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Abstract. Euler’s elastica model has been widely used in image processing. Since it is a challenging nonconvex4
and nonsmooth optimization model, most existing algorithms do not have convergence theory for5
it. In this paper, we propose a penalty relaxation algorithm with mathematical guarantee to find a6
stationary point of Euler’s elastica model. To deal with the nonsmoothness of Euler’s elastica model,7
we first introduce a smoothing relaxation problem, and then propose an exact penalty method to solve8
it. We establish the relationships between Euler’s elastica model, the smoothing relaxation problem9
and the penalty problem in theory regarding optimal solutions and stationary points. Moreover,10
we propose an efficient block coordinate descent algorithm to solve the penalty problem by taking11
advantages of convexity of its subproblems. We prove global convergence of the algorithm to a12
stationary point of the penalty problem. Finally we apply the proposed algorithm to denoise the13
optical coherence tomography images with real data from an optometry clinic and show the efficiency14
of the method for image processing using Euler’s elastica model.15
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1. Introduction. In this paper, we consider the following Euler’s elastica model:19

(1.1) min
u

∫
Ω

(
a+ b

∣∣∣∣∇ · ∇u|∇u|
∣∣∣∣2
)
|∇u|dxdy +

λ

2

∫
Ω

(Ku− u0)2dxdy,20

where a, b and λ are three positive constant parameters, | · | denotes the l2 norm of a vector, Ω21

is a bounded domain in R2 with Lipschitz continuous boundary. Here, u : Ω→ R is assumed22

to be smooth and denotes the reconstructed output image with u(x, y) being the intensity23

value of the grey level of u at point (x, y) ∈ Ω. Moreover, u ∈ BV (Ω) = {u ∈ L1(Ω) :24

|∇u|(Ω) < ∞} where |∇u| is the total-variation measure of the weak gradient ∇u of u and25

u0 denotes the observed input image. And ∇· denotes the divergence operator. The operator26

K : BV (Ω) → L2(Ω) is linear and bounded. The first term in (1.1) is the regularizer which27

captures the geometrical features of the image while the second term is the fidelity term which28

guarantees that Ku will be close to the input image u0.29

Variational models have a wide range of applications in image processing [1, 6, 22]. Euler’s30

elastica model (1.1), as a kind of variational model, can be used for illusory contour [25], de-31
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noising [26], segmentation [31], inpainting [5], etc. However, it is challenging to solve (1.1) due32

to nonlinearity, nonconvexity and nonsmoothness of the energy functional. Many numerical33

methods have been studied for solving (1.1) in the literature. In [23], Chan et al. studied the34

mathematical foundation and properties of Euler’s elastica model. Moreover, a computational35

scheme based on numerical PDEs was proposed to solve the inpainting problem. They derived36

the Euler-Lagrange equation for (1.1) and applied a weighted steepest descent method [20]37

to solve the equation. Actually, PDE based methods are used widely in image processing38

[7, 27]. Later, to find numerical solutions of the equation in [23], the authors of [5] studied39

two unconditionally stable time marching methods and a fixed point method. Furthermore, a40

nonlinear multigrid method was proposed by taking the fixed point method as a smoother. In41

[26], Tai et al. reformulated the minimization of the Euler’s elastica energy to a constrained42

optimization problem and then proposed an augmented Lagrangian method to solve it. In43

[30], Yashtini and Kang presented two numerical algorithms to solve Euler’s elastica inpaint-44

ing model (1.1). By relaxing the normal vector ∇u
|∇u| in the curvature term and introducing45

a new vector to replace ∇u, they proposed a RN2Split algorithm based on operator splitting46

techniques. They also proposed a κTV algorithm to solve Euler’s elastica model in the form47

of a weighted TV model [30], in which ∇ · ∇u|∇u| is regarded as an independent term. Recently,48

Deng et al. [13] proposed a new operator splitting method for solving (1.1). Compared with49

works on the alternating direction method of multipliers, the time discretization step size is50

the only free parameter to choose, which leads to the robustness and stableness of the pro-51

posed algorithm. To overcome the difficulty of nonconvexity of (1.1), some researchers have52

studied its convex relaxation. For example, [3] studied a convex relaxation of a class of vertex53

penalizing functionals, which captures the curvature of level lines of images. Bredies et al. [4]54

proposed a convex, lower semi-continuous, coercive approximation of Euler’s elastica energy55

by functional lifting of the gradient of the image. Some other works on convex relaxations56

have also been reviewed in [4]. However, although algorithms for solving Euler’s elastica57

model have been studied comprehensively, convergence analysis of these algorithms is rarely58

provided.59

In this paper, we propose a penalty relaxation method for image processing using Euler’s60

elastica model and have the following new contributions.61

• As the discrete reformulation of Euler’s elastica model is used in practical computa-62

tion, we propose a smoothing relaxation problem with a smoothing parameter ε and63

inequality constraints for the discrete Euler’s elastica model. We show that any accu-64

mulation point of stationary points and any accumulation point of optimal solutions65

of the smoothing relaxation problems are a stationary point and a global minimizer of66

the discrete Euler’s elastica model, respectively, as the parameter ε decreases to zero.67

• To solve the smoothing relaxation problem, we represent nonconvex inequality con-68

straints by a penalty term added to the objective. We show that a strict local mini-69

mizer of the smoothing relaxation problem is a local minimizer of the penalty problem70

associated with all sufficiently large penalty parameters. Moreover, if a point is a71

stationary point of the penalty problem for all sufficiently large penalty parameters,72

then it is a stationary point of the smoothing relaxation problem. These properties73

ensure that the penalty problem is a promising approach to find a stationary point of74
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A PENALTY RELAXATION METHOD FOR IMAGE PROCESSING USING EULER’S ELASTICA MODEL3

the discrete Euler’s elastica model.75

• By taking advantage of the bi-convexity of the penalty problem with respect to two76

groups of variables, denoted as u ∈ Rm and w ∈ R2m, we propose a smoothing block77

coordinate descent (BCD) algorithm. This algorithm executes BCD iteration while78

updating the smoothing parameter simultaneously. More specifically, at each iteration79

we first solve an unconstrained strictly convex u-problem through a modified fixed-80

point method. Then by partitioning w to (QT1 w, . . . , Q
T
mw), we sequentially solve81

m subproblems with respect to QTi w, i = 1, . . . ,m and each subproblem is a two-82

dimensional convex ball-constrained problem whose solution can be easily calculated.83

We prove that any accumulation point of the sequence generated by the smoothing84

BCD algorithm is a stationary point of the penalty problem.85

This paper is organized as follows. In section 2, we give the discrete Euler’s elastica model86

through discretization and relaxation. Moreover, we propose a smoothing relaxation model87

and define a penalty problem by representing the nonconvex constraint by a penalty term88

in the objective. In section 3, we explore the relationships among solutions and stationary89

points of the discrete model, the smoothing relaxation and the penalty problem. In section90

4, we propose the smoothing BCD algorithm to solve the penalty problem and present the91

convergence results. In section 5, we present some numerical results by applying the proposed92

method to some image processing problems.93

2. Discretization and relaxation. It is worth noting that the curvature term in (1.1)94

makes no sense at those pixels of image with |∇u| = 0. To deal with this, relaxation is95

normally used in related works (see, e.g. [2, 13, 26]). Following the relaxation approach in96

[13], we replace ∇u
|∇u| by a function p satisfying97

(2.1) 〈p,∇u〉 = |∇u| and |p| ≤ 1.98

By the well-known Hölder’s inequality, (2.1) is equivalent to p = ∇u
|∇u| only for u with99

|∇u| 6= 0. When |∇u| vanishes, (2.1) ensures the boundedness of p. Then Euler’s elastica100

model (1.1) can be relaxed to the following constrained optimization problem [13]101

min
(u,p)∈W

∫
Ω

(
a+ b|∇ · p|2

)
|∇u|dxdy +

λ

2

∫
Ω

(Ku− u0)2dxdy,(2.2)102

where103

W = {(u, p) ∈ BV (Ω)×H(Ω,div), 〈p,∇u〉 = |∇u|, |p| ≤ 1}104

with105

H(Ω,div) = {p ∈ (L2(Ω))2,∇ · p ∈ L2(Ω)}.106

We now introduce the discrete form of model (2.2) with a rectangle Ω = [x0, x1]× [y0, y1].107

Let the mesh size be 4x = (x1 − x0)/(n1 − 1) and 4y = (y1 − y0)/(n2 − 1). We consider108

the discrete image domain Ω̄ = {(xi, yj); xi = x0 + (i − 1)4x, yj = y0 + (j − 1)4y, i =109

1, · · · , n1, j = 1, · · · , n2} as an n1 × n2 grid and rearrange the intensity value of each pixel110

in the discrete image into a vector u ∈ Rm (m = n1n2). In a similar way we can obtain111

u0 ∈ Rn from the input image for some n. We denote a discrete operator by K ∈ Rn×m.112
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We define the variable w =
(
p1

p2

)
with p1,p2 ∈ Rm obtained by rearranging the discrete113

forms of p. Let D(1), D(2) ∈ Rm×m be the first order forward finite difference matrices with114

periodic boundary condition in the horizontal and vertical direction, respectively. We define115

Di ∈ R2×m to represent the difference matrix at i-th pixel which consists of the i-th rows116

of D(1) and D(2). Let di ∈ R2m be a vector whose first m elements are the i-th row of the117

matrix D(1) and last m elements are the i-th row of D(2). Then dTi w is a discrete divergence118

of (p1,p2) at i-th pixel. Let ei ∈ R2m be the vector with the i-th element being one and119

others being zero and define Qi = (ei, em+i), i = 1, . . . ,m. Then we obtain the discrete form120

of (2.2) as121

min
u∈Rm
w∈R2m

Φ(u,w), where Φ(u,w) =
m∑
i=1

(
a+ b(dTi w)2

)
‖Diu‖+

λ

2
‖Ku− u0‖2

s.t. ‖Diu‖ −wTQi(Diu) = 0,

‖QTi w‖2 ≤ 1, i = 1, · · · ,m,

(2.3)122

where dTi w ∈ R and Diu ∈ R2 denote the curvature of the level line and discrete gradient of123

image u at i-th pixel respectively and ‖ · ‖ denotes the l2 norm. In (2.3), the second term is124

the discrete form of λ
2

∫
Ω(Ku − u0)2dxdy. We omit the constant 4x4y for simplicity in our125

theoretical study.126

For various applications, the matrix K may be different. For example, K is the identity127

matrix for some image denoising problems, while for image inpainting, K is a diagonal matrix128

with129

Ki,i =

{
1, i ∈ Ω̄ \ Γ,
0, i ∈ Γ,

130

where i corresponds to the i-th pixel in the domain Ω̄, and Γ represents the inpainting domain.131

To overcome computational difficulties caused by the nonsmooth term ‖Diu‖ in (2.3),132

we propose a smoothing relaxation scheme which replaces the nonsmooth term by a smooth133

one and relaxes the equality constraints by inequalities. It results in the following smooth134

optimization problem:135

min
u∈Rm
w∈R2m

Φε(u,w), where Φε(u,w) =
m∑
i=1

(
a+ b(dTi w)2

)
‖Diu‖ε +

λ

2
‖Ku− u0‖2

s.t. ϕεi(u,w) ≤ 0,

‖QTi w‖2 ≤ 1, i = 1, · · · ,m,

(2.4)136

where ε is a positive parameter,

‖Diu‖ε =
√
‖Diu‖2 + ε2 and ϕεi(u,w) = ‖Diu‖ε −wTQi(Diu)− 2ε, i = 1, . . . ,m.

In problem (2.4), we relax the equality constraint of (2.3) into ϕεi(u,w) ≤ 0, which can guar-137

antee that the feasible set of (2.3) is contained in the feasible set of problem (2.4). Moreover,138

This manuscript is for review purposes only.



A PENALTY RELAXATION METHOD FOR IMAGE PROCESSING USING EULER’S ELASTICA MODEL5

for any fixed w, the set {u : ϕεi(u,w) ≤ 0} is convex, which helps us to develop a block139

coordinate descent algorithm. Note that the term −2ε in ϕεi(u,w) can be replaced by −cε for140

any c > 1.141

To solve problem (2.4) effectively, we represent the nonconvex inequality constraints ϕεi ≤ 0142

for i = 1, . . . ,m by adding a penalty term in the objective, which yields the following penalty143

problem144

min
u∈Rm
w∈R2m

Ψε,σ(u,w), where Ψε,σ(u,w) = Φε(u,w) + σ
m∑
i=1

(ϕεi(u,w))+

s.t. ‖QTi w‖2 ≤ 1, i = 1, · · · ,m,

(2.5)145

where σ > 0 is a penalty parameter and (z)+ := max{z, 0}. It is worth noting that the146

constraints in problem (2.5) are convex and only related to the variable w, and the objective147

is bi-convex, that is, it is convex with respect to u and w for fixed w and u respectively.148

This special structure inspires us to propose an efficient block coordinate descent algorithm149

in section 4. At the end of this section, we observe that problems (2.3), (2.4) and (2.5)150

have bounded solution sets. It is easy to see that the feasible sets of the three problems are151

nonempty and bounded in the components w, since the zero vector in R3m is their feasible152

point and ‖QTi w‖2 = w2
i +w2

m+i. The three objective functions are continuous and coercive in153

the components u for any fixed w. Moreover, the objective function values are nonnegative.154

3. Relationships between problems (2.3), (2.4) and (2.5). In this section, we first give155

some necessary constraint qualifications and optimality conditions of problems (2.3), (2.4)156

and (2.5). Next, the theoretical relationships between these three problems are established157

regarding their optimal solutions and stationary points.158

3.1. Constraint qualification and optimality conditions. In this subsection, we will study159

constraint qualification and optimality conditions for nonconvex optimization problems (2.3),160

(2.4) and (2.5). We use notations A1, A2 and A3 to represent the feasible sets of problems161

(2.3), (2.4) and (2.5), respectively, i.e.,162

A1 = {(u,w) : u ∈ Rm, w ∈ R2m, ‖Diu‖ −wTQi(Diu) = 0, ‖QTi w‖2 ≤ 1, i = 1, · · · ,m},163

A2 = {(u,w) : u ∈ Rm, w ∈ R2m, ϕεi(u,w) ≤ 0, ‖QTi w‖2 ≤ 1, i = 1, · · · ,m},164

A3 = {(u,w) : u ∈ Rm, w ∈ R2m, ‖QTi w‖2 ≤ 1, i = 1, · · · ,m}.165166

Moreover, let gi(w) = ‖QTi w‖2 − 1, I(u,w) = {i : ϕεi(u,w) = 0, i = 1, · · · ,m} and J(w) =167

{i : gi(w) = 0, i = 1, · · · ,m}.168

Problem (2.3) is nonsmooth at (u,w) if there is i ∈ {1, . . . ,m} such that Diu = 0. The169

following lemma gives first order optimality conditions for problem (2.3).170

Lemma 3.1. Let (u∗,w∗) be a solution of problem (2.3), L = {i : Diu
∗ = 0, i = 1, . . . ,m},171

and U =
⋂
i∈L ker(Di). Then there exist multipliers ξi ∈ R, i 6∈ L, ζi ∈ R2, i ∈ L and η ∈ Rm+ ,172

This manuscript is for review purposes only.



6 F. HE, X. WANG, AND X.J. CHEN

such that the following conditions hold,173

m∑
i=1,i 6∈L

(
a+ b(dTi w

∗)2+ξi
)
DT
i

Diu
∗

‖Diu∗
‖+λKT (Ku∗ − u0)−

m∑
i=1,i/∈L

ξiD
T
i Q

T
i w
∗+
∑
i∈L

DT
i ζi = 0,

(3.1)

174

m∑
i=1,i 6∈L

2b‖Diu
∗‖ · di(dTi w∗)−

m∑
i=1,i 6∈L

ξiQiDiu
∗ + 2

m∑
i=1

ηiQiQ
T
i w
∗ = 0,(3.2)175

‖Diu
∗‖ −wTQiDiu

∗ = 0, i = 1, . . . ,m,(3.3)176

min{ηi, 1− ‖QTi w∗‖2} = 0, i = 1, . . . ,m.(3.4)177178

Proof. Let Φ̂(u,w) =
∑m

i=1,i 6∈L
(
a+ b(dTi w)2

)
‖Diu‖ + λ

2‖Ku − u0‖2. By the optimality179

of (u∗,w∗) for problem (2.3) and the definition of L, we have180

Φ̂(u∗,w∗) = Φ(u∗,w∗) = min{Φ(u,w) : (u,w) ∈ A1}181

= min{Φ(u∗ + h,w) : (u∗ + h,w) ∈ A1}182

≤ min{Φ(u∗ + h,w) : (u∗ + h,w) ∈ A1, h ∈ U}183

= min{Φ̂(u∗ + h,w) : (u∗ + h,w) ∈ A1, h ∈ U}.184

Hence (0,w∗) is a solution of the optimization problem185

min
h∈Rm
w∈R2m

Φ̂(u∗ + h,w)

s.t. ‖Di(u
∗ + h)‖ −wTQiDi(u

∗ + h) = 0, i 6∈ L,
Dih = 0, i ∈ L,
‖QTi w‖2 ≤ 1, i = 1, . . . ,m.

(3.5)186

Notice that there exists a neighborhood B(0,w∗) such that for any feasible point (h,w) ∈187

B(0,w∗), Di(u
∗ + h) 6= 0, i 6∈ L and QTi w 6= 0, i ∈ J(w∗). Hence problem (3.5) is smooth at188

any feasible point in B(0,w∗).189

Denote S by the set consisting of the gradients of equality constraints and active inequality190

constraints for problem (3.5), namely191

S = S1 ∪ S2 ∪ S3192

where193

S1 =

{(
DT
i

Di(u
∗+h)

‖Di(u∗+h)‖ −D
T
i Q

T
i w

−QiDi(u∗ + h)

)
, i 6∈ L

}
, S2 =

{(
DT
i

0

)
, i ∈ L

}
,194

S3 =

{(
0

2QiQTi w

)
, i ∈ J(w∗)

}
.195
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Since ‖Di(u
∗+h)‖−wTQiDi(u

∗+h) = 0, Di(u
∗+h) 6= 0 and ‖QTi w‖2 ≤ 1 imply Di(u

∗+h)
‖Di(u∗+h)‖ =196

QTi w, we have DT
i

Di(u
∗+h)

‖Di(u∗+h)‖ −D
T
i Q

T
i w = 0 for i 6∈ L. Moreover, ‖Diu

∗‖− (w∗)TQiDiu
∗ = 0197

and ‖Diu
∗‖ 6= 0 imply that i ∈ J(w∗). Hence we obtain198

S1 =

{(
0

−‖Di(u∗ + h)‖QiQTi w

)
, i 6∈ L

}
⊆
{(

0

−‖Di(u∗ + h)‖QiQTi w

)
, i ∈ J(w∗)

}
.199

Noticing Di(u
∗ + h) 6= 0, ‖QTi w‖ = 1, i /∈ L and QTi w 6= 0, i ∈ J(w∗), it yields that the rank200

of S1 ∪ S3 equals that of S3 for any (h,w) ∈ B(0,w∗). Therefore, as the rank of S2 is fixed,201

for any subset S̄ ⊆ S, S̄ has the same rank in the neighborhood B(0,w∗), which means that202

the constant rank constraint qualification (CRCQ)1 holds at point (0,w∗). Since Φ̂ and all203

constraint functions are continuously differentiable, the KKT conditions hold at the solution204

(0,w∗) of problem (3.5) [17]. Therefore, there exist multipliers ξi, i 6∈ L, ζi, i ∈ L and η ∈ Rm+ ,205

such that conditions (3.1)-(3.4) for problem (2.3) hold at (u∗,w∗).206

We call (u∗,w∗) a stationary point of (2.3), if it satisfies conditions (3.1)-(3.4).207

We say that the Mangasarian-Fromovitz constraint qualification (MFCQ) holds at a fea-208

sible point (u,w) of problem (2.4) if there exist vectors z1 ∈ Rm, z2 ∈ R2m such that for any209

i ∈ I(u,w) and j ∈ J(w), it holds210 (
∇uϕ

ε
i(u,w)

∇wϕεi(u,w)

)T(z1

z2

)
< 0, (∇wgj(w))T z2 < 0.211

212

Lemma 3.2. The MFCQ holds at any feasible point of problem (2.4). Let (u∗,w∗) be a local213

minimizer of problem (2.4). Then there exist multipliers ξ, η ∈ Rm+ , such that the following214

KKT conditions hold,215

m∑
i=1

(a+ b(dTi w
∗)2 + ξi)D

T
i

Diu
∗

‖Diu∗‖ε
+ λKT (Ku∗ − u0)−

m∑
i=1

ξiD
T
i Q

T
i w
∗ = 0,(3.6)216

m∑
i=1

2b‖Diu
∗‖ε · di(dTi w∗)−

m∑
i=1

ξiQiDiu
∗ + 2

m∑
i=1

ηiQiQ
T
i w
∗ = 0,(3.7)217

min{ξi,−ϕεi(u∗,w∗)} = 0, i = 1, . . . ,m,(3.8)218

min{ηi, 1− ‖QTi w∗‖2} = 0, i = 1, . . . ,m.(3.9)219220

Proof. Let (u,w) be a feasible point of problem (2.4). For simplicity, we abbreviate221

I(u,w) and J(w) to I and J , respectively. To show MFCQ holds at (u,w), we first introduce222

a vector
(
tu
−w
)
, where t is a constant satisfying223

(3.10) t < min
i∈I

{
(2ε− ‖Diu‖ε)‖Diu‖ε

2ε‖Diu‖ε − ε2

}
,224

1We say that the CRCQ holds at a feasible point of a smooth constrained optimization problem, if for each
subset of the gradients of equality constraints and active inequality constraints, the rank at a neighborhood of
this feasible point is constant [17].
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where 2ε‖Diu‖ε − ε2 ≥ ε2 > 0. Thus, for any i ∈ I, we have225

(
∇uϕ

ε
i(u,w)

∇wϕεi(u,w)

)T( tu

−w

)
=

(
DT
i

Diu
‖Diu‖ε −D

T
i (QTi w)

−Qi(Diu)

)T(
tu

−w

)
= (

Diu

‖Diu‖ε
−QTi w)TDi(tu) + wTQiDiu

= t(
‖Diu‖2

‖Diu‖ε
−wTQiDiu) + wTQiDiu

= t(
‖Diu‖2

‖Diu‖ε
− ‖Diu‖ε + 2ε) + ‖Diu‖ε − 2ε

= t
2ε‖Diu‖ε − ε2

‖Diu‖ε
+ (‖Diu‖ε − 2ε)

< 0,

226

where the forth equality is from ϕεi(u,w) = ‖Diu‖ε − wTQiDiu − 2ε = 0 for i ∈ I, and227

the last inequality is from (3.10) and 2ε‖Diu‖ε − ε2 > 0. Moreover, for any j ∈ J , we have228

‖QTj w‖2 = 1 and229

(∇wgj(w))T (−w) = (2Qj(Q
T
j w))T (−w) = −2‖QTj w‖2 < 0.230

Therefore, MFCQ holds at (u,w).231

All functions in problem (2.4) are continuously differentiable. Hence, at any local mini-232

mizer of (2.4), under MFCQ there exist multipliers ξ, η ∈ Rm+ such that the KKT conditions233

(3.6)-(3.9) hold.234

We call (u∗,w∗) a stationary point of (2.4), if it satisfies conditions (3.6)-(3.9).235

The objective function of problem (2.5) is Lipschitz continuous, but not differentiable. To236

derive the first order optimality condition of problem (2.5), we use the Clarke subdifferential.237

For any ε, σ > 0, it follows from Proposition 2.3.3 and Corollary 1 in [12] that238

∂Ψε,σ(u,w) = ∇Φε(u,w) + σ∂
m∑
i=1

(ϕεi(u,w))+ .239

Since ϕεi(u,w), i = 1, . . . ,m, are continuously differentiable, and the plus function (·)+ is240

convex, by Proposition 2.3.6(b) and Theorem 2.3.9(iii) in [12], we have that (ϕεi)+ is regular241

[12, Definition 2.3.4] and242

∂(ϕεi(u,w)+) = ri(u,w)∇ϕεi(u,w),243

where244

(3.11) ri(u,w) :=


1, if ϕεi(u,w) > 0,
[0, 1], if ϕεi(u,w) = 0,
0, if ϕεi(u,w) < 0,

245
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for i = 1, · · · ,m. From the regularity of (ϕεi)+ and Corollary 3 of Proposition 2.3.3 in [12], it246

indicates247

(3.12) ∂
m∑
i=1

(ϕεi(u,w))+ =
m∑
i=1

∂ (ϕεi(u,w)+) =
m∑
i=1

ri(u,w)∇ϕεi(u,w).248

Lemma 3.3. Assume that (ū, w̄) is a local minimizer of problem (2.5). Then there exist249

Lagrangian multipliers ρi ≥ 0 and coefficients κi ∈ ri(ū, w̄), i = 1, . . . ,m, with ri defined in250

(3.11), such that251

m∑
i=1

(
a+ b(dTi w̄)2

)
DT
i

Diū

‖Diū‖ε
+ λKT (Kū− u0) + σ

m∑
i=1

κi
(
DT
i

Diū

‖Diū‖ε
−DT

i Q
T
i w̄
)

= 0,

(3.13)

252

m∑
i=1

2b‖Diū‖ε · di(dTi w̄)− σ
m∑
i=1

κiQiDiū + 2

m∑
i=1

ρiQiQ
T
i w̄ = 0,(3.14)253

min
(
ρi, 1− ‖QTi w̄‖2

)
= 0, i = 1, . . . ,m.(3.15)254255

Proof. By the definition of Qi, ∇gi(w) = 2QiQ
T
i w, i ∈ J(w) are linearly independent at

any feasible point of problem (2.5). Hence the linear independence constraint qualification
(LICQ) holds at a local minimizer (ū, w̄) of problem (2.5). Therefore, there exist ρi ≥ 0 for
i = 1, . . . ,m such that

0 ∈ ∂(Ψε,σ(ū, w̄) +
m∑
i=1

ρi(‖QTi w̄‖2 − 1))

and (3.15) hold. Since Φε and ‖QTi w‖2 are continuously differentiable, and (ϕεi)+ is regular,256

by (3.12), we find that the first order necessary conditions (3.13)-(3.15) hold at (ū, w̄).257

We call (ū, w̄) a stationary point of (2.5) if conditions (3.13)-(3.15) hold at (ū, w̄).258

3.2. Relationships between (2.3), (2.4) and (2.5). In this subsection, we will focus on259

relationships between problems (2.3), (2.4) and (2.5). First, we consider problems (2.3) and260

(2.4) regarding global minimizers.261

Theorem 3.4. For any given ε > 0, assume that (uε,wε) is an optimal solution of problem262

(2.4). Let (u∗,w∗) be an arbitrary accumulation point of {(uε,wε)} as ε ↓ 0. Then (u∗,w∗)263

is an optimal solution of problem (2.3).264

Proof. From

‖Diu‖ε −wTQiDiu ≤ ‖Diu‖ −wTQiDiu + ε = ε,

at any feasible point (u,w) of problem (2.3), we have that the feasible set A1 of problem (2.3)265

is contained in the feasible set A2 of problem (2.4). Hence from the optimality of (uε,wε), it266

yields that267

Φε(uε,wε) ≤ Φε(u,w), for any (u,w) ∈ A1.268
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Then taking limitation on both sides of the above inequality as ε ↓ 0, we have269

Φ(u∗,w∗) ≤ Φ(u,w), for any (u,w) ∈ A1.270

Moreover, from271

2ε ≥ ‖Diuε‖ε −wεQi(Diuε)272

≥ ‖Diuε‖ε − ‖QTi wε‖‖Diuε‖273

≥ ‖Diuε‖ε − ‖Diuε‖ ≥ 0,(3.16)274

we know (u∗,w∗) is feasible for problem (2.3), which completes the proof.275

The following theorem considers problems (2.3) and (2.4) regarding stationary points.276

Theorem 3.5. Let (uε,wε) be a stationary point of (2.4) with multiplers ξε, ηε ∈ Rm+ . If277

{uε, ξε} is bounded for all sufficiently small ε. Then as ε decreases to zero, there exists an278

accumulation point (u∗,w∗) that is a stationary point of (2.3).279

Proof. Following from the feasibility of wε and (3.9), it implies ηεi = 0 for i /∈ J(wε). Then
by (3.7) we obtain∑

i∈J(wε)

ηεiQiQ
T
i wε = −

m∑
i=1

b‖Diuε‖ε · di(dTi wε) +
1

2

m∑
i=1

ξεiQiDiuε

which is bounded from the boundedness of {uε, ξε} for all sufficiently small ε. Furthermore,280

due to the structure of Qi = (ei, em+i), ‖QiQTi wε‖ = ‖QTi wε‖ = 1 and ηεi ≥ 0 for i ∈ J(wε),281

we know282

(3.17) ‖
∑

i∈J(wε)

ηεiQiQ
T
i wε‖ =

∑
i∈J(wε)

ηεi‖QiQTi wε‖ =
∑

i∈J(wε)

ηεi .283

Hence, ηεi , i ∈ J(wε) is bounded. Therefore, {ηε} is bounded for all sufficiently small ε.284

By the boundedness of {uε,wε, ξ
ε, ηε}, there are a subsequence εk of {ε : ε → 0},285

u∗,w∗, ξ ≥ 0, η ≥ 0 and πi, i ∈ L := {i : Diu
∗ = 0} such that286

uεk → u∗, wεk → w∗, ξεk → ξ, ηεk → η287

and
Diuεk
‖Diuεk‖εk

→ πi, i ∈ L. Then taking limit on both sides of (3.6) as εk → 0, we have288

0 =
m∑

i=1,i/∈L

(a+ b(dTi w
∗)2 + ξi)D

T
i

Diu
∗

‖Diu∗‖
+ λKT (Ku∗ − u0)−

m∑
i=1

ξiD
T
i Q

T
i w
∗

289

+
∑
i∈L

(a+ b(dTi w
∗)2 + ξi)D

T
i πi.290

291

Then by denoting ζi = (a+ b(dTi w
∗)2 + ξi)πi for i ∈ L, we obtain that (3.1) holds at (u∗,w∗).292

Similarly, we can derive (3.2) from (3.7). Moreover the feasibility of (uε,wε) for (2.4) together293

with (3.16) yields that (u∗,w∗) is a feasible point of (2.3), which leads to (3.3)-(3.4). This294

proof is completed.295
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The following theorem considers problems (2.4) and (2.5) regarding local minimizers,296

which is a direct application of Lemma 3.2 in this paper and Theorems 4.4 and 4.6 in [16].297

Theorem 3.6. If (u∗,w∗) is a strict local minimizer of problem (2.4), then (u∗,w∗) is a298

local minimizer of problem (2.5) for all σ > max1≤i≤m ξi, where ξ ∈ Rm+ is the corresponding299

multiplier vector in (3.7).300

Proof. By Lemma 3.2, MFCQ holds for problem (2.4) at (u∗,w∗). Then there exists a σ∗301

such for all σ > σ∗, (u∗,w∗) is a local minimizer of problem (2.5) according to Theorem 4.4302

in [16]. In addition, we have σ∗ = max1≤i≤m ξi by Theorem 4.6 in [16].303

Now we consider problems (2.4) and (2.5) regarding their stationary points and optimal304

solutions.305

Theorem 3.7. Assume that (u∗,w∗) is a stationary point of problem (2.5) for all σ greater306

than a certain threshold σ̂ > 0. Then (u∗,w∗) is a stationary point of problem (2.4).307

Proof. For simplicity, we introduce the following notations:308

ϕε∗i := ϕεi(u
∗,w∗), g∗i := gi(w

∗), i = 1, . . . ,m,309

v∗ := −
m∑
i=1

2b‖Diu
∗‖ε · di(dTi w∗).310

311

Suppose to the contrary that (u∗,w∗) is not a feasible point of problem (2.4). Then there312

exists some i such that ϕεi(u
∗,w∗) > 0. By the definition (3.13)-(3.15) of a stationary point313

of (2.5), there are ρ, κ ∈ Rm, which depend on σ, such that314

v∗ = 2

m∑
i=1

ρiQiQ
T
i w
∗ − σ

∑
i:ϕε∗i >0

QiDiu
∗ − σ

∑
i:ϕε∗i ≤0

κiQiDiu
∗,315

for any σ > σ̂. Therefore, for any β > α > 1 and σ1 > σ̂, by letting σ2 = ασ1 and σ3 = βσ1,316

there exist corresponding coefficients {κji}, {ρ
j
i}, j = 1, 2, 3 with κji ∈ [0, 1] and ρji ≥ 0 such317

that318

(3.18) v∗ = 2
m∑
i=1

ρjiQiQ
T
i w
∗ − σj

∑
i:ϕε∗i >0

QiDiu
∗ − σj

∑
i:ϕε∗i ≤0

κjiQiDiu
∗, j = 1, 2, 3.319

Then performing the subtraction of equality (3.18) with different j and division by σ2 − σ1320

and σ3 − σ1, respectively, we have321

(3.19) 0 = 2
∑
i:g∗i =0

ρ2
i − ρ1

i

σ1(α− 1)
QiQ

T
i w
∗ −

∑
i:ϕε∗i >0

QiDiu
∗ −

∑
i:ϕε∗i =0

ακ2
i − κ1

i

α− 1
QiDiu

∗
322

and323

(3.20) 0 = 2
∑
i:g∗i =0

ρ3
i − ρ1

i

σ1(β − 1)
QiQ

T
i w
∗ −

∑
i:ϕε∗i >0

QiDiu
∗ −

∑
i:ϕε∗i =0

βκ3
i − κ1

i

β − 1
QiDiu

∗,324

This manuscript is for review purposes only.



12 F. HE, X. WANG, AND X.J. CHEN

where we use ρji = 0 if g∗i > 0 and κi = 0 if ϕε∗i < 0.325

Since Qi = (ei, em+i), (3.19) indicates that {i : ϕε∗i > 0} ⊆ {i : g∗i = 0}. Thus for326

i ∈ {i : ϕε∗i > 0}, we have Qi(α̃Q
T
i w
∗ − Diu

∗) = 0, which implies α̃QTi w
∗ = Diu

∗ by327

Qi = (ei, em+i), where α̃ =
2(ρ2i−ρ1i )
σ1(α−1) . Moreover, from g∗i = ‖Qiw∗‖2 − 1 = 0, we have328

‖Diu
∗‖ = |α̃| and ϕε∗i =

√
α̃2 + ε2 − α̃− 2ε > 0, which further imply α̃ < 0 by contradiction.329

It follows that ρ2
i < ρ1

i . Subtracting (3.19) from (3.20), we obtain330

(3.21) 0 = 2
∑
i:g∗i =0

( ρ2
i − ρ1

i

σ1(α− 1)
− ρ3

i − ρ1
i

σ1(β − 1)

)
QiQ

T
i w
∗+

∑
i:ϕε∗i =0

(ακ2
i − κ1

i

α− 1
− βκ

3
i − κ1

i

β − 1

)
QiDiu

∗.331

As the vector group {QiQTi w∗, i ∈ J(w∗)} is linearly independent, the coefficients of QiQ
T
i w
∗332

in (3.21) for i ∈ {i : ϕε∗i > 0} must be zero, i.e.,333

ρ2
i − ρ1

i

σ1(α− 1)
=

ρ3
i − ρ1

i

σ1(β − 1)
,334

which derives335

ρ3
i =

β − 1

α− 1
(ρ2
i − ρ1

i ) + ρ1
i .336

As ρ3
i ≥ 0, for i ∈ {i : ϕε∗i > 0}, which is non-empty by assumption, β is upper bounded by337

β ≤ ρ1
i

ρ1
i − ρ2

i

(α− 1) + 1,338

which contradicts the arbitrariness of β. Therefore, (u∗,w∗) is a feasible point of problem339

(2.4), i.e., ϕε∗i ≤ 0 and g∗i ≤ 0 for i = 1, · · · ,m.340

As (u∗,w∗) is a stationary point of problem (2.5), conditions (3.13)-(3.15) hold at (u∗,w∗).341

Then it is equivalent to that there exist coefficients κ∗i ∈ [0, 1], i = 1, . . . ,m such that342

m∑
i=1

(
a+ b(dTi w

∗)2
)
DT
i

Diu
∗

‖Diu∗‖ε
+λKT (Ku∗−u0) + σ

∑
i:ϕε∗i =0

κ∗i
(
DT
i

Diu
∗

‖Diu∗‖ε
−DT

i Q
T
i w
∗) = 0,343

m∑
i=1

2b‖Diu
∗‖ε · di(dTi w∗)− σ

∑
i:ϕε∗i =0

κ∗iQiDiu
∗ + 2

m∑
i=1

ρiQiQ
T
i w
∗ = 0,344

min{ρi, 1− ‖QTi w∗‖2} = 0, i = 1, . . . ,m.345346

Taking ηi = ρi for i = 1, . . . ,m, ξi = σκ∗i if ϕε∗i = 0 and ξi = 0 if ϕε∗i < 0 ensures that347

conditions (3.6)-(3.9) hold at (u∗,w∗). Therefore, (u∗,w∗) satisfies the KKT conditions for348

problem (2.4) which completes the proof.349

Corollary 3.8. Assume that (u∗,w∗) is an optimal point of problem (2.5) for all σ greater350

than a certain threshold σ̂ > 0. Then it is also an optimal solution of problem (2.4).351
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Proof. By Theorem 3.7, (u∗,w∗) is feasible for problem (2.4). Then for any feasible point352

(u,w) of problem (2.4), we have353

Φε(u
∗,w∗) = Ψε,σ(u∗,w∗) ≤ Ψε,σ(u,w) = Φε(u,w),354

which implies (u∗,w∗) is an optimal solution of problem (2.4).355

Remark 3.9. In this section, we establish the theoretical relationships between the discrete356

Euler’s elastica model (2.3), the smoothing relaxation problem (2.4) and the penalty problem357

(2.5) regarding their optimal solutions and stationary points. From these theoretical results,358

optimal solutions and stationary points of problem (2.5) with a large penalty parameter σ359

and a sufficiently small smoothing parameter ε are good approximate optimal solutions and360

stationary points of the discrete Euler’s elastica model (2.3), respectively. Moreover, when ε361

decreases to zero, any accumulation point of optimal solutions or stationary points of problem362

(2.5) is that of (2.3) under certain conditions. According to the relationships, the discrete363

Euler’s elastica model (2.3) can be solved via problem (2.5). Compared with (2.3), problem364

(2.5) is easier to solve, since the feasible set of (2.5) is convex and the functions Φε and ϕεi365

in the objective are continuously differentiable. Moreover, problem (2.5) is convex in the u-366

subspace and w-subspace. Inspired by this special structure, efficient optimization algorithms367

can be developed.368

4. Smoothing BCD method and convergence analysis. In this section, we will present369

a smoothing block coordinate descent (BCD) method for solving problem (2.5). Considering370

that Ψε,σ(u,w) is locally Lipschitz continuous but nondifferentiable, we first give a definition371

of its smoothing function.372

Definition 4.1. We call Ψ̃ε,σ : Rm × R2m × R+ → R a smoothing function of Ψε,σ, if373

Ψ̃ε,σ(·, ·, µ) is continuously differentiable in Rm × R2m for any fixed µ > 0, and satisfies the374

following two conditions for any (u,w) ∈ Rm × R2m,375

• function value consistency

lim
µ↓0

(ũ,w̃)→(u,w)

Ψ̃ε,σ(ũ, w̃, µ) = Ψε,σ(u,w),

• gradient consistency

co{lim∇Ψ̃ε,σ(ũ, w̃, µ) : (ũ, w̃)→ (u,w), µ ↓ 0} = ∂Ψε,σ(u,w),

where “co” denotes the convex hull.376

To obtain a smoothing function of Ψε,σ, we use the smoothing function377

(4.1) φ(z, µ) =

{
(z)+, if |z| > µ

2 ,
1

2µ(z + µ
2 )2, if |z| ≤ µ

2
378

to approximate the plus function (z)+. For other smoothing functions in image processing,379

interested readers are referred to [10, 11]. Let380

Ψ̃ε,σ(u,w, µ) = Φε(u,w) + σ
m∑
i=1

ϕ̃εi(u,w, µ),381
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where ϕ̃εi(u,w, µ) := φ(ϕεi(u,w), µ) for i = 1, . . . ,m. Since Φε is continuously differentiable,382

and (ϕεi)+ is regular, Ψ̃ε,σ is a smoothing function of Ψε,σ by Theorem 1 in [9].383

4.1. Algorithms. By replacing the objective function Ψε,σ in (2.5) with its smoothing384

approximation Ψ̃ε,σ, we obtain the following problem385

min
u,w

Ψ̃ε,σ(u,w, µ), where Ψ̃ε,σ(u,w, µ) = Φε(u,w) + σ
m∑
i=1

ϕ̃εi(u,w, µ)

s.t. ‖QTi w‖2 ≤ 1, i = 1, · · · ,m.
(4.2)386

Recall that for i = 1, . . . ,m, Qi = (ei, em+i), so QTi w = (wi, wm+i)
T ∈ R2 where wi and wm+i387

are the i-th and (m + i)-th element of w, respectively. By defining wi = QTi w, we obtain a388

partition of w: (w1, . . . ,wm). By taking advantage of the problem structure, we now present389

a smoothing block coordinate descent algorithm for solving (4.2).390

Algorithm 1391

Choose positive parameters c, θ ∈ (0, 1) and initial variables u0 = u0 ∈ Rm, w0 = 0 ∈ R2m,392

µ0 > 0.393

For k ≥ 0:394

• STEP 1 Solve395

(4.3) min
u

Ψ̃ε,σ(u,wk, µk) +
c

2
‖u− uk‖2396

to obtain uk+1.397

• STEP 2 For i = 1, . . . ,m, solve398

(4.4) min
‖wi‖2≤1

Ψ̃ε,σ(uk+1,wk+1
1≤j<i,wi,w

k
i<j≤m, µ

k)399

to obtain wk+1 =
∑m

i=1Qiwi.400

• STEP 3 If the stopping criteria are satisfied, terminate the algorithm. Otherwise, let401

µk+1 = θµk, k = k + 1 and go to Step 1.402

The stopping criteria in Step 3 depend on optimality conditions for (4.3) and (4.4). More403

details will be given in section 5. In the following, we will first study u-subproblem in (4.3) and404

then propose Algorithm 2 to solve it. Secondly, we will consider solutions to wi-subproblem405

(4.4). We will show that each wi-subproblem has a unique solution which is easy to obtain.406

• u-subproblem.The objective function in (4.3) has the form407

(4.5) Φε(u,w
k) +

c

2
‖u− uk‖2 + σ

m∑
i=1

ϕ̃εi(u,w
k, µk).408

By the definition of the smoothing function in (4.1), ϕ̃εi(u,w
k, µ) = 1

2µ(ϕεi(u,w
k) +409

µ
2 )2 if |ϕεi(u,wk)| ≤ µ

2 . To solve (4.3) efficiently by a fixed point method, we split410

ϕ̃εi(u,w
k, µk) into two parts for |ϕεi(u,wk)| ≤ µ

2 , namely, we write411

Φε(u,w
k) +

c

2
‖u− uk‖2 + σ

m∑
i=1

ϕ̃εi(u,w
k, µk) = hk(u) +

σ

µ

∑
i:|ϕεi |≤

µ
2

fki (u)(4.6)412
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where413

hk(u) = Φε(u,w
k) +

c

2
‖u− uk‖2 + σ

∑
i:|ϕεi |>

µ
2

ϕεi(u,w
k)414

+
σ

2µ

∑
i:|ϕεi |≤

µ
2

(
‖Diu‖2ε − (4ε− µ)‖Diu‖ε + ((wk)TQiDiu + 2ε− µ

2
)2
)

415

416

and fki (u) = −((wk)TQiDiu)‖Diu‖ε. Here we use ϕεi to denote ϕεi(u,w
k) for simplic-417

ity.418

As (4.6) is strictly convex, its optimal solution also solves the following nonlinear419

equations:420

0 =∇hk(u) +
σ

µ

∑
i:|ϕεi |≤

µ
2

∇fki (u)

(4.7)

421

=
m∑
i=1

(a+ b(dTi w
k)2)DT

i

Diu

‖Diu‖ε
+ λKT (Ku− u0) + c(u− uk)422

+ σ
∑
|ϕεi |>

µ
2

(
DT
i

Diu

‖Diu‖ε
−DT

i Q
T
i w

k

)
423

+
σ

2µ

∑
|ϕεi |≤

µ
2

(
2DT

i Diu− (4ε− µ)DT
i

Diu

‖Diu‖ε
+ (2(wk)TQiDiu + 4ε− µ)(DT

i Q
T
i w

k)

)
424

+
σ

µ

∑
|ϕεi |≤

µ
2

(
−(wk)TQiDiuD

T
i

Diu

‖Diu‖ε
− ‖Diu‖εDT

i Q
T
i w

k

)
.425

426

We next present an iterative algorithm to solve (4.7).427

Algorithm 2428

Set positive parameters: dk, εtol > 0. Initialize variables: ut = uk with t = 0.429

For t ≥ 0:430

– STEP 1 Solve the following equation with respect to u431

(4.8) 0 = ∇hk(u) +
σ

µ

∑
i:|ϕεi |≤

µ
2

∇fki (ut) + dk(u− ut)432

obtaining ut+1.433

– STEP 2 If the residual of (4.7) at ut+1 is no more than εtol, terminate the434

algorithm and return uk+1 = ut+1. Otherwise, let t = t+ 1 and go to Step 1.435

In Algorithm 2, we choose436

dk = 2ε̃+
∑

i:|ϕεi |≤
µ
2

σdki
µ
,437
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where ε̃ is a positive constant and dki is an upper bound of Lipschitz constant of ∇fki438

for i such that |ϕεi | ≤
µ
2 . Thus, for each t ≥ 0, problem (4.8) is an approximation to439

(4.7) at ut. Moreover, it is easy to check that (4.8) is equivalent to minimize F kt (u),440

where441

F kt (u) = hk(u) +
σ

µ

∑
i:|ϕεi |≤

µ
2

(fki (ut) + (∇fki (ut))T (u− ut)) +
dk

2
‖u− ut‖2.442

443

Thus ∇F kt (ut+1) = 0 at the minimizer ut+1. Function F kt will play a key role in444

proving the convergence of Algorithm 2, as shown in Lemma 4.2.445

In the following numerical experiments, we apply the lagged diffusivity fixed point446

method to solve (4.8). The lagged diffusivity approach was firstly proposed for solving447

TV functional minimization in [28] with theoretical convergence analyzed in [8].448

• wi-subproblem. Notice that for each wi-subproblem, i = 1, . . . ,m, (4.4) can be449

reformulated as a two-dimensional ball constrained optimization problem as below:450

min
‖wi‖≤1

wT
i P

k
i wi + (qki )

Twi,(4.9)451

where wi = QTi w and P ki is a symmetric and positive definite matrix. For illustrations452

we present here a special case of wi-subproblem with the i-th pixel point not on the453

boundary of Ω̄ and ϕ̃εi = 1
2µ(ϕεi(u,w) + µ

2 )2. In this case the wi-subproblem is of the454

form:455

min
‖wi‖2≤1

b‖Diu
k+1‖ε

(
(1 1) ·wi − (wki+1 + wkm+i+n1

)
)2

+ b‖Di−1u
k+1‖ε

(
(1 0) ·wi − (wk+1

i−1 + wk+1
m+i−1 − w

k
m+n1+i−1)

)2
+ b‖Di−n1u

k+1‖ε
(
(0 1) ·wi − (wki−n1

+ wkm+i−n1
− wki−n1+1)

)2
+

σ

2µk

(
(Diu

k+1)Twi − ‖Diu
k+1‖ε + 2ε− µk

2

)2

.

(4.10)456

Then we can reformulate (4.10) into the form of (4.9) where457

P ki = b‖Diu
k+1‖ε

(
1 1
1 1

)
+ b

(
‖Di−1u

k+1‖ε 0
0 ‖Di−n1u

k+1‖ε

)
458

+
σ

2µk
(Diu

k+1)(Diu
k+1)T459

460

which is symmetric and positive definite and qki =
(qki (1)

qki (2)

)
with461

qki (1) = − 2b‖Diu
k+1‖ε(wki+1 + wkm+i+n1

)− σ

µk
(‖Diu

k+1‖ε − 2ε+
µk

2
)uk+1
i1462

− 2b‖Di−1u
k+1‖ε(wk+1

i−1 + wk+1
m+i−1 − w

k
m+n1+i−1),463

qki (2) = − 2b‖Diu
k+1‖ε(wki+1 + wkm+i+n1

)− σ

µk
(‖Diu

k+1‖ε − 2ε+
µk

2
)uk+1
i2464

− 2b‖Di−n1u
k+1‖ε(wk+1

i−n1
+wk+1

m+i−n1
− wk+1

i−n1+1).465466
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Here uk+1
i1 and uk+1

i2 correspond to the first and second elements of Diu
k+1 respectively.467

By optimality conditions for (4.9) it has a unique solution468

(4.11) wk+1
i = −(2P ki + 2τki I2)−1qki ,469

where I2 ∈ R2×2 is the identity matrix and τki is zero if ‖(2P ki )−1qki ‖2 ≤ 1 and a470

positive number satisfying ‖(2P ki + 2τki I2)−1qki ‖2 = 1 otherwise, where the equation471

is quartic with respect to τki and has a unique positive root.472

4.2. Convergence analysis. The following lemma establishes the convergence of Algo-473

rithm 2.474

Lemma 4.2. Let the sequence {ut} be generated by Algorithm 2. Then it converges to the475

solution of problem (4.5).476

Proof. Recall that problem (4.5) is strictly convex, thus it has a unique solution. As ut+1477

minimizes F kt , we have F kt (ut+1) ≤ F kt (ut). Recall that dki was introduced in Algorithm 2478

to denote the upper bound of Lipschitz constant of ∇fki . Then by Taylor’s theorem we have479

that for every i,480

fki (ut+1) ≤ fki (ut) + (∇fki (ut))T (ut+1 − ut) +
dki
2
‖ut+1 − ut‖2.481

By the definition of F kt and above inequality, we can derive that482

F kt+1(ut+1) + ε̃‖ut+1 − ut‖2483

=hk(ut+1) +

dk
2
−

∑
i:|ϕεi |≤

µ
2

σdki
2µ

 ‖ut+1 − ut‖2 +
σ

µ

∑
i:|ϕεi |≤

µ
2

fki (ut+1)484

≤hk(ut+1) +

dk
2
−

∑
i:|ϕεi |≤

µ
2

σdki
2µ

 ‖ut+1 − ut‖2485

+
σ

µ

∑
i:|ϕεi |≤

µ
2

(
fki (ut) + (∇fki (ut))T (ut+1 − ut) +

dki
2
‖ut+1 − ut‖2

)
486

=hk(ut+1) +
dk

2
‖ut+1 − ut‖2 +

σ

µ

∑
i:|ϕεi |≤

µ
2

(
fki (ut) + (∇fki (ut))T (ut+1 − ut)

)
487

=F kt (ut+1) ≤ F kt (ut).488489

Therefore, {F kt (ut)} is a monotonically decreasing sequence and lower bounded, then it con-490

verges and491

lim
t→∞

ε̃‖ut+1 − ut‖2 ≤ lim
t→∞

F kt (ut)− F kt+1(ut+1) = 0,492

which implies limt→∞ ‖ut+1 − ut‖ = 0. Furthermore, since F kt (u) is level bounded, the493

sequence {ut} is bounded and there is a subsequence {utl} converging to u∗ and satisfying494

∇F ktl(u
tl+1) = 0 by the optimality condition for minimizing F ktl . Then we obtain495
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0 =∇F ktl(u
tl+1) = lim

l→∞
∇F ktl(u

tl+1)496

= lim
l→∞

∇hk(utl+1) +
σ

µ

∑
i:|ϕεi |≤

µ
2

∇fki (utl) + dk(utl+1 − utl)

497

=∇hk(u∗) +
σ

µ

∑
i:|ϕεi |≤

µ
2

∇fki (u∗)(4.12)498

499

where utl+1 → u∗ is from limt→∞ ‖ut+1 − ut‖ = 0. Consequently, (4.12) indicates that u∗ is500

the solution of problem (4.5), which completes the proof.501

Lemma 4.3. Let {(uk,wk)} be generated by Algorithm 1. Then {(uk,wk)} is bounded and502

(4.13) lim
k→∞

‖(uk+1,wk+1)− (uk,wk)‖ = 0.503

Proof. Following the framework in Algorithm 1, the sequence {(uk,wk)} satisfies504

(4.14) Ψ̃ε,σ(uk+1,wk, µk) +
c

2
‖uk+1 − uk‖2 ≤ Ψ̃ε,σ(uk,wk, µk).505

For i = 1, . . . ,m, as wk+1
i is the solution of problem (4.9), by (4.11) it also solves the problem506

(4.15) min
wi∈R2

wT
i P

k
i wi + (qki )

Twi + τki (‖wi‖2 − 1).507

Note that the objective function in (4.15) is strongly convex, τki (‖wk+1
i ‖2 − 1) = 0 and508

P ki + τki I2 � P ki � bεI2 for i = 1, . . . ,m, where A � B means that A − B is positive509

semidefinite for symmetric matrices A and B with the same dimension. Then we obtain510

(wk
i )TP ki w

k
i + qTkw

k
i ≥ (wk

i )TP ki w
k
i + qTkw

k
i + τki (‖wk

i ‖2 − 1)

≥ (wk+1
i )TP ki w

k+1
i + qTkw

k+1
i + τki (‖wk+1

i ‖2 − 1) +
bε

2
‖wk

i −wk+1
i ‖2,

= (wk+1
i )TP ki w

k+1
i + qTkw

k+1
i +

bε

2
‖wk

i −wk+1
i ‖2,

511

which implies512

Ψ̃ε,σ(uk+1,wk+1
1≤j<i,w

k
i≤j≤m, µ

k) ≥ Ψ̃ε,σ(uk+1,wk+1
1≤j≤i,w

k
i<j≤m, µ

k) +
bε

2
‖wk

i −wk+1
i ‖2.513

Thus we have514

(4.16) Ψ̃ε,σ(uk+1,wk+1, µk) +
bε

2
‖wk −wk+1‖2 ≤ Ψ̃ε,σ(uk+1,wk, µk).515

Moreover, as for fixed z the smoothing function φ(z, µ) is nondecreasing with respect to µ > 0,516

by µk+1 = θµk with θ ∈ (0, 1) we obtain517

(4.17) Ψ̃ε,σ(uk+1,wk+1, µk+1) ≤ Ψ̃ε,σ(uk+1,wk+1, µk).518
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By inequalities (4.14), (4.16) and (4.17), we know519

Ψ̃ε,σ(uk+1,wk+1, µk+1) +
bε

2
‖wk −wk+1‖2 +

c

2
‖uk − uk+1‖2 ≤ Ψ̃ε,σ(uk,wk, µk),520

which implies that the sequence {Ψ̃ε,σ(uk,wk, µk)} is monotonically decreasing. Then as
Ψ̃ε,σ(u,w, µ) is coercive, it is level bounded, i.e., the sequence set

{(uk,wk, µk)} ⊆ {(u,w, µ) : Ψ̃ε,σ(u,w, µ) ≤ Ψ̃ε,σ(u0,w0, µ0)}

is bounded, which yields the boundedness of {(uk,wk)}. Moreover, {Ψ̃ε,σ(uk,wk, µk)} con-521

verges due to its lower boundedness. Therefore, we obtain that522

lim
k→∞

c

2
‖uk+1−uk‖2 +

bε

2
‖wk−wk+1‖2 ≤ lim

k→∞
Ψ̃ε,σ(uk,wk, µk)− Ψ̃ε,σ(uk+1,wk+1, µk+1) = 0,523

which yields (4.13). This completes the proof.524

Theorem 4.4. Let {(uk,wk)} be generated by Algorithm 1. Then any accumulation point525

(u∗,w∗) is a stationary point of problem (2.5).526

Proof. By Lemma 4.3 there exists a subsequence {(ukl ,wkl)} converging to (u∗,w∗). Since527

ukl+1 and wkl+1 are obtained by solving their first order conditions, we have528

∇uΨ̃ε,σ(ukl+1,wkl , µkl) + c(ukl+1 − ukl) = 0,(4.18)529

∇wiΨ̃ε,σ(ukl+1,wkl+1
1≤j<i,w

kl+1
i ,wkl

i<j≤m, µ
kl) + 2τkli wkl+1

i = 0, i = 1, . . . ,m,(4.19)530
531

where τkli is the corresponding multiplier defined in (4.11) for i = 1, . . . ,m. And (4.19) implies532

(4.20) ‖∇wiΨ̃ε,σ(ukl+1,wkl+1
1≤j<i,w

kl+1
i ,wkl

i<j≤m, µ
kl)‖ = 2τkli ‖w

kl+1
i ‖, i = 1, . . . ,m.533

Considering that τkli (‖wkl+1‖ − 1) = 0, we obtain from (4.20) that534

(4.21)
1

2
‖∇wiΨ̃ε,σ(ukl+1,wkl+1

1≤j<i,w
kl+1
i ,wkl

i<j≤m, µ
kl)‖ = τkli , i = 1, . . . ,m.535

According to the definition of smoothing function [9], ∇wiΨ̃ε,σ is bounded, then there exists a536

convergent subsequence of ∇wiΨ̃ε,σ(ukl+1,wkl+1
1≤j<i,w

kl+1
i ,wkl

i<j≤m, µ
kl). Without loss of gen-537

erality, we still label this subsequence by kl. Accordingly, there exists a point τ∗ such that τkl538

converges to τ∗.539

As it follows from ‖uk+1 − uk‖ → 0, ‖wk+1 − wk‖ → 0 and ‖µk+1 − µk‖ → 0 that540

{ukl+1} → u∗, {wkl+1} → w∗,{µkl+1} → 0, taking limits on both sides of (4.18) as kl → ∞541

yields542

(4.22) lim
kl→∞

∇uΨ̃ε,σ(ukl+1,wkl , µkl) = 0.543

Besides, since (4.19) is equivalent to544

∇wiΦε(u
kl+1,wkl+1

1≤j<i,w
kl+1
i ,wkl

i<j≤m) + σ∇wiϕ̃
ε
i(u

kl+1,wkl+1
i , µkl) + 2τkli wkl+1

i = 0,545
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for i = 1, . . . ,m. Taking limits on the above equation, we have546

(4.23) − (∇wiΦε(u
∗,w∗) + 2τ∗i w

∗
i ) ∈ co

{
lim
kl→∞

σ∇wiϕ̃
ε
i(u

kl+1,wkl+1
i , µkl)

}
, i = 1, . . . ,m.547

Since Qi(Q
T
i w
∗) = w∗i , then we obtain548

(4.24) − (∇wΦε(u
∗,w∗) +

m∑
i=1

2τ∗i Qi(Q
T
i w
∗)) ∈ co

{
lim
kl→∞

σ
m∑
i=1

∇wϕ̃
ε
i(u

kl+1,wkl+1, µkl)

}
.549

Hence, from the gradient consistency for the smoothing function in Definition 4.1, (4.22)550

and (4.24), it follows that (u∗,w∗) satisfies conditions (3.13) and (3.14) in Theorem 3.3, and551

(τ∗i ,w
∗) satisfies condition (3.15) for i = 1, . . . ,m. Consequently, (u∗,w∗) is a stationary552

point of problem (2.5) which completes the proof.553

5. Numerical Experiments. In this section, we report numerical experiments using our554

Algorithm 1 with Algorithm 2 for image inpainting and image denoising by Euler’s elastica555

model. The experiments were performed in MATLAB version R2016b on a laptop of 8GB556

RAM and Intel Core i5-8350 CPU: @1.70GHz 1.90GHz.557

All the stopping criteria in the algorithms are based on optimality conditions. Based558

on Theorem 4.4 with (4.22) and (4.24), we set the termination criterion in Algorithm 1 as559

Res1 = max{r1, r2, r3} ≤ 10−4 where560 
r1 = ‖∇uΨ̃ε,σ(uk,wk, µk)‖∞,
r2 = ‖∇wΨ̃ε,σ(uk,wk, µk) +

∑m
i=1 τ

k
i Qi(Q

T
i w

k)‖∞,
r3 = max1≤i≤m |min(τki , 1− ‖QTi wk‖2)|.

561

For Algorithm 2 we adopt the stopping criterion εtol ≤ 10−4 with wk at ut+1 outer iteration.562

5.1. Choice of parameters. For model parameters, a and b are positive constant weights563

associated with the TV term and the curvature term, respectively. The parameter λ balances564

the weight of the fidelity term relative to the regularization term, ε makes the objective565

function well defined everywhere in the domain Ω and σ is the penalty parameter for the566

constraint ϕεi(u,w) ≤ 0, i = 1, . . . ,m in (2.4). Besides, there are three parameters µ0, c and567

θ for Algorithm 1. Although a big penalty penalty parameter σ can ensure the feasibility of568

(u,w) for the constraint ϕεi(u,w) ≤ 0, we experimentally found that a large σ may lead to569

unsatisfactory numerical results and σ ∈ [1, 10] can have good numerical performance in image570

inpainting. Parameter θ ∈ (0, 1) is the reduction factor of µk in the iteration as µk+1 = θµk571

and c is the proximal coefficient in the u-subproblem. We set c = 0.01 in all experiments. In572

image inpainting, we set a = 5, b = 10, σ = 1, λ = 1000, ε = 0.1, θ = 0.9 and µ0 = 0.7 in573

Figures 1-2, and a = 1, b = 5, σ = 1, λ = 1000, ε = 0.001, θ = 0.999 and µ0 = 0.5 in Figure574

3. Here we use a large λ to ensure that the known information in input data is properly575

preserved. In image denoising, parameters are set as a = 1, b = 5, σ = 5, λ = 2.4, ε = 0.0001,576

θ = 0.9 and µ0 = 0.1.577
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(a) (b) (c)

Figure 1. (a) Input Image. Red region is inpainting domain. (b) Result by TV model. (c) Result by Euler’s
elastica model.

5.2. Image inpainting. In this subsection, we apply the proposed algorithms to image578

inpainting problems. The matrix K is an diagonal matrix as mentioned in section 2.579

We first report in Figure 1 the comparison between Algorithm 1 for Euler’s elastica model580

and the lagged diffusion fixed method method [28] for Total Variation (TV) model (b = 0 in581

(1.1)). The red region in Figure 1(a) is the inpainting domain. Figure 1(b) is the inpainting582

result by using the lagged diffusion fixed point method in [28] for TV model and while Figure583

1(c) is the result by using Algorithm 1 for Euler’s elastica model. Although the edge obtained584

by our proposed method is blurry, we can see that Algorithm 1 for Euler’s elastica model585

performs superior in connecting the disconnected edges.586

We also report some results for synthetic images in Figure 2. The red regions in Figures587

2(a)-2(c) all represent unknown regions while Figures 2(d)-2(f) are inpainting results. These588

examples display that our proposed method is effective as the obtained results are visually589

reasonable and correct. Moreover, we can observe that although the edges are a little bit590

blurry, Algorithm 1 for Euler’s elastica model shows a quality of extending connectivity and591

connecting the missing region smoothly along the curves of images in inpainting domains.592

In Figure 3, we test Algorithm 1 with some real images downloaded from world wide web2.593

The missing pixels shown in red region of Figure 3(a) are chosen randomly and the portion is594

50% of image size. The type of inpainting region in Figure 3(a) often appears in archaeological595

artifacts which cannot be recovered manually. The red lines in Figure 3(c) are made randomly596

and can simulate the distorted area in some old photos. We can see from Figures 3(b) and597

3(d) that features of recovery results are restored well, which can demonstrate that Algorithm598

1 for Euler’s elastica model can be used in some practical image inpainting problems.599

In Table 1, we present the comparison results between Algorithm 1, THC method [26],600

vanilla Stochastic Gradient Descent (SGD) method [18, 21] and Adaptive Moment Estimation601

(ADAM) method [19] for Euler’s elastica model. THC method is a fast and efficient numerical602

algorithm by using an augmented Lagrangian approach to solve problem (2.2). However, as603

discussed in [13], one drawback of THC method is that it is sensitive to some parameters.604

In recent years, SGD method and ADAM method have been widely recognized as efficient605

methods for finite-sum nonconvex optimization and used in Matlab, Python Optimization606

Toolbox for solving unconstrained general finite-sum nonconvex optimization problems [18].607

2Datasets were downloaded at: http://www.robots.ox.ac.uk/∼vgg/data.
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(a) (b) (c)

(d) (e) (f)

Figure 2. Input images with red inpainting regions in the first row, results by Algorithm 1 in the second row.

Table 1
Relative error comparison on images.

RelErr Fig. 2(a) Fig. 2(b) Fig. 2(c) Fig. 3(a) Fig. 3(c)

Algorithm 1 0.0524 0.1316 0.2270 0.0732 0.0360

THC 0.0947 0.1799 0.2539 0.0918 0.0503

SGD 0.2093 0.1637 0.2956 0.0936 0.0450

ADAM 0.2086 0.1368 0.2563 0.0927 0.0528

We apply these two methods to solve an unconstrained problem that is obtained by penalizing608

all constraints in problem (4.2) to the objective function in a quadratic term σ2
∑m

i=1 ‖QTi w‖2.609

For THC method, the parameters are set same as in [26] and [30]. For SGD method and ADAM610

method, the sample size is 100, the stepsize is 0.001, the penalty parameter for penalizing611

constraints in problem (4.2) is σ2 = 100, and other parameters are same as ours. Moreover,612

for ADAM method, the exponential rates for first- and second-moment estimates are set as 0.9613

and 0.999, respectively, and the constant for numerical stability is set as 10−8. We implement614

SGD method and ADAM method by calling solvers sgd( ) and adam( ) in a SGDLibrary615
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(a) (b)

(c) (d)

Figure 3. The input images with red missing region are shown in left column, while the corresponding
results are displayed in right column.

(a) (b)

Figure 4. Performances of Algorithm 1 with different ε for Figure 3(a).
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(a) (b)

Figure 5. Performances of Algorithm 1 with θ = 0.999 and different µ0 for Figure 3(a).

Figure 6. Values of r1, r2, r3 and Res1 for Figure 3(a).

[18] in MATLAB. Relative error is defined by616

RelErr :=
‖uk − uorg‖
‖uorg‖

,617

where uorg is the original image without any inpainting domain and uk is the output image.618

In order to achieve a small relative error, our proposed method is more stable than THC619

method, SGD method and ADAM method, which are sensitive with some parameters in620

numerical computation. In Figures 4 and 5, we report performances of Algorithm 1 for621

Figure 3(a) on relative error as well as function values with respect to different smoothing622

parameters ε and the reduction factor θ and initial smoothing parameter µ0 for µk+1 = θµk.623
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(a) Noisy image (b) TV (c) Elastica

(d) Noisy image (e) TV (f) Elastica

Figure 7. The images in first row are noisy image, result of TV model by FTVd method and result of
Euler’s elastica model by Algorithm 1, respectively. The corresponding contour maps are shown in the second
row.

Results show that the numerical performance is slightly different when varying parameters.624

But overall speaking, Algorithm 1 is stable and insensitive to smoothing parameters ε, µ0 and625

θ. Convergence behavior of residuals r1, r2, r3 and Res1 = max(r1, r2, r3) are presented in626

Figure 6. We can see that the optimality residual is reduced to a small number eventually627

which verifies the theoretical analysis in previous sections.628

5.3. Image denoising. In this subsection, the matrix K is an identity matrix. We use
Algorithm 1 to denoise the optical coherence tomography (OCT) images. OCT is a high-
resolution imaging technology mainly used in clinical medicine and can yield good effects
in diagnosis of retinal diseases especially. However, the high-resolution of OCT means high
demanding for environment and collection process of signal data. OCT images are always
damaged by speckle noise, which has an adverse impact on observation and estimation of
OCT images [14]. Thus pre-processing is necessary and often the first step in OCT image
analysis. According to statistical optics, speckle noise in OCT images is multiplicative noise
and can be converted into additive noise by logarithmic compression [24]. Therefore we can
apply Algorithm 1 for Euler’s elastica model to denoise the corrupted OCT images. The
variance of speckle noise is 0.02. The peak signal-to-noise ratio (PSNR) is defined by

PSNR = 10× log10

m · (maxuk)2

‖uk − uorg‖2
.

In Figure 7, we use a Gaussian function [15] to generate a synthetic OCT image to compare629
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(a) Noisy image A (b) TV (c) Elastica

(d) Noisy image B (e) TV (f) Elastica

Figure 8. Two experiments in real OCT images. The parameters associated with the fidelity term in FTVd
for (b) and (e) are set as λ = 8 and 5, respectively.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9. The first row are contour maps of original OCT image A without noise and Figures 8(a)-8(c).
The second row are contour maps of original OCT image B without noise and Figures 8(d)-8(f).

Algorithm 1 for Euler’s elastica model and fast total variation deconvolution (FTVd) method630

for the TV model in [29] to denoise OCT images. Figure 7(a) is the input noisy image,631

Figures 7(b) and 7(c) are results by FTVd method for the TV model and Algorithm 1 for632
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Figure 10. The first row are noisy images. The second row are corresponding results of Euler’s elastica
model by Algorithm 1, the values of PSNR from left to right are: 27.9292, 26.7305,26.6660, 26.5482.

Euler’s elastica model, respectively. Figures 7(d)-7(f) are corresponding contour maps given633

for visual comparison. It can be found that Algorithm 1 for Euler’s elastica model yields a more634

pleasant and smoothing restoration in layers which is important for subsequent processing such635

as layer segmentation.636

We report two more experiments on real OCT images in Figure 8. Noisy OCT images637

are shown in the left column and the denoising results by FTVd method for TV model and638

Algorithm 1 for Euler’s elastica model are shown in middle and right columns, respectively. To639

give a more vivid description, we draw the corresponding contour maps in Figure 9. It can be640

observed visually that Algorithm 1 for Euler’s elastica model significantly eliminates the noise641

in OCT images and preserves the continuity and integrity of choroid layer. Although it looks642

more smoothing in the results of FTVd method for the TV model, the tiny features easily643

confused with noise are vanished which may seriously affect the segmentation of choroid layer644

and detection of disease. Moreover, staircase effect appears in the results by FTVd method for645

the TV model. For the results of Algorithm 1 for Euler’s elastica model, details of physiological646

tissue in images are kept without over-smoothing and staircase effect, which means Figures647

8(c) and 8(f) are better than Figures 8(b) and 8(e) in OCT image analysis. Four more OCT648

denoising results using Algorithm 1 for Euler’s elastica model are given in Figure 10.649

Remark 5.1 The operator splitting method in [13] is a new and efficient method for the650

Euler elastica model for image smoothing. However, the operator splitting method needs a651

unique solution of a strongly convex problem at each step (see section 3.6 in [13]) and does652

not have convergence guarantees. Note that the objective function in the Euler elastica model653

(1.1) for inpainting problem is not strongly convex due to the singularity of the linear operator654

K. It is worth noting that Algorithm 1 has convergence guarantees for Euler’s elastica model655

with K being an identity operator for image smoothing.656
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6. Conclusion. In this paper, we propose a penalty relaxation method to solve the discrete657

Euler’s elastica model (2.3), which has wide applications in image processing. To deal with the658

nonsmoothness of problem (2.3), we introduce a smoothing relaxation problem (2.4) and es-659

tablish the relationship between solutions and stationary points of problem (2.3) and problem660

(2.4) in Theorems 3.4-3.5. Moreover, we propose the penalty problem (2.5) to overcome the661

difficulties caused by the nonconvex constraints in problem (2.4). We derive the relationship662

between problem (2.4) and problem (2.5) regarding their local minimizers, stationary points663

and optimal solutions in Theorems 3.6-3.7 and Corollary 3.8. Using the special structure of664

problem (2.5), we propose a smoothing block coordinate descent algorithm (Algorithm 1).665

In the algorithm, we split problem (2.5) into an unconstrained strictly convex subproblem666

in variable u and m two-dimensional ball constrained subproblems with a unique solution in667

variable wi. We prove that any accumulation point of the sequence generated by Algorithm668

1 is a stationary point of problem (2.5). Finally, we present some numerical results in image669

inpainting and OCT image denoising to show the effectiveness of the proposed method.670
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