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1. Introduction. Consider the following two-stage Stochastic Generalized17

Equations (SGE)18

0 ∈ E[Φ(x, y(ξ), ξ)] + Γ1(x), x ∈ X,(1.1)19

0 ∈ Ψ(x, y(ξ), ξ) + Γ2(y(ξ), ξ), for a.e. ξ ∈ Ξ.(1.2)20

Here X ⊆ Rn is a nonempty closed convex set, ξ : Ω → Rd is a random vector21

defined on a probability space (Ω,F ,P), whose probability distribution P = P◦ ξ−1 is22

supported on set Ξ := ξ(Ω) ⊆ Rd, Φ : Rn×Rm×Rd → Rn and Ψ : Rn×Rm×Rd → Rm,23

and Γ1 : Rn ⇒ Rn, Γ2 : Rm × Ξ ⇒ Rm are multifunctions (point-to-set mappings).24

We assume throughout the paper that Φ(·, ·, ξ) and Ψ(·, ·, ξ) are Lipschitz continuous25

with Lipschitz modulus κΦ(ξ) and κΨ(ξ), respectively, and y(·) ∈ Y with Y being the26

space of measurable functions from Ξ to Rm such that the expected value in (1.1) is27

well defined.28

Solutions of (1.1)–(1.2) are searched over x ∈ X and y(·) ∈ Y to satisfy the29

corresponding inclusions, where the second stage inclusion (1.2) should hold for almost30

every (a.e.) realization of ξ. The first stage decision x is made before observing31

realization of the random data vector ξ and the second stage decision y(ξ) is a function32

of ξ.33

When the multifunctions Γ1 and Γ2 have the following form

Γ1(x) := NC(x) and Γ2(y, ξ) := NK(ξ)(y),
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2 X. CHEN, A. SHAPIRO AND H. SUN

where NC(x) is the normal cone to a nonempty closed convex set C ⊆ Rn at x,34

and similarly for NK(ξ)(y), the SGE (1.1)–(1.2) reduce to the two-stage Stochastic35

Variational Inequalities (SVI) as in [2, 25]. The two-stage SVI represents first order36

optimality conditions for the two-stage stochastic optimization problem [1, 27] and37

models several equilibrium problems in stochastic environment [2, 4]. Moreover, if the38

sets C and K(ξ), ξ ∈ Ξ, are closed convex cones, then39

NC(x) = {x∗ ∈ C∗ : x>x∗ = 0}, x ∈ C,40

where C∗ = {x∗ : x>x∗ ≤ 0, ∀x ∈ C} is the (negative) dual of cone C. In that case41

the SGE (1.1)–(1.2) reduce to the following two-stage stochastic cone VI42

C 3 x ⊥ E[Φ(x, y(ξ), ξ)] ∈ −C∗, x ∈ X,43

K(ξ) 3 y(ξ) ⊥ Ψ(x, y(ξ), ξ) ∈ −K∗(ξ), for a.e. ξ ∈ Ξ.44

In particular when C := Rn+ with C∗ = −Rn+, and K(ξ) := Rm+ with K∗(ξ) =45

−Rm+ for all ξ ∈ Ξ, the SGE (1.1)–(1.2) reduce to the two-stage Stochastic Nonlinear46

Complementarity Problem (SNCP):47

0 ≤ x ⊥ E[Φ(x, y(ξ), ξ)] ≥ 0,48

0 ≤ y(ξ) ⊥ Ψ(x, y(ξ), ξ) ≥ 0, for a.e. ξ ∈ Ξ,49

which is a generalization of the two-stage Stochastic Linear Complementarity Problem50

(SLCP):51

0 ≤ x ⊥ Ax+ E[B(ξ)y(ξ)] + q1 ≥ 0,(1.3)52

0 ≤ y(ξ) ⊥ L(ξ)x+M(ξ)y(ξ) + q2(ξ) ≥ 0, for a.e. ξ ∈ Ξ,(1.4)53

where A ∈ Rn×n, B : Ξ→ Rn×m, L : Ξ→ Rm×n, M : Ξ→ Rm×m, q1 ∈ Rn, q2 : Ξ→54

Rm. The two-stage SLCP arises from the KKT condition for the two-stage stochastic55

linear programming [2]. Existence of solutions of (1.3)-(1.4) has been studied in [3].56

Moreover, the progressive hedging method has been applied to solve (1.3)-(1.4), with57

a finite number of realizations of ξ, in [23].58

Most existing studies for two-stage stochastic problems assume relatively complete59

recourse, that is, for every x ∈ X and a.e. ξ ∈ Ξ the second stage problem has at least60

one solution. However, for the SGE (1.1)–(1.2), it could happen that for a certain61

first stage decision x ∈ X, the second stage generalized equation62

(1.5) 0 ∈ Ψ(x, y, ξ) + Γ2(y, ξ)63

does not have a solution for some ξ ∈ Ξ. For such x and ξ the second stage decision64

y(ξ) is not defined. If this happens for ξ with positive probability, then the expected65

value of the first stage problem is not defined and such x should be avoided. In66

practice, relatively complete recourse condition may not hold in many real world67

applications. For example, when considering to make a decision on building a power68

station for providing electrical power to satisfy the demand, it could be practically69

impossible to make sure that the uncertain demand will be satisfied under any possible70

circumstances.71

In this paper, without assuming relatively complete recourse, we study conver-72

gence of the Sample Average Approximation (SAA)73

0 ∈ N−1
N∑
j=1

Φ(x, yj , ξ
j) + Γ1(x), x ∈ X,(1.6)74

0 ∈ Ψ(x, yj , ξ
j) + Γ2(yj , ξ

j), j = 1, ..., N,(1.7)75
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TWO-STAGE STOCHASTIC GENERALIZED EQUATIONS 3

of the two-stage SGE (1.1)–(1.2) with yj being a copy of the second stage vector for76

ξ = ξj , j = 1, ..., N , where ξ1, ..., ξN is an independent identically distributed (iid)77

sample of random vector ξ. Note that (1.1)-(1.2) is a two-stage extension of one-stage78

SGE. The convergence analysis and exponential rate of convergence of one-stage SGE79

has been investigated in a number of publications (e.g., [19, 27, 30] and references80

there in). We extend those convergence analysis results from one-stage SGE to two-81

stage SGE in a significant way. Our SAA method for the two-stage SGE (1.1)-(1.2)82

is different from the discretization scheme for the two-stage SLCP in [3]. The main83

difference is that the discretization scheme in [3] uses the partition of the support set84

Ξ and the conditional expectations of random functions, but our SAA method does85

not.86

The paper is organized as follows. In section 2 we investigate almost sure and87

exponential rate of convergence of solutions of the SAA of the two-stage SGE. In88

section 3 convergence analysis of the mixed two-stage SVI-NCP is presented. In89

particular we give sufficient conditions for the existence, uniqueness, continuity and90

regularity of solutions by using the perturbed linearization of functions Φ and Ψ.91

Theoretical results, given in sections 2 and 3, are illustrated by numerical examples,92

using the Progressive Hedging Method (PHM), in section 4. It is worth noting that93

PHM is well-defined for two-stage monotone SVI without relatively complete recourse.94

Finally section 5 is devoted to conclusion remarks.95

We use the following notation and terminology throughout the paper. Unless96

stated otherwise ‖x‖ denotes the Euclidean norm of vector x ∈ Rn. By B := {x :97

‖x‖ ≤ 1} we denote unit ball in a considered vector space. For two sets A,B ⊂ Rm98

we denote by d(x,B) := infy∈B ‖x − y‖ distance from a point x ∈ Rm to the set B,99

d(x,B) = +∞ if B is empty, by D(A,B) := supx∈A d(x,B) the deviation of set A100

from the set B, and H(A,B) := max{D(A,B),D(B,A)}. The indicator function of a101

set A is defined as IA(x) = 0 for x ∈ A and IA(x) = +∞ for x 6∈ A. By bd(A), int(A)102

and cl(A) we denote the boundary, interior and topological closure of a set A ⊂ Rm.103

By reint(A) we denote the relative interior of a convex set A ⊂ Rm. A multifunction104

(point-to-set mappings) Γ : Rn ⇒ Rm assigns to a point x ∈ Rn to a set Γ(x) ⊂ Rm.105

A multifunction Γ : Rn ⇒ Rm is said to be closed if xk → x, x∗k ∈ Γ(xk) and106

x∗k → x∗, then x∗ ∈ Γ(x). It is said that a multifunction Γ : Rn ⇒ Rn is monotone,107

if (x − x′)>(y − y′) ≥ 0, for all x, x′ ∈ Rn, and y ∈ Γ(x), y′ ∈ Γ(x′). Note that108

for a nonempty closed convex set C, the normal cone multifunction Γ(x) := NC(x)109

is closed and monotone. Note also that the normal cone NC(x), at x ∈ C, is the110

(negative) dual of the tangent cone TC(x). We use the same notation for ξ considered111

as a random vector and as a variable ξ ∈ Rd. Which of these two meanings is used will112

be clear from the context. For vector d ∈ Rn, dJ is a subvector of d whose entries are113

in the index J ⊆ {1, · · · , n}. Similarly, for matrix D ∈ Rn×m, DJ1J2 is a submatrix114

of D whose entries are in the index J1 × J2 ⊆ {1, · · · , n} × {1, · · · ,m}.115

2. Sample average approximation of the two-stage SGE. In this section116

we discuss statistical properties of the first stage solution x̂N of the SAA problem117

(1.6)–(1.7). In particular we investigate conditions ensuring convergence of x̂N , with118

probability one (w.p.1) and exponential, to its counterpart of the true problem (1.1)–119

(1.2).120

Denote by X the set of x ∈ X such that the second stage generalized equation121

(1.5) has a solution for a.e. ξ ∈ Ξ. The condition of relatively complete recourse122

means that X = X. Note that X is a subset of X, and if (x̄, ȳ(·)) is a solution of123

(1.1)–(1.2), then x̄ ∈ X . It is possible to formulate the two-stage SGE (1.1)–(1.2) in124
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4 X. CHEN, A. SHAPIRO AND H. SUN

the following equivalent way. Let ŷ(x, ξ) be a solution function of the second stage125

problem (1.5) for x ∈ X and ξ ∈ Ξ, i.e.,126

0 ∈ Ψ(x, ŷ(x, ξ), ξ) + Γ2(ŷ(x, ξ), ξ), x ∈ X , a.e. ξ ∈ Ξ.127

Then the first stage problem becomes128

(2.1) 0 ∈ E[Φ(x, ŷ(x, ξ), ξ)] + Γ1(x), x ∈ X .129

If x̄ is a solution of (2.1), then (x̄, ŷ(x̄, ·)) is a solution of (1.1)–(1.2). Conversely if130

(x̄, ȳ(·)) is a solution of (1.1)–(1.2), then x̄ is a solution of (2.1). Note that problem131

(2.1) is a generalized equation which has been studied in the past decades, e.g. [19,132

22, 24, 26].133

It could happen that the second stage problem (1.5) has more than one solution for134

some x ∈ X . In that case choice of ŷ(x, ξ) is somewhat arbitrary and the corresponding135

SGE are not well posed. This motivates the following condition.136

Assumption 2.1. For a.e. ξ ∈ Ξ, problem (1.5) has a unique solution for all137

x ∈ X .138

Under Assumption 2.1 the value ŷ(x, ξ) is uniquely defined for all x ∈ X and a.e.139

ξ ∈ Ξ, and the first stage problem (2.1) can be written as the following generalized140

equation141

(2.2) 0 ∈ φ(x) + Γ1(x), x ∈ X ,142

where143

(2.3) φ(x) := E[Φ̂(x, ξ)] and Φ̂(x, ξ) := Φ(x, ŷ(x, ξ), ξ).144

If the SGE have relatively complete recourse, then under Assumption 2.1 the SAA145

problem (1.6)–(1.7) can be written as146

(2.4) 0 ∈ φ̂N (x) + Γ1(x), x ∈ X,147

where φ̂N (x) := N−1
∑N
j=1 Φ̂(x, ξj) with Φ̂(x, ξ) defined in (2.3). Problem (2.4) can148

be viewed as the SAA of the first stage problem (2.2). If (x̂N , ŷjN ) is a solution of149

the SAA problem (1.6)–(1.7), then x̂N is a solution of (2.4) and ŷjN = ŷ(x̂N , ξ
j),150

j = 1, ..., N . Note that the SAA problem (1.6)–(1.7) can be considered without151

assuming the relatively complete recourse, although in that case it could happen that152

φ̂N (x) is not defined for some x ∈ X \X and solution x̂N of (1.6) is not implementable153

at the second stage for some realizations of the random vector ξ. Our aim is the154

convergence analysis of the SAA problem (1.6)–(1.7) when sample size N increases.155

Denote by S∗ the set of solutions of the first stage problem (2.2) and by ŜN the156

set of solutions of the SAA problem (1.6) (in case of relatively complete recourse, ŜN157

is the set of solutions of problem (2.4) as well). By X̄ (ξ) we denote the set of x ∈ X158

such that problem (1.5) has a solution, and by X̄N := ∩Nj=1X̄ (ξj) the set of x such159

that problems (1.7) have a solution. Note that the set X is equal to the intersection160

of X̄ (ξ), a.e. ξ ∈ Ξ; i.e., X = ∩ξ∈Ξ\ΥX̄ (ξ) for some set Υ ⊂ Ξ such that P (Υ) = 0.161

Note also that if the two-stage SGE have relatively complete recourse, then X̄ (ξ) = X162

for a.e. ξ ∈ Ξ.163
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2.1. Almost sure convergence. Consider the solution ŷ(x, ξ) of the second164

stage problem (1.5). To ensure continuity of ŷ(x, ξ) in x ∈ X for ξ ∈ Ξ, in addition165

to Assumption 2.1, we need the following boundedness condition.166

Assumption 2.2. For every ξ and every x ∈ X̄ (ξ) there is a neighborhood V of167

x and a measurable function v(ξ) such that ‖ŷ(x′, ξ)‖ ≤ v(ξ) for all x′ ∈ V ∩ X̄ (ξ).168

Note that function v(ξ) depends on point x and its neighborhood V. We suppress169

this in the notation of v(ξ).170

Lemma 2.1. Suppose that Assumptions 2.1 and 2.2 hold, and for a.e. ξ ∈ Ξ171

the multifunction Γ2(·, ξ) is closed. Then for a.e. ξ ∈ Ξ the solution ŷ(x, ξ) is a172

continuous function of x ∈ X .173

Proof. The proof is quite standard. We argue by a contradiction. Suppose that174

for some x̄ ∈ X and ξ ∈ Ξ the solution ŷ(·, ξ) is not continuous at x̄. That is,175

there is a sequence xk ∈ X converging to x̄ ∈ X such that yk := ŷ(xk, ξ) does not176

converge to ȳ := ŷ(x̄, ξ). Then by the boundedness assumption, by passing to a177

subsequence if necessary we can assume that yk converges to a point y∗ different from178

ȳ. Consequently 0 ∈ Ψ(xk, yk, ξ) + Γ2(yk, ξ) and Ψ(xk, yk, ξ) converges to Ψ(x̄, y∗, ξ).179

Since Γ2(·, ξ) is closed, it follows that 0 ∈ Ψ(x̄, y∗, ξ) + Γ2(y∗, ξ). Hence by the180

uniqueness assumption, y∗ = ȳ which gives the required contradiction.181

Suppose for the moment that in addition to the assumptions of Lemma 2.1, the182

SGE have relatively complete recourse. We can apply then general results to verify183

consistency of the SAA estimates. Consider function Φ̂(x, ξ) defined in (2.3). By184

continuity of Φ(·, ·, ξ) and ŷ(·, ξ), we have that Φ̂(·, ξ) is continuous on X. Assuming185

further that there is a compact set X ′ ⊆ X such that S∗ ⊆ X ′ and ‖Φ̂(x, ξ)‖x∈X′ is186

dominated by an integrable function, we have that the function φ(x) = E[Φ̂(x, ξ)] is187

continuous on X ′ and φ̂N (x) converges w.p.1 to φ(x) uniformly on X ′. Note that the188

boundedness condition of Lemma 2.1 and continuity of Φ(·, ·, ξ) imply that Φ̂(·, ξ) is189

bounded on X ′. Then consistency of SAA solutions follows by [27, Theorem 5.12].190

We give below a more general result without the assumption of relatively complete191

recourse.192

Lemma 2.2. Suppose that Assumptions 2.1 and 2.2 hold. Then for a.e. ξ ∈ Ξ the193

set X̄ (ξ) is closed.194

Proof. For a given ξ ∈ Ξ let xk ∈ X̄ (ξ) be a sequence converging to a point x̄.195

We need to show that x̄ ∈ X̄ (ξ). Let yk be the solution of (1.5) for x = xk and ξ.196

Then by Assumption 2.2, there is a neighborhood V of x̄ and a measurable function197

v(ξ) such that ‖yk‖ ≤ v(ξ) when xk ∈ V. Hence by passing to a subsequence we can198

assume that yk converges to a point ȳ ∈ Rm. Since Ψ(·, ·, ξ) is continuous and Γ2(·, ξ)199

is closed it follows that ȳ is a solution of (1.5) for x = x̄, and hence x̄ ∈ X̄ (ξ).200

By saying that a property holds w.p.1 for N large enough we mean that there is201

a set Σ ⊂ Ω of P-measure zero such that for every ω ∈ Ω \ Σ there exists a positive202

integer N∗ = N∗(ω) such that the property holds for all N ≥ N∗(ω) and ω ∈ Ω \ Σ.203

For δ ∈ (0, 1) consider a compact set Ξ̄δ ⊂ Ξ such that P(Ξ̄δ) ≥ 1 − δ, and the204

multifunction ∆δ : X ⇒ Ξ̄δ defined as205

(2.5) ∆δ(x) := {ξ ∈ Ξ̄δ : x ∈ X̄ (ξ)}.206

Assumption 2.3. For any δ ∈ (0, 1) the multifunction ∆δ(·) is outer semiconti-207

nuous.208
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6 X. CHEN, A. SHAPIRO AND H. SUN

The following lemma shows that this assumption holds under mild conditions.209

Note that since the set Ξ̄δ is compact, the multifunction ∆δ(·) is outer semicontinuous210

iff it is closed (cf., [24, Chapter 5(B)]).211

Lemma 2.3. Suppose Ψ(·, ·, ·) is continuous, Γ2(·, ·) is closed and Assumption 2.2212

holds. Then the multifunction ∆δ(·) is outer semicontinuous.213

Proof. Consider the second stage generalized equation (1.2) and any sequence
{(xk, yk, ξk)} such that xk ∈ X, ξk ∈ ∆δ(xk) with a corresponding second stage
solution yk and (xk, ξk)→ (x∗, ξ∗) ∈ X ×Ξ. Since Ψ is continuous w.r.t. (x, y, ξ) and
Γ2(·, ·) is closed, we have that under Assumption 2.2, {yk} has accumulation points
and any accumulation point y∗ satisfies

0 ∈ Ψ(x∗, y∗, ξ∗) + Γ2(y∗, ξ∗),

which implies ξ∗ ∈ ∆δ(x
∗). This shows that the multifunction ∆δ(·) is closed. Since214

Ξ̄δ is compact, the closeness of ∆δ(·) implies the outer semicontinuity of ∆δ(·).215

Note that in the case when Ξ is compact, we can set δ = 0 and replace Ξ̄δ by Ξ.216

Theorem 2.4. Suppose that: (i) Assumptions 2.1-2.3 hold, (ii) the multifunctions217

Γ1(·) and Γ2(·, ξ), ξ ∈ Ξ, are closed, (iii) there is a compact subset X ′ of X such that218

S∗ ⊂ X ′ and w.p.1 for all N large enough the set ŜN is nonempty and is contained219

in X ′, (iv) ‖Φ̂(x, ξ)‖x∈X is dominated by an integrable function, (v) the set X is220

nonempty. Let dN := D
(
X̄N ∩X ′,X ∩X ′

)
. Then S∗ is nonempty and the following221

statements hold.222

(a) dN → 0 and D(ŜN ,S∗)→ 0 w.p.1 as N →∞.223

(b) In addition assume that: (vi) for any δ > 0, τ > 0 and a.e. ω ∈ Ω, there224

exist γ > 0 and N0 = N0(ω) such that for any x ∈ X ∩X ′+γ B and N ≥ N0,225

there exists zx ∈ X ∩X ′ such that1226

(2.6) ‖zx − x‖ ≤ τ, Γ1(x) ⊆ Γ1(zx) + δB, and ‖φ̂N (zx)− φ̂N (x)‖ ≤ δ.227

Then w.p.1 for N large enough it follows that228

(2.7) D(ŜN ,S∗) ≤ τ +R−1

(
sup

x∈X∩X′
‖φ(x)− φ̂N (x)‖

)
,229

where for ε ≥ 0 and t ≥ 0,230

R(ε) := inf
x∈X∩X′, d(x,S∗)≥ε

d
(
0, φ(x) + Γ1(x)

)
,231

232

R−1(t) := inf{ε ∈ R+ : R(ε) ≥ t}.233

Proof. Part (a). Let ξj = ξj(ω), j = 1, ..., be the iid sample, defined on the234

probability space (Ω,F ,P), and X̄N = X̄N (ω) be the corresponding feasibility set of235

the SAA problem. Consider a point x̄ ∈ X ′ \ X and its neighborhood Vx̄ = x̄ + γB236

for some γ > 0. We have that probability p := P{ξ ∈ Ξ : x̄ 6∈ X̄ (ξ)} is positive.237

Moreover it follows by Assumption 2.3 that we can choose γ > 0 such that probability238

P
{
Vx̄ ∩ X̄ (ξ) = ∅

}
is positive. Indeed, for δ := p/4 consider the multifunction ∆δ239

1Recall that φ̂N (x) = φ̂N (x, ω) are random functions defined on the probability space (Ω,F ,P).
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defined in (2.5). By outer semicontinuity of ∆δ we have that for any ε > 0 there is240

γ > 0 such that for all x ∈ Vx̄ it follows that ∆δ(x) ⊂ ∆δ(x̄) + εB. That is241

∪x∈Vx̄{ξ ∈ Ξ̄δ : x ∈ X̄ (ξ)} ⊂ {ξ ∈ Ξ̄δ : x̄ ∈ X̄ (ξ)}+ εB ⊂ {ξ ∈ Ξ : x̄ ∈ X̄ (ξ)}+ εB.242

It follows that we can choose ε > 0 small enough such that243

P
(
∪x∈Vx̄ {ξ ∈ Ξ̄δ : x ∈ X̄ (ξ)}

)
≤ 1− p/2.244

Since δ = p/4 we obtain245

P
(
∪x∈Vx̄ {ξ ∈ Ξ : x ∈ X̄ (ξ)}

)
≤ 1− p/4.246

Noting that the event
{
Vx̄ ∩ X̄ (ξ) = ∅

}
is complement of the event

{
∪x∈Vx̄ {ξ ∈ Ξ :247

x ∈ X̄ (ξ)}
}

, we obtain that P
{
Vx̄ ∩ X̄ (ξ) = ∅

}
≥ p/4.248

Consider the event EN :=
{
Vx̄ ∩ X̄N 6= ∅

}
. The complement of this event is EcN =249 {

Vx̄ ∩ X̄N = ∅
}

. Since the sample ξj , j = 1, ..., is iid, we have250

P
{
Vx̄ ∩ X̄N 6= ∅

}
≤

∏N
j=1 P

{
Vx̄ ∩ X̄ (ξj) 6= ∅

}
=

∏N
j=1

(
1− P

{
Vx̄ ∩ X̄ (ξj) = ∅

})
≤ (1− p/4)N ,

251

and hence
∑∞
N=1 P

{
Vx̄ ∩ X̄N 6= ∅

}
< ∞. It follows by Borel-Cantelli Lemma that252

P (lim supN→∞EN ) = 0. That is for all N large enough the events EcN happen w.p.1.253

Now for a given ε > 0 consider the set Xε := {x ∈ X ′ : d(x,X ) < ε}. Since the set254

X ′ \ Xε is compact we can choose a finite number of points x1, ..., xK ∈ X ′ \ Xε and255

their respective neighborhoods V1, ...,VK covering the set X ′ \ Xε such that for all N256

large enough the events {Vk ∩ X̄N = ∅}, k = 1, ...,K, happen w.p.1. It follows that257

w.p.1 for all N large enough X̄N is a subset of Xε. This shows that dN tends to zero258

w.p.1.259

To show that D(ŜN ,S∗)→ 0 w.p.1 the arguments now basically are deterministic,260

i.e., dN and x̂N ∈ ŜN are viewed as random variables, dN = dN (ω), x̂N = x̂N (ω),261

defined on the probability space (Ω,F ,P), and we want to show that d(x̂N (ω),S∗)262

tends to zero for all ω ∈ Ω except on a set of P-measure zero. Therefore we consider263

sequences dN and x̂N as deterministic, for a particular (fixed) ω ∈ Ω, and drop264

mentioning “w.p.1”. Since dN → 0, there is x̃N ∈ X such that ‖x̂N − x̃N‖ tends265

to zero. Note that as an intersection of closed sets, the set X is closed. By the266

assumption (iv) and continuity of Φ̂(·, ξ) we have that φ̂N (·) converges w.p.1 to φ(·)267

uniformly on the compact set X ∩ X ′ (this is the so-called uniform Law of Large268

Numbers, e.g., [27, Theorem 7.48]), i.e., for all ω ∈ Ω except on a set of P-measure269

zero270

sup
x∈X∩X′

‖φ̂N (x)− φ(x)‖ → 0, as N →∞.271

By passing to a subsequence if necessary we can assume that x̂N converges to a point272

x∗. It follows that x̃N → x∗ and hence φ̂N (x̃N ) → φ(x∗). Thus φ̂N (x̂N ) → φ(x∗).273

Since Γ1 is closed it follows that 0 ∈ φ(x∗) + Γ1(x∗), i.e., x∗ ∈ S∗. This completes the274

proof of part (a), and also implies that the set S∗ is nonempty.275

Proof of part (b).276

By [19, Theorem 3.1 (ii)], R(0) = 0, R(ε) is nondecreasing on [0,∞) andR(ε) > 0277

for all ε > 0. Note that it follows that R−1(t) is nondecreasing on [0,∞) and tends278

to zero as t ↓ 0.279
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Let δ = R(ε)/4. By part (a) and the uniform Law of Large Numbers, we have
w.p.1 that for N large enough

sup
x∈X∩X′

‖φ(x)− φ̂N (x)‖ ≤ δ.

Then w.p.1 for N large enough such that dN ≤ ε, for any point x ∈ X̄N ∩ X ′ with
d(zx,S∗) ≥ ε it follows that

d(0, φ̂N (x) + Γ1(x))

≥ d(0, φ̂N (zx) + Γ1(zx) + δB)− D(φ̂N (x) + Γ1(x), φ̂N (zx) + Γ1(zx) + δB)

≥ d(0, φ(zx) + Γ1(zx) + δB)− D(φ̂N (zx) + Γ1(zx) + δB, φ(zx) + Γ1(zx) + δB)

−D(φ̂N (x) + Γ1(x), φ̂N (zx) + Γ1(zx) + δB)

≥ d(0, φ(zx) + Γ1(zx) + δB)− ‖φ̂N (zx), φ(zx)‖ − ‖φ̂N (x), φ̂N (zx)‖
−D(Γ1(x),Γ1(zx) + δB)

≥ 3δ − δ − δ − 0 = δ.

which implies x /∈ ŜN . Then

d(x,S∗) ≤ ‖x− zx‖+ d(zx,S∗) ≤ τ +R−1

(
sup

x∈X∩X′
‖φ(x)− φ̂N (x)‖

)
.

This completes the proof.280

The assumption that the set ŜN is nonempty means existence of solutions of the281

SAA problem (1.6)-(1.7). Existence of the solutions of deterministic VI and infinite282

dimensional VI has been well investigated in [10] and [12], respectively. Existence283

of a solution to the perturbed generalized equations has been investigated in the284

literature of deterministic generalized equations. For instance, in [17] a number of285

sufficient conditions is derived which ensure solvability (existence of a solution) of286

perturbed generalized equations. Similar conditions were further investigated in [16]287

and their one-stage stochastic extension has been presented in [19]. Those results288

can be applied to one-stage version (2.2) of (1.1)-(1.2) and its SAA problem (2.4)289

directly. Moreover, in section 3, based on the results in [12] for infinite dimensional290

VI, we propose sufficient conditions of existence and uniqueness of the solutions of291

two-stage SVI-NCP, a special case of two-stage SGE (1.1)-(1.2).292

In case of the relatively complete recourse there is no need for condition (vi), the293

estimate (2.7) holds with τ = 0 and the derivations can follow the similar results in294

[19, 27, 30] directly. It is interesting to consider how strong condition (vi) is. In the295

following remark we show that condition (vi) can also hold without the assumption296

of relatively complete recourse under mild conditions.297

Remark 2.1. In condition (vi), the third inequality of (2.6) can be easily verified298

when N sufficiently large and Φ̂(·, ξ) is Lipschitz continuous with Lipschitz module299

κΦ̂(ξ) and E[κΦ̂(ξ)] <∞. In Lemma 2.7 and Theorem 3.7 below, we verify the third300

inequality of (2.6) under moderate conditions.301

Moreover, in the case when Γ1(·) := NC(·) with a nonempty polyhedral convex set
C, the first and second inequalities of (2.6) hold automatically. Let F = {F1, · · · , FK}
be the family of all nonempty faces of C and

K := {k : X ∩X ′ ∩ Fk 6= ∅, k = 1, · · · ,K}.

Then w.p.1 for N sufficiently large, X̄N ∩X ′ ∩ Fk = ∅ for all k /∈ K. Note that for all302

k ∈ K, X̄N ∩X ′∩Fk 6= ∅. Moreover, it is important to note that for all x1 ∈ reint(Fk)303
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and x2 ∈ Fk, k ∈ {1, · · · ,K}, NC(x1) ⊆ NC(x2). Then for any x ∈ X̄N ∩ X ′ \ X ,304

there exists k ∈ K such that x ∈ reint(Fk). To see this, we assume for contradiction305

that x ∈ Fk \ reint(Fk) for some k ∈ K and there is no k ∈ K such that x ∈ reint(Fk).306

Then there exist some k̄ ∈ {1, · · · ,K} such that x ∈ reint(Fk̄) (if Fk̄ is singleton, then307

reint(Fk̄) = Fk̄) and k̄ /∈ K. This contradicts that X̄N ∩X ′ ∩ Fk = ∅ for all k /∈ K.308

Note that H
(
X̄N ∩X ′,X ∩X ′

)
≤ dN and dN → 0 as N → ∞ w.p.1. Let zx =

arg minz∈X∩X′∩Fk
‖z − x‖. Then NC(x) ⊆ NC(zx) and for

τN := max
k∈K

max
x∈X̄N∩X′∩Fk

min
z∈X∩X′∩Fk

‖z − x‖,

we have that τN → 0 as dN → 0. Hence (2.6) is verified.309

From Figure 1, it is easy to observe the relationship between x ∈ X̄N ∩ X ′ and310

zx ∈ X ∩ X ′: they are in the same face of the polyhedral convex set C = R2
+ and311

NR2
+

(x) ⊆ NR2
+

(zx), where X , X̄N and X ′ are indicated in the figure. Moreover,312

τ → 0 with γ → 0. In the general case when C is not polyhedral, let Γ1(x) =313

NC(x). Without complete recourse, even x and zx are sufficiently close to each other,314

D(NC(x),NC(zx)) may still be the infinity. Then condition (2.6) fails.

Fig. 1. Relationship between x and zx

315

2.2. Exponential rate of convergence. We assume in this section that the316

set S∗ of solutions of the first stage problem is nonempty, and the set X is compact.317

The last assumption of compactness of X can be relaxed to assuming that there is318

a compact subset X ′ of X such w.p.1 ŜN ⊂ X ′, and to deal with the set X ′ rather319

than X. For simplicity of notation we assume directly compactness of X.320

Under Assumption 2.2 and by Lemma 2.1, we have that Φ̂(x, ξ), defined in (2.3),321

is continuous in x ∈ X . However to investigate the exponential rate of convergence,322

we need to verify Lipschitz continuity of Φ̂(·, ξ). To this end, we assume the Clarke323

Differential (CD) regularity property of the second stage generalized equation (1.2).324

By πy∂(x,y)(Ψ(x̄, ȳ, ξ̄)), we denote the projection of the Clarke generalized Jacobian325

∂(x,y)Ψ(x̄, ȳ, ξ̄) in Rm×n × Rm×m onto Rm×m: the set πy∂(x,y)Ψ(x̄, ȳ, ξ̄) consists of326

matrices J ∈ Rm×m such that the matrix (S, J) belongs to ∂(x,y)Ψ(x̄, ȳ, ξ̄) for some327

S ∈ Rm×n.328

Definition 2.5. For ξ̄ ∈ Ξ a solution ȳ of the second stage generalized equation329

(1.2) is said to be parametrically CD-regular, at x = x̄ ∈ X̄ (ξ̄), if for each J ∈330
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πy∂(x,y)Ψ(x̄, ȳ, ξ̄) the solution ȳ of the following SGE is strongly regular331

(2.8) 0 ∈ Ψ(x̄, ȳ, ξ̄) + J(y − ȳ) + Γ2(y, ξ̄).332

That is, there exist neighborhoods U of ȳ and V of 0 such that for every η ∈ V the333

perturbed (partially) linearized SGE of (2.8)334

η ∈ Ψ(x̄, ȳ, ξ̄) + J(y − ȳ) + Γ2(y, ξ̄)335

has in U a unique solution ŷx̄(η), and the mapping η → ŷx̄(η) : V → U is Lipschitz336

continuous.337

Assumption 2.4. For a.e. ξ ∈ Ξ, there exists a unique, parametrically CD-338

regular solution ȳ = ŷ(x̄, ξ) of the second stage generalized equation (1.2) all x̄ ∈ X .339

Proposition 2.6. Suppose Assumption 2.4 holds. Then for a.e. ξ ∈ Ξ, the340

solution mapping ŷ(x, ξ) of the second stage generalized equation (1.2) is a Lipschitz341

continuous function of x ∈ X , with Lipschitz constant κ(ξ).342

The result is implied directly by [14, Theorem 4] and the compactness of X ⊆ X.
Moreover, note that for any x̄ ∈ X , if the generalized equation

0 ∈ Gx̄(y) := Ψ(x̄, ȳ, ξ̄) + J(y − ȳ) + Γ2(y, ξ̄) for which Gx̄(ȳ) 3 0,

has a locally Lipschitz continuous solution function at 0 for ȳ with Lipschitz constant
κG(x̄, ξ). Then by [9, Theorem 1.1], we have

κx̄(ξ) = κG(x̄, ξ)κΨ(ξ) <∞

is a Lipschitz constant of the second stage solution function ŷ(x, ξ) at x̄.343

Assumption 2.5. The set X is convex, its interior int(X ) 6= ∅, and for a.e.
ξ ∈ Ξ, the generalized equation

0 ∈ Gx̄(y) = Ψ(x̄, ȳ, ξ) + J(y − ȳ) + Γ2(y, ξ), for which Gx̄(ȳ) 3 0,

has a locally Lipschitz continuous solution function at 0 for ȳ with Lipschitz constant344

κG(x̄, ξ) for all x̄ ∈ X and there exists a measurable function κ̄G : Ξ→ R+ such that,345

κG(x, ξ) ≤ κ̄G(ξ) and E[κ̄G(ξ)κΨ(ξ)] <∞.346

Under Assumption 2.5, it can be seen that E[ŷ(x, ξ)] is Lipschitz continuous over347

x ∈ X with Lipschitz constant E[κ̄G(ξ)κΨ(ξ)]. We consider then the first stage (1.1)348

of the SGE as the generalized equation (2.2) with the respective second stage solution349

ŷ(x, ξ) (recall definition (2.3) of Φ̂(x, ξ) and φ(x)).350

Lemma 2.7. Suppose that Assumptions 2.4–2.5 hold, E[κΦ(ξ)] <∞ and

E [κΦ(ξ)κ̄G(ξ)κΨ(ξ)] <∞.

Then for a.e. ξ ∈ Ξ, Φ̂(x, ξ) and φ(x) are Lipschitz continuous over x ∈ X with
respective Lipschitz modulus

κΦ(ξ) + κΦ(ξ)κ̄G(ξ)κΨ(ξ) and E[κΦ(ξ)] + E[κΦ(ξ)κ̄G(ξ)κΨ(ξ)].

Remark 2.2. Specifically we study Assumptions 2.2–2.5 in the framework of the351

following SGE:352

0 ∈ E[Φ(x, y(ξ), ξ)] + Γ1(x), x ∈ X,(2.9)353

0 ∈ Ψ(x, y(ξ), ξ) +NRm
+

(H(x, y(ξ), ξ)), for a.e. ξ ∈ Ξ,(2.10)354
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where H(x, y, ξ) : Rn × Rm × Ξ → Rm. Let h(x, y, ξ) := min{Ψ(x, y, ξ), H(x, y, ξ)}.355

Then the second stage VI (2.10) is equivalent to356

(2.11) h(x, y, ξ) = 0, for a.e. ξ ∈ Ξ.357

For x = x̄ and ξ ∈ Ξ let ȳ be a solution of (2.11), and suppose that each matrix J ∈
πy∂h(x̄, ȳ, ξ) is nonsingular for a.e. ξ. Then by Clarke’s Inverse Function Theorem,
there exists a Lipschitz continuous solution function ŷ(x, ξ) such that ŷ(x̄, ξ) = ȳ and
the Lipschitz constant is bounded by ‖J−1(x, y, ξ)S(x, y, ξ)‖ for all

(S(x, y, ξ), J(x, y, ξ))> ∈ πx,y∂h(x, y, ξ).

Then Assumption 2.4 holds. Moreover, if we assume

E
[
‖J−1(x, ŷ(x, ξ), ξ)S(x, ŷ(x, ξ), ξ)‖

]
<∞

for all x ∈ X , then Assumption 2.5 holds.358

Now we investigate exponential rate of convergence of the two-stage SAA problem
(1.6)–(1.7) by using a uniform Large Deviations Theorem (cf., [27, 28, 30]). Let

M i
x(t) := E

{
exp
(
t[Φ̂i(x, ξ)− φi(x)]

)}
be the moment generating function of the random variable Φ̂i(x, ξ) − φi(x), i =
1, . . . , n, and

Mκ(t) := E
{

exp
(
t
[
κΦ(ξ) + κΦ(ξ)κ(ξ)− E[κΦ(ξ) + κΦ(ξ)κ(ξ)

]])}
.

Assumption 2.6. For every x ∈ X and i = 1, . . . , n, the moment generating359

functions M i
x(t) and Mκ(t) have finite values for all t in a neighborhood of zero.360

Theorem 2.8. Suppose: (i) assumptions 2.1, 2.3–2.6 hold, (ii) S∗ is nonempty361

and w.p.1 for N large enough, ŜN are nonempty, (iii) the multifunctions Γ1(·) and362

Γ2(·, ξ), ξ ∈ Ξ, are closed and monotone. Then the following statements hold.363

(a) For sufficiently small ε > 0 there exist positive constants % = %(ε) and ς =364

ς(ε), independent of N , such that365

(2.12) P
{

sup
x∈X

∥∥φ̂N (x)− φ(x)
∥∥ ≥ ε} ≤ %(ε)e−Nς(ε).366

(b) Assume in addition: (iv) The condition of part (b) in Theorem 2.4 holds and367

w.p.1 for N sufficiently large,368

(2.13) S∗ ∩ cl
(
bd(X ) ∩ int(X̄N )

)
= ∅.369

(v) φ(·) has the following strong monotonicity property for every x∗ ∈ S∗:370

(2.14) (x− x∗)>(φ(x)− φ(x∗)) ≥ g(‖x− x∗‖), ∀x ∈ X ,371

where g : R+ → R+ is such a function that function r(τ) := g(τ)/τ is mono-372

tonically increasing for τ > 0.373

Then S∗ = {x∗} is a singleton and for any sufficiently small ε > 0, there374

exists N sufficiently large such that375

(2.15) P
{
D(ŜN ,S∗) ≥ ε

}
≤ %

(
r−1(ε)

)
exp

(
−Nς

(
r−1(ε)

))
,376

where %(·) and ς(·) are defined in (2.12), and r−1(ε) := inf{τ > 0 : r(τ) ≥ ε}377

is the inverse of r(τ).378
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Proof. Part (a). By Lemma 2.7, because of conditions (i) and (ii) and compactness379

of X, we have by [27, Theorem 7.67] that for every i ∈ {1, . . . , n} and ε > 0 small380

enough, there exist positive constants %i = %i(ε) and ςi = ςi(ε), independent of N ,381

such that382

P
{

sup
x∈X

∣∣(φ̂N )i(x)− φi(x)
∣∣ ≥ ε} ≤ %i(ε)e−Nςi(ε),383

and hence (2.12) follows.384

Part (b). By condition (iv) we have that D(S∗, X̄N \X ) > 0. Let ε be sufficiently
small such that w.p.1 for N sufficiently large,

D(S∗, X̄N \ X ) ≥ 3ε.

Note that since X ⊆ X̄N+1 ⊆ X̄N , D(S∗, X̄N \ X ) is nondecreasing with N →∞.385

By Theorem 2.4, part (b), w.p.1 for N sufficiently large such that τ ≤ ε, we have

R−1

(
sup
x∈X
‖φ̂N (x)− φ(x)‖

)
≤ ε

and386

D(ŜN ,S∗) ≤ τ +R−1

(
sup
x∈X
‖φ̂N (x)− φ(x)‖

)
≤ 2ε.387

Since by condition (iv), when N sufficiently large w.p.1, for any point x̃ ∈ X̄N \ X ,388

D(x̃,S∗) ≥ 3ε, which implies ŜN ⊂ X and then389

(2.16) D(ŜN ,S∗) ≤ R−1

(
sup
x∈X
‖φ̂N (x)− φ(x)‖

)
.390

In order to use (2.16) to derive an exponential rate of convergence of the SAA esti-391

mators we need an upper bound for R−1(t), or equivalently a lower bound for R(ε).392

Note that because of the monotonicity assumptions we have that S∗ = {x∗}.393

For x ∈ X and z ∈ Γ1(x) we have394

(x− x∗)>(φ(x)− φ(x∗)) = (x− x∗)>(φ(x) + z − φ(x∗)− z) ≤ (x− x∗)>(φ(x) + z),395

where the last inequality holds since −φ(x∗) ∈ Γ1(x∗) and because of monotonicity396

of Γ1. It follows that397

(x− x∗)>(φ(x)− φ(x∗)) ≤ ‖x− x∗‖ ‖φ(x) + z‖,398

and since z ∈ Γ1(x) was arbitrary that399

(x− x∗)>(φ(x)− φ(x∗)) ≤ ‖x− x∗‖ d
(
0, φ(x) + Γ1(x)

)
.400

Together with (2.14) this implies401

d
(
0, φ(x) + Γ1(x)

)
≥ r(‖x− x∗‖).402

It follows that R(ε) ≥ r(ε), ε ≥ 0, and hence403

R−1(t) ≤ r−1(t),404

where r−1(·) is the inverse of function r(·). Then by (2.12), (2.15) holds.405
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Note that if g(τ) := c τα for some constants c > 0 and α > 1, then r−1(t) =406

(t/c)1/(α−1). In particular for α = 2, condition (2.14) assumes strong monotonicity407

of φ(·). Note also that condition (iv) is not needed if the relatively complete recourse408

condition holds.409

It is also interesting to consider how strong condition (2.13) is. Note that when410

S∗ ⊂ int(X ), condition (2.13) holds. Moreover, we can also see from the following411

simple example that even when S∗ ∩ bd(X ) 6= ∅, condition (2.13) may still hold.412

Example 2.1. Consider a two-stage SLCP413

0 ≤
(
x1

x2

)
⊥
(

1 0
0 1

)(
x1

x2

)
+

(
E[y1(ξ)]
E[y2(ξ)]

)
≥ 0,414

0 ≤
(
y1(ξ)
y2(ξ)

)
⊥
(
α(x1, ξ) 0

0 α(x2, ξ)

)(
y1(ξ)
y2(ξ)

)
−
(
x1

x2

)
≥ 0, a.e. ξ ∈ Ξ,415

where

α(t, ξ) =

{ 1
t+ξ+51 , if t+ ξ ≤ 100,

0, otherwise,

and ξ follows uniform distribution in [−50, 50].416

By simple calculation, we have that S∗ = {(0, 0)} and X = [0, 50] × [0, 50]. Mo-417

reover, consider an iid samples {ξj}Nj=1 with maxj ξ
j = 49, X̄N = [0, 51]× [0, 51]. Let418

X = {x : 0 ≤ x1, x2 ≤ 100}. It is easy to observe that although S∗ = {(0, 0)} is at the419

boundary of X ∩X, condition (2.13) still holds.420

Remark 2.3. It is also interesting to estimate the required sample size of the421

SAA problem for the two-stage SGE. Similar to a discussion in [28, p.410], if there422

exists a positive constant σ > 0 such that423

(2.17) M i
x(t) ≤ exp{σ2t2/2}, ∀t ∈ R, i = 1, ..., n,424

then it can be verified that Iix(z) ≥ z2

2σ2 for all z ∈ R, where Iix(z) := supt∈R{zt −425

logM i
x(t)} is the large deviations rate function of random variable Φ̂i(x, ξ) − φi(x),426

i = 1, · · · , n. Note that if Φ̂i(x, ξ) − φi(x) is subgaussian random variable, (2.17)427

holds, i = 1, ..., n. Then it can be verified that if428

N ≥ 32nσ

ε2

[
ln(n(2Π + 1)) + ln

(
1

α

)]
,429

then430

P
{

sup
x∈X

∥∥φ̂N (x)− φ(x)
∥∥ ≥ ε} ≤ α,431

where Π := (O(1)DE[κΦ(ξ) + κΦ(ξ)κ(ξ)]/ε)
n

and D is the diameter of X. Conse-432

quently it follows by (2.16) that if433

N ≥ 32nσ

(r−1(ε))2

[
ln(n(2Π̂ + 1)) + ln

(
1

α

)]
,434

with Π̂ :=
(
O(1)DE[κΦ(ξ) + κΦ(ξ)κ(ξ)]/r−1(ε)

)n
, then we have435

P
{
D(ŜN ,S∗) ≥ ε

}
≤ α.436
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Confidence intervals based on the sample average approximations were studied437

in [18] for one-stage SVI problems. It could be possible to extend those results to438

two-stage SGE under mild conditions. This could be a topic for a future research.439

In the next section, we will verify the conditions of Theorems 2.4 and 2.8 for the440

two-stage SVI-NCP under moderate assumptions.441

3. Two-stage SVI-NCP and its SAA problem. In this section, we inves-442

tigate convergence properties of the two-stage SGE (1.1)–(1.2) when Φ(x, y, ξ) and443

Ψ(x, y, ξ) are continuously differentiable w.r.t. (x, y) for a.e. ξ ∈ Ξ and Γ1(x) :=444

NC(x) and Γ2(y) := NRm
+

(y) with C ⊆ Rn being a nonempty, polyhedral, convex set.445

That is, we consider the mixed two-stage SVI-NCP446

0 ∈ E[Φ(x, y(ξ), ξ)] +NC(x),(3.1)447

0 ≤ y(ξ) ⊥ Ψ(x, y(ξ), ξ) ≥ 0, for a.e. ξ ∈ Ξ,(3.2)448

and study convergence analysis of its SAA problem449

0 ∈ N−1
N∑
j=1

Φ(x, y(ξj), ξj) +NC(x),(3.3)450

0 ≤ y(ξj) ⊥ Ψ(x, y(ξj), ξj) ≥ 0, j = 1, ..., N.(3.4)451

We first give some required definitions. Let Y be the space of measurable functions
u : Ξ→ Rm with finite value of

∫
‖u(ξ)‖2P (dξ) and 〈·, ·〉 denotes the scalar product in

the Hilbert space Rn×Y equipped with L2-norm, that is, for x, z ∈ Rn and y, u ∈ Y,

〈(x, y), (z, u)〉 := x>z +

∫
Ξ

y(ξ)>u(ξ)P (dξ).

Consider mapping G : Rn × Y → Rn × Y defined as

G(x, y(·)) :=
(
E[Φ(x, y(ξ), ξ)],Ψ(x, y(·), ·)

)
.

Monotonicity properties of this mapping are defined in the usual way. In particular
the mapping G is said to be strongly monotone if there exists a positive number κ̄
such that for any (x, y(·)), (z, u(·)) ∈ Rn × Y, we have〈

G(x, y(·))− G(z, u(·)),
(

x− z
y(·)− u(·)

)〉
≥ κ̄(‖x− z‖2 + E[‖y(ξ)− u(ξ)‖2]).

Definition 3.1. ([12, Definition 12.1]) The mapping G : Rn × Y → Rn × Y is
hemicontinuous on Rn × Y if G is continuous on line segments in Rn × Y, i.e., for
every pair of points (x, y(·)), (z, u(·)) ∈ Rn × Y, the following function is continuous

t 7→
〈
G(tx+ (1− t)z, ty(·) + (1− t)u(·)),

(
x− z

y(·)− u(·)

)〉
.

Definition 3.2. ([12, Definition 12.3 (i)]) The mapping G : Rn×Y → Rn×Y is
coercive if there exists (x0, y0(·)) ∈ Rn × Y such that〈
G(x, y(·)),

(
x− x0

y(·)− y0(·)

)〉
‖x− x0‖+ E[‖y(ξ)− y0(ξ)‖]

→∞ as ‖x‖+E[‖y(ξ)‖]→∞ and (x, y(·)) ∈ Rn ×Y.

Note that the strong monotonicity of G implies the coerciveness of G, see [12,452

Chapter 12]. In section 3.1, we consider the properties in the second stage SNCP.453
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3.1. Lipschitz properties of the second stage solution mapping. Strong454

regularity of VI was investigated in Dontchev and Rockafellar [8]. We apply their455

results to the second stage SNCP. Consider a linear VI456

(3.5) 0 ∈ Hz + q +NU (z),457

where U is a closed nonempty, polyhedral, convex subset of Rl.458

Definition 3.3. [8, Definition 2] The critical face condition is said to hold at
(q0, z0) if for any choice of faces F1 and F2 of the critical cone C0 with F2 ⊂ F1,

u ∈ F1 − F2, H>u ∈ (F1 − F2)∗ =⇒ u = 0,

where critical cone C0 = C(z0, v0) := {z′ ∈ TU (z0) : z′ ⊥ v0} with v0 = Hz0 + q0.459

Theorem 3.4. [8, Theorem 2] The linear variational inequality (3.5) is strongly460

regular at (q0, z0) if and only if the critical face condition holds at (q0, z0), where z0461

is the solution of the linear VI: 0 ∈ Hz + q0 +NU (z).462

Corollary 3.1. [8, Corollary 1] A sufficient condition for strong regularity of463

the linear variational inequality (3.5) at (q0, z0) is that u>Hu > 0 for all vectors464

u 6= 0 in the subspace spanned by the critical cone C0.465

Note that when H is a positive definite matrix, the condition in Corollary 3.1
holds and we do not need to assume the critical face condition in Definition 3.3. Then
we apply Corollary 3.1 to the two-stage SVI-NCP and consider the Clarke generalized
Jacobian of ŷ(x, ξ). To this end, we introduce some notations: let

α(ŷ(x, ξ)) = {i : (ŷ(x, ξ))i > (Ψ(x, ŷ(x, ξ), ξ))i}
β(ŷ(x, ξ)) = {i : (ŷ(x, ξ))i = (Ψ(x, ŷ(x, ξ), ξ))i}
γ(ŷ(x, ξ)) = {i : (ŷ(x, ξ))i < (Ψ(x, ŷ(x, ξ), ξ))i}.

Note that for any x ∈ X and a.e. ξ ∈ Ξ, ŷ(x, ξ), α(ŷ(x, ξ)), β(ŷ(x, ξ)) and γ(ŷ(x, ξ)466

are uniquely defined. For simplicity, we use α = α(ŷ(x, ξ)), β = β(ŷ(x, ξ)) and467

γ = γ(ŷ(x, ξ)). Let ∇xΨ(x, y, ξ) and ∇yΨ(x, y, ξ) be the Jacobian of Ψ(x, y, ξ) w.r.t.468

x and y respectively.469

Assumption 3.1. For a.e. ξ ∈ Ξ and all x ∈ X ∩ C, Ψ(x, ·, ξ) is strongly mono-
tone, that is there exists a positive valued measurable κy(ξ) such that for all y, u ∈ Rm,

〈Ψ(x, y, ξ)−Ψ(x, u, ξ), y − u〉 ≥ κy(ξ)‖y − u‖2

with E[κy(ξ)] < +∞.470

Applying Corollary 2.1 in [15] to the second stage of the SVI-NCP, we have the471

following lemma.472

Lemma 3.5. Suppose Assumption 3.1 holds and for a fixed ξ̄ ∈ Ξ, Ψ(x, y, ξ) is473

continuously differentiable w.r.t. (x, y). Then for the fixed ξ̄ ∈ Ξ, (a) ŷ(x, ξ̄) is474

an unique solution of the second stage NCP (3.2), (b) ŷ(x, ξ̄) is F-differentiable at475

x̄ ∈ X ∩ C if and only if β(ŷ(x̄, ξ̄)) is empty and476

(∇xŷ(x̄, ξ))α = −(∇yΨαα(x̄, ŷ(x̄, ξ), ξ))−1∇xΨα(x̄, ŷ(x̄, ξ), ξ), (∇xŷ(x̄, ξ))γ = 0477

or478

∇xΨβ(x̄, ŷ(x̄, ξ), ξ) = ∇yΨβα(x̄, ŷ(x̄, ξ), ξ)(∇yΨαα(x̄, ŷ(x̄, ξ), ξ))−1∇xΨα(x̄, ŷ(x̄, ξ), ξ)479
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in this case, the F-derivative of ŷ(·, ξ) at x̄ is given by480

(∇xŷ(x̄, ξ))α = −(∇yΨαα(x̄, ŷ(x̄, ξ), ξ))−1∇xΨα(x̄, ŷ(x̄, ξ), ξ),481

(∇xŷ(x̄, ξ))β = 0, (∇xŷ(x̄, ξ))γ = 0.482

Theorem 3.6. Let Ψ : Rn × Rm × Ξ → Rm be Lipschitz continuous and conti-483

nuously differentiable over Rn × Rm for a.e. ξ ∈ Ξ. Suppose Assumption 3.1 holds484

and Φ(x, y, ξ) is continuously differentiable w.r.t. (x, y) for a.e. ξ ∈ Ξ. Then for a.e.485

ξ ∈ Ξ and x ∈ X , the following holds.486

(a) The second stage SNCP (3.2) has a unique solution ŷ(x, ξ) which is parame-487

trically CD-regular and the mapping x 7→ ŷ(x, ξ) is Lipschitz continuous over488

X ∩X ′, where X ′ is a compact subset of Rn.489

(b) The Clarke Jacobian of ŷ(x, ξ) w.r.t. x is as follows

∂ŷ(x, ξ) = conv
{

lim
z→x
∇z ŷ(z, ξ) : ∇z ŷ(z, ξ)

= −[I −Dα(I −M(z, ŷ(z, ξ), ξ))]−1DαL(z, ŷ(z, ξ), ξ)
}
,

where M(x, y, ξ) = ∇yΨ(x, y, ξ), L(x, ŷ(x, ξ), ξ) = ∇xΨ(x, ŷ(x, ξ), ξ).490

Proof. Part (a). Note that by Lemma 3.5 (a), for almost all ξ̄ ∈ Ξ and every491

x̄ ∈ X ∩ X ′, there exists a unique solution ŷ(x̄, ξ̄) of the second stage SNCP (3.2).492

Moreover, consider the LCP493

(3.6) 0 ≤ y ⊥ Ψ(x̄, ȳ, ξ̄) +∇yΨ(x̄, ȳ, ξ̄)(ȳ − y) ≥ 0,494

where ȳ = ŷ(x̄, ξ̄). By the strong monotonicity of Ψ(x̄, ·, ξ̄), ∇yΨ(x̄, ȳ, ξ̄) is positive495

definite. Then by Corollary 3.1, the LCP (3.6) is strongly regular at ȳ. This implies496

the parametrically CD-regular of the second stage SNCP (3.2) with x̄ at solution ȳ.497

Then the Lipschitz property follows from [14, Theorem 4] and the compactness of X ′.498

Part (b). For any fixed ξ̄, by Part (a), there exists a unique Lipschitz function499

ŷ(·, ξ̄) such that ŷ(x, ξ̄) over X which solves500

0 ≤ y ⊥ Ψ(x, y, ξ̄) ≥ 0.501

Note that ŷ(·, ξ̄) is Lipschitz continuous and hence F-differentiable almost every-502

where over Bδ(x̄). Then for any x′ ∈ Bδ(x̄) such that ŷ(x′, ξ̄) is F-differentiable, by503

Lemma 3.5 (b), we have β(ŷ(x′, ξ)) is empty and504

(3.7)
(∇xŷ(x′, ξ))α = −(∇yΨ(x′, ŷ(x′, ξ), ξ))−1

αα(∇xΨ(x′, ŷ(x′, ξ), ξ))α, (∇xŷ(x′, ξ))γ = 0505

or β(ŷ(x′, ξ)) is not empty and506

(3.8)
(∇xŷ(x′, ξ))α = −(∇yΨ(x′, ŷ(x′, ξ), ξ))−1

αα(∇xΨ(x′, ŷ(x′, ξ), ξ))α,
(∇xŷ(x′, ξ))β = 0, (∇xŷ(x′, ξ))γ = 0.

507

Let DJ ∈ D be an m-dimensional diagonal matrix with J ∈ J and508

(3.9) (DJ)jj :=

{
1, if j ∈ J,
0, otherwise,

509

M(x, y, ξ) = ∇yΨ(x, y, ξ) and W (x, ξ) = [I − Dα(I −M(x, y, ξ))]−1Dα. Then by510

(3.7) and (3.8), similar as in [5, Theorem 2.1],511

∇xŷ(x′, ξ) = −[I −Dα(I −M(x′, ŷ(x′, ξ̄), ξ))]−1DαL(x′, ŷ(x′, ξ̄), ξ̄),512
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where L(x, ŷ(x, ξ), ξ) = ∇xΨ(x, ŷ(x, ξ), ξ). Let513

(3.10) UJ(M) = (I −DJ(I −M))−1DJ , ∀J ∈ J .514

By the definition and outer semicontinuity of Clarke generalized Jacobian, we have515

∂ŷ(x, ξ) = conv
{

lim
z→x
∇z ŷ(z, ξ) : ∇z ŷ(z, ξ) =

−[I −Dα(I −M(z, ŷ(z, ξ), ξ))]−1DαL(z, ŷ(z, ξ), ξ)
}

⊆ conv{−UJ(M(x, ŷ(x, ξ), ξ))L(x, ŷ(x, ξ), ξ) : J ∈ J }.
516

We complete the proof.517

It is easy to observe that518

(3.11)
∂ŷ(x, ξ) = conv

{
lim
z→x
∇z ŷ(z, ξ) : ∇z ŷ(z, ξ)

= −[I −Dα(I −M(z, ŷ(z, ξ), ξ))]−1DαL(z, ŷ(z, ξ), ξ)
}

⊆ conv{−UJ(M(x, ŷ(x, ξ), ξ))L(x, ŷ(x, ξ), ξ) : J ∈ J },
519

where J := 2{1,...,m}, DJ and UJ are defined in (3.9) and (3.10) respectively.520

Under Assumption 3.1, the two-stage SVI-NCP can be reformulated as a single521

stage SVI with Φ̂(x, ξ) = Φ(x, ŷ(x, ξ), ξ) and φ(x) = E[Φ̂(x, ξ)] as follows522

(3.12) 0 ∈ φ(x) +NC(x).523

With the results in Theorem 3.6, SVI (3.12) has the following properties. Let

Θ(x, y(ξ), ξ) =

(
Φ(x, y(ξ), ξ)
Ψ(x, y(ξ), ξ)

)
and ∇Θ(x, y, ξ) be the Jacobian of Θ. Then

∇Θ(x, y, ξ) =

(
A(x, y, ξ) B(x, y, ξ)
L(x, y, ξ) M(x, y, ξ)

)
,

where A(x, y, ξ) = ∇xΦ(x, y, ξ), B(x, y, ξ) = ∇yΦ(x, y, ξ), L(x, y, ξ) = ∇xΨ(x, y, ξ)524

and M(x, y, ξ) = ∇yΨ(x, y, ξ).525

Theorem 3.7. Suppose the conditions of Theorem 3.6 hold. Let X ′ ⊆ C be a526

compact set, for any ξ ∈ Ξ, Y (ξ) = {ŷ(x, ξ) : x ∈ X ′} and ∇Θ(x, y, ξ) be the Jacobian527

of Θ. Assume528

(3.13) E[‖A(x, ŷ(x, ξ), ξ)−B(x, ŷ(x, ξ), ξ)M(x, ŷ(x, ξ), ξ)−1L(x, ŷ(x, ξ), ξ)‖] < +∞529

over X ∩X ′. Then530

(a) Φ̂(x, ξ) is Lipschitz continuous w.r.t. x over X ∩X ′ for all ξ ∈ Ξ.531

(b) E[Φ̂(x, ξ)] is Lipschitz continuous w.r.t. x over X ∩X ′.532

Proof. Part (a). By the compactness of X ′ and Theorem 3.6 (a), Y (ξ) is compact
for almost all ξ ∈ Ξ. By the continuity of ∇Θ(x, ŷ(x, ξ), ξ), we have

A(x, ŷ(x, ξ), ξ)−B(x, ŷ(x, ξ), ξ)M(x, ŷ(x, ξ), ξ)−1L(x, ŷ(x, ξ), ξ)

is continuous over X ′. Then we have

sup
x∈X′

‖A(x, ŷ(x, ξ), ξ)−B(x, ŷ(x, ξ), ξ)M(x, ŷ(x, ξ), ξ)−1L(x, ŷ(x, ξ), ξ)‖ < +∞.
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Moreover, by Theorem 3.6 (b) and (3.11), the Lipschitz module of Φ̂(x, ξ), denote by
lipΦ(ξ) satisfies

lipΦ(ξ)
≤ sup

x∈X′
‖A(x, ŷ(x, ξ), ξ)−B(x, ŷ(x, ξ), ξ)M(x, ŷ(x, ξ), ξ)−1L(x, ŷ(x, ξ), ξ)‖

< +∞.

Part (b). it comes from Part (a) and (3.13) directly.533

3.2. Existence, uniqueness and CD-regularity of the solutions. Consider534

the mixed SVI-NCP (3.1)-(3.2) and its one stage reformulation (3.12). If we replace535

Assumption 3.1 by the following assumption, we can have stronger results.536

Assumption 3.2. For a.e. ξ ∈ Ξ, Θ(x, y(ξ), ξ) is strongly monotone with para-537

meter κ(ξ) at (x, y(·)) ∈ C × Y, where E[κ(ξ)] < +∞.538

Note that Assumption 3.1 can be implied by Assumption 3.2 over C × Y.539

Theorem 3.8. Suppose Assumption 3.2 holds over C × Y and Φ(x, y, ξ) and540

Ψ(x, y, ξ) are continuously differentiable w.r.t. (x, y) for a.e. ξ ∈ Ξ. Then541

(a) G : C × Y → C × Y is strongly monotone and hemicontinuous.542

(b) For all x and almost all ξ ∈ Ξ, Ψ(x, y(ξ), ξ) is strongly monotone and conti-543

nuous w.r.t. y(ξ) ∈ Rm.544

(c) The two-stage SVI-NCP (3.1)-(3.2) has a unique solution.545

(d) The two-stage SVI-NCP (3.1)-(3.2) has relatively complete recourse, that is546

for all x and almost all ξ ∈ Ξ, the NCP (3.2) has a unique solution.547

Proof. Parts (a) and (b) come from Assumption 3.2 over C×Y directly. Since the548

strong monotonicity of G and Ψ implies the coerciveness of G and Ψ, see [12, Chapter549

12], by [12, Theorem 12.2 and Lemma 12.2], we have Part (c) and Part (d).550

With the results in sections 3.1 and above, we have the following theorem by only551

assume that Assumption 3.2 holds in a neighborhood of Sol∗ ∩ X ′ × Y. Our result552

extends [3, Proposition 2.1] for two-stage SLCP .553

Theorem 3.9. Let Sol∗ be the solution set of the mixed SVI-NCP (3.1)-(3.2).554

Suppose (i) there exists a compact set X ′ such that Sol∗ ∩X ′ × Y is nonempty, (ii)555

Assumption 3.2 holds over Sol∗∩X ′×Y and (iii) the conditions of Theorem 3.7 hold.556

Then557

(a) For any (x, y(·)) ∈ Sol∗, every matrix in ∂Φ̂(x) is positive definite and Φ̂ and558

φ are strongly monotone at x.559

(b) Any solution x∗ ∈ S∗∩X ′ of SVI (3.12) is CD-regular and an isolate solution.560

(c) Moreover, if replacing conditions (i) and (ii) by supposing (iv) Assumption 3.2561

holds over Rn×Y, then SVI (3.12) has a unique solution x∗ and the solution562

is CD-regular.563

Proof. Part (a). Note that under Assumption 3.2, for any (x, y(·)) ∈ Sol∗, the
matrix (

A(x, y(ξ), ξ) B(x, y(ξ), ξ)
L(x, y(ξ), ξ) M(x, y(ξ), ξ)

)
� 0.

From (ii) of Lemma 2.1 in [3], we have

A(x, y(ξ), ξ)−B(x, y(ξ), ξ)UJ(M(x, y(ξ), ξ))L(x, y(ξ), ξ) � 0, ∀J ∈ J .

For any x̄ such that (x̄, ȳ(·)) ∈ Sol∗, let Bδ(x̄) be a small neighborhood of x̄,

Dŷ(x̄) := {x′ : x′ ∈ Bδ(x̄), ŷ(x′, ξ) is F-differentiable w.r.t. x at x′}
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and

DΦ̂(x̄) := {x′ : x′ ∈ Bδ(x̄), Φ̂(x′, ξ) is F-differentiable w.r.t. x at x′}.

Since Φ(x, y, ξ) is continuously differentiable w.r.t. (x, y), ŷ(·, ξ) is F-differentiable564

w.r.t. x, which implies Φ̂(·, ξ) is F-differentiable w.r.t. x. Then Dŷ(x̄) ⊆ DΦ̂(x̄).565

Moreover, since ŷ(x, ξ) and Φ̂(x, ξ) are Lipschitz continuous w.r.t. x over Bδ(x̄), they566

are F-differentiable almost everywhere over Bδ(x̄). Then the measure of DΦ̂(x̄)\Dŷ(x̄)567

is zero. By Theorem 3.6 (b), (3.11) and the definition of Clarke generalized Jacobian,568

we have569

(3.14)

∂xΦ̂(x̄, ξ)

= conv
{

lim
x′→x̄
∇xΦ̂(x′, ξ) : x′ ∈ DΦ̂(x̄)

}
= conv

{
lim
x′→x̄
∇xΦ(x′, ŷ(x′, ξ), ξ) +∇yΦ(x′, ŷ(x′, ξ), ξ)∇xŷ(x′, ξ) : x′ ∈ Dŷ(x̄)

}
= conv

{
lim
x′→x̄

A(x′, ŷ(x′, ξ), ξ)

−B(x′, ŷ(x′, ξ), ξ)Uα(ŷ(x′,ξ))(M(x′, ŷ(x′, ξ), ξ))L(x′, ŷ(x′, ξ), ξ) : x′ ∈ Dŷ(x̄)}
⊂ conv {A(x, ŷ(x, ξ), ξ)
−B(x, ŷ(x, ξ), ξ)UJ(M(x, ŷ(x, ξ), ξ))L(x, ŷ(x, ξ), ξ) : J ∈ J } ,

570

where the second equation is from [29, Theorem 4] and the fact that the measure of571

DΦ̂(x̄)\Dŷ(x̄) is 0. By (3.14), every matrix in ∂xΦ̂(x̄, ξ) is positive definite. And then572

Φ̂ is strongly monotone which implies φ is strongly monotone at x̄.573

Part (b). By Corollary 3.1, the linearized SVI574

0 ∈ Vx∗(x− x∗) + E[Φ̂(x∗, ξ)] +NC(x),575

is strongly regular for all Vx∗ ∈ ∂φ(x∗) ⊆ E[∂xΦ̂(x∗, ξ)]. Then the NCP (3.12) at x∗576

is CD-regular. Moreover, by the definition of CD regular, x∗ is a unique solution of577

the NCP (3.12) over a neighborhood of x∗.578

Part (c). By Part (a) and Theorem 3.8, NCP (3.12) has a unique solution x∗.579

The CD regular of NCP (3.12) at x∗ follows from Part (b).580

3.3. Convergence analysis of the SAA two-stage SVI-NCP. Consider the581

two-stage SVI-NCP (3.1)-(3.2) and its SAA problem (3.3)-(3.4).582

We discuss the existence and uniqueness of the solutions of SAA two-stage SVI
(3.3)-(3.4) under Assumption 3.2 over C × Y firstly. Define

GN (x, y(·)) :=


N−1

∑N
j=1 Φ(x, y(ξj), ξj)

Ψ(x, y(ξ1), ξ1)
...

Ψ(x, y(ξN ), ξN )

 .

Theorem 3.10. Suppose Assumption 3.2 holds over C × Y and Φ(x, y, ξ) and583

Ψ(x, y, ξ) are continuously differentiable w.r.t. (x, y) for a.e. ξ ∈ Ξ. Then584

(a) GN : C × Y → C × Y is strongly monotone with N−1
∑N
j=1 κ(ξj) and hemi-585

continuous.586

(b) The SAA two-stage SVI (3.3)-(3.4) has a unique solution.587

Proof. By Assumption 3.2, we have Parts (a) and (b).588
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Then we investigate the almost sure convergence and convergence rate of the589

first stage solution x̄N of (3.3)-(3.4) to optimal solutions of the true problem by only590

supposing Assumption 3.2 holds at a neighborhood of Sol∗ ∩X ′ × Y.591

Note that the normal cone multifunction x 7→ NC(x) is closed. Note also that592

function Φ̂(x, ξ) = Φ(x, ŷ(x, ξ), ξ), where ŷ(x, ξ) is a solution of the second stage593

problem (3.2). Then the first stage of SAA problem with second stage solution can594

be written as595

(3.15) 0 ∈ N−1
N∑
j=1

Φ̂(x, ξj) +NC(x).596

Under the conditions (i)-(iii) of Theorem 3.9, the two-stage SVI-NCP (3.1)-(3.2)597

and its SAA problem (3.3)-(3.4) satisfy conditions of Theorem 2.4 and with R−1(t) ≤598
t
c for some positive number c (by Remark 2.1, the strongly monotone of φ and the599

argument in the proof of Part (b), Theorem 2.8 ). Then Theorem 2.4 can be applied600

directly.601

Definition 3.11. [10, 20] A solution x∗ of the SVI (3.12) is said to be strongly
stable if for every open neighborhood V of x∗ such that SOL(C, φ)∩ clV = {x∗}, there
exist two positive scalars δ and ε such that for every continuous function φ̃ satisfying

sup
x∈C∩clV

‖φ̃(x)− φ(x)‖ ≤ ε,

the set SOL(C, φ̃) ∩ V is a singleton; moreover, for another continuous function φ̄602

satisfying the same condition as φ̃, it holds that603

‖x− x′‖ ≤ δ‖[φ(x)− φ̃(x)]− [φ(x′)− φ̄(x′)]‖,604

where x and x′ are elements in the sets SOL(C, φ̃)∩V and SOL(C, φ̄)∩V, respectively.605

Theorem 3.12. Suppose conditions (i)-(iii) of Theorem 3.9 hold. Let x∗ be a606

solution of the SVI (3.12) and X ′ be a compact set such that x∗ ∈ int(X ′). Assume607

there exists ε > 0 such that for N sufficiently large,608

(3.16) x∗ /∈ cl(bd(X ) ∩ int(X̄N ∩X ′)).609

Then there exist a solution x̂N of the SAA problem (3.15) and a positive scalar δ such610

that ‖x̂N − x∗‖ → 0 as N →∞ w.p.1 and for N sufficiently large w.p.1611

(3.17) ‖x̂N − x∗‖ ≤ δ sup
x∈X∩X′

‖φ̂N (x)− φ(x)‖.612

Proof. By Theorem 3.9 (b), the SVI (3.12) at x∗ is CD-regular. By [20, Theorem
3] and [10], x∗ is a strong stable solution of the SVI (3.12). Note that by Theorem
3.9 (a) and [27, Theorem 7.48], we have

sup
x∈X∩X′

‖φ̂N (x)− φ(x)‖

converges to 0 uniformly. Then by Definition 3.11 and (3.16), there exist two positive
scalars δ, ε such that for N sufficiently large, w.p.1

sup
x∈X∩X′

‖φ̂N (x)− φ(x)‖ ≤ min{ε, ε/δ}
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and

‖x̂N − x∗‖ ≤ δ sup
x∈X∩X′

‖φ̂N (x)− φ(x)‖,

which implies x̂N ∈ X .613

Note that Theorem 3.12 guarantees that R−1(t) ≤ δt and condition (3.16) is dis-614

cussed after Theorem 2.8. Note also that replacing conditions (i) - (ii) and condition615

(3.16) by supposing condition (iv) of Theorem 3.9, conclusion (3.17) also holds. Mo-616

reover, in this case, by Theorem 3.9 (c) and Theorem 3.10, x∗ and x̂N are the unique617

solutions of the SVI (3.12) and its SAA problem (3.15) respectively.618

Then we consider the exponential rate of convergence. Note that under Assump-619

tion 3.1, for SAA problem of the mixed two-stage SVI-NCP (3.3)-(3.4), Assumptions620

2.1, 2.4, 2.5 and condition (iii) in Theorem 2.8 hold. If we replace Assumption 3.1 by621

Assumption 3.2 over Sol∗ ∩X ′ × Y, we have the following theorem.622

Theorem 3.13. Let X ′ ⊂ C be a convex compact subset such that Bδ(x∗) ⊂ X ′.623

Suppose the conditions in Theorem 3.12 and Assumption 2.6 hold. Then for any624

ε > 0 there exist positive constants δ > 0 (independent of ε), % = %(ε) and ς = ς(ε),625

independent of N , such that626

(3.18) Pr

{
sup
x∈X

∥∥φ̂N (x)− φ(x)
∥∥ ≥ ε} ≤ %(ε)e−Nς(ε),627

and628

(3.19) Pr {‖xN − x∗‖ ≥ ε} ≤ %(ε/δ)e−Nς(ε/δ).629

Proof. By Theorem 3.9 (a), Assumption 2.6 and [27, Theorem 7.67], the conditi-630

ons of Theorem 2.8 (a) hold and then (3.18) holds. Under condition (3.16) in Theorem631

3.12, (3.19) follows from (3.17) and (3.18).632

The two-stage SVI-NCP is a class of important two-stage SGE and can cover a633

wide class of real world applications. Moreover, the structure of the second stage634

NCP has been well investigated in the literature (e.g., [5, 15]). By combining those635

results in our case we can formulate the Clarke generalized Jacobian of the solution636

function of the second stage NCP and derive stability analysis of the first stage SVI.637

We will consider the two-stage SVI in further research.638

4. Examples. In this section, we illustrate our theoretical results in the last639

sections by a two-stage stochastic non-cooperative game of two players [3, 21]. Let640

ξ : Ω→ Ξ ⊆ Rd be a random vector, xi ∈ Rni and yi(·) ∈ Yi be the strategy vectors641

and policies of the ith player at the first stage and second stage, respectively, where642

Yi is a measurable function space from Ξ to Rmi , i = 1, 2, n = n1 +n2, m = m1 +m2.643

In this two-stage stochastic game, the ith player solves the following optimization644

problem:645

(4.1) min
xi∈[ai,bi]

θi(xi, x−i) + E[ψi(xi, x−i, y−i(ξ), ξ)],646

where θi(xi, x−i) := 1
2x

T
i Hixi + qTi xi + xTi Pix−i,647

(4.2) ψi(xi, x−i, y−i(ξ), ξ) := min
yi∈[li(ξ),ui(ξ)]

φi(yi, xi, x−i, y−i(ξ), ξ)648
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is the optimal value function of the recourse action yi at the second stage with

φi(yi, xi, x−i, y−i(ξ), ξ) =
1

2
y>i Qi(ξ)yi + ci(ξ)

>yi +

2∑
j=1

y>i Sij(ξ)xj + y>i Oi(ξ)y−i(ξ),

ai, bi ∈ Rni , li, ui : Ξ → Rmi are vector valued measurable functions, li(ξ) < ui(ξ)649

for all ξ ∈ Ξ, Hi and Qi(ξ) are symmetric positive definite matrices for a.e ξ ∈ Ξ,650

x = (x1, x2), y(·) = (y1(·), y2(·)), x−i = xi′ and y−i = yi′ , for i′ 6= i. We use yi(ξ) to651

denote the unique solution of (4.2).652

By [11, Theorem 5.3 and Corollary 5.4], ψi(xi, x−i, y−i(ξ), ξ) is continuously dif-
ferentiable w.r.t. xi and

∇xiψi(xi, x−i, y−i(ξ), ξ) = STii (ξ)yi(ξ).

Hence the two-stage stochastic game can be formulated as a two-stage stochastic653

linear VI654

−∇xi
θi(xi, x−i)− E[∇xi

ψi(xi, x−i, y−i(ξ), ξ)] ∈ N[ai,bi](x),
−∇yi(ξ)φi(yi(ξ), xi, x−i, y−i(ξ), ξ) ∈ N[li(ξ),ui(ξ)](yi(ξ)),

for a.e. ξ ∈ Ξ,
655

for i = 1, 2, with the following matrix-vector form656

(4.3)
−Ax− E[B(ξ)y(ξ)]− h1 ∈ N[a,b](x)

−M(ξ)y(ξ)− L(ξ)x− h2(ξ) ∈ N[l(ξ),u(ξ)](y(ξ)), for a.e. ξ ∈ Ξ,
657

where

A =

(
H1 P1

P2 H2

)
, B(ξ) =

(
ST11(ξ) 0

0 ST22(ξ)

)
,

L(ξ) =

(
S11(ξ) S12(ξ)
S21(ξ) S22(ξ)

)
, M(ξ) =

(
Q1(ξ) O1(ξ)
O2(ξ) Q2(ξ)

)
,

h1 = (q1, q2) and h2(ξ) = (c1(ξ), c2(ξ)). Moreover, if there exists a positive continuous658

function κ(ξ) such that E[κ(ξ)] < +∞ and for a.e. ξ ∈ Ξ,659

(4.4)
(
z>, u>

)( A B(ξ)
L(ξ) M(ξ)

)(
z
u

)
≥ κ(ξ)(‖z‖2 + ‖u‖2), ∀z ∈ Rn, u ∈ Rm,660

the two-stage box constrained SVI (4.3) satisfy Assumption 3.2. By the Schur com-
plement condition for positive definiteness [13], a sufficient condition for (4.4) is

4H2 − (P1 + P>2 )H−1
1 (P1 + P>2 ) is positive definite

and for some k1 > 0 and a.e. ξ ∈ Ξ,

λmin(M(ξ) +M(ξ)> − (B(ξ) + L(ξ)>)(A+A>)−1(B(ξ) + L(ξ)>)) ≥ k1 > 0,

where λmin(V ) is the smallest eigenvalue of V ∈ Rm×m.661

Under condition (4.4), by Corollary 3.1 and Theorem 3.8, the conditions in The-
orem 2.8 hold for (4.3). To see this, we only need to show condition (vi) of Theorem
2.8 holds for (4.3). Consider the second stage VI of (4.3) for fixed ξ and x, by the
proof of [7, Lemma 2.1], we have

ŷ(x, ξ)− ŷ(x′, ξ) = −(I −D(x, x′, ξ) +D(x, x′, ξ)M(ξ))−1D(x, x′, ξ)L(ξ)(x− x′),
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which implies662

(4.5) ∂xŷ(x, ξ) ⊆ {−(I −D +DM(ξ))−1DL(ξ) : D ∈ D0},663

where D(x, x′, ξ) is a diagonal matrix with diagonal elements

di =


0, if (ŷi(x, ξ))i − zi(x, ξ), (ŷ(x′, ξ))i − zi(x′, ξ) ∈ [ui(ξ),∞),
0, if (ŷ(x, ξ))i − zi(x, ξ), (ŷ(x′, ξ))i − zi(x′, ξ) ∈ (−∞, li(ξ)],
1, if (ŷ(x, ξ))i − zi(x, ξ), (ŷ(x′, ξ))i − zi(x′, ξ) ∈ (li(ξ), ui(ξ)),

(ŷ(x,ξ))i−(ŷ(x′,ξ))i
(ŷ(x,ξ))i−zi(x,ξ)−((ŷ(x′,ξ))i−zi(x′,ξ) , otherwise,

zi(x, ξ) = (M(ξ)ŷ(x, ξ) + L(ξ)x + h2(ξ))i, di ∈ [0, 1], i = 1, · · · ,m, D0 is a set of664

diagonal matrices in Rm×m with the diagonal elements in [0, 1]. Then we consider the665

one stage SVI with ŷ(x, ξ) as follows666

(4.6) −Ax− E[B(ξ)ŷ(x, ξ)]− h1 ∈ N[a,b](x).667

By using the similar arguments as in the proof of Theorem 3.9 and (4.5), every element668

of the Clarke Jacobian of Ax+E[B(ξ)ŷ(x, ξ)] +h1 is a positive definite matrix. Then669

(4.6) is strong monotone and hence condition (vi) of Theorem 2.8 holds. In what670

follows, we verify the convergence results in Theorem 2.8 numerically.671

Let {ξj}Ni=1 be an iid sample of random variable ξ. Then the SAA problem of672

(4.3) is673

(4.7)
−Ax− 1

N

∑N
j=1B(ξj)y(ξj)− h1 ∈ N[a,b](x)

−M(ξj)y(ξj)− L(ξj)x− h2(ξj) ∈ N[l(ξj),u(ξj)](y(ξj)), j = 1, . . . , N.
674

PHM converges to a solution of (4.7) if condition (4.4) holds.675

Algorithm 4.1 (PHM). Choose r > 0 and initial points x0 ∈ Rn, x0
j = x0 ∈ Rn,676

y0
j ∈ Rm and w0

j ∈ Rn, j = 1, · · · , N such that 1
N

∑N
j=1 w

0
j = 0. Let ν = 0.677

Step 1. For j = 1, · · · , N , solve the box constrained VI678

(4.8)
−Axj −B(ξj)yj − h1 − wνj − r(xj − xνj ) ∈ N[a,b](xj),
−M(ξj)yj − L(ξj)xj − h2(ξj)− r(yj − yνj ) ∈ N[l(ξj),u(ξj)](yj),

679

and obtain a solution (x̂νj , ŷ
ν
j ), j = 1, · · · , N .680

Step 2. Let x̄ν+1 = 1
N

∑N
j=1 x̂

ν
j . For j = 1, · · · , N , set

xν+1
j = x̄ν+1, yν+1

j = ŷνj , wν+1
j = wνj + r(x̂νj − xν+1

j ).

Note that PHM is well-defined if

(
A B(ξj)

L(ξj) M(ξj)

)
, j = 1, · · · , N are positive semi-

definite, that is, (4.8) has a unique solution for each j, even for some x and ξj the
second stage problem

−M(ξj)y − L(ξj)x− h2(ξj) ∈ N[l(ξj),u(ξj)](y)

has no solution.681
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4.1. Generation of matrices satisfying condition (4.4). We generate ma-
trices A, B(ξ), L(ξ),M(ξ) by the following procedure. Randomly generate a symme-
tric positive definite matrix H1 ∈ Rn1×n1 , matrices P1 ∈ Rn1×n2 , P2 ∈ Rn2×n1 . Set
H2 = 1

4 (P>1 + P2)H−1
1 (P1 + P>2 ) + αIn2 , where α is a positive number. Randomly

generate matrices with entries within [−1, 1]:

S̄11 ∈ Rm1×n1 , S̄12 ∈ Rm1×n2 , S̄21 ∈ Rm2×n1 ,

S̄22 ∈ Rm2×n2 , Ō1 ∈ Rm1×m2 , Ō2 ∈ Rm2×m1 .

Randomly generate two symmetric matrices Q̄1 ∈ Rm1×m1 and Q̄2 ∈ Rm2×m2 whose682

diagonal entries are greater than m − 1 + α, off-diagonal entries are in [−1, 1], re-683

spectively.684

Generate an iid sample {ξj}Nj=1 ⊂ [0, 1]10 × [−1, 1]10 of random variable ξ ∈ R20

following uniformly distribution over Ξ = [0, 1]10 × [−1, 1]10. Set

S11(ξ) = ξj1S̄11, S12(ξ) = ξj2S̄12, S21(ξ) = ξj3S̄21,

S22(ξ) = ξj4S̄22, O1(ξ) = ξj5Ō1, O2(ξ) = ξj6Ō2,

Q1(ξ) = Q̄1 + (ξj7 +
(n+m)2

λmin(A+AT )
)Im1

Q2(ξ) = Q̄2 + (ξj8 +
(n+m)2

λmin(A+AT )
)Im2

.

Set B(ξj), L(ξj),M(ξj) as in (4.3).685

The matrices generated by this procedure satisfy condition (4.4). Indeed, since H1686

and 4H2 − (P1 + PT2 )H−1
1 (P1 + PT2 ) are positive definite, by the Schur complement687

condition for positive definiteness [13], A + AT is symmetric positive definite, and688

thus A is positive definite. Moreover, since the matrix M̄ :=

(
Q̄1 Ō1

Ō2 Q̄2

)
is diagonal689

dominance with positive diagonal entries M̄ii ≥ m− 1 + α, it is positive definite and690

the eigenvalues M +MT are greater than 2α. Hence, for any y ∈ Rm, we have691

yT (M(ξ) +M(ξ)T − (B(ξ)T + L(ξ))(A+AT )−1(B(ξ) + L(ξ)T ))y692

≥ (2α+
(n+m)2

λmin(A+AT )
)‖y‖2 − 1

λmin(A+AT )
‖(B(ξ)T + L(ξ))‖2‖y‖2 ≥ 2α‖y‖2,693

where we use ‖B(ξ)T + L(ξ)‖2 ≤ ‖B(ξ)T + L(ξ)‖21 ≤ (m + n)2. Using the Schur694

complement condition for positive definiteness [13] again, we obtain condition (4.4).695

Finally, we generate the box constraints, h1 and h2(·). For the first stage, the696

lower bound is set as a = 01n, and the upper bound of the box constraints b is697

randomly generated from [1, 50]6. For the second stage, we set l(ξ) = (1 + ξ9)l̄ and698

u(ξ) = (1 + ξ10)ū, where 1n ∈ Rn is a vector with all elements 1, l̄ is randomly699

generated from [0, 1]10 and ū is randomly generated from [3, 50]10. Moreover, the700

vector h1 is randomly generated from [−5, 5]6 and h2(ξ) = (ξ11, · · · , ξ20) is a random701

vector following uniform distribution over [−1, 1]10.702

4.2. Numerical results. For each sample size of N = 10, 50, 250, 1250, 2250,703

we randomly generate 20 test problems and solve the box-constrained VI in Step 1 of704

PHM by the homotopy-smoothing method [6]. We stop the iteration when705

(4.9) res := ‖x−mid(x−Ax− 1

N

N∑
j=1

B(ξj)ŷ(x, ξj)− h1, a, b)‖ ≤ 10−5,706
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or the iterations reach 5000, where mid(·) denotes the componentwise median opera-707

tor, ŷ(x, ξj) is the solution of the second stage box constrained VI with x and ξj .708

Parameters for the numerical tests are chosen as follows: n1 = n2 = 3,m1 =709

m2 = 5, α = 1 and maximize iteration number is 5000.710

Figures 1 shows the convergence tendency of x1, x2, x3, x4, x5 and x6 respectively.711

Note that since we use the homotopy-smoothing method to solve the box-constrained712

VI in Step 1 of PHM and the stop criterion is 10−5, x2 is not always feasible. However,713

[ai − xi]+ + [xi − bi]+ ≤ 10−5, i = 1, . . . , 6, which is related to the stopping criterion714

of the homotopy-smoothing method.715
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Fig. 2. Convergence of x1 - x6

We use xNt,j j = 1, . . . , 3000, t = 1, . . . , 5 to denote the computed solutions with716

sample size Nt for the j-th test problem shown in Figure 1. Then we compute the717

mean, variance and 95% confidence interval (CI) of the corresponding res defined in718

(4.9) with x = xNt,j by using a new set of 20 randomly generated test problems with719

sample size N = 3000 for computing ŷ(xNt,j , ξj), j = 1, . . . , 3000, t = 1, . . . , 5. We720

can see that the average of the mean, variance and width of 95% CI of res in Table 1721

decrease as the sample size increases.722
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N1 = 10 N2 = 50 N3 = 250 N4 = 1250 N5 = 2250
mean 0.22449 0.13753 0.04820 0.02885 0.02500

variance 0.01984 0.00605 0.00118 0.00023 0.00016
95% CI [0.2158, 0.2332] [0.1349, 0.1402] [0.0477, 0.0487] [0.0287, 0.0290] [0.0249, 0.0251]

Table 1
Mean, variance and 95% confidence interval (CI) of res

5. Conclusion remarks. Without assuming relatively complete recourse, we723

prove the convergence of the SAA problem (1.6)-(1.7) of the two-stage SGE (1.1)–(1.2)724

in Theorem 2.4, and show the exponential rate of the convergence in Theorem 2.9.725

When the two-stage SGE (1.1)–(1.2) has relatively complete recourse, Assumption 2.3,726

conditions (v)-(vi) in Theorem 2.4 and condition (iv) in Theorem 2.8 hold.727

In section 3, we present sufficient conditions for the existence, uniqueness, con-728

tinuity and regularity of solutions of the two-stage SVI-NCP (3.1)–(3.2) by using the729

perturbed linearization of functions Φ and Ψ and then show the almost sure conver-730

gence and exponential convergence of its SAA problem (3.3)-(3.4). Numerical exam-731

ples in section 4 satisfy all conditions of Theorem 2.8 and we show the convergence732

of SAA method numerically.733
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[19] Y. Liu, W. Röemish and H. Xu, Quantitative stability analysis of stochastic generalized equa-774
tions, SIAM J. Optim., 24 (2014), pp. 467-497.775

[20] J-S Pang, D. Sun and J. Sun, Semismooth homeomorphisms and strong stability of semidefinite776
and Lorentz cone complementarity problems, Math. Oper. Res., 28 (2003), pp. 39-63.777

[21] J.-S. Pang, S. Sen and U. Shanbhag, Two-stage non-cooperative games with risk-averse players,778
Math. Program., 165 (2017), pp. 235-290.779

[22] S. M., Robinson, Strongly regular generalized equations, Math. Oper. Res., 5 (1980), pp. 43-62.780
[23] R.T. Rockafellar and J. Sun, Solving monotone stochastic variational inequalities781

and complementarity problems by progressive hedging, Math. Program., (2018),782
https://doi.org/10.1007/s10107-018-1251-y.783

[24] R.T. Rockafellar and R. B-J. Wets, Variational Analysis, Springer-Verlag, Berlin Heidelberg,784
1998.785

[25] R.T. Rockafellar and R. B-J. Wets, Stochastic variational inequalities: single-stage to multis-786
tage, Math. Program., 165 (2017), pp. 331-360.787

[26] A. Shapiro, Sensitivity analysis of generalized equations, J. Math. Sci., 115 (2003), pp. 2554-788
2565.789
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