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Abstract. The dynamic nonlinear complementarity problem (DNCP) consisting of a nonlinear differ-
ential system and a complementarity system has been used to formulate and study many dynamic problems.
In a Gauss-Seidel type method for DNCPs, by first guessing a solution of the differential system, we can
solve the complementarity system and then with the computed solution we can solve the differential system
to update the guess. Upon convergence at the current time point we can move to the next one. The idea
can be easily generalized to multi-point version: instead of doing iterations at each single time point, we
can do iterations for a number of time points, say J time points, all-at-once. Despite its simplicity and
easy-implementation, convergence of this method is not justified so far. In this paper, we present interesting
convergence theorems for this method. We show that the method with a fixed length of time interval con-
verges superlinearly and the convergence rate is robust with respect to the step-size h. Moreover, we show
that the method with a fixed number of time points converges with a rate O(h). Since at each iteration
the differential system and complementarity system are solved separately, many existing solvers are directly
applicable for each of these two systems. It is notable that we can solve the complementarity system at all
the J time points in parallel. Numerical results of the method to solve the four-diode bridge wave rectifier
with random circuit parameters and the projected dynamic systems are given to support our findings.
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1. Introduction. We are interested in solving the following dynamic nonlinear com-
plementarity problem (DNCP) with initial value x(0) = x0:

ẋ(t) = F (t, x(t), y(t)), 0 ≤ y(t) ⊥ G(t, x(t), y(t)) ≥ 0, t ∈ (0, T ), (1.1)

where x(t) ∈ Rm, y(t) ∈ Rn+, F : R+ × Rm × Rn+ → Rm and G : R+ × Rm × Rn+ → Rn.
The nonnegativity and perpendicularity in (1.1) are explained in the component sense.
Applications of differential complementarity problems and other closely related models, such
as the differential variational inequalities [12,31], can be found in many places; we refer the
reader to the excellent monographs [13, 16] and the survey papers [26, 29]. An important
subclass is the following differential semi-affine systems [2, 16,26]:

ẋ(t) = F (t, x(t), y(t)), 0 ≤ y(t) ⊥ Nx(t) +My(t) + g(t) ≥ 0, t ∈ (0, T ), (1.2)

where N ∈ Rn×m, M ∈ Rn×n and g : R+ → Rn. A special case of (1.2) is the dynamic
linear complementarity problem (DLCP) [4–6,9, 16,18,20,26,28,30,32,33]:

ẋ(t) = Ax(t) +By(t) + f(t), 0 ≤ y(t) ⊥ Nx(t) +My(t) + g(t) ≥ 0, t ∈ (0, T ), (1.3)

where A ∈ Rm×m, B ∈ Rm×n and f : R+ → Rm.
For a DNCP, the exact solution is not available in general and quantitative study of

these problems mainly relies on numerical computation. The time-stepping method is widely
used [1, 4, 9–11,13,16,18,20,26,33]. Applying the Backward-Euler method to (1.1) gives

0 ≤ yj ⊥ G(tj , xj , yj) ≥ 0, xj = xj−1 + hF (tj , xj , yj), j = 1, 2, . . . , Nt, (1.4)
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where h = T
Nt

is the step-size and Nt is a positive integer¶. Clearly, the major computation
cost of solving (1.1) lies in solving the nonlinear system (1.4) at each time point and the
goal of this paper is to establish an efficient method to solve such a nonlinear system.

1.1. The existing methods. There are two mainstream methods for solving (1.4) at
each time point. The first one is a direct method, which is for DLCP (1.3). The nonlinear
system (1.4) for DLCP is

0 ≤ yj ⊥ Nxj +Myj + gj ≥ 0, xj = xj−1 + hAxj + hByj + hfj , j = 1, 2, . . . , Nt. (1.5)

From the discretized ODE system xj can ben given as

xj = h(I − hA)−1Byj + f̃j , with f̃j := (I − hA)−1(xj−1 + hfj), (1.6a)

and then we substitute xj to the linear complementarity system (LCS) in (1.5):

0 ≤ yj ⊥ g̃j +Mhyj ≥ 0,with Mh := hN(I − hA)−1B +M, g̃j := gj +Nf̃j . (1.6b)

Solving (1.6b) gives yj and then by substituting yj to (1.6a) we get xj . Method (1.6a)-(1.6b)
is extensively studied in the literature; cf. [1, 4, 5, 10, 11, 18, 20, 25, 26]. Problems exist for
this approach in two aspects. First, even though the LCS in (1.5) has a unique solution in
a certain sense, there is no guarantee that this is also true for (1.6b). For example, if M is
a P-matrix‖ the LCS in (1.5) has a unique solution at each time point tj , but this is often
not the case for (1.6b) because the matrix Mh may not be a P-matrix, unless the step-size
h is sufficiently small. Second, for large-scale problems, e.g., the DLCPs arising from the
parabolic Signorini problems [14, 32], it would be difficult to compute the matrix Mh. For
example, suppose B = [b1, . . . , bn], we have to solve n linear systems {(I − hA)−1bl}nl=1.
The massive computer memory and computation time required would be serious problems,
if A and B are large size matrices.

The second mainstream method for solving (1.4) is the semi-smooth Newton method
[7,9]. Under some suitable assumptions, the complementarity system has a unique solution
denoted by Y(xj). Then, by substituting this expression to the differential system we get a
nonlinear system concerning xj : F(xj) = 0, where

F(z) := z − xj−1 − hF (tj , z,Y(z)).

Applying the semi-smooth Newton method to this problem results in the following itera-
tions:

V kj ∆xkj = −F(xkj ), xk+1
j = ∆xkj + xkj , k = 0, 1, . . . , (1.7)

where x0
j is the initial guess and V kj is the Clarke generalized Jacobian matrix of F(z) at

xkj . The semi-smooth Newton method is locally convergent and therefore the initial guess

x0
j must be very close to xj [9]. Moreover, it would be difficult to get the Clarke Jacobian

matrix V kj for DNCPs of large size.

1.2. New idea. The goal of this paper is to avoid the aforementioned problems for
the direct method (1.6a)-(1.6b) and the semi-smooth Newton method (1.7), by solving (1.4)
iteratively in a Gauss-Seidel fashion:

0 ≤ yk+1
j ⊥ G(tj , x

k
j , y

k+1
j ) ≥ 0, xk+1

j = xj−1 + hF (tj , x
k+1
j , yk+1

j ), (1.8)

¶We assume that the time points {tj}Jj=0 are equally spaced, i.e., {tj = jh}Ntj=0, but this is not a
restrictive assumption since all the results obtained in this paper also hold for arbitrarily chosen time points.
‖A matrix M is called P-matrix, if all the principal minors of M are positive.
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where k ≥ 0 is the iteration index and x0
j is an initial guess of xj . Upon convergence, we

have x∞j = xj and y∞j = yj . Since the differential and complementarity systems are solved
separately, for each of these two systems many existing methods can be used without changes.
Precisely, the nonlinear function F that models the differential system is often a smooth
function and therefore xk+1

j can be obtained by using the classical Newton method [15].
For the complementarity system, we can solve it by many mature solvers, e.g., the iterative
method based on some linearization technique [27] and the PATH solver [17]¶.

Of particular interest is the semi-affine problems (1.2) , i.e.,

0 ≤ yk+1
j ⊥ Nxkj +Myk+1

j + gj ≥ 0, xk+1
j = xj−1 + hF (tj , x

k+1
j , yk+1

j ), (1.9)

for which we can solve the LCS via existing optimization solvers. For example, if M is a
Z-matrix‖ we can obtain yk+1

j via solving the following linear programming problem [9]:

min ‖y‖1, s.t. y ≥ 0, My +Nxkj + gj ≥ 0.

Moreover, for DLCPs, i.e.,

0 ≤ yk+1
j ⊥ Nxkj +Myk+1

j + gj ≥ 0, xk+1
j = xj−1 + hAxk+1

j + hByk+1
j + hfj , (1.10)

we need to solve only one linear system to get xk+1
j , i.e., (I−hA)xk+1

j = xj−1+hByk+1
j +hfj .

Suppose after k∗ iterations of (1.10) the error arrives at the prescribed tolerance, we solve
k∗ linear systems in total. In practice, e.g., for the examples studied in Section 4, k∗ is much
less than the number of linear systems needed to form the matrix Mh for the direct method
(1.6a)-(1.6b) and the Clarke generalized Jacobian matrix V kj for the semi-smooth Newton
method (1.7). For large-scale problems, this is an important advantage.

Instead of applying (1.8) to each single time point, we can generalize the idea to a
multi-point version as follows. First, we divide {t1, t2, . . . , tNt} into P groups:

{t1, t2, . . . , tJ}, {tJ+1, tJ+2, . . . , t2J}, . . . , {t(P−1)J+1, t(P−1)J+2, . . . , tPJ},

where tPJ = tNt = T and J = Nt
P ≥ 1 is an integer. Then, we apply (1.8) to each of these

P groups of time points one-by-one. Without loss of generality we assume P = 1 (i.e.,
J = Nt) and then we get a multi-point version of (1.8) as

0 ≤ yk+1
j ⊥ G

(
tj , x

k
j , y

k+1
j

)
≥ 0, xk+1

j = xk+1
j−1 + hF

(
tj , x

k+1
j , yk+1

j

)
, (1.11)

where j = 1, 2, . . . , J . The quantities {yk+1
j }Jj=1 are independent with each other and

therefore the computation of the complementarity system at all the J time points is in
parallel. If the computation of the complementarity system is much more expensive than
that of the ODE system, e.g., for DNCP (1.1) with n � m, such a parallelism can save
considerable computation time.

The iterative algorithm (1.8) is the basis of this paper, but for completeness we will make
a convergence analysis for the multi-point version (1.11) and the convergence properties of
(1.8) can be directly deduced (cf. Remark 2.2). We will show the convergence of the iterative
method (1.11) when G is a uniform P-function with respect to y (cf. (2.1) for definition).
We prove that the method has two different convergence properties depending on whether
we use it for a fixed length of time interval or we use it for a fixed number of time points. For
the first situation, we prove superlinear convergence with a rate independent of the step-size

¶We can download free the most recent PATH solver from http://pages.cs.wisc.edu/ ferris/path.html.
‖A matrix M is a Z-matrix, if its off-diagonal elements are non-positive.
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h. For the second situation, we prove that the method converges with a rate O(h) and thus
a smaller step-size h accelerates the convergence speed. For the case when G is a linear
function of y:

G(t, x(t), y(t)) = My(t) + G̃(t, x(t)), (1.12)

we prove that these results hold if M is a Z-matrix or positive semi-definite matrix.
The rest of this paper is organized as follows. In Section 2, we present the convergence

analysis of the new iterative method for the case when G is a uniform P-function. In Section
3, we consider the case (1.12) for M being a Z-matrix or positive semi-definite matrix. In
Section 4, we show applications together with numerical results of the new iterative method
for differential complementarity systems arising in three different fields. This includes a
direct application of the method to a 4-diode bridge wave rectifier consisting of a nonlinear
resistor and a capacity with random value, and a modified application of the method to a
projected dynamic system arising from the spatial price equilibrium problem. The numerical
results show that the new iterative method is superior to the existing methods, with respect
to robustness, complexity, and computation time. We conclude this paper in Section 5.

Remark 1.1. An iterative method of Gauss-Seidel style for solving DLCPs has been
studied in [32]. The main idea is to express the exact solution xk+1(t) via Laplace inversion
transform:

xk+1(t) =
1

2πi

∫
Γ

e−st(sI −A)−1(x0 +Bŷk+1(s) + f̂(s))ds, (1.13)

where ŷk+1(s) and f̂(s) denote the Laplace forward transforms of yk+1(t) and f(t) and Γ
denotes a contour in the complex plane, which is a simple, closed, positively oriented curve
enclosing the spectrum of A. This method is only applicable to DLCP (1.3). For the
nonlinear case or the linear case with time-dependent coefficient matrix A(t), we cannot
represent xk+1(t) via Laplace inversion and thus the method proposed in [32] is entirely not
applicable to DNCPs.

2. Convergence analysis in the uniform P-function case. In this section, we
consider the case that the function G(t, x, y) is a uniform P-function of y in Rn+, i.e., there
exists a constant L0 > 0 such that (cf. [26, Section 5])

max
1≤l≤n

(ȳl − ỹl)(Gl(t, x, ȳ)−Gl(t, x, ỹ)) ≥ L0‖ȳ − ỹ‖22, (2.1)

which holds for all (t, x) ∈ R+ × Rm and ȳ, ỹ ∈ Rn+, where Gl denotes the l-th component
of the function G. Moreover, we assume that there exists a constant LG > 0 such that

‖G(t, x, ȳ)−G(t, x, ỹ)‖2 ≤ LG‖ȳ − ỹ‖2, ∀(t, x) ∈ R+ × Rm, ȳ, ỹ ∈ Rn+. (2.2)

The property of uniform P-function, together with the Lipschitz condition, for the function
G implies the following lemma.

Lemma 2.1 (Theorem 5.1 in [26]). Suppose the function G(t, x, y) satisfies (2.1)-(2.2).
Then, the nonlinear complementarity problem 0 ≤ y ⊥ G(t, x, y) ≥ 0 has a unique solution
Y(x) for any (t, x) ∈ R+ × Rm, which is a Lipschitz continuous function of x at a fixed t.
Particularly, there exists a constant ηt > 0 such that ‖Y(x̄)− Y(x̃)‖2 ≤ ηt‖x̄− x̃‖2.

Remark 2.1. The property of uniform P-function resembles the notion of ‘point-wise
strong regularity’ discussed by Pang and Shen in [24]. The assumption of point-wise strong
regularity is weaker than the assumption of uniform P-function property and a local Lipschitz
solution can result a specific NCP solution, which is similar to the statements of Lemma 2.1.
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We next assume the following Lipschitz conditions for F (t, x, y):

〈F (t, x̄, y)− F (t, x̃, y), x̄− x̃〉 ≤ L1‖x̄− x̃‖22, ∀(t, y) ∈ R+ × Rn+, x̄, x̃ ∈ Rm,
‖F (t, x, ȳ)− F (t, x, ỹ)‖2 ≤ L2‖ȳ − ỹ‖2, ∀(t, x) ∈ R+ × Rm, ȳ, ỹ ∈ Rn+,

(2.3)

where 〈·〉 is the standard Euclidean inner product, L1 ∈ (−∞,∞) and L2 > 0. The first
condition in (2.3) is called one-sided Lipschitz condition and L1 can be positive or negative.
The following lemma (see Appendix-1 for proof) about the combinatorial identities is useful
for the convergence analysis for method (1.11).

Lemma 2.2. Let r > 0 and ψ(r, J, k) =
∑J
j1=1

∑j1
j2=1 · · ·

∑jk−1

jk=1 r
J−jk . Then, we have

ψ(r, J, k) =


1

(1−r)k −
∑k
l=1

(
J + k − l − 1

k − l

)
rJ

(1−r)l , r 6= 1,(
J + k − 1

k

)
, r = 1.

(2.4)

Theorem 2.3. For problem (1.1), suppose the functions G and F satisfy (2.1), (2.2)
and (2.3). Then, for method (1.11) the error ekj = xj − xkj satisfies

max
0≤j≤J

‖ekj ‖2 ≤

(hη̃)kψ(1, J, k) max0≤j≤J ‖e0
j‖2, if L1 = 0,

ψ((1− hL1)−1, J, k)
(

hη̃
1−hL1

)k
max1≤j≤J ‖e0

j‖2, if L1 6= 0,
(2.5)

provided hL1 < 1, where η̃ = L2η and xj is the converged solution (i.e., the solution of the
fully nonlinear one step problem (1.4)).

Proof. By using Lemma 2.1, we represent yk+1
j as Y(xkj ) and the converged solution yj

in (1.4) as Y(xj). Therefore, we can rewrite (1.4) and (1.11) as

xj = xj−1 + hF (tj , xj ,Y(xj)), x
k+1
j = xk+1

j−1 + hF (tj , x
k+1
j ,Y(xkj )).

For the simplicity of notations, we let ekj = xj − xkj , q = Y(xj) and qk = Y(xkj ). Then,

ek+1
j = ek+1

j−1 + h
[
F (tj , xj , q)− F (tj , x

k+1
j , qk)

]
.

To get an estimate of ‖ek+1
j ‖2, we consider the following inner product

〈ek+1
j , ek+1

j 〉 = 〈ek+1
j , ek+1

j−1〉+ h〈ek+1
j , F (tj , xj , q)− F (tj , x

k+1
j , q)〉+

h〈ek+1
j , F (tj , x

k+1
j , q)− F (tj , x

k+1
j , qk)〉.

By using the Cauchy-Schwarz inequality and the two Lipschitz conditions in (2.3), we get

‖ek+1
j ‖22 ≤ ‖ek+1

j ‖2‖ek+1
j−1‖2 + hL1‖ek+1

j ‖22 + hL2‖ek+1
j ‖2‖q − qk‖2. (2.6)

For the last term in (2.6), by using Lemma 2.1 it holds that

‖q − qk‖2 = ‖Y(xj)− Y(xkj )‖2 ≤ η‖ekj ‖2.

Substituting this into (2.6) gives ‖ek+1
j ‖2 ≤ ‖ek+1

j−1‖2 +hL1‖ek+1
j ‖2 +hη̃‖ekj ‖2, with η̃ = L2η.

The assumption hL1 < 1 implies ‖ek+1
j ‖2 ≤ 1

1−hL1
‖ek+1
j−1‖2 + hη̃

1−hL1
‖ekj ‖2.

Let {εkj }Jj=0 be the sequence defined by

εk+1
j =

1

1− hL1
εk+1
j−1 +

hη̃

1− hL1
εkj , with {ε0j = ‖e0

j‖2}Jj=0 and {εk0 = 0}k≥0.
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It is clear ‖ekj ‖2 ≤ εkj . So, it suffices to establish a suitable inequality between max1≤i≤J ε
k
j

and max1≤i≤J ε
0
j . We have

εk+1
j =

hη̃

1− hL1

∑j

l=1
(1− hL1)

−(j−l)
εkl = hη̃

∑j

l=1
(1− hL1)

l−j−1
εkl , (2.7)

and a successive application of this relation yields

εkj = (hη̃)k
∑j

j1=1

∑j1

j2=1
· · ·
∑jk−1

jk=1
(1− hL1)

jk−j−kε0jk ,

which gives εkj ≤
[
(hη̃)k

∑j
j1=1

∑j1
j2=1 · · ·

∑jk−1

jk=1 (1− hL1)
jk−j−k

]
max0≤l≤j ε

0
l . This rela-

tion holds for all j ∈ {0, 1, . . . , J} and we therefore get

max
0≤j≤J

εkj ≤
(

hη̃

1− hL1

)k [∑J

j1=1

∑j1

j2=1
· · ·
∑jk−1

jk=1
(1− hL1)

jk−J
]

max
0≤j≤J

ε0j . (2.8)

It remains to estimate the nested summation in (2.8). We consider the following two cases.

Let r = 1
1−hL1

. Then, it holds
∑J
j1=1

∑j1
j2=1 · · ·

∑jk−1

jk=1 (1− hL1)
jk−J = ψ(r, J, k), where ψ

is the function given by Lemma 2.2. Applying Lemma 2.2 gives the desired result (2.5).
Based on Theorem 2.3, we next study the asymptotic convergence rate of method (1.11)

in the case that the step-size h approaches to zero. Such an asymptotic convergence analysis
gives more convenient estimate of the convergence rate. We will distinguish two situations:

1. method (1.11) is used with a fixed number of time points, i.e., J is fixed;
2. method (1.11) is used with a fixed length of time interval, i.e., T = hJ is fixed.

2.1. Asymptotic convergence rate when J is fixed. We first consider the case
that the iterative method (1.11) is applied to a fixed number of time steps, i.e., J is fixed.
Based on Theorem 2.3 we have the following result.

Theorem 2.4. Under the assumptions of Theorem 2.3, it holds for k � 1 that

max
0≤j≤J

‖ekj ‖2 ≤ ρk max
0≤j≤J

‖e0
j‖2, (2.9)

where ρ = hη̃
1−hL1

= O(h) and η̃ = ηL2, provided h(L1 + η̃) < 1 and J is fixed.

Proof. To see this, we need to use

(
J + k − 1

k

)
≤ (1 + k)J−1, which can be verified

directly. For the case L1 = 0, from Theorem 2.3 we have

lim
k→∞

k

√(
J + k − 1

k

)
≤ lim
k→∞

(
e(J−1)

log(1+k)
k

)
= 1. (2.10)

This proves (2.9) for the case L1 = 0 in Theorem 2.3. We next consider the case L1 6= 0.
First, for L1 > 0 it holds 1− hL1 ∈ (0, 1) and then by using Lemma 2.2 we have

ψ((1− hL1)−1, J, k) ≤ 1

(1− hL1)J
ψ(1, J, k) =

1

(1− hL1)J

(
J + k − 1

k

)
.

Then, by using (2.10) we have limk→∞
k
√
ψ((1− hL1)−1, J, k) ≤ 1 since limk

k
√

(1− hL1)−J =
1. Second, for L1 < 0 we have (1− hL1)−1 < 1 and therefore

ψ((1− hL1)−1, J, k) ≤ ψ(1, J, k) =

(
J + k − 1

k

)
.

Again, by using (2.10) we have limk→∞
k
√
ψ((1− hL1)−1, J, k) ≤ 1.
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2.2. Asymptotic convergence rate when T = hJ is fixed. Theorem 2.4 implies
that if the number of time points is fixed, a smaller step-size h results in faster convergence
for method (1.11). For a fixed length of time interval, say t ∈ [0, T ] with T being a fixed
quantity, this conclusion does not hold, because in this case J increases linearly as h reduces
and therefore the limit in (2.10) is not correct. When hJ is fixed and h→ 0, method (1.11)
reverts to the following continuous analogue:

0 ≤ yk+1(t) ⊥ G(t, xk(t), yk+1(t)) ≥ 0, ẋk+1(t) = F (t, xk+1(t), yk+1(t)), t ∈ (0, T ). (2.11)

Theorem 2.5. Under the assumption of Theorem 2.3, it holds that

‖xk(t)− x(t)‖2 ≤
max{1, eL1t}(tη̃)k

k!
sup
t∈[0,T ]

‖x0(t)− x(t)‖2, t ∈ (0, T ), (2.12)

where η̃ = L2η and x(t) is the converged solution of (2.11).
Proof. In (2.11), according to Lemma 2.1 we represent yk+1(t) as Y(xk(t)) and then we

rewrite (2.11) as

ẋk+1(t) = F (t, xk+1(t),Y(xk(t))), t ∈ (0, T ), (2.13)

where xk(0) = x0 for all k ≥ 0. Similarly, we can rewrite (1.1) as

ẋ(t) = F (t, x(t),Y(x(t))), t ∈ (0, T ), (2.14)

where x(0) = x0. Let ek(t) = xk(t)− x(t). Then, from (2.13) and (2.14) we have

ėk+1(t) = F (t, xk+1(t),Y(xk(t)))− F (t, x(t),Y(x(t))), t ∈ (0, T ), (2.15)

where ek(0) = 0 for all k ≥ 0.
For the Euclidean inner product, it holds for any differentiable function e(t) 6= 0 that{

d‖e(t)‖22
dt = 2〈ė(t), e(t)〉

d‖e(t)‖22
dt = 2‖e(t)‖2 d‖e(t)‖2dt

⇒ ‖e(t)‖2
d‖e(t)‖2

dt
= 〈ė(t), e(t)〉. (2.16)

Applying this to differential equation (2.15) gives

‖ek(t)‖2
d‖ek(t)‖2

dt
= 〈ėk(t), ek(t)〉 = 〈F (t, xk,Y(xk−1))− F (t, x,Y(x)), xk − x〉

= 〈F (t, xk,Y(xk−1))− F (t, x,Y(xk−1)), xk − x〉+ 〈F (t, x,Y(xk−1))− F (t, x,Y(x)), xk − x〉
≤ L1‖ek(t)‖22 + L2η‖ek−1(t)‖2‖ek(t)‖2,

where for the ‘≤’ we used (2.3) and Lemma 2.1. We have

d‖ek(t)‖2
dt

(t) ≤ L1‖ek(t)‖2 + η̃‖ek−1(t)‖2, t ∈ (0, T ),

where η̃ = L2η and ζk(0) = 0 for all k ≥ 0, i.e.,

‖ek(t)‖2 ≤ η̃
∫ t

0

eL1(t−s)‖ek−1(s)‖2ds, t ∈ (0, T ). (2.17)

Using (2.17) recursively gives

‖ek(t)‖2 ≤ η̃k
(∫ t

0

eL1(t−s1)

∫ s1

0

eL1(s1−s2) · · ·
∫ sk−1

0

eL1(sk−1−sk)dsk · · · ds1
)

sup
t∈[0,T ]

‖e0(t)‖2.
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The k-fold integral can be estimated as follows:∫ t

0

eL1(t−s1)

∫ s1

0

eL1(s1−s2) · · ·
∫ sk−1

0

eL1(sk−1−sk)dsk · · · ds1

= eL1t

∫ t

0

∫ s1

0

· · ·
∫ sk−1

0

e−L1skdsk · · · dts1

≤ eL1t max{1, e−L1t}
∫ t

0

∫ s1

0

· · ·
∫ sk−1

0

1 dsk · · · ds1 = max{1, eL1t} t
k

k!
.

From this, we get ζk(t) ≤ max{1,eL1t}(tη̃)k

k! supt∈[0,T ] ζ
0(t).

Remark 2.2 (about the convergence rate). From Theorem 2.4 and Theorem 2.5, we see
that method (1.11) has two different convergence rates. If J is fixed, the method converges
with a rate ρ = O(h) and this implies that the method converges if a smaller step-size h is
used. In particular, for J = 1 we know that the iterative algorithm (1.8) used for each single
time point converges with a rate O(h), since in this case the multi-point algorithm (1.11)
reduces to (1.8). If the length of time interval is fixed, i.e., the quantity T is fixed and J
increases as h decreases, the factorial term k! in (2.12) implies that the method converges
superlinearly with a rate independent of h.

Remark 2.3. From Theorem 2.3 and Theorem 2.5 we see that a negative Lipschitz
constant L1 results in faster convergence, compared to a positive L1. In the linear case, i.e.,
for DLCP (1.3), L1 is negative when the matrix A is similar to its Jordan canonical form
via an orthogonal transformation and the real parts of the eigenvalues are negative. This is
often the case when the differential system arises from semi-discretizing a partial differential
equation, e.g., the parabolic Signorini problems [14].

2.3. The case of nonlinear P0-function. The requirement that G is a uniform P-
function can be slightly relaxed, namely G is a P0-function of y, i.e., G still satisfies (2.1)
but L0 = 0. In this case, we can use the idea of regularization [10] to deal with DNCP (1.1).
Precisely, with a small quantity ε > 0, we rewrite (1.1) as

ẋ(t) = F (t, x(t), y(t)), 0 ≤ y(t) ⊥ Ĝ(t, x(t), y(t)) ≥ 0, Ĝ(t, x, y) = G(t, x, y) + εy. (2.18)

Now, it is clear that Ĝ is a uniform P-function of y. It was proved in [10] that the solution
yε(t) of the regularized complementarity system in (2.18) approaches to y(t)—a solution of
the original complementarity system in (1.1) if (1.1) has a solution, when ε→ 0+. Hence,
with a suitable regularization parameter ε > 0, which is comparable with the temporal
discretization error O(h), all the results obtained in this section are directly applicable to
(2.18).

3. Convergence analysis in the case of linear complementarity. We now con-
sider the case that the function G(t, x, y) is not a P-function with respect to y, in the
following DNCP form:

ẋ(t) = F (t, x(t), y(t)), 0 ≤ y(t) ⊥My(t) + G̃(t, x(t)) ≥ 0, (3.1)

where x(0) = x0 and G̃ : R+ × Rm → Rn can be a nonlinear function of x. In particular,
we consider the case that M is a positive semi-definite matrix. (The case that M is a
Z-matrix can be treated similarly; see Remark 3.1.) DNCPs (3.1) have wide applications;
see, e.g., [13, 26, 30]. For positive semi-definite matrix M , the LCS in (3.1) has a unique

least-norm solution if the feasible set FEA(M, G̃(t, x)) := {y|y ≥ 0, G̃(t, x) + My ≥ 0} is
nonempty. Choosing the least-norm solution from the solution set leads to

ẋ(t) = F (t, x(t), y(t)), y(t) = argmin{‖v‖2 : 0 ≤ v ⊥Mv + G̃(t, x(t)) ≥ 0}. (3.2)
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Then, similar to (1.11) we define the following iterative method:{
yk+1
j = argmin{‖v‖2 : 0 ≤ v ⊥Mv + G̃(tj , x

k
j ) ≥ 0}, j = 1, 2, . . . , J,

xk+1
j = xk+1

j−1 + hF (tj , x
k+1
j , yk+1

j ), j = 1, 2, . . . , J.
(3.3)

The assumption thatM is a positive semi-definite matrix, together with FEA(M, G̃(t, x)) 6=
∅, guarantees the unique existence of the least-norm solution of the LCS, but this can not be
used as a criterion in practice, because the solution x(t) is not known a priori and therefore
it is difficult to justify whether the feasible set is empty or not. Our task in this section is
to answer the following two questions:
1. under what conditions DNCP (3.2) have a unique solution (x(t), y(t)) ?
2. under what conditions the iterative method (3.3) converges ?

The following lemma plays a central role for our analysis.
Lemma 3.1 (Theorem 2.3 in [9]). Let M ∈ Rn×n be a positive semi-definite matrix

and q1, q2 ∈ Rn such that FEA(M, q1) 6= ∅ and FEA(M, q2) 6= ∅. Then, we have ‖Y(q1)−
Y(q2)‖2 ≤ η0‖q1 − q2‖2, where Y(q) denotes the least-norm solution of 0 ≤ y ⊥ q +My ≥ 0
and η0 > 0 is a constant.

We assume that the nonlinear function G̃(t, x) satisfies the following Lipschitz condition

‖G̃(t, x1)− G̃(t, x2)‖2 ≤ η1‖x1 − x2‖2,∀t ∈ R+, x1, x2 ∈ Rm. (3.4)

Theorem 3.2 (unique existence of the solution of (3.2)). For DNCP (3.2) with M being
a positive semi-definite matrix, suppose F (t, x, y) satisfies the Lipschitz condition (2.3) with

L1 ∈ R and L2 > 0. Assume that the nonlinear function G̃ satisfies the Lipschitz condition
(3.4) and that there exist T > 0 and β > 0 such that

FEA(M, G̃(t, v)) 6= ∅, for t ∈ [0, T ] and v ∈ B(x0, β) := {v : ‖v − x0‖2 ≤ β}. (3.5a)

Then, the DNCP (3.2) has a unique least-norm solution (x(t), y(t)) ∈ C1(0, t) × C(0, t) in
the interval t ∈ (0, T ∗), with T ∗ being defined by

T ∗ =

{
T, if L1 ≤ − η̃β+C0

β ,

min
{
T, 1

L1
log
(

1 + L1β
η̃β+C0

)}
, if L1 > − η̃β+C0

β ,
(3.5b)

where η̃ = L2η0η1, C0 = maxt∈[0,T ] ‖F (x0,Y(G̃(t, x0))‖2 and Y(G̃(t, x0)) denotes the least-

norm solution of the complementarity system 0 ≤ y ⊥ G̃(t, x0) +My ≥ 0.
The condition (3.5a) shall be used throughout this section. It is essentially the same

assumption that the authors used in [9] to study the semi-smooth Newton method. With
the quantity T ∗ defined by (3.5b) it holds that

eL1t − 1

L1
≤ β

η̃β + C0
, for t ≤ T ∗, (3.6)

where for L1 = 0 the left quantity is defined in the limit, i.e., limL1→0
eL1t−1
L1

= t.

Proof. Let {xk(t), yk(t)}k≥0 be the functional sequence generated by

yk+1(t) = argmin{‖v‖2 : 0 ≤ v ⊥Mv + G̃(t, xk(t)) ≥ 0},
ẋk+1(t) = F (t, xk+1(t), yk+1(t)),
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where xk(0) = x0 for k ≥ 0. For the initial iterate, i.e., k = 0, we choose x0(t) = x0. We
claim that starting from this initial guess every iterate xk(t) still lies in the ball B(x0, β)
under condition (3.5b).

For k = 0, since x0(t) lies in the ball B(x0, β) we know that y1(t) is uniquely existent

for t ∈ [0, T ]. Hence, ẋ1(t) = F (t, x1(t),Y(G̃(t, x0(t)))). We have

d[x1(t)− x0(t)]

dt
=
[
F (t, x1(t),Y(G̃(t, x0(t))))− F (t, x0(t),Y(G̃(t, x0(t))))

]
+

F (t, x0(t),Y(G̃(t, x0(t)))).

By using (2.16) and the Lipschitz condition for F (cf. (2.3)), we have

d‖x1(t)− x0(t)‖2
dt

≤ L1‖x1(t)− x0(t)‖2 + C0 ⇒ ‖x1(t)− x0(t)‖2 ≤ C0
eL1t − 1

L1
.

This, together with (3.6), implies that under condition (3.5b) the solution x1(t) lies in the
ball B(x0, β) for t ∈ [0, T ∗].

Suppose xk(t) ∈ B(x0, β) for t ∈ [0, T ∗]. Then, we have

d[xk+1(t)− x0(t)]

dt
=
[
F (t, xk+1(t),Y(G̃(t, xk(t))))− F (t, x0(t),Y(G̃(t, xk(t))))

]
+[

F (t, x0(t),Y(G̃(t, xk(t))))− F (t, x0(t),Y(G̃(t, x0(t))))
]

+

F (t, x0(t),Y(G̃(t, x0(t)))).

Similar to the deduction for ‖x1(t)−x0(t)‖2, by using Lemma 3.1 and the Lipschitz condition
(3.4) it holds that

d‖xk+1(t)− x0(t)‖2
dt

≤ L1‖xk+1(t)− x0(t)‖2 + L2η0η1‖xk(t)− x0(t)‖2 + C0.

This implies

‖xk+1(t)− x0(t)‖2 ≤
∫ t

0

eL1(t−s)[η̃‖xk(s)− x0(s)‖2 + C0]ds

≤
∫ t

0

eL1(t−s)(η̃β + C0)ds = (η̃β + C0)
eL1t − 1

L1
.

By using (3.6), it holds ‖xk+1(t)−x0(t)‖2 ≤ β for t ≤ T ∗, which implies xk+1(t) ∈ B(x0, β).
Now, for any k ≥ 0 we have xk(t), xk+1(t) ∈ B(x0, β) for t ∈ [0, T ∗] and therefore

d[xk+1(t)− xk(t)]

dt
= F (t, xk+1(t),Y(G̃(t, xk(t))))− F (t, xk(t),Y(G̃(t, xk(t))))+

F (t, xk(t),Y(G̃(t, xk(t))))− F (t, xk(t),Y(G̃(t, xk−1(t)))),

(3.7a)

By using (2.16) and the Lipschitz condition for F (cf. (2.3)), we get

d‖xk+1(t)− xk(t)‖2
dt

≤ L1‖xk+1(t)− xk(t)‖2 + η̃‖xk(t)− xk−1(t)‖2, (3.7b)

which, after an integration, gives ‖xk+1(t) − xk(t)‖2 ≤ η̃
∫ t

0
eL1(t−s)‖xk(s) − xk−1(s)‖2ds.

Then, similar to the proof of Theorem 2.5 we have

‖xk+1(t)− xk(t)‖2 ≤
(
η̃max{1, eL1t}

)k tk
k!

max
s∈[0,t]

‖x1(s)− x0(s)‖2.
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Clearly, for any ε > 0 there exists some integer K > η̃max{1, eL1T
∗}T ∗ such that

1

1− η̃max{1,eL1T
∗}T∗

K+1

(
η̃max{1, eL1T

∗}T ∗
)K

K!
max

t∈[0,T∗]
‖x1(t)− x0(t)‖2 < ε. (3.8)

Then, for any integers K1 and K2 satisfying K2 > K1 ≥ K, it holds that

‖xK2(t)− xK1(t)‖2 ≤
∑K2−K1−1

k=0
‖xK1+k(t)− xK1+k+1(t)‖2

≤

(∑K2−K1−1

k=0

(
η̃max{1, eL1T

∗}T ∗
)K1+k

(K1 + k)!

)
max

t∈[0,T∗]
‖x1(t)− x0(t)‖2

≤ 1

1− η̃max{1,eL1T
∗}T∗

K+1

(
η̃max{1, eL1T

∗}T ∗
)K1

K1!
max

t∈[0,T∗]
‖x1(t)− x0(t)‖2.

This together with (3.8) implies ‖xK2(t)− xK1(t)‖2 < ε. Therefore, {xk(t)}k≥0 is a Cauchy
sequence for t ∈ [0, T ∗]. Let limk→∞ xk(t) = x∗(t). Then, it is easy to know that x∗(t) is
the solution of DNCP (3.2) for t ∈ [0, T ∗].

To prove uniqueness of x∗(t), we suppose x∗1(t) and x∗2(t) are solutions of (3.2). Then,

similar to (3.7a)-(3.7b) we have
d‖x∗

1(t)−x∗
2(t)‖2

dt ≤ (L1 + η̃)‖x∗1(t) − x∗2(t)‖2. This gives
d(e−(L1+η̃)t‖x∗

1(t)−x∗
2(t)‖2)

dt ≤ 0. Since x∗1(0) = x∗2(0), it holds that ‖x∗1(t) − x∗2(t)‖2 ≤ 0.
Hence, x∗1(t) ≡ x∗2(t) for t ∈ [0, T ∗].

We next analyze the convergence of the iterative method (3.3). For the uniform P-
function case, the Lipschitz continuity of Y(q) plays a central role for proving the convergence
of method (1.11). Comparing Lemma 3.1 to Lemma 2.1, we see that, to ensure such a
Lipschitz continuity in the LCS case with positive semi-definite coefficient matrix M , we
need SOL(M, q) 6= ∅ as an additional condition. Therefore, it is clear that for the least-

norm iterative method (3.3) if FEA(M, G̃(t, xkj )) 6= ∅ (∀j = 1 . . . , J) for each iteration, the
results given by Theorems 2.3-2.5 still hold.

Theorem 3.3. For DNCP (3.2) with M being a positive semi-definite matrix, let

F (t, x, y) satisfy the Lipschitz condition (2.3) and G̃ satisfy (3.4). Suppose (3.5a) holds for
some constants T > 0 and β > 0. Then, the least-norm iterative method (3.3) for the time
points {tj}J

∗

j=0 is well-defined, i.e.,

FEA(M, G̃(t, xkj )) 6= ∅, ∀j ∈ {0, 1, . . . , J∗}, ∀k ≥ 1, (3.9a)

provided {x0
j = x0}Jj=1, T ∗ ≤ T and the following conditions are satisfied

hL1 < 1,


J∗ = J, if L1 ≤ − η̃β+C0

β ,

J∗ = min

{
J,

[
log
(

1+
βL1
η̃β+C0

)
log((1−hL1)−1)

]}
, if L1 > − η̃β+C0

β ,
(3.9b)

where J = T
h , C0 = maxJj=0 ‖F (t, x0,Y(G̃(tj , x0))‖2, η̃ = L2η0η1 (with η0 being the constant

given by Lemma 3.1 and η1 being given by (3.4)) and [v] denotes the integer part of v ∈ R.
Similar to (3.6), under condition (3.9b) it is easy to verify that

C0 + η̃β

L1

[
1

(1− hL1)j
− 1

]
≤ β, ∀j ∈ {0, 1, . . . , J∗}. (3.10)
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Proof. The proof given below can be regarded as a discrete version of the proof of
Theorem 3.2. Since {x0

j}J
∗

j=0 ⊆ B(x0, β), from Lemma 3.1 we know that {Y(G̃(tj , x
0
j )}J

∗

j=0

are uniquely existent. Hence, by using the first Lipschitz condition in (2.3) we have

‖x1
j − x0

j‖2 ≤ ‖x1
j−1 − x0

j−1‖2 + hL1‖x1
j − x0

j‖2 + hC0,

i.e., ‖x1
j − x0

j‖2 ≤ 1
1−hL1

‖x1
j−1 − x0

j−1‖2 + h
1−hL1

C0. Since x1
0 = x0

0 = x0, it holds that

‖x1
j − x0

j‖2 ≤
hC0

1− hL1

∑j−1

l=0

1

(1− hL1)l
=
C0

L1

(
1

(1− hL1)j
− 1

)
. (3.11)

Hence, from (3.10) we get ‖x1
j − x0

j‖2 ≤ β for j ∈ {0, 1, . . . , J∗} and thus x1
j ∈ B(x0, β).

To perform an induction proof, we assume xkj ∈ B(x0, β) for j = 0, 1, . . . , J∗. Then, by

using Lemma 3.1 the sequence {Y(G̃(tj , x
k
j ))}J∗

j=0 is uniquely existent. Therefore,

‖xk+1
j − x0

j‖2 ≤ ‖xk+1
j−1 − x

0
j−1‖2 + hL1‖xk+1

j − x0
j‖2 + hη̃‖xkj − x0

j‖2 + hC0.

Similar to (3.11), this gives

‖xk+1
j − x0

j‖2 ≤
h(C0 + η̃β)

1− hL1

∑j−1

l=0

1

(1− hL1)l
=
C0 + η̃β

L1

(
1

(1− hL1)j
− 1

)
.

Now, by using (3.10) again we have ‖xk+1
j − x0‖2 ≤ β, i.e., xk+1

j ∈ B(x0, β) for j ∈
{0, 1, . . . , J∗}, and this completes the proof of (3.9a).

Remark 3.1 (The caseM is a Z-matrix). At the end of this section, we consider the case
that the matrix M in (3.1) is a Z-matrix, which is another representative case in the field of
complementarity problems [13,16]. In this case, there exists a unique least-element solution¶

for the LCS in (3.1), if the feasible set FEA(M, G̃(t, x)) := {y|y ≥ 0, G̃(t, x) + My ≥ 0} is
nonempty; see [9]. This leads to the following least-element DNCP:

ẋ(t) = F (t, x(t), y(t)), y(t) = argmin{‖v‖1 : v ≥ 0, G̃(t, x(t)) +Mv ≥ 0}. (3.12)

For (3.12), similar to (3.3) we define the iterative method as{
yk+1
j = argmin{‖v‖1 : v ≥ 0,Mv + G̃(tj , x

k
j ) ≥ 0}, j = 1, 2, . . . , J,

xk+1
j = xk+1

j−1 + hF (tj , x
k+1
j , yk+1

j ), j = 1, 2, . . . , J,
(3.13)

where xk0 = x0 for all k ≥ 0. According to Theorem 2.3 in [9], the Lipschitz continuity of
the least-element solution of the LCS 0 ≤ y ⊥ q + My ≥ 0 holds as well; see Lemma 3.1.
Hence, the results obtained in this section is directly applicable to (3.1) if M is a Z-matrix.

4. Applications and numerical results. In this section, we show applications of the
proposed iterative method for the non-smooth circuit systems and the projected dynamic
systems. For each application, we provide numerical results to validate the convergence
properties of the proposed iterative method (1.11). The iteration stops when

max0≤j≤J ‖xkj − xj‖2 ≤ 10−8, (4.1)

where {xj}Jj=1 denotes the converged solution.

¶The least-element solution ymin is a solution of 0 ≤ y ⊥ My + G̃(t, x) ≥ 0 satisfying ymin ≤ y for all

y ∈ FEA(M, G̃(t, x)).
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4.1. The 4-diode bridge wave rectifier. The four-diode bridge wave rectifier shown
in Figure 4.1 is a widely studied circuit model; see, e.g., [1,4,10,16,18,20]. The circuit consists
of a capacitor C > 0 with randomly perturbed value and a nonlinear resistor R, where lie
inside the bridge formed by four ideal diodes. Let x be the voltage for the capacitor. Let
VDF1,DF2 and IDF1,DF2 be the voltages and currents for the diodes, respectively. Then, by
applying Kirchhoff voltage/current laws, we get the modified nodal analysis state equation
described by a DNCP as (see [1, Chapter 2] for more details):

C(ξ)ẋ(t, ξ) = −R(x(t, ξ)) +By(t, ξ) + Is(t),

0 ≤ y(t, ξ) ⊥ Nx(t, ξ) +My(t, ξ) ≥ 0,
(4.2a)

where x(0, ξ) = 0, C(ξ) denotes the capacitor with value perturbed by random variable
ξ = (ξ1, ξ2, . . . , ξd)

>, Is(t) is the current source (i.e., e(t) shown in Figure 4.1) and

B = [1, 0, 1, 0], N =


1
0
1
0

 , M =


0 −1 0 0
1 0 1 −1
0 −1 0 0
0 1 0 0

 . (4.2b)

For the nonlinear resistor, the current source and the random capacitor we use the data

R(v) = ev/50 − 1 (Schottky resistor), Is(t) = 10 sin(18πt+ 2)− 0.5,

C(ξ) = 1.8 +
ξ1

1 + ξ2
2

with

{
ξ1 ∈ [−1, 1], uniform distribution,

ξ2 ∈ (−∞,∞), Gaussian distribution.

(4.2c)

Fig. 4.1. The circuit of 4-diode bridge wave rectifier

For circuit (4.2a)-(4.2c), the random source of the capacitor can be caused by many
factors, e.g., external environmental fluctuations such as temperature variation. Such an
uncertainty may lead to remarkable performance variations at both circuit and system levels,
and it cannot be ignored if we want to make a correct prediction of the behavior of the
circuit. Here, we are interested in the basic stochastic information of the circuit, i.e., the
mean values of x(t, ξ) and y(t, ξ) and the standard deviations. To this end, we use the
technique of generalized polynomial chaos (gPC) expansion [34] together with the so called
stochastic testing strategy [35] to treat the random space. The gPC expansion technique has
gained increasing interest in recent years thanks to its high order accuracy.

Briefly speaking, the gPC expansion technique transforms the random circuit system to
a deterministic system with larger size as follows:

ĈX(t) = −R(X(t)) + B̂Y (t) + Îs(t), 0 ≤ Y (t) ⊥ N̂X(t) + M̂Y (t) ≥ 0. (4.3)
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where X(t) ∈ Rq, Y (t) ∈ R4q, B̂ = B ⊗ Iq, Ĉ = diag(C1, C2, · · · , Cq), M̂ = M ⊗ Iq,

N̂ = N ⊗ Iq, Îs(t) = Iq ⊗ Is(t), Iq ∈ Rq×q is an identity matrix and q denotes the number
of the gPC basis functions (for the numerical results given below q = 6). The details for
deriving the deterministic system (4.3) is given in Appendix-2. Since M is a positive semi-

definite matrix, the matrix M̂ in (4.3) is a positive semi-definite matrix as well. Thus, we
choose for Y (t) the least-norm solution from the solution set of the LCS in (4.3):

ĈẊ(t) = −R(X(t)) + B̂Y (t) + Îs(t),

Y (t) = argmin
{
‖v‖2 : 0 ≤ v ⊥ M̂v + N̂X(t) ≥ 0

}
.

(4.4)

We now apply method (3.3) to (4.4) in the case J = Nt, i.e., we do Gauss-Seidel
iterations for the whole time interval instead at each single time point (cf. Remark 2.2). In
each iteration the nonlinear equations at t = tj arising in the discrete ODE system are solved
by the fsolve command in Matlab and the LCS is solved by using the quadprog command in
Matlab according to [8]. In Figure 4.2, we show the stochastic information of the circuit i.e.,
the mean values and the standard derivations of x(t, ξ) and y(t, ξ)¶. For the complementarity
variable y(t, ξ), it holds that E(y2,4(t, ξ)) ≡ 0 and that E(y1(t, ξ)) = E(y3(t, ξ)), so we show
the stochastic information for y1(t, ξ) and y3(t, ξ) together in the left column of Figure 4.2.
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Fig. 4.2. Stochastic information of the 4-diode bridge wave rectifier. Top row: the mean values of x(t, ξ)
(left) and y1,3(t, ξ)(right). The shading region is filled by the solutions obtained by Monte Carlo simulations
with 10000 samples of ξ. Bottom row: standard derivations for x(t, ξ) (left) and y1,3(t, ξ)(right).

In Figure 4.3 we show the measured convergence rates of method (3.3) in two situations:
in the left subfigure we consider the case that the length of time interval (i.e., T ) is fixed
and the step-size h varies; in the right subfigure we consider the case that the number of

¶Such a stochastic information can be obtained from the solution X(t) and Y (t) due to the theory of
the gPC expansion technique; see explanation in the Appendix-2.
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discrete time points (i.e., J = Nt) is fixed and h varies. We see that the method converges
superlinearly with a robust convergence rate with respect to h, if T is fixed. In the case
that J is fixed, the method converges faster when the step-size h becomes smaller. All these
numerical results confirm Remark 2.2 very well.
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Fig. 4.3. Measured convergence rates of the least-norm iterative method (3.3) applied to (4.4). Left:
T = 0.2 is fixed and h varies. Right: J = 2000 is fixed and h varies (J = Nt = T/h denotes the number of
discrete time points). The (dotted) horizontal line indicates where the method should stop in practice.

As we mentioned in Section 1, in each iteration of the iterative method (3.3) the com-
putation of the complementarity system at all the discrete time points is parallel. We now
show numerical results to illustrate that such an advantage can dramatically reduce the
computation time. To carry out the parallel experiments, we use the following software and
hardware configurations:

• CPU: Intel Core i7-3770K 3.5 GHz and 32 GB RAM using gcc 4.8.1. A single CPU
was used for the sequential implementation of the proposed iterative methods. The
codes were tested with gcc’s fast math option (ffast math).

• GPU: NVIDIA GeForce GTX 660 installed in a system with the above described
CPU. The GPU operates at 1.10 GHz clock speed and consists of 5 multiprocessors
(each contains 192 CUDA cores). We compiled the code using CUDA version 5.5 in
combination with the gcc 4.8.1 compiler with fast math option (use fast math).

In Figure 4.4, we show the computation time (measured in seconds) for the semi-smooth
Newton method and the iterative method (3.3). The semi-smooth Newton method is imple-
mented in a sequential pattern by using a single CPU. For the new iterative method (3.3),
the complementarity system is solved parallel by GPU. Here, similar to Figure 4.3 we also
consider two cases: the length of the time interval is fixed (i.e., t ∈ [0, T ] with T = 0.2) and
the number of time points is fixed (i.e., J = Nt = 2000). From the results shown in Fig-
ure 4.4, we see that in the parallel circumstance the new iterative method needs much less
computation time compared to the semi-smooth Newton method. For example, for the case
T = 0.2 and h = 2−13 (left subfigure) the computation time for the semi-smooth Newton
method is around 9587 seconds (≈ 158 minutes), while by parallel computation the time for
the new iterative method is around 2023 seconds (≈ 34 minutes).

For the case J = Nt = 2000 (right subfigure), it is interesting to see that the computation
time for the new iterative method (3.3) decreases as h becomes smaller; see Figure 4.4 on
the right. This can be explained by using the convergence rate ρ = O(h) in the case of
crossing a fixed number of time points, namely the new iterative method converges faster
as h becomes smaller; see Remark 2.2.

4.2. A projected dynamic system: the spatial price equilibrium. Let Ω ⊂ Rm
be a convex set. The projected dynamic system is described by the equation ẋ(t) = F (t, x(t))
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Fig. 4.4. For DNCP (4.4), comparison with respect to computation time between the semi-smooth
Newton method and the new iterative method (3.3) with J = Nt. Left: the case T = 0.2 is fixed and h
varies from 2−7 to 2−13. Right: the case J = Nt = 2000 is fixed and h varies from 2−10 to 2−16 (in this
case T decreases as h decreases).

on the interior of Ω, but on the boundary a modification is applied to prevent the solution
from leaving the constraint set Ω. To be more specific, let PΩ be the projection operator
that assigns to each vector x ∈ Rm the vector in Ω that is closest to x, i.e., PΩ(x) =
argminv∈Ω‖x− v‖2. Then the projected dynamical system is defined by

ẋ(t) = ΠΩ(x(t);F (t, x(t))), with ΠΩ(x, v) = lim
δ→0+

PΩ(x+ δv)− x
δ

. (4.5)

In [23], Dupuis and Nagurney mentioned several interesting applications of the projected
dynamic systems, including the oligopolistic markets, the traffic networks and the spatial
price equilibrium.

In this section, we consider the spatial price equilibrium problem, which can be described
as follows (see [23, Chapter 6] for more details). Suppose we have m supply markets and n
demand markets involved in the production and consumption of a homogeneous commodity
under perfect competition. Denote a typical supply market by i and a typical demand market
by j. Let θj denote the supply and γi the supply price of the commodity at supply market
i. Let dj denote the demand and αj the demand price at demand market j. Let xij denote
the nonnegative commodity shipment between the supply and demand market pair (i, j),
and let cij denote the unit transaction cost associated with trading the commodity between
i and j. The supply price at any supply market depends on the supply of the commodity at
every supply market, that is γ = γ(θ), where γ = (γ1, . . . , γm), θ = (θ1, . . . , θm)>. Similarly,
the demand price at any demand market depends on the demand of the commodity at
every demand market, i.e., α = α(d), where α = (α1, . . . , αn)> and d = (d1, . . . , dn)>. The
unit transaction cost between a pair of supply and demand markets may depend upon the
shipments of the commodity between every pair of markets, that is c = c(x), where c =
(c11, . . . , c1n, . . . , cm1, . . . , cmn)> and x = (x11, . . . , x1n, . . . , xm1, . . . , xmn)>. The supplies,
demands and shipments of the commodity must satisfy the following feasibility conditions:

θi =

n∑
j=1

xij , i = 1, 2, . . . ,m,

dj =

m∑
i=1

xij , j = 1, 2, . . . , n.

(4.6)

Define the excess price Fij , between a pair of markets (i, j), as

Fij(x) := αj(d)− γi(θ)− cij(x). (4.7)
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In practice, we need to dynamically adjust the commodity shipments between the supply
and demand markets. Under perfect competition, the rate of change of the commodity
shipment between the supply and demand market pair (i, j) is in proportion to the excess
price Fij . This results in the following projected dynamic system:

ẋ(t) = ΠΩ(x(t), F (x(t))), (4.8)

where F (x) = (F11(x), . . . , F1n(x), . . . , Fm1(x), . . . , Fmn(x))>. We are interested in the case
that the commodity shipment xij is nonnegative and is not larger than a prescribed upper
bound xmax. In this case, the domain Ω can be described as

Ω = {x ∈ Rmn|φij(x) ≥ 0, i = 1, 2, . . . ,m, j = 1, 2, . . . , n}, φij(x) :=

[
xij

xmax − xij

]
. (4.9)

According to [3,19], the projected dynamic system (4.8) can be reformulated as a DNCP:

ẋ(t) = F (x(t)) + Φ>(x(t))y(t), 0 ≤ φ(x(t)) ⊥ y(t) ≥ 0, (4.10)

where Φ is the Jacobian matrix of φ, i.e., Φ = ∂φ
∂x

. For the case (4.9), we have

Φ =



1
−1

1
−1

...
1
−1


2mn×mn

, φ(x) = Φx+ b, b =



0
xmax

0
xmax

...
0

xmax


2mn×1

. (4.11)

Then, we can rewrite (4.10) as

ẋ(t) = F (x(t)) + Φ>y(t), 0 ≤ Φx(t) + b ⊥ y(t) ≥ 0. (4.12)

Applying the implicit Euler method with a step-size h to (4.12) gives

xn+1 = xn + hF (xn+1) + hΦ>yn+1, 0 ≤ Φxn+1 + b ⊥ yn+1 ≥ 0, (4.13)

where n = 0, 1, . . . , Nt. A direct application of the proposed iterative method to (4.13) leads
to

0 ≤ Φxkn+1 + b ⊥ yk+1
n+1 ≥ 0, xk+1

n+1 = xn + hF (xk+1
n+1) + hΦ>yk+1

n+1,

where k ≥ 0 is the iteration index and for k = 0 the quantity x0
n+1 is an initial guess.

However, this iteration process does not converge, because the solution of the LCS is always
zero, i.e., yk+1

n+1 ≡ 0 for k ≥ 0. To apply the method correctly, we first obtain Φxn+1 from
the discretized ODEs in (4.13) as

Φxn+1 = Φxn + hΦF (xn+1) + hΦΦ>yn+1,

and then by substituting Φxn+1 into the LCS we get

0 ≤ Φxn + hΦF (xn+1) + hΦΦ>yn+1 + b ⊥ yn+1 ≥ 0.

We now define the following iterations:

0 ≤ yk+1
n+1 ⊥

(
Φxn + hΦF (xkn+1) + b

)
+ hΦΦ>yk+1

n+1 ≥ 0,

xk+1
n+1 = xn + hF (xk+1

n+1) + hΦ>yk+1
n+1.

(4.14)
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We consider a spatial market problem consisting of two supply markets and two demand
markers with the following data:

γ1(θ) = 5θ1 + θ2 + 2, γ2(θ) = 2θ2 + 1.5θ1 + 1.5,

α1(d) = −2(1 + 0.25 sin(2πt))d1 − 1.5d2 + 28.75,

α2(d) = −4(1 + 0.47 cos(πt))d2 − d1 + 41,

c11(x) = 0.01x2
11 + 0.5x11, c12(x) = 0.02x2

12 + 2x12 + 7| cos(πt)|,
c21(x) = 0.03x2

21 + 3x21 + 16.25, c22(x) = 0.02x2
12 + 2x12 + 11.5.

(4.15)

We note that the quantities θ1, θ2, d1, d2 also depend on xij , because of (4.6). With the
initial condition x = (0, 0.5, 1.5, 0)> and xmax = 1.9, the numerical solutions of the projected
dynamic system (4.8) are shown in Figure 4.5 on the left. For comparison, the solution of
the original system ẋ = F (x) are also shown in Figure 4.5 on the right.
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Fig. 4.5. Evolution of the solutions of the projected system (left) and the original system (without
projection on the domain Ω). Here, a step-size h = 2−9 is used.

In Figure 4.6, we show the iteration number at each time point for the iterative method
(4.14) and the semi-smooth Newton method mentioned in Section 1. We see that when
h = 2−8 the method needs more iterations, while if we reduce the step-size to h = 2−9 it
converges with a rate similar to the semi-smooth Newton method. For the proposed iterative
method (4.14), the reduction of the iteration number confirms our theoretical analysis very
well (cf. Remark 2.2).

5. Conclusions. We proposed an iterative method for DNCP and made a convergence
analysis based on the one-sided Lipschitz condition for the ODE system and the classical
Lipschitz condition for the complementarity system. We proved that the new iterative
method has two different convergence properties. In the case the method is applied to a
fixed number of time points, i.e., J is fixed, it converges with a rate ρ = O(h) and therefore
a smaller h results in a better convergence rate. In the case the method is applied to a
fixed length of time interval, i.e., T is fixed, the method converges superlinearly with a
rate independent of h. The general idea behind the proposed iterative method is that we
solve the complementarity system and the differential system separately via an iteration of
Gauss-Seidel style and thus many existing numerical methods for each of these two systems
can be used without changes. In particular, in some cases we can solve the complementarity
system efficiently via optimization solvers. For DLCPs, the new iterative method avoids
solving a lot of linear systems that need to form the matrix Mh for the direct method
(cf. (1.6a)-(1.6b)) and the Clarke Jacobian matrix V kj for the semi-smooth Newton method



Iterative methods of Gauss-Seidel style for DNCPs 19

0 0.5 1 1.5 2 2.5 3 3.5 4

1

2

3

4

5

6

7

8

9

10

Gauss-Seidel method

Semi-smooth Newton method

0 0.5 1 1.5 2 2.5 3 3.5 4

1

2

3

4

Gauss-Seidel method

Semi-smooth Newton method

Fig. 4.6. The iteration number (at each time point tn) of the iterative method (4.14) and the semi-
smooth Newton method mentioned in Section 1. Left: h = 2−8; Right: h = 2−9.

(cf. (1.7)). For large-scale problems, this is an important advantage for saving memory
storage and computation time. The time-integrator used in this paper is the Backward-
Euler method, by which the precision of the numerical solution is only of oder O(h). To
improve the precision we can solve the differential system by higher-oder implicit Runge-
Kutta methods and then similar to (1.8) (or (1.11)) we solve the discrete differential and
complementarity systems separately via iterations. The details on this aspect, especially the
convergence analysis of the corresponding iterative algorithms and the computation of the
discrete differential system, will be addressed in other places.
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6. Appendix-1: the proof of Lemma 2.2. The result for ψ(1, J, k) (i.e., r = 1)
is well-known and can be verified by routine calculation. For r 6= 1, if k = 1 we have∑J
j1=1 r

−j1 = r−1(1−r−J )
1−r−1 = r−J

1−r −
1

1−r and this implies that (2.4) holds for k = 1. Suppose
(2.4) holds some k > 1. Then, we have∑J

j1=1

∑j1

j2=1
· · ·
∑jk−1

jk=1

∑jk

jk+1=1
r−jk+1 =

∑J

j1=1

[∑j1

j2=1
· · ·
∑jk−1

jk=1

∑jk

jk+1=1
r−jk+1

]
=
∑J

j1=1

[
r−j1

(1− r)k
−
∑k

l=1

(
j1 + k − l − 1

k − l

)
1

(1− r)l

]
=

r−J

1−r −
1

1−r
(1− r)k

−
∑k

l=1

1

(1− r)l

[∑J

j1=1

(
j1 + k − l − 1

k − l

)]
=

r−J

(1− r)k+1
− 1

(1− r)k+1
−

k∑
l=1

1

(1− r)l

(
J + k − l
k − l + 1

)

=
r−J

(1− r)k+1
−
k+1∑
l=1

1

(1− r)l

(
J + k − l
k − l + 1

)
,

where for the fourth equality we used a well-known identity about the binomial coefficients,

namely
∑p
l=1

(
l + k̃ − 1

k̃

)
=

(
p+ k̃

k̃ + 1

)
for any k̃ ≥ 0. Thus, (2.4) also holds for k + 1.

7. Appendix-2: details of gPC expansion technique. In this Appendix, the show
details about how to get the deterministic system (4.3) via the gPC expansion technique.
The gPC seeks to a global polynomial approximation for a parametric (random) function.
Let φql(ξl) be the univariate orthogonal polynomial of degree ql (the special form of φql(ξl)
depends on the density function of the input random parameter ξl). Then, the high dimen-
sional polynomial bases Φq(ξ) are constructed by tensorizing the one dimensional bases

Φq(ξ) =
∏d

l=1
φql(ξl). (7.1)

Moreover, the bases are chosen as
∫
ρ(ξ)Φp1(ξ)Φp2(ξ) = δp1p2 , where ρ(ξ) is the joint density

function of the random parameters.
With the above gPC basis functions, we approximate the ξ-dependent functions x(t, ξ)

and y(t, ξ) via the following truncated expansions

x(t, ξ) ≈
∑q

l=1
x̃l(t)Φl(ξ), y(t, ξ) ≈

∑q

l=1
ỹl(t)Φl(ξ), (7.2)

where {x̃q(t), ỹq(t)}ql=1 are coefficients that we need to compute. If the maximal polynomial

degree is p, the number of the basis gPC functions is q = (p+d)!
p!d! (see e.g., [34]). If we order

the gPC basis functions {Φq(ξ)}ql=1 by the polynomial degree in an ascending order, e.g. in
lexicographical order deg(Φ1(ξ)) < deg(Φ2(ξ)) < · · · < deg(Φq(ξ)), the mean values and the
standard derivations can be calculated as{

E(x(t, ξ)) = x̃1(t), E(y(t, ξ)) = ỹ1(t), mean value,

σ(x(t, ξ)) =
√∑q

l≥2 |x̃l(t)|2, σ(y(t, ξ)) =
√∑q

l≥2 |ỹl(t)|2, standard derivation.
(7.3)

Next we introduce the basic idea of the stochastic testing (collocation) method in [35].
Let {ξ1, ξ1, · · · , ξq} be q collocation points. Then, by substituting gPC expansions (7.2) into
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the circuit equation (4.2a) and by imposing collocation condition on the sample points, we
get the following large-scale deterministic DNCP:

Ci
∑q

l=1
˙̃xl(t)Φi,l = −R

(∑q

l=1
x̃l(t)Φi,l

)
+B

∑q

l=1
ỹl(t)Φi,l + Is(t),

0 ≤
∑q

l=1
ỹl(t)Φi,l ⊥ N

∑q

l=1
x̃l(t)Φi,l +M

∑q

l=1
ỹl(t)Φi,l ≥ 0,

(7.4)

where i = 1, 2, . . . , q, Ci = C(ξi) and Φi,q = Φq(ξ
i). Notice that choosing a good collocation

set to guarantee the well-posedness of the above scheme is not a trivial work. Here, we
adopt the strategy in [35], by which the collocation points are chosen as a subset (with the
largest possible contribution) of the tensor grid of Gaussian quadrature points. Other types
of collocation methods such as sparse grid, least-squares, and compressed sampling can also
be used, and one can refer to [21,22] for more details.

By defining the following symbols

Φ̂ =

Φ1,1 · · · Φ1,q

...
. . .

...
Φq,1 · · · Φq,q

 , X(t) = (Φ⊗ Im)

x̃1(t)
...

x̃q(t)

 , Y (t) = (Φ⊗ In)

ỹ1(t)
...

ỹq(t)

 ,

B̂ = B ⊗ Iq, Ĉ = diag(C1, C2, · · · , Cq)⊗ Im, M̂ = M ⊗ Iq, N̂ = N ⊗ Iq, Îs(t) = Iq ⊗ Is(t),

we can rewrite (7.4) as (4.3). When {X(t), Y (t)} are ready, we can compute {x̃q(t), ỹq(t)}ql=1

as follows x̃1(t)
...

x̃q(t)

 = (Φ̂−1 ⊗ Im)X(t),

ỹ1(t)
...

ỹq(t)

 = (Φ̂−1 ⊗ Im)Y (t).

Then, we can explore the stochastic information of the circuit according to (7.3).
For the numerical experiments in Section 4.1, we set p = 2 (the maximal polynomial

degree of the basis gPC functions) and therefore we have q = 6 gPC functions in total. For
reader’s convenience, we list them as follows:

Φ1(ξ) = 1, Φ2(ξ) = ξ1, Φ3(ξ) =
1

2
(3ξ2

1 − 1),Φ4(ξ) = ξ2, Φ5(ξ) = ξ1ξ2, Φ6(ξ) = ξ2
2 − 1.


