6.01e-7 29.3 3.64e-7 3.71e-2
40, 20, 10 1.42e-23 3.89 3.21e-15 1.61e-10 5.52e-7 28.6 7.05e-7 1.73e-2
40, 20, 0 1.23e-12 68.2 1.04e-7 1.48e-6 1.57e-6 13 5.05e-5 4.88e-3
60, 30, 20 2.07e-22 8.34 5.30e-15 1.26e-9 76.4 77.1 3.02e-3 323
60, 30, 10 8.37e-24 8.03 2.11e-15 1.16e-10 604 79.6 1.69e-2 863
60, 30, 0 4.71e-11 154 4.66e-7 4.60e-6 1.52e-6 39 3.23e-5 5.14e-3
80, 40, 20 1.36e-21 15.2 9.72e-15 2.90e-9 94 134 2.49e-3 540
80, 40, 10 3.89e-23 11.3 3.18e-15 2.03e-10 2.87 133 8.67e-4 55.1
80, 40, 0 2.08e-18 331 7.03e-11 2.48e-9 1.16e-6 109 3.4e-5 3.7e-3

100, 50, 20 3.85e-22 27.9 3.75e-15 2.26e-9 8.19e3 282 2.09e-2 3.87e3
100, 50, 10 9.13e-23 28.5 3.48e-15 6.05e-10 89.6 275 4.08e-3 206
100, 50, 0 1.01e-12 499 6.09e-8 2.14e-6 1.67e-4 192 4.70e-4 5.78e-2

Table 4.2
Finding a local minimizer

N, n, nx, β, σ f(x̄) f(x̃) T-iters O-iters cpu r(x̃)
1000, 50, 25, 10, 20 1.92e6 6.16e2 57 27 3.28e1 3.18e-5
1000, 100, 50, 5, 10 4.68e5 3.54e2 25 22 1.14e2 6.16e-6
100, 500, 250, 10, 20 1.69e8 6.40e3 25 18 2.98e2 1.48e-4
100, 1000, 500, 5, 10 6.39e7 3.65e3 50 22 1.80e3 8.16e-4
50, 1500, 750, 10, 20 1.44e9 1.84e4 39 17 1.37e3 3.85e-3

and employ the SPG method and the fmincon to get computed solutions x̃ and x̌
of the ERM formulation, respectively. Note that β = 0 implies that x̂ is the unique
global solution of the test problems and f(x̂) = 0. We record the relative error of a
computed solution x, i.e.,

err(x) =
‖x̂− x‖
‖x̂‖ .

From Table 4.1, we observe that the SPG method succeeds in finding the unique
global solution and is much more efficient than the fmincon code, by noting that the
function value, relative error and optimal condition at x̃ and x̌. In fact, the fmincon
code failed in most cases when n exceeds 50 and σ > 0.

In Table 4.2, we present numerical results of the SPG method for the test prob-
lems with β > 0. In this case, the global solution is unknown. We first use the
semismooth Newton method [21] to get a solution x̄ of LCP(E[M(ω)], E[q(ω)]), that
is, the expected value (EV) formulation of SLCP(M(ω), q(ω)). We then take its so-
lution x̄ as the initial point x0 for the SPG algorithm to get a computed solution x̃
of the ERM formulation.

Table 4.2 shows that the SPG algorithm largely reduces the function value from
the solution x̄ of the EV formulation. Moreover, the value of r suggests that the
SPG algorithm converges to a local minimizer. Furthermore, we find that the SPG
algorithm keeps similar number of iterations when the dimension n of the problem
increases from 50 to 1500.
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4.2. Image restoration problems. The smoothing projected gradient method
can be applied for minimizing a general nonconvex, nonsmooth function on a convex
set. In this subsection, we provide its application in image restoration.

Image restoration is to reconstruct an image of an unknown scene from an ob-
served image, which has wide applications in engineering and sciences. Large-scale
nonsmooth, nonconvex constrained minimization problems often appear in the image
restoration [15, 23].

The observed image is distorted from the unknown true image mainly by two
factors – the blurring and the random noise. The blurring may arise from various
sources such as atmospheric turbulence, motion blurs, etc.. Suppose the discretized
scenes have n = m×m pixels, then the image of an object can be modeled as

b = Ax + δ, (4.1)

where the n-dimensional vectors x, b and δ are the true image, the observed image,
and the additive noise, respectively. The matrix A of n × n is the corresponding
blurring matrix of block Toeplitz with Toeplitz blocks (BTTB) when zero boundary
conditions are applied. In this case, the fast Fourier transforms (FFTs) can be used
to implement fast matrix-vector multiplications.

Solving (4.1) directly will lead to unstable solutions which are very sensitive to
noise, since image restoration problems are ill-conditioned. Regularization technique
is often used to get robust solution. As pointed out in [23], although convex potential
functions (PFs), e.g., φ(t) = |t|, can be used for the regularization term, nonconvex
regularization provides better possibilities for restoring images with neat edges. In
the following, we consider the image restoration model given in [23],

min ‖Ax− b‖2 + c

n∑

i=1

ϕ(xi)

s.t. x ≥ 0, (4.2)

where c is the regularization parameter, and ϕ : R → R is a potential function (PF)
defined by

ϕ(t) =
a|t|

1 + a|t| , a ∈ (0, 1). (4.3)

It is easy to see that the objective function of (4.2) is nonsmooth nonconvex. The
constraint x ≥ 0 reflects the fact that the pixels are nonnegative.

We choose a map of island shown in Fig. 4.1 (a) as the original scene with pixels
n = 256 × 256 = 65536. We set the regularization parameter c = 10−6 and the
parameter a = 0.5 in the PF. We obtain the smoothing function of ϕ in (4.3) by
replacing |t| by its smoothing approximation based on the uniform density function ρ
in (3.14).

We get the observed scene in Fig. 4.1 (b) from the original image which is first
blurred by a Gaussian function and then contaminated by a Gaussian white noise.
We use the observed image as the initial point for the SPG algorithm, choose the
parameters for this problem as

γ̂ = 105, σ1 = σ2 = 10−3,

and stop the iteration if

‖xk − xk−1‖
‖xk−1‖ ≤ 10−4.
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We record the restored image x̃ = xk by SPG in Fig. 4.1 (c).

The original image

(a)

The observed image

(b)

The restored image by SPG

(c)

Fig. 4.1. (a) The original image; (b)The observed image; (c) The restored image by SPG.

The objective value and the peak signal noise ratio (PSNR) value obtained by
the SPG method are 0.0158 and 83.89, which largely improved those at the observed
image (20.6383, 72.19) of the observed image.

5. Final remark. We propose a globally convergent smoothing projected gradi-
ent (SPG) method for minimizing a nonconvex, nonsmooth function on a convex set.
We prove that any accumulation point generated by the SPG method converges to a
stationary point associated with the smoothing function used in the method, which
is a Clark stationary point in many applications. The key idea of the SPG method
is to use a parametric smoothing approximation function in the projected gradient
method [3]. We apply the SPG method to the expected residual minimization (ERM)
reformulation of the stochastic linear complementarity problems (SLCPs) and image
restoration problems. Theoretical and numerical results show that the SPG method
is promising. Our analysis on the SPG method and the ERM reformulation can
be applied to many problems in optimization. For example, consider the following
mathematical programs with equilibrium constraints [22]

min c(x)
s.t. x ∈ X (5.1)

p(x) ≥ 0, q(x) ≥ 0, p(x)T q(x) = 0,

where X is a closed convex set in Rn, c : Rn → R, p, q : Rn → Rm are continuously
differentiable functions. (5.1) can be approximated by

min c(x) + σ‖min(p(x), q(x))‖2
s.t. x ∈ X, (5.2)
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where σ > 0 is a penalty parameter. The penalty function is nonconvex, nonsmooth.
We can define a smoothing function for the penalty function by the Chen-Mangasarian
smoothing function and use the SPG method to solve (5.2).
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