=

NN N NN
[STE N OU I\ Ry

) DN

CONVERGENCE ANALYSIS OF SAMPLE AVERAGE
APPROXIMATION OF TWO-STAGE STOCHASTIC GENERALIZED
EQUATIONS*

XIAOJUN CHENT, ALEXANDER SHAPIRO?, AND HAILIN SUN$

Abstract. A solution of two-stage stochastic generalized equations is a pair: a first stage
solution which is independent of realization of the random data and a second stage solution which is
a function of random variables. This paper studies convergence of the sample average approximation
of two-stage stochastic nonlinear generalized equations. In particular an exponential rate of the
convergence is shown by using the perturbed partial linearization of functions. Moreover, sufficient
conditions for the existence, uniqueness, continuity and regularity of solutions of two-stage stochastic
generalized equations are presented under an assumption of monotonicity of the involved functions.
These theoretical results are given without assuming relatively complete recourse, and are illustrated
by two-stage stochastic non-cooperative games of two players.
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1. Introduction. Consider the following two-stage Stochastic Generalized
Equations (SGE)

(1.1) 0 € EB[@(z,y(€),§)] + T1(2), z € X,
(1.2) 0€ ¥(z,y(£),8) +T2(y(§),§), forae &€k

Here X C R™ is a nonempty closed convex set, £ : @ — R? is a random vector
defined on a probability space (€2, F,P), whose probability distribution P = Po¢~1! is
supported on set Z := £(Q) C R4, @ : R" xR™xR? — R" and ¥ : R" xR™xR? — R™,
and I'; : R® = R™, Ty : R™ x E = R™ are multifunctions (point-to-set mappings).
We assume throughout the paper that ®(-,-,&) and V(- -, &) are Lipschitz continuous
with Lipschitz modulus k¢ (§) and g (§), respectively, and y(-) € Y with Y being the
space of measurable functions from = to R™ such that the expected value in (1.1) is
well defined.

Solutions of (1.1)—(1.2) are searched over x € X and y(-) € Y to satisfy the
corresponding inclusions, where the second stage inclusion (1.2) should hold for almost
every (a.e.) realization of £. The first stage decision x is made before observing
realization of the random data vector £ and the second stage decision y(€) is a function
of &.

When the multifunctions I'y and I'; have the following form

Ty(z) :==Ne(z) and Ta(y,§) = Ng(e)(y),

*Submitted to the editors DATE.

TDepartment of Applied Mathematics, The Hong Kong Polytechnic University, (xiao-
jun.chen@polyu.edu.hk). Research of this author was partly supported by Hong Kong Research
Grant Council PolyU153016/16p.

¥School of Industrial and Systems Engineering, Georgia Institute of Technology,
(alex.shapiro@isye.gatech.edu).  Research of this author was partly supported by NSF grant
1633196 and DARPA EQUIiPS program, grant SNL 014150709.

§School of Economics and Management, Nanjing University of Science and Technology; Depart-
ment of Applied Mathematics, The Hong Kong Polytechnic University, (hlsun@njust.edu.cn). Rese-
arch of this author was partly supported by National Natural Science Foundation of China 11401308,
11571178.

This manuscript is for review purposes only.


mailto:xiaojun.chen@polyu.edu.hk
mailto:xiaojun.chen@polyu.edu.hk
mailto:alex.shapiro@isye.gatech.edu
mailto:hlsun@njust.edu.cn

[S23NNG ) SN

ot Ot Ot Ot Ot
J

63

64
65
66
67
68
69
70
71
72
73

-3
ot

2 X. CHEN, A. SHAPIRO AND H. SUN

where N (x) is the normal cone to a nonempty closed convex set C C R™ at =z,
and similarly for N (¢)(y), the SGE (1.1)-(1.2) reduce to the two-stage Stochastic
Variational Inequalities (SVI) as in [2, 25]. The two-stage SVI represents first order
optimality conditions for the two-stage stochastic optimization problem [1, 27] and
models several equilibrium problems in stochastic environment [2, 4]. Moreover, if the
sets C and K (€), £ € E, are closed convex cones, then

Ne(z)={z* e C*: 22" =0}, z€C,

where C* = {z* : 2T2* <0, Vo € C} is the (negative) dual of cone C. In that case
the SGE (1.1)—(1.2) reduce to the following two-stage stochastic cone VI

Coz L E[@(l’,y(f),g)} € 7C*ﬂ T e Xa
K(§) 3 y(§) L ¥(z,y(£),§) € —K7(£), forae ek

In particular when C' := R} with C* = —R%, and K(&) := R} with K*(§) =
—R7 for all § € Z, the SGE (1.1)-(1.2) reduce to the two-stage Stochastic Nonlinear
Complementarity Problem (SNCP):

0 <z LE[®(yE),8)] >0,
0<y(&) LU(x,y(£),&) >0, forae £e€E,

which is a generalization of the two-stage Stochastic Linear Complementarity Problem
(SLCP):

(1.3) 0<zl Az +E[B(&)y(&)]+q >0,
(1.4) 0<y(§) L L&z + M(Ey(§) + ¢2(§) = 0, for ae.  €E,

where A e R"*" B:Z2 >R L:ZE5R™" M :Z2—5R™" ¢ e R, ¢z : 2 —
R™. The two-stage SLCP arises from the KKT condition for the two-stage stochastic
linear programming [2]. Existence of solutions of (1.3)-(1.4) has been studied in [3].
Moreover, the progressive hedging method has been applied to solve (1.3)-(1.4), with
a finite number of realizations of &, in [23].

Most existing studies for two-stage stochastic problems assume relatively complete
recourse, that is, for every x € X and a.e. £ € = the second stage problem has at least
one solution. However, for the SGE (1.1)—(1.2), it could happen that for a certain
first stage decision z € X, the second stage generalized equation

does not have a solution for some ¢ € . For such x and ¢ the second stage decision
y(€) is not defined. If this happens for £ with positive probability, then the expected
value of the first stage problem is not defined and such x should be avoided. In
practice, relatively complete recourse condition may not hold in many real world
applications. For example, when considering to make a decision on building a power
station for providing electrical power to satisfy the demand, it could be practically
impossible to make sure that the uncertain demand will be satisfied under any possible
circumstances.

In this paper, without assuming relatively complete recourse, we study conver-
gence of the Sample Average Approximation (SAA)

N
(16) OEN?qu)(xayjafj)—FFl(x)v reX,

j=1

(17) 0€ \I/(l’,yj,fj) + F2(yj7£j)a ] = 13 "'aNa
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TWO-STAGE STOCHASTIC GENERALIZED EQUATIONS 3

of the two-stage SGE (1.1)—(1.2) with y; being a copy of the second stage vector for
E=¢,4j=1,..,N, where &, ...,V is an independent identically distributed (iid)
sample of random vector £. Note that (1.1)-(1.2) is a two-stage extension of one-stage
SGE. The convergence analysis and exponential rate of convergence of one-stage SGE
has been investigated in a number of publications (e.g., [19, 27, 30] and references
there in). We extend those convergence analysis results from one-stage SGE to two-
stage SGE in a significant way. Our SAA method for the two-stage SGE (1.1)-(1.2)
is different from the discretization scheme for the two-stage SLCP in [3]. The main
difference is that the discretization scheme in [3] uses the partition of the support set
= and the conditional expectations of random functions, but our SAA method does
not.

The paper is organized as follows. In section 2 we investigate almost sure and
exponential rate of convergence of solutions of the SAA of the two-stage SGE. In
section 3 convergence analysis of the mixed two-stage SVI-NCP is presented. In
particular we give sufficient conditions for the existence, uniqueness, continuity and
regularity of solutions by using the perturbed linearization of functions ® and W.
Theoretical results, given in sections 2 and 3, are illustrated by numerical examples,
using the Progressive Hedging Method (PHM), in section 4. It is worth noting that
PHM is well-defined for two-stage monotone SVI without relatively complete recourse.
Finally section 5 is devoted to conclusion remarks.

We use the following notation and terminology throughout the paper. Unless
stated otherwise ||z| denotes the Euclidean norm of vector x € R". By B := {z :
||lz|| < 1} we denote unit ball in a considered vector space. For two sets A, B C R™
we denote by d(x, B) := infycp ||z — y|| distance from a point z € R™ to the set B,
d(z,B) = +o0o if B is empty, by D(A, B) := sup,c4 d(z, B) the deviation of set A
from the set B, and H(A, B) := max{D(A, B),D(B, A)}. The indicator function of a
set A is defined as T4(z) =0 for x € A and I4(x) = +o0o for x ¢ A. By bd(A), int(A)
and cl(A) we denote the boundary, interior and topological closure of a set A C R™.
By reint(A) we denote the relative interior of a convex set A C R™. A multifunction
(point-to-set mappings) I' : R” = R™ assigns to a point € R"™ to a set I'(z) C R™.
A multifunction T’ : R® = R™ is said to be closed if x, — z, x5 € I'(xy) and
xy — ¥, then z* € T'(x). It is said that a multifunction I' : R™ = R™ is monotone,
if (x—2")"(y—1v') >0, for all z,2’ € R", and y € I'(z), v/ € I'(2'). Note that
for a nonempty closed convex set C, the normal cone multifunction I'(z) := N¢(z)
is closed and monotone. Note also that the normal cone Ng(z), at * € C, is the
(negative) dual of the tangent cone T (x). We use the same notation for £ considered
as a random vector and as a variable ¢ € R, Which of these two meanings is used will
be clear from the context. For vector d € R", d is a subvector of d whose entries are
in the index J C {1,--- ,n}. Similarly, for matrix D € R"*™ D, ;, is a submatrix
of D whose entries are in the index Jy x Jo C{1,--- ,n} x {1,--- ,m}.

2. Sample average approximation of the two-stage SGE. In this section
we discuss statistical properties of the first stage solution Zy of the SAA problem
(1.6)—(1.7). In particular we investigate conditions ensuring convergence of &y, with
probability one (w.p.1) and exponential, to its counterpart of the true problem (1.1)—
(1.2).

Denote by X the set of x € X such that the second stage generalized equation
(1.5) has a solution for a.e. ¢ € E. The condition of relatively complete recourse
means that X = X. Note that X is a subset of X, and if (Z,7(-)) is a solution of
(1.1)—(1.2), then z € X. It is possible to formulate the two-stage SGE (1.1)—(1.2) in

This manuscript is for review purposes only.
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4 X. CHEN, A. SHAPIRO AND H. SUN

the following equivalent way. Let §(x,£) be a solution function of the second stage
problem (1.5) for z € X and £ € E| i.e.,

0€ U(x,9(x,€),8) + Ta(4(x,£),€), € X, ae. £ €E.

Then the first stage problem becomes
(2.1) 0 € E[®(x,y(z,§),8)] +Ti(z), z € X.

If z is a solution of (2.1), then (Z,y(z,-)) is a solution of (1.1)—(1.2). Conversely if
(Z,5(-)) is a solution of (1.1)—(1.2), then Z is a solution of (2.1). Note that problem
(2.1) is a generalized equation which has been studied in the past decades, e.g. [19,
22, 24, 26].

It could happen that the second stage problem (1.5) has more than one solution for
some z € X. In that case choice of §(z, £) is somewhat arbitrary and the corresponding
SGE are not well posed. This motivates the following condition.

ASSUMPTION 2.1. For a.e. & € E, problem (1.5) has a unique solution for all
reX.

Under Assumption 2.1 the value §(z,€) is uniquely defined for all x € X and a.e.
¢ € E, and the first stage problem (2.1) can be written as the following generalized
equation

(2.2) 0€¢(z)+T(x), x € X,
where
(2.3) ¢(z) = E[®(x,€)] and &(x,€) := ®(x, §(x,£), ).

If the SGE have relatively complete recourse, then under Assumption 2.1 the SAA
problem (1.6)—(1.7) can be written as

(2.4) 0€ on(z)+Ti(z), z e X,

where ¢y () := N1 Z;\le & (z,&7) with ®(z, &) defined in (2.3). Problem (2.4) can
be viewed as the SAA of the first stage problem (2.2). If (Zx,9;n) is a solution of
the SAA problem (1.6)—(1.7), then 2y is a solution of (2.4) and g;n = §(Zn,&7),
j = 1,...,N. Note that the SAA problem (1.6)—(1.7) can be considered without
assuming the relatively complete recourse, although in that case it could happen that
¢ (z) is not defined for some 2 € X \ X and solution 2y of (1.6) is not implementable
at the second stage for some realizations of the random vector £&. Our aim is the
convergence analysis of the SAA problem (1.6)—(1.7) when sample size N increases.

Denote by 8* the set of solutions of the first stage problem (2.2) and by Sy the
set of solutions of the SAA problem (1.6) (in case of relatively complete recourse, Sy
is the set of solutions of problem (2.4) as well). By X(£) we denote the set of z € X
such that problem (1.5) has a solution, and by Xy := N, X (&7) the set of x such
that problems (1.7) have a solution. Note that the set X is equal to the intersection
of X(¢), ae. £ € Z;ie., X = Neem\rX(€) for some set T C E such that P(Y) = 0.
Note also that if the two-stage SGE have relatively complete recourse, then X(§) = X
for a.e. £ € =.

This manuscript is for review purposes only.
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2.1. Almost sure convergence. Consider the solution (z,&) of the second
stage problem (1.5). To ensure continuity of g(z,&) in x € X for £ € Z, in addition
to Assumption 2.1, we need the following boundedness condition.

ASSUMPTION 2.2. For every & and every x € X (&) there is a neighborhood V of
x and a measurable function v(§) such that ||§(z’,&)| < v(§) for all 2’ € VN X(E).

Note that function v(£) depends on point z and its neighborhood V. We suppress
this in the notation of v(¢).

LEMMA 2.1. Suppose that Assumptions 2.1 and 2.2 hold, and for a.e. £& € =
the multifunction T'a(-,€) is closed. Then for a.e. & € E the solution §(x,§) is a
continuous function of x € X.

Proof. The proof is quite standard. We argue by a contradiction. Suppose that
for some z € X and £ € = the solution ¢(-,£) is not continuous at z. That is,
there is a sequence z € X converging to & € X such that y, := g(x, &) does not
converge to § := ¢(Z,£). Then by the boundedness assumption, by passing to a
subsequence if necessary we can assume that y; converges to a point y* different from
g. Consequently 0 € U(x, yx, &) + Ta(yx, &) and ¥ (g, yi, ) converges to (T, y*, £).
Since Iy(+,€) is closed, it follows that 0 € ¥(z,y*, &) + T2(y*,£). Hence by the
uniqueness assumption, y* = y which gives the required contradiction. ]

Suppose for the moment that in addition to the assumptions of Lemma 2.1, the
SGE have relatively complete recourse. We can apply then general results to verify
consistency of the SAA estimates. Consider function ®(z,¢) defined in (2.3). By
continuity of ®(-,-, &) and §(-, ), we have that ®(-,£) is continuous on X. Assuming
further that there is a compact set X’ C X such that §* C X’ and ||®(z, €)||,cx- is
dominated by an integrable function, we have that the function ¢(z) = E[®(z, £)] is
continuous on X’ and ¢y (z) converges w.p.1 to ¢(z) uniformly on X’. Note that the
boundedness condition of Lemma 2.1 and continuity of ®(-,-, &) imply that &(-, &) is
bounded on X’. Then consistency of SAA solutions follows by [27, Theorem 5.12].
We give below a more general result without the assumption of relatively complete
recourse.

LEMMA 2.2. Suppose that Assumptions 2.1 and 2.2 hold. Then for a.e. £ € = the
set X (&) is closed.

Proof. For a given ¢ € Z let o, € X(£) be a sequence converging to a point Z.
We need to show that € X(£). Let yi be the solution of (1.5) for z = z and &.
Then by Assumption 2.2, there is a neighborhood V of Z and a measurable function
v(&) such that ||yx|| < v(€) when x; € V. Hence by passing to a subsequence we can
assume that y; converges to a point § € R™. Since (-, -, ) is continuous and T's(-, £)
is closed it follows that ¢ is a solution of (1.5) for x = z, and hence 7 € X(&). |

By saying that a property holds w.p.1 for N large enough we mean that there is
a set ¥ C Q of P-measure zero such that for every w € Q\ X there exists a positive
integer N* = N*(w) such that the property holds for all N > N*(w) and w € Q \ 2.

For § € (0,1) consider a compact set =5 C = such that P(Z5) > 1 — 4, and the
multifunction Ag : X = E5 defined as

(2.5) As(z) = {£ €25 m € X(E)}

ASSUMPTION 2.3. For any ¢ € (0,1) the multifunction As(-) is outer semiconti-
nuous.

This manuscript is for review purposes only.
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6 X. CHEN, A. SHAPIRO AND H. SUN

The following lemma shows that this assumption holds under mild conditions.
Note that since the set E5 is compact, the multifunction As(-) is outer semicontinuous
iff it is closed (cf., [24, Chapter 5(B)]).

LEMMA 2.3. Suppose (-, -,+) is continuous, I'a(+,+) is closed and Assumption 2.2
holds. Then the multifunction As(-) is outer semicontinuous.

Proof. Consider the second stage generalized equation (1.2) and any sequence
{(zk, yx, &)} such that zp € X, & € As(xx) with a corresponding second stage
solution yx and (zk,&k) — (z*,&*) € X x E. Since V¥ is continuous w.r.t. (z,y,£) and
Is(-,-) is closed, we have that under Assumption 2.2, {y;} has accumulation points
and any accumulation point y* satisfies

0€e ‘I’(.’L‘*7y*,€*) + F?(y*7£*)a

which implies £* € As(z*). This shows that the multifunction As(+) is closed. Since
Es is compact, the closeness of As(-) implies the outer semicontinuity of As(-). |

Note that in the case when Z is compact, we can set § = 0 and replace Z;5 by Z.

THEOREM 2.4. Suppose that: (1) Assumptions 2.1-2.3 hold, (ii) the multifunctions
I1(-) and Ty(+,€), € € Z, are closed, (iii) there is a compact subset X' of X such that
S* € X’ and w.p.1 for all N large enough the set Sy is nonempty and is contained
in X', (iv) ||®(x,)|leex is dominated by an integrable function, (v) the set X is
nonempty. Let Oy = ]D)(/?N nNx,xn X’). Then S* is nonempty and the following
statements hold.

(a) oy — 0 and D(Sy,S*) — 0 w.p.1 as N — oo.

(b) In addition assume that: (vi) for any 6 > 0, 7 > 0 and a.e. w € §, there

exist v > 0 and No = No(w) such that for any x € XNX'+~+B and N > Ny,
there exists z, € X N X' such that*

(26) |z — 2 <7 Ti(e) CTi(z) + 0B, and [|gn(z) = on(@)] < 6.

Then w.p.1 for N large enough it follows that

(27) D(Sy, 8 <74+ R ( sup |(z) - <2>N<x>||) ,

rzeXNX’

where fore >0 and t > 0,

= inf d T
RE) = o nfd(0.0() + D),

R7L(t) == inf{e € R, : R(e) > t}.

Proof. Part (a). Let & = ¢J(w), 7 = 1,..., be the iid sample, defined on the
probability space (Q, F,P), and Xy = Xn(w) be the corresponding feasibility set of
the SAA problem. Consider a point Z € X'\ X and its neighborhood V; = Z + vB
for some v > 0. We have that probability p := P{¢ € = : & ¢ X(£)} is positive.
Moreover it follows by Assumption 2.3 that we can choose v > 0 such that probability
]P’{Vg—c NX(¢) = @} is positive. Indeed, for § := p/4 consider the multifunction As

1Recall that ¢ () = ¢nN(z,w) are random functions defined on the probability space (92, F,P).

This manuscript is for review purposes only.
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TWO-STAGE STOCHASTIC GENERALIZED EQUATIONS 7

defined in (2.5). By outer semicontinuity of As we have that for any e > 0 there is
~ > 0 such that for all z € V; it follows that As(x) C As(Z) 4+ eB. That is

Upev, {6 €EEs:z e X)) C{e€Zs e X(O)}+eBC{¢€e=Z:2€ X(6)}+eB.
It follows that we can choose € > 0 small enough such that
P(Ugey, {€ €85z € X(§)}) <1-p/2.
Since § = p/4 we obtain
P(Ugev, {E €S0 € X(€)}) <1—p/4.

Noting that the event {Vz N X (£) =0} is complement of the event { Uyey, {£ € =
x € X(€)}}, we obtain that P {V; N X(£) =0} > p/4.

Consider the event Ey := { Ve N Xy # (D} . The complement of this event is Ef, =
{Vz N Xy =0}. Since the sample &7, j =1, ..., is iid, we have

P{Vfﬁi‘]\[#@}

IN

o P{VenX(€) # 0}
= 1L (1-P{Van (&) =0}) < (1-p/4)",

and hence > v_; P{Vz; N Xy #0} < oo. It follows by Borel-Cantelli Lemma that
P (limsupy_,.. En) = 0. That is for all N large enough the events ES;, happen w.p.1.
Now for a given € > 0 consider the set X; := {x € X’ : d(z,X) < e}. Since the set
X'\ X. is compact we can choose a finite number of points z1,...,zx € X'\ X. and
their respective neighborhoods Vi, ..., Vi covering the set X'\ & such that for all N
large enough the events {V, N Xy = 0}, k = 1,..., K, happen w.p.1. It follows that
w.p.1 for all N large enough Xy is a subset of X.. This shows that 0, tends to zero
w.p.1l.

To show that ID)(S'N, S*) — 0 w.p.1 the arguments now basically are deterministic,
ie., 0y and 2x € Sy are viewed as random variables, 0y = onv(w), &n = En(w),
defined on the probability space (2, F,P), and we want to show that d(&y(w),S*)
tends to zero for all w € Q except on a set of P-measure zero. Therefore we consider
sequences 0y and &y as deterministic, for a particular (fixed) w € €, and drop
mentioning “w.p.1”. Since 0y — 0, there is &y € X such that ||y — Zy]| tends
to zero. Note that as an intersection of closed sets, the set X is closed. By the
assumption (iv) and continuity of ®(-,&) we have that ¢x(-) converges w.p.1 to ¢(-)
uniformly on the compact set X N X’ (this is the so-called uniform Law of Large
Numbers, e.g., [27, Theorem 7.48]), i.e., for all w € Q except on a set of P-measure
7€ro

sup ||lon(z) — od(z)]| = 0, as N — oo.
TEXNX'
By passing to a subsequence if necessary we can assume that Zy converges to a point
z*. It follows that &y — 2* and hence ¢y (in) — d(z*). Thus ¢y (Zn) — G(z*).
Since I'y is closed it follows that 0 € ¢(z*) +T'1(z*), i.e., * € S*. This completes the
proof of part (a), and also implies that the set S* is nonempty.

Proof of part (b).

By [19, Theorem 3.1 (ii)], R(0) = 0, R(¢) is nondecreasing on [0, c0) and R(g) > 0
for all € > 0. Note that it follows that R~1(¢) is nondecreasing on [0, 00) and tends
to zero as t | 0.

This manuscript is for review purposes only.
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8 X. CHEN, A. SHAPIRO AND H. SUN

Let 6 = R(e)/4. By part (a) and the uniform Law of Large Numbers, we have
w.p.1 that for N large enough

sup_[[¢(x) — o (2)l| < 6.

rzeXNX’

Then w.p.1 for N large enough such that oy < &, for any point z € Xy N X' with
d(z5,S8*) > € it follows that

d(0, g (@) + T (x))

> d(0,6n(z2) +T1(2) + 6B) = D(on (x) + T (2), on (2) + T1(22) + 6B)
—D(¢n(x) + 1(2), On(22) + Ti(ze) +0B) )
> d(0,0(2) + I'i(z2) + 0B) — [N (22), ¢(22) | — [0 (), o (20) |

—ID)(Fl(x),Fl(zz) +§B)
> 36—-0—-06—-0=6.

which implies 2 ¢ Sy. Then

d(z,8%) < ||z — 20| +d(2,,8") < 7+ R7! < sup [|é(x) — éN(I)II) :

zEXNX’
This completes the proof. 0

The assumption that the set Sy is nonempty means existence of solutions of the
SAA problem (1.6)-(1.7). Existence of the solutions of deterministic VI and infinite
dimensional VI has been well investigated in [10] and [12], respectively. Existence
of a solution to the perturbed generalized equations has been investigated in the
literature of deterministic generalized equations. For instance, in [17] a number of
sufficient conditions is derived which ensure solvability (existence of a solution) of
perturbed generalized equations. Similar conditions were further investigated in [16]
and their one-stage stochastic extension has been presented in [19]. Those results
can be applied to one-stage version (2.2) of (1.1)-(1.2) and its SAA problem (2.4)
directly. Moreover, in section 3, based on the results in [12] for infinite dimensional
VI, we propose sufficient conditions of existence and uniqueness of the solutions of
two-stage SVI-NCP, a special case of two-stage SGE (1.1)-(1.2).

In case of the relatively complete recourse there is no need for condition (vi), the
estimate (2.7) holds with 7 = 0 and the derivations can follow the similar results in
[19, 27, 30] directly. It is interesting to consider how strong condition (vi) is. In the
following remark we show that condition (vi) can also hold without the assumption
of relatively complete recourse under mild conditions.

REMARK 2.1. In condition (vi), the third inequality of (2.6) can be easily verified
when N sufficiently large and @(-,f) is Lipschitz continuous with Lipschitz module
kg (§) and E[k4 ()] < oo. In Lemma 2.7 and Theorem 3.7 below, we verify the third
inequality of (2.6) under moderate conditions.

Moreover, in the case when I'y(+) := N (+) with a nonempty polyhedral convex set
C, the first and second inequalities of (2.6) hold automatically. Let § = {Fy, -+, Fx}
be the family of all nonempty faces of C' and

K={k:XNX'NF#0,k=1,- ,K}.

Then w.p.1 for N sufficiently large, Xy N X' N F, = 0 for all k ¢ K. Note that for all
ke K, XyNX'NFy # 0. Moreover, it is important to note that for all z1 € reint(Fy)
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and 79 € Fy, k € {1,--- K}, No(x1) € Ne(z2). Then for any z € Xy N X'\ X,
there exists k € K such that = € reint(Fy). To see this, we assume for contradiction
that © € Fy, \ reint(F},) for some k € K and there is no k£ € K such that = € reint(Fy,).
Then there exist some k € {1,---, K} such that = € reint(F}) (if Fj, is singleton, then
reint(F};) = F}) and k ¢ K. This contradicts that Xy N X' N Fy, = () for all k ¢ K.

Note that H (Xy N X', X NX') <oy and 0y — 0 as N — oo w.p.1. Let z, =
arg min,e ynx'nr, ||z — z||. Then No(x) € No(z,) and for

TN = max _max min ||z — x|,
keEK reXNNX'NF, 2€XNX'NF,

we have that 7v — 0 as 9y — 0. Hence (2.6) is verified.

From Figure 1, it is easy to observe the relationship between z € Xy N X’ and
2z, € X N X': they are in the same face of the polyhedral convex set C' = Ri and
NRi (xz) C Nmi(zx), where X, Xy and X’ are indicated in the figure. Moreover,
7 — 0 with v — 0. In the general case when C is not polyhedral, let T'y(z) =
Ne(z). Without complete recourse, even x and z, are sufficiently close to each other,
D(Ne(z), No(z:)) may still be the infinity. Then condition (2.6) fails.

\/

FiG. 1. Relationship between x and z

2.2. Exponential rate of convergence. We assume in this section that the
set §* of solutions of the first stage problem is nonempty, and the set X is compact.
The last assumption of compactness of X can be relaxed to assuming that there is
a compact subset X’ of X such w.p.1 Sy C X', and to deal with the set X’ rather
than X. For simplicity of notation we assume directly compactness of X.

Under Assumption 2.2 and by Lemma 2.1, we have that ®(z, ), defined in (2.3),
is continuous in x € X. However to investigate the exponential rate of convergence,
we need to verify Lipschitz continuity of ®(-,£). To this end, we assume the Clarke
Differential (CD) regularity property of the second stage generalized equation (1.2).
By 7y 0z, (¥(2, ¥, €)), we denote the projection of the Clarke generalized Jacobian
Oz, ¥ (Z,7,€) in R™X™ x R™*™ onto R™*™: the set 7,0, ¥(7,7,&) consists of
matrices J € R™*™ such that the matrix (S,.J) belongs to 0,,,)¥(Z,,§) for some
S e Rmxm,

DEFINITION 2.5. For £ € Z a solution § of the second stage generalized equation
(1.2) is said to be parametrically CD-regular, at © = & € X(£), if for each J €
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TyO(z,y) Y (T, 7, €) the solution y of the following SGE is strongly regular

(2.8) 0€¥(z,y,8) +J(y— )+ T2y, ).

That is, there exist neighborhoods U of § and V of 0 such that for every n € V the
perturbed (partially) linearized SGE of (2.8)

n € W(z,5,8) + J(y — ) + T2y, )
has in U a unique solution §z(n), and the mapping n — §z(n) : ¥V — U is Lipschitz
continuous.

ASSUMPTION 2.4. For a.e. £ € =, there exists a unique, parametrically CD-
reqular solution § = §(T, &) of the second stage generalized equation (1.2) all T € X.

PROPOSITION 2.6. Suppose Assumption 2.4 holds. Then for a.e. £ € =, the
solution mapping 4(x,&) of the second stage generalized equation (1.2) is a Lipschitz
continuous function of x € X, with Lipschitz constant k(§).

The result is implied directly by [14, Theorem 4] and the compactness of X C X.
Moreover, note that for any z € X, if the generalized equation

0€Gz(y) :=¥(2,5,8) + J(y —y) + T'2(y,€) for which Gz(y) >0,

has a locally Lipschitz continuous solution function at 0 for y with Lipschitz constant
kG(Z,€). Then by [9, Theorem 1.1], we have

k3(§) = Kk (Z,§)rw(§) < oo
is a Lipschitz constant of the second stage solution function §(x, &) at .

ASSUMPTION 2.5. The set X is convez, its interior int(X) # 0, and for a.e.
& € Z, the generalized equation

0€Gely) = ¥(2,5,8) + J(y —9) + T'2(y,§), for which Gz(y) 30,

has a locally Lipschitz continuous solution function at O for § with Lipschitz constant
kG (Z,€) for all T € X and there exists a measurable function Rg : 2 — Ry such that,

ke (7,§) < Rg(§) and E[rg(§)rw(§)] < oo.

Under Assumption 2.5, it can be seen that E[g(x, £)] is Lipschitz continuous over
x € X with Lipschitz constant E[Rg(§)rw(€)]. We consider then the first stage (1.1)
of the SGE as the generalized equation (2.2) with the respective second stage solution
Gz, &) (recall definition (2.3) of ®(x,¢) and ¢(x)).

LEMMA 2.7. Suppose that Assumptions 2.4-2.5 hold, Elke(£)] < 0o and
Elre(§)ka(§)rw(£)] < oo

Then for a.e. & € E, @(m@) and ¢(x) are Lipschitz continuous over x € X with
respective Lipschitz modulus

ra(6) + ra(§)Fa(§rw(§) and Elre (§)] + Elra (§)ra(§)rw (§)]-

REMARK 2.2. Specifically we study Assumptions 2.2-2.5 in the framework of the
following SGE:

(2.9) 0 € E[®(z,y(§),§)] +Ti(2), z € X,
(2.10) 0€¥(z,y(£), &) + Nep (H(z,y(§),£)), forae {€E,
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where H(z,y,&) : R” x R™ x 2 — R™. Let h(x,y,§) := min{¥(x,y,&), H(x,y,§)}.
Then the second stage VI (2.10) is equivalent to
(2.11) h(z,y,£) =0, fora.e £€E.

For x = Z and £ € E let § be a solution of (2.11), and suppose that each matrix J €
7y Oh(Z, §,€) is nonsingular for a.e. {. Then by Clarke’s Inverse Function Theorem,
there exists a Lipschitz continuous solution function g(x, &) such that §(z,£) = ¢ and
the Lipschitz constant is bounded by ||J~(z,y,&)S(z,y, €)|| for all

(S(z,y,8), J(2,y,8) " € mpyOh(z,y,£).

Then Assumption 2.4 holds. Moreover, if we assume

E[||J7 (2, §(2,€),6)S(z, §(x,€),E)l] < o0
for all x € X, then Assumption 2.5 holds.

Now we investigate exponential rate of convergence of the two-stage SAA problem
(1.6)—(1.7) by using a uniform Large Deviations Theorem (cf., [27, 28, 30]). Let

M(t) = E {exp(t[di(z, €) - 6u()]) }

be the moment generating function of the random variable ®;(z,&) — ¢(z), i@ =
1,...,n, and

M,.(t) = E {exp (t[rs(S) + ra(§)r(6) — Elxa(§) + ra(€)r(€)]]) }-

ASSUMPTION 2.6. For every x € X and i = 1,...,n, the moment generating
functions M:(t) and M, (t) have finite values for all t in a neighborhood of zero.

THEOREM 2.8. Suppose: (i) assumptions 2.1, 2.3-2.6 hold, (ii) 8* is nonempty
and w.p.1 for N large enough, Sy are nonempty, (iii) the multifunctions T'1(-) and
Da(+, &), € € 2, are closed and monotone. Then the following statements hold.

(a) For sufficiently small € > 0 there exist positive constants ¢ = o(e) and ¢ =

¢(e), independent of N, such that

(2.12) P {sup [6x(0) - 9(0)| > ¢ < ofe)e=.

(b) Assume in addition: (iv) The condition of part (b) in Theorem 2.4 holds and
w.p.1 for N sufficiently large,
(2.13) S*Necl(bd(X) Nint(Xy)) = 0.
(v) ¢(+) has the following strong monotonicity property for every x* € §*:
(2.14) (x —2") " (¢(2) — ¢(a*)) 2 g(||lz — 2™), ¥z € X,

where g : Ry — Ry is such a function that function t(t) := g(7)/7 is mono-
tonically increasing for T > 0.

Then 8* = {a*} is a singleton and for any sufficiently small € > 0, there
exists N sufficiently large such that

(2.15) P {D(S‘N,S*) > s} <o(t7'(e))exp (—Ns(r7'(e))),

where o(-) and <(-) are defined in (2.12), and v=*(g) := inf{r > 0:¢(7r) > ¢}
is the inverse of v(7).

This manuscript is for review purposes only.
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12 X. CHEN, A. SHAPIRO AND H. SUN

Proof. Part (a). By Lemma 2.7, because of conditions (i) and (ii) and compactness
of X, we have by [27, Theorem 7.67] that for every i € {1,...,n} and £ > 0 small
enough, there exist positive constants o; = p;(¢) and ¢; = ¢;(¢), independent of N,
such that

P {sup (b)) - 0] 2 € < el

and hence (2.12) follows. B
Part (b). By condition (iv) we have that D(S*, Xy \ X) > 0. Let € be sufficiently
small such that w.p.1 for N sufficiently large,

D(S*, Xy \ X) > 3e.
Note that since X C Xy11 C Xy, D(S*, Xy \ X) is nondecreasing with N — oc.
By Theorem 2.4, part (b), w.p.1 for N sufficiently large such that 7 < e, we have

R (sup (o) — (o)) ) <&

and

DSy, 5% < 7+ R (sup o) — o(o)] ) < 2.
reX
Since by condition (iv), when N sufficiently large w.p.1, for any point & € v\ X,
D(Z,S*) > 3¢, which implies Sy C X and then
(2.16) D(Sx.5%) < R (sup n (o) - 6@)l).
S

In order to use (2.16) to derive an exponential rate of convergence of the SAA esti-
mators we need an upper bound for R™1(¢), or equivalently a lower bound for R(¢).
Note that because of the monotonicity assumptions we have that §* = {z*}.

For x € X and z € T';(x) we have

(@ —a") T ((z) = d(a")) = (z = 2*) T ($2) + 2 = $(z") — 2) < (& —2") T (g(x) + 2),

where the last inequality holds since —¢(z*) € T';(2*) and because of monotonicity
of I'1. It follows that

(2 = 2") " (p(x) = d(")) < [lz — 2™ [ $() + 2],
and since z € I';(x) was arbitrary that

(@ = 2") T (¢(x) = d(a")) < [lo — 27| (0, () + T'1(2)).
Together with (2.14) this implies

d(0,¢(z) +T1(2)) > v(l|lz — 2|)).

It follows that R(g) > t(e), € > 0, and hence

RN <),
where v—!(+) is the inverse of function t(-). Then by (2.12), (2.15) holds. d
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Note that if g(7) := c7“ for some constants ¢ > 0 and o > 1, then vt }(t) =
(t/c)*/(@=1D_ In particular for a = 2, condition (2.14) assumes strong monotonicity
of ¢(-). Note also that condition (iv) is not needed if the relatively complete recourse
condition holds.

It is also interesting to consider how strong condition (2.13) is. Note that when
S* C int(X), condition (2.13) holds. Moreover, we can also see from the following
simple example that even when §* Nbd(X) # ), condition (2.13) may still hold.

ExaMPLE 2.1. Consider a two-stage SLCP
o< (2) 46 1) () () =0
= ()£ (57 o) (1)~ () 20 me s

where

1 .
Ll ftrE<100
alt. &) = J tFEFsT if =+
(t.€) { 0, otherwise,

and & follows uniform distribution in [—50,50].

By simple calculation, we have that S* = {(0,0)} and X = [0,50] x [0,50]. Mo-
reover, consider an iid samples {€7}0 | with max; & = 49, Xy = [0,51] x [0,51]. Let
X ={z:0< 21,29 < 100}. It is easy to observe that although S* = {(0,0)} is at the
boundary of X N X, condition (2.13) still holds.

REMARK 2.3. It is also interesting to estimate the required sample size of the
SAA problem for the two-stage SGE. Similar to a discussion in [28, p.410], if there
exists a positive constant o > 0 such that

(2.17) Mi(t) < exp{o®t?/2}, VteR, i=1,..,n,

then it can be verified that I’ (z) > % for all z € R, where I'(2) := sup,cp{zt —
log M (t)} is the large deviations rate function of random variable ®;(z, &) — ¢;(x),
i =1,---,n. Note that if ®;(x,&) — ¢;(x) is subgaussian random variable, (2.17)
holds, i = 1,...,n. Then it can be verified that if

32no
>

N2 {ln(n(2H+1))+ln <;)]

then

P{sup lon () - ()| = } <a,

reX

where II := (O(1)DE[k¢(€) + ke (€)r(£)]/e)" and D is the diameter of X. Conse-
quently it follows by (2.16) that if

N > % {ln(n(QlﬁI +1))+1n @)] ,

with IT := (O(1)DE[kqe(€) + /@@(f)/@(ﬁ)]/t’l(a))n, then we have

P {D(SN,S*) > 5} < a.
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Confidence intervals based on the sample average approximations were studied
in [18] for one-stage SVI problems. It could be possible to extend those results to
two-stage SGE under mild conditions. This could be a topic for a future research.

In the next section, we will verify the conditions of Theorems 2.4 and 2.8 for the
two-stage SVI-NCP under moderate assumptions.

3. Two-stage SVI-NCP and its SAA problem. In this section, we inves-
tigate convergence properties of the two-stage SGE (1.1)—(1.2) when ®(x,y,£) and
U(x,y,&) are continuously differentiable w.r.t. (z,y) for a.e. £ € E and T'y(z) :=
Ne(z) and To(y) == N]R]f (y) with C' C R™ being a nonempty, polyhedral, convex set.
That is, we consider the mixed two-stage SVI-NCP

(3.1) 0 € E[®(z,y(£), )] + Ne (),
(3.2) 0<y(&) LU(x,y(€),&) >0, forae &€E,
and study convergence analysis of its SAA problem
N
(3.3) 0e Nz, y(¢), &) + Ne(w),
j=1
(3.4) 0<y(&) LW(z,y(),e) >0, j=1,..,N.

We first give some required definitions. Let )’ be the space of measurable functions
u: 2 — R™ with finite value of [ ||u(§)||?P(d€) and (-, -) denotes the scalar product in
the Hilbert space R™ x ) equipped with Lo-norm, that is, for z,z € R" and y,u € Y,

(@ 9), (7)) =Tz + / y(€) Tu(€) PdE).

Consider mapping G : R™ x Y — R" x ) defined as
g(x’y()) = (E[¢<x7y(€)7£)]’ \I/(I>y()7 ))

Monotonicity properties of this mapping are defined in the usual way. In particular
the mapping G is said to be strongly monotone if there exists a positive number &
such that for any (x,y(-)), (z,u(-)) € R™ x ), we have

T —z

(o) = 0u. (572 ) ) 2 Rl = 2 + Ell(© — w(@ID.

DEFINITION 3.1. ([12, Definition 12.1]) The mapping G : R® x Y — R"™ x Y is
hemicontinuous on R™ x Y if G is continuous on line segments in R™ x Y, i.e., for
every pair of points (z,y(+)), (z,u(:)) € R™ x Y, the following function is continuous

t <g(m + (1 =tz ty(-) + (1 = t)u()), (y(‘f - i()) > .

DEFINITION 3.2. ([12, Definition 12.3 (i)]) The mapping G : R" x Y — R" x Y is
coercive if there exists (xo,yo(-)) € R™ x Y such that

(96000 (5 "))
o= 2ol + ElIV(E) ~ o]

Note that the strong monotonicity of G implies the coerciveness of G, see [12,
Chapter 12]. In section 3.1, we consider the properties in the second stage SNCP.

— o0 as [[zf| +E[|y(§)[]] = oo and (z,y(-)) € R" x V.
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3.1. Lipschitz properties of the second stage solution mapping. Strong
regularity of VI was investigated in Dontchev and Rockafellar [8]. We apply their
results to the second stage SNCP. Consider a linear VI

(3.5) 0€ Hz+q+ Ny(z),

where U is a closed nonempty, polyhedral, convex subset of R!.

DEFINITION 3.3. [8, Definition 2] The critical face condition is said to hold at
(qo, 20) if for any choice of faces Fy and Fy of the critical cone Cy with Fy C Fi,

wueF, —F, Huc(F—F)" = u=0,

where critical cone Co = C(zo,v0) := {2’ € Tu(20) : 2" L vo} with vo = Hzg + qo-

THEOREM 3.4. [8, Theorem 2| The linear variational inequality (3.5) is strongly
regular at (qo,z20) if and only if the critical face condition holds at (qo, 20), where zg
is the solution of the linear VI: 0 € Hz + qo + Ny (2).

COROLLARY 3.1. [8, Corollary 1] A sufficient condition for strong regularity of
the linear variational inequality (3.5) at (qo,20) is that w' Hu > 0 for all vectors
u # 0 in the subspace spanned by the critical cone Cy.

Note that when H is a positive definite matrix, the condition in Corollary 3.1
holds and we do not need to assume the critical face condition in Definition 3.3. Then
we apply Corollary 3.1 to the two-stage SVI-NCP and consider the Clarke generalized
Jacobian of §(x,&). To this end, we introduce some notations: let

a(@(z,8) ={i: (9(x,8))i > (Y(z,9(x,£),£))i}

B, ) =A{i: (9(x,8))i = (Y(2,9(x,£),£))i}

V(G(x, €)) = {i: (92, €))i < (¥(x, 9(2,£),8))i}-
(

Note that for any x € X and a.e. & € E, §(z,§), a(j(x,§)), B(G(z,§)) and y(§(z, &)
are uniquely defined. For simplicity, we use a = «a(g(z,§)) = B(y(x,€)) and
v=7(9(x,€)). Let Vo, ¥(z,y,&) and V,¥(x,y, &) be the Jacobian of ¥(z,y,§) w.r.t.
x and y respectively.

ASSUMPTION 3.1. For a.e. £€Z and allz € X NC, ¥(x,-, &) is strongly mono-
tone, that is there exists a positive valued measurable rky(§) such that for ally,u € R™,

(U, y,€) — Uz, u,€),y —u) = ky(§)lly — ulf?
with B[k, (§)] < 4o0.

Applying Corollary 2.1 in [15] to the second stage of the SVI-NCP, we have the
following lemma.

LEMMA 3.5. Suppose Assumption 5.1 holds and for a fized £ € Z, U(x,y,£) is
continuously differentiable w.r.t. (x,y). Then for the fived ¢ € E, (a) §(x,§) is
an unique solution of the second stage NCP (3.2), (b) 9(x,£) is F-differentiable at
T € XNC if and only if B((%,€)) is empty and

(Vai(Z,8))a = _(vy\llaoz(77g(jag)vg))_lvmq/a(i‘ag(jaf)ag)v (Vl:l:/(i‘,f))'y =0

or
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in this case, the F-derivative of §(-,€) at T is given by

(Vmg(jvf))a = _(qu}aa(jag(fa5)7f))_lvz@a(jvg(jvf)vg)a

THEOREM 3.6. Let ¥ : R™ x R™ x = — R™ be Lipschitz continuous and conti-
nuously differentiable over R™ x R™ for a.e. £ € Z. Suppose Assumption 3.1 holds
and ®(x,y, ) is continuously differentiable w.r.t. (x,y) for a.e. £ € E. Then for a.e.
£ €= and x € X, the following holds.

(a) The second stage SNCP (3.2) has a unique solution §(z,§) which is parame-

trically CD-regular and the mapping x — §(x,&) is Lipschitz continuous over
X N X', where X' is a compact subset of R™.
(b) The Clarke Jacobian of §(x,£) w.r.t. x is as follows

8?(3775) = conv {Zh_%vz?( g) zy(z f)
_[I_DQ(I_ M( ( ) ))] 1DaL(Z7g(27§)ﬂ€)}7

where M(z,y,£) = Vy¥(x,y,€), L(z,§(x,€),§) = Vo ¥(z,§(2,€), £).-
Proof. Part (a). Note that by Lemma 3.5 (a), for almost all £ € = and every

Z € X N X', there exists a unique solution §(Z, &) of the second stage SNCP (3.2).
Moreover, cons1der the LCP

(3.6) 0<y L W(z,5,8E)+V, V(58 H—y) >0,

where § = §(7,€). By the strong monotonicity of ¥(z,-,£), V,¥(z,7,£) is positive
definite. Then by Corollary 3.1, the LCP (3.6) is strongly regular at . This implies
the parametrically CD-regular of the second stage SNCP (3.2) with Z at solution 3.
Then the Lipschitz property follows from [14, Theorem 4] and the compactness of X’.

Part (b). For any fixed ¢, by Part (a), there exists a unique Lipschitz function
(-, &) such that g(z,&) over X which solves

0<yLU(x,yf) >0.

Note that §(-, &) is Lipschitz continuous and hence F-differentiable almost every-
where over Bs(Z). Then for any 2’ € Bs(Z) such that (a2, ) is F-differentiable, by
Lemma 3.5 (b), we have S(g(2’,€)) is empty and
(3.7)

(Va§(a',€))a = —(Vy¥(2, §(2",6),)aa(Va ¥ (@', 5(2',€),€))a, (Vai(a’,€))y =
or B(g(2',€)) is not empty and

(33) (206, ) = ~(Vy¥(a", (6", )3T 9, e
| (Vad(&,€))s =0, (Vai(e,))r =

Let Dy € D be an m-dimensional diagonal matrix with J € J and

L 1, ifjed,
(3.9) (D1)js '_{ 0, otherwise,

M(z,y,§) = V,¥(z,y.§) and W(z,§) = [I — Da(I — M(z,y,£))]" Do. Then by
(3.7) and (3.8), similar as in [5, Theorem 2.1],

sz(l'/,g) = 7[1 - DOé(I - M(x/’g(x/’g)’g))]leaL(x/’g(x/’g% )a

This manuscript is for review purposes only.
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where L(z, §(z,€),§) = Vo ¥(z,§(x,§),§). Let
(3.10) Usy(M)=(I—Dy(I-M))"*Dy, YJeJ.

By the definition and outer semicontinuity of Clarke generalized Jacobian, we have

0h(w,€) = conv{lmV.j(z8) : Vai(=) =
—[I = Do(I — M(2,5(2,€),6))] " DaL(z,3(2,€),€) }
- COIlV{ UJ( (l’,Q(l‘,f),f))L(l’,g(I’,g),g) :J e j}
We complete the proof. O

It is easy to observe that

04(x, &) = conv{zli_rgvz (2,€) : V.9(2,8)
(3.11) = Dl M2, )] D132, 6) &)}
C conv{—U;(M(x,§(x,£),&))L(x, §(x,€),€) : J € T},

where J := 2{1m} D ; and U; are defined in (3.9) and (3.10) respectively.
Under Assumption 3.1, the two-stage SVI-NCP can be reformulated as a single
stage SVI with ®(z,§) = ®(x, §(x,§),§) and ¢(x) = E[®(z, §)] as follows

(3.12) 0 € ¢(z) + Ne(z).

With the results in Theorem 3.6, SVI (3.12) has the following properties. Let

o060 = (e
and VO(z,y, &) be the Jacobian of ©. Then

_ (A9, Blx,y,€)
VO(z,y,&) = (L(x’y7£) M(m,y,ﬁ))’

where A(z,y,§) = V,@(z,y,§), B(z,y,§) = V,@(z,y,8), L(z,y,§) = Vo, ¥(z,y,§)
and M(z,y,§) = V,¥(z,y,§).

THEOREM 3.7. Suppose the conditions of Theorem 3.6 hold. Let X' C C be a
compact set, for any £ € E, Y (&) = {g(x,€) : v € X'} and VO(z,y,£) be the Jacobian
of ©. Assume
(3.13) E[||A(x,§(x,€),€) — Bz, §(x,£), )M (, §(x,€), &) Lz, §(2, ), |l) < +00

over X N X'. Then
(a) ®(x,§) is Lipschitz continuous w.r.t. x over X N X' for all § € =.
(b) E[®(x,&)] is Lipschitz continuous w.r.t. x over X N X'.

Proof. Part (a). By the compactness of X’ and Theorem 3.6 (a), Y () is compact
for almost all £ € =. By the continuity of VO(z, §(z,£), ), we have

A(.’E,g(.’lﬁ,§>7f) - B(m,gj(m@),E)M(ag(x,g),f)_lL(x,g(x,§)7f)

is continuous over X’. Then we have

rzeX'’

This manuscript is for review purposes only.
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18 X. CHEN, A. SHAPIRO AND H. SUN

Moreover, by Theorem 3.6 (b) and (3.11), the Lipschitz module of ®(z,¢), denote by
lipg (€) satisfies

lipg (€)
< Seu)l()/llA(z,?)(%f)aé)—B(%?)(I’«“aé)’ﬁ)M(Ia?J(l‘,f),5)71L($,ﬁ($7§)a§)||
< Hoo.
Part (b). it comes from Part (a) and (3.13) directly. 0

3.2. Existence, uniqueness and CD-regularity of the solutions. Consider
the mixed SVI-NCP (3.1)-(3.2) and its one stage reformulation (3.12). If we replace
Assumption 3.1 by the following assumption, we can have stronger results.

ASSUMPTION 3.2. For a.e. £ € B, O(x,y(§),€) is strongly monotone with para-
meter k(€) at (z,y(-)) € C x Y, where E[k(§)] < +o0.

Note that Assumption 3.1 can be implied by Assumption 3.2 over C x ).

THEOREM 3.8. Suppose Assumption 5.2 holds over C x Y and ®(x,y,&) and
U(x,y,&) are continuously differentiable w.r.t. (x,y) for a.e. £ € Z. Then

(a) G:C xY — C xY is strongly monotone and hemicontinuous.

(b) For all x and almost all £ € E, V(x,y(§),&) is strongly monotone and conti-
nuous w.r.t. y(§) € R™.

(¢) The two-stage SVI-NCP (3.1)-(3.2) has a unique solution.

(d) The two-stage SVI-NCP (3.1)-(3.2) has relatively complete recourse, that is
for all x and almost all £ € 2, the NCP (3.2) has a unique solution.

Proof. Parts (a) and (b) come from Assumption 3.2 over C' x ) directly. Since the
strong monotonicity of G and ¥ implies the coerciveness of G and ¥, see [12, Chapter
12], by [12, Theorem 12.2 and Lemma 12.2], we have Part (c) and Part (d). d

With the results in sections 3.1 and above, we have the following theorem by only
assume that Assumption 3.2 holds in a neighborhood of Sol* N X’ x ). Our result
extends [3, Proposition 2.1] for two-stage SLCP .

THEOREM 3.9. Let Sol* be the solution set of the mized SVI-NCP (3.1)-(3.2).
Suppose (i) there exists a compact set X' such that Sol* N X’ x ) is nonempty, (ii)
Assumption 3.2 holds over Sol* N X' x Y and (iii) the conditions of Theorem 3.7 hold.
Then

(a) For any (x,y(-)) € Sol*, every matriz in dd(x) is positive definite and & and

¢ are strongly monotone at x.
(b) Any solution z* € S*NX’ of SVI (3.12) is CD-regular and an isolate solution.
(¢) Moreover, if replacing conditions (i) and (ii) by supposing (iv) Assumption 3.2
holds over R™ x Y, then SVI (3.12) has a unique solution x* and the solution
is CD-regular.

Proof. Part (a). Note that under Assumption 3.2, for any (z,y(-)) € Sol*, the

matrix
Am,y(€),6)  Bla,y(€),€)
<L<w,y<é>,£> M(m,y@),&)) ~0

From (ii) of Lemma 2.1 in [3], we have

A(z,y(§), &) — Bz, y(£), U (M (2, y(£), §)) Lz, y(§),§) = 0, VJ € J.
For any T such that (z,§(-)) € Sol*, let Bs(Z) be a small neighborhood of z,

Dy(z) := {2’ : 2’ € Bs(x), §(a',€) is F-differentiable w.r.t. = at z'}

This manuscript is for review purposes only.
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TWO-STAGE STOCHASTIC GENERALIZED EQUATIONS 19

and
Dy (z) = {a’ : 2’ € Bs(Z), ®(2’,€) is F-differentiable w.r.t. z at 2'}.

Since ®(z,y, &) is continuously differentiable w.r.t. (z,y), y(-,¢) is F-differentiable
w.r.t. @, which implies ®(-,¢) is F-differentiable w.r.t. z. Then Dy(Z) C Dg (7).
Moreover, since §(z,€) and ®(z, €) are Lipschitz continuous w.r.t. @ over Bs(z), they
are F-differentiable almost everywhere over Bs(Z). Then the measure of D4 (Z)\Dy(Z)
is zero. By Theorem 3.6 (b), (3.11) and the definition of Clarke generalized Jacobian,
we have
(3.14)
0,8 (z,€)
. = / R _
= conv {Il}givm@(z )l € Dé(x)}
— conv {J@j%@(ﬂ, §(2,€),6) + V, 0z, §(a, ), E)Vai(a' ) 1 o' € Dg(gz)}
= conv {Il/iiniA(x’,g)(x',ﬁ),f)
—B(@",§(«, ), OUa(g(ar &) (M (2", §(2", ), §)) L(z', §(2',€), &) - a’ € Dy(x)}
C  conv{A(z,g(,£),&)
—B(.’E y( g) 5) ( (x,gj(x,{),f))L(m,@(w,&)@) : JGJ},

where the second equation is from [29, Theorem 4] and the fact that the measure of
D4 (7)\Dy(z) is 0. By (3.14), every matrix in 0, ®(Z, §) is positive definite. And then

P is strongly monotone which implies ¢ is strongly monotone at .
Part (b). By Corollary 3.1, the linearized SVI

0 € Vir(z — 2*) + E[® (2", )] + Ne (),

is strongly regular for all V. € dé(z*) C E[0,®(z*,£)]. Then the NCP (3.12) at z*
is CD-regular. Moreover, by the definition of CD regular, x* is a unique solution of
the NCP (3.12) over a neighborhood of x*.

Part (c). By Part (a) and Theorem 3.8, NCP (3.12) has a unique solution x*.
The CD regular of NCP (3.12) at z* follows from Part (b). d

3.3. Convergence analysis of the SAA two-stage SVI-NCP. Consider the
two-stage SVI-NCP (3.1)-(3.2) and its SAA problem (3.3)-(3.4).

We discuss the existence and uniqueness of the solutions of SAA two-stage SVI
(3.3)-(3.4) under Assumption 3.2 over C' x Y firstly. Define

NTUEE 0, (J) 7)
Gn(z,y(h)) == U(, (5 &Y
\I/(m,y(é“N)7§N)

THEOREM 3.10. Suppose Assumption 3.2 holds over C x Y and ®(x,y,&) and
U(x,y,&) are continuously differentiable w.r.t. (x,y) for a.e. £ € Z. Then
(a) Gy : C x Y — C x Y is strongly monotone with N1 Z;\;l x(&7) and hemi-
continuous.
(b) The SAA two-stage SVI (3.3)-(3.4) has a unique solution.

Proof. By Assumption 3.2, we have Parts (a) and (b). d

This manuscript is for review purposes only.
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20 X. CHEN, A. SHAPIRO AND H. SUN

Then we investigate the almost sure convergence and convergence rate of the
first stage solution Zx of (3.3)-(3.4) to optimal solutions of the true problem by only
supposing Assumption 3.2 holds at a neighborhood of Sol* N X’ x Y.

Note that the normal cone multifunction = — N () is closed. Note also that
function ®(z,£) = ®(z,j(x,€),€), where j(z,£) is a solution of the second stage
problem (3.2). Then the first stage of SAA problem with second stage solution can
be written as

N
(3.15) 0eNT) &)+ No().

Under the conditions (i)-(iii) of Theorem 3.9, the two-stage SVI-NCP (3.1)-(3.2)
and its SAA problem (3.3)-(3.4) satisfy conditions of Theorem 2.4 and with R~ (t) <
% for some positive number ¢ (by Remark 2.1, the strongly monotone of ¢ and the
argument in the proof of Part (b), Theorem 2.8 ). Then Theorem 2.4 can be applied
directly.

DEFINITION 3.11. [10, 20] A solution x* of the SVI (3.12) is said to be strongly
stable if for every open neighborhood V of x* such that SOL(C, ¢) NclV = {z*}, there
exist two positive scalars § and e such that for every continuous function ¢ satisfying

sup |[¢(z) — p(x)|| <€,

zeCNcly

the set SOL(C, é) NV is a singleton; moreover, for another continuous function o
satisfying the same condition as ¢, it holds that

Iz — 2'|| < dll[¢(x) — d(x)] — [B(z") — (=")]],
where x and ' are elements in the sets SOL(C, $)NV and SOL(C, $)NV, respectively.

THEOREM 3.12. Suppose conditions (i)-(ii) of Theorem 3.9 hold. Let z* be a
solution of the SVI (3.12) and X' be a compact set such that =* € int(X’). Assume
there exists € > 0 such that for N sufficiently large,

(3.16) 2" ¢ cl(bd(X) Nint(Xy N X7)).

Then there exist a solution & of the SAA problem (3.15) and a positive scalar § such
that ||Zn —2*|| = 0 as N — o0 w.p.1 and for N sufficiently large w.p.1

(3.17) &y —a*| <6 sup_|bn(w) = ()]
reXNX’

Proof. By Theorem 3.9 (b), the SVI (3.12) at z* is CD-regular. By [20, Theorem
3] and [10], z* is a strong stable solution of the SVI (3.12). Note that by Theorem
3.9 (a) and [27, Theorem 7.48], we have

sup_ [|én (z) — ()|

rzeXNX’

converges to 0 uniformly. Then by Definition 3.11 and (3.16), there exist two positive
scalars d, € such that for N sufficiently large, w.p.1

sup 16 (2) = ¢(x)|| < min{e, £/}

re
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and
[2n —2*[| <6 sup |[[on(x) — ()|,
XNX/

TxEXN
which implies Ty € X. ]

Note that Theorem 3.12 guarantees that R~1(¢) < §t and condition (3.16) is dis-
cussed after Theorem 2.8. Note also that replacing conditions (i) - (ii) and condition
(3.16) by supposing condition (iv) of Theorem 3.9, conclusion (3.17) also holds. Mo-
reover, in this case, by Theorem 3.9 (¢) and Theorem 3.10, * and &, are the unique
solutions of the SVI (3.12) and its SAA problem (3.15) respectively.

Then we consider the exponential rate of convergence. Note that under Assump-
tion 3.1, for SAA problem of the mixed two-stage SVI-NCP (3.3)-(3.4), Assumptions
2.1, 2.4, 2.5 and condition (iii) in Theorem 2.8 hold. If we replace Assumption 3.1 by
Assumption 3.2 over Sol* N X’ x ), we have the following theorem.

THEOREM 3.13. Let X' C C be a convex compact subset such that Bs(x*) C X'.
Suppose the conditions in Theorem 3.12 and Assumption 2.6 hold. Then for any
e > 0 there exist positive constants 6 > 0 (independent of €), 0 = p(¢) and ¢ = ¢(¢),
independent of N, such that

(319 Pr{ sup [ (2) — 9(0)| > ¢ | < ale)e ),
rzeX

and

(3.19) Pri{ley —2*|| > e} < 9(5/5)6_N§(8/6)~

Proof. By Theorem 3.9 (a), Assumption 2.6 and [27, Theorem 7.67], the conditi-
ons of Theorem 2.8 (a) hold and then (3.18) holds. Under condition (3.16) in Theorem
3.12, (3.19) follows from (3.17) and (3.18). 0

The two-stage SVI-NCP is a class of important two-stage SGE and can cover a
wide class of real world applications. Moreover, the structure of the second stage
NCP has been well investigated in the literature (e.g., [5, 15]). By combining those
results in our case we can formulate the Clarke generalized Jacobian of the solution
function of the second stage NCP and derive stability analysis of the first stage SVI.
We will consider the two-stage SVI in further research.

4. Examples. In this section, we illustrate our theoretical results in the last
sections by a two-stage stochastic non-cooperative game of two players [3, 21]. Let
€:Q — Z C R be a random vector, z; € R and ;(-) € ); be the strategy vectors
and policies of the ith player at the first stage and second stage, respectively, where
Y; is a measurable function space from = to R™i, i = 1,2, n = ny +ng, m = mq +ma.
In this two-stage stochastic game, the ith player solves the following optimization
problem:

(4.1) min  0;(z;, 7)) + E[vi (zi, 25, y—i (), )],

xi€[aq,bi]
1
where 0;(z;,x_;) := §:CZTH¢3% +qlxi +al Pw_y,

(4.2) Yi(xi, i, y—i(§),§) == yie[l;&i)flui(g)] i (Yirs iy i, y—i(€), )
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649
650
651
652

653
654

656

661

22 X. CHEN, A. SHAPIRO AND H. SUN

is the optimal value function of the recourse action y; at the second stage with

2
Gi(yi, xi, w5, y—i(§), &) = %y;Qi(ﬁ)yi +a(©) Ty + Dyl SOz +y 0:(©y-i(€),
j=1

ai;,b; € R I, u; : 2 — R™ are vector valued measurable functions, 1;(£) < u;(§)
for all £ € 2, H; and Q;(§) are symmetric positive definite matrices for a.e £ € =,
r = (21,72), y(-) = (W1(-),42(-), i = zir and y—; = yy, for &' #i. We use y;(§) to
denote the unique solution of (4.2).

By [11, Theorem 5.3 and Corollary 5.4], ¥;(z;,x—;,y—; (), &) is continuously dif-
ferentiable w.r.t. x; and

Hence the two-stage stochastic game can be formulated as a two-stage stochastic
linear VI

—Ve,0i(xi,x_5) —E[Ve,i(zi, 2_5,y-i(£),6)] € Ny (@),
~Vy )0 Wil€), i v —i,y—i(€),€) € Npy(e)ui©) Wil6)),

for a.e. £ €=,

for i = 1,2, with the following matrix-vector form

(4.3) —Az —E[B&)y(§)] —h1 € Nyayl(z)
. —M(y(€) — L&)z — ha(§) € Nye)yuenw()), forae §e€E,

A= @; 512) B(¢) = (5{10@) SES(&))’

(5(E) Sn(©) (Q© 0
L(@(Sm(g) 22(@) M(£)<O;(£) Qi(f))’

h1 = (q1,¢2) and ha(§) = (€1(£), c2(€)). Moreover, if there exists a positive continuous
function £(§) such that E[x(£)] < 400 and for a.e. £ € E,

(4.4) (z",u’) ( ) < ) (2] + [[ul?), VzeR™, ueR™,

where

the two-stage box constrained SVI (4.3) satisfy Assumption 3.2. By the Schur com-
plement condition for positive definiteness [13], a sufficient condition for (4.4) is

4Hy — (P + Py )H{Y(Py + P, )  is positive definite
and for some k; > 0 and a.e. £ € =,
Amin (M (E) + M ()T = (B(&) + L(&) N(A+AT) (B + L(§) 1)) > k1 > 0,

where Apin(V) is the smallest eigenvalue of V€ R™*™,

Under condition (4.4), by Corollary 3.1 and Theorem 3.8, the conditions in The-
orem 2.8 hold for (4.3). To see this, we only need to show condition (vi) of Theorem
2.8 holds for (4.3). Consider the second stage VI of (4.3) for fixed ¢ and x, by the
proof of [7, Lemma 2.1], we have

§(@,8) = §(a’,§) = —(I = D(x,2",€) + D(x,2",§)M(€)) "' D(, 2, §)L(€) (x — a’),
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662

663

664
665
666
667
668
669
670
671
672

673

674

676

677

678

679

680

681
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which implies
(4.5) 0. €§) € {~(I - D + DM(€)) " DL(¢) : D € Dy},

where D(z,2’,¢) is a diagonal matrix with diagonal elements

Oa ( % xaé)) (xag)a(:g( I?§)> _zl( I’é) € [ul(£)7oo)’

g )0 EW@9)i—2i(x,8), (92", £))i — zi(a',€) € (—00, Li(§)],

Y L i, 9)i — 2, £), (92, )i — 2i(2",€) € (Li(€), uil€)),
(= 75))7—(14(96 28))i

G@8))i—zi (,6)—((9(@,€))i —zi (@) ? otherwise,

,m, Dy is a set of

zi(2,§) = (M(&)9(x, &) + L)z + ha(§))i, di € [0,1], 7 = 1,--
1]. Then we consider the

diagonal matrices in R™*™ with the diagonal elements in [0,
one stage SVI with g(x, &) as follows

(4.6) — Az = E[B(§)j(2,8)] — h1 € Njap()-

By using the similar arguments as in the proof of Theorem 3.9 and (4.5), every element
of the Clarke Jacobian of Ax+E[B(§)§(x,&)]+ hy is a positive definite matrix. Then
(4.6) is strong monotone and hence condition (vi) of Theorem 2.8 holds. In what
follows, we Verify the convergence results in Theorem 2.8 numerically.

Let {¢/}X, be an iid sample of random variable . Then the SAA problem of
(4.3) is

(4.7) —Ar — Z 1 BE)y(&) - h} € Mapy(z) 4
—M(fj) () — L(€h)w — ha(?) € Nuen)uen (&), i=1,....N.
PHM converges to a solution of (4.7) if condition (4.4) holds.

ALGORITHM 4.1 (PHM). Choose r > 0 and initial points x° € R", x? =% € R,
y? e€RrR™ andw? eR” j=1,---,N such that %Zévzlwg) =0. Letv=0.
Step 1. For j=1,--- | N, solve the box constrained VI

(4.8) —Az; = B()y; —h1 —wi —r(z; —2f) € Nay(z;),
—M(&)y; — L(& )% - h2(§ ) =y — ) € Nue)uen i),
and obtain a solution (27,97), j=1,---,N.

Step 2. Let 7V " —NZJ (&Y. Forj=1,--- N, set

v+l _ v+l V+1 N v+l _ v AU v+1
i =2y Y, wj —w-—l—r(xj—xj ).
. . A B(¢7) 4 . .
Note that PHM is well-defined if L) ME) )= 1,---, N are positive semi-

definite, that is, (4.8) has a unique solution for each j, even for some x and ¢’ the
second stage problem

—M(&)y — L(&)x — ha(¢7) € Njyes)uier) ()

has no solution.

This manuscript is for review purposes only.



682
683
684

685
686
687
688

689

690
691

692

693

694
695
696
697
698
699
700
701
702
703
704

705

24 X. CHEN, A. SHAPIRO AND H. SUN

4.1. Generation of matrices satisfying condition (4.4). We generate ma-
trices A, B(§), L(§), M (&) by the following procedure. Randomly generate a symme-
tric positive definite matrix H; € R™*™  matrices P; € R™"*"2 P, € R™*™_ Set
Hy = X(P\" + P)H{ ' (Py + P)) + al,,, where a is a positive number. Randomly
generate matrices with entries within [—1,1]:

511 S lexnl, 5’12 S lexng’ ggl S ngxnl’

SQQ S ngxnrz’ Ol S lexmg’ 62 S R™M2xmM1

Randomly generate two symmetric matrices Q; € R™>™1 and Qo € R™2X™2 whose
diagonal entries are greater than m — 1 4+ «, off-diagonal entries are in [—1,1], re-
spectively.

Generate an iid sample {¢/}, C [ 110 x [~1,1]'° of random variable ¢ € R20
following uniformly distribution over = = [0, 1]1% x [—1,1]1%. Set

S11(€) = €811, S12(€) = )12, S21(€) = €501,
S92(8) = §]822, 01(€) = €101, 02(€) = €0,

2
TS B ol k1)
Q1(§) = Q1+ (& + Amin (A + AT)
Set B(&7), L(&7), M(&7) as in (4.3).
The matrices generated by this procedure satisfy condition (4.4). Indeed, since Hq
and 4Hy — (P, + PIYH'(Py + PJ') are positive definite, by the Schur complement
condition for positive definiteness [13], A + AT is symmetric positive definite, and

(n+m)?

M, Q2(8) = Q2+ (& + m) ma

thus A is positive definite. Moreover, since the matrix M = (gl 81> is diagonal
2 2

dominance with positive diagonal entries M;; > m — 1 + , it is positive definite and
the eigenvalues M + M7 are greater than 2a. Hence, for any y € R™, we have

y (M(&) +M©)" — (BT + L(E))(A +AT)THBE) + L))y

> 20+ o 5 BT + LI = 2all,

where we use ||B(6)T + L(&)||? < [|B(&)T + L(¢)]|? < (m + n)?. Using the Schur
complement condition for positive definiteness [13] again, we obtain condition (4.4).

Finally, we generate the box constraints, hy and ho(-). For the first stage, the
lower bound is set as a = 01, and the upper bound of the box constraints b is
randomly generated from [1,50]%. For the second stage, we set 1(£) = (1 + &)l and
uw(€) = (1 + &0)u, where 1,, € R" is a vector with all elements 1, [ is randomly
generated from [0,1]'° and @ is randomly generated from [3,50]'°. Moreover, the
vector h; is randomly generated from [—5,5]% and ha(€) = (£11,- -+ ,€20) is a random
vector following uniform distribution over [—1,1]*°

4.2. Numerical results. For each sample size of N = 10,50, 250, 1250, 2250,
we randomly generate 20 test problems and solve the box-constrained VI in Step 1 of
PHM by the homotopy-smoothing method [6]. We stop the iteration when

(4.9) res := ||z — mid(z — Az —

=l \

N
Z 9(2,&) — hy,a,b)| <107°
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or the iterations reach 5000, where mid(-) denotes the componentwise median opera-
tor, §(z,£7) is the solution of the second stage box constrained VI with o and ¢7.

Parameters for the numerical tests are chosen as follows: n1 = ny = 3,m; =
mo = 5, = 1 and maximize iteration number is 5000.

Figures 1 shows the convergence tendency of x1, 2, 3, T4, T5 and zg respectively.
Note that since we use the homotopy-smoothing method to solve the box-constrained
VIin Step 1 of PHM and the stop criterion is 107°, x5 is not always feasible. However,
[a; — ;)4 + [v; — b))y <107° i =1,...,6, which is related to the stopping criterion
of the homotopy-smoothing method.
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Fia. 2. Convergence of 1 - x¢

We use V7 j =1,...,3000,t =1,...,5 to denote the computed solutions with
sample size N; for the j-th test problem shown in Figure 1. Then we compute the
mean, variance and 95% confidence interval (CI) of the corresponding res defined in
(4.9) with x = 2N+ by using a new set of 20 randomly generated test problems with
sample size N = 3000 for computing §(x™V*7,£7),5 = 1,...,3000,t = 1,...,5. We
can see that the average of the mean, variance and width of 95% CI of res in Table 1
decrease as the sample size increases.
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Ny = 10 N> = 50 N5 = 250 N, = 1250 N5 = 2250
mean 0.22449 0.13753 0.04820 0.02885 0.02500

variance 0.01084 0.00605 0.00118 0.00023 0.00016
95% CI | [0.2158, 0.2332] | [0.1349, 0.1402] | [0.0477, 0.0487] | [0.0287, 0.0290] | [0.0249, 0.0251]

TABLE 1
Mean, variance and 95% confidence interval (CI) of res

5. Conclusion remarks. Without assuming relatively complete recourse, we

prove the convergence of the SAA problem (1.6)-(1.7) of the two-stage SGE (1.1)—(1.2)
in Theorem 2.4, and show the exponential rate of the convergence in Theorem 2.9.
When the two-stage SGE (1.1)—(1.2) has relatively complete recourse, Assumption 2.3,
conditions (v)-(vi) in Theorem 2.4 and condition (iv) in Theorem 2.8 hold.

In section 3, we present sufficient conditions for the existence, uniqueness, con-

tinuity and regularity of solutions of the two-stage SVI-NCP (3.1)—(3.2) by using the
perturbed linearization of functions ® and ¥ and then show the almost sure conver-
gence and exponential convergence of its SAA problem (3.3)-(3.4). Numerical exam-
ples in section 4 satisfy all conditions of Theorem 2.8 and we show the convergence
of SAA method numerically.
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