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Abstract Optimization with nonnegative orthogonality constraints has wide
applications in machine learning and data sciences. It is NP-hard due to some
combinatorial properties of the constraints. We first propose an equivalent
optimization formulation with nonnegative and multiple spherical constraints
and an additional single nonlinear constraint. Various constraint qualifications,
the first- and second-order optimality conditions of the equivalent formulation
are discussed. By establishing a local error bound of the feasible set, we de-
sign a class of (smooth) exact penalty models via keeping the nonnegative and
multiple spherical constraints. The penalty models are exact if the penalty pa-
rameter is sufficiently large but finite. A practical penalty algorithm with post-
processing is then developed to approximately solve a series of subproblems
with nonnegative and multiple spherical constraints. We study the asymptotic
convergence and establish that any limit point is a weakly stationary point of
the original problem and becomes a stationary point under some additional
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mild conditions. Extensive numerical results on the problem of computing the
orthogonal projection onto nonnegative orthogonality constraints, the orthog-
onal nonnegative matrix factorization problems and the K-indicators model
show the effectiveness of our proposed approach.

Keywords exact penalty, nonnegative orthogonality constraint, second-order
method, constraint qualification, optimality condition
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1 Introduction

In this paper, we consider optimization with nonnegative orthogonality con-
straints:

min
X∈Rn×k

f(X) s.t. X>X = Ik, X ≥ 0, (1.1)

where 1 ≤ k ≤ n, f : Rn×k → R is continuously differentiable, Ik is the k-by-k
identity matrix and X ≥ 0 means the entrywise nonnegativity. The feasible set
of (1.1) is denoted as Sn,k+ := Sn,k∩Rn×k+ , where Sn,k := {X ∈ Rn×k : X>X =
Ik} is the Stiefel manifold. In this paper, we adopt the usual Euclidean metric

as the Riemannian metric on Sn,k. The set Sn,k+ is geodesically convex in Sn,k
if k = 1 and is geodesically non-convex if k ≥ 2; see Examples 5.4.1 and 5.4.2
in [1] and Definition 11.2 in [12]. The non-negativity in Sn,k+ destroys the
smoothness of Sn,k and introduces some combinatorial features. Specifically, a
matrix X ∈ Sn,k+ means that each row of X has at most one positive element
and each column of X takes the unit norm. Problem (1.1) has captured a wide
variety of applications and interests, see [7,33,41,59,65] and the references
therein.

Due to the combinatorial features, solving (1.1) is generally NP-hard. Ac-
tually, problem (1.1) covers some classical NP-hard problems, such as the
problem of checking copositivity of a symmetric matrix [30], the quadratic
assignment problem and the more general optimization over permutation ma-
trices [33] as special cases. Besides, the constraint X ∈ Sn,k+ also appears in
the k-means clustering [14,18], the min-cut problem [51], etc. Several typical
instances of problem (1.1) are briefly reviewed as follows.

1.1 Applications

We mainly introduce three classes of problem (1.1). The first one is the so-
called trace minimization with nonnegative orthogonality constraints, formu-
lated as

min
X∈Sn,k

+

tr(X>MX), (1.2)

where M ∈ Rn×n is symmetric. If M = −AA> with A ∈ Rn×r being some
data matrix, (1.2) is known as nonnegative principal component analysis [63].
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If M = D −W with W being a similarity matrix corresponding to n objects
and D is a diagonal matrix having the same main diagonal as We, where e is
the all-one vector, (1.2) is known as the nonnegative Laplacian embedding [42].
If M = D−W +µR with some particularly chosen matrix R and nonnegative
regularization parameter µ, (1.2) is known as the discriminative nonnegative
spectral clustering [60].

The second one is the orthogonal nonnegative matrix factorization (ONMF)
[26]. Given the data matrix A ∈ Rn×r+ , ONMF solves

min
X∈Sn,k

+ ,Y ∈Rr×k
+

‖A−XY >‖2F. (1.3)

Based on the idea of approximating the data matrix A by its nonnegative
subspace projection, Yang and Oja [61] proposed the orthonormal projective
nonnegative matrix factorization (OPNMF) model as follows:

min
X∈Sn,k

+

‖A−XX>A‖2F. (1.4)

Models (1.3) and (1.4) are equivalent since the optimal solutions X̄ and Ȳ of
(1.3) satisfy the relation Ȳ = A>X̄. Yang and Oja [61] also proposed a special
OPNMF model by replacing the Frobenius norm in (1.4) by the Kullback-
Leibler divergence of A and XX>A. The orthogonal symmetric non-negative
matrix factorization models were considered in [37].

The third one is an efficient K-indicators model for data clustering proposed
by Chen et al. [20]. Let U ∈ Sn,k be the features matrix extracted from the
data matrix A ∈ Rn×r, the K-indicators model in [20] reads

min
X∈Sn,k

+ ,Y ∈Sk,k

‖UY −X‖2F s.t. ‖Xi,:‖0 = 1, i ∈ [n], (1.5)

where ‖Xi,:‖0 is the number of nonzero elements in the i-th row of X, namely,
Xi,:.

1.2 Related works

Optimization on the Stiefel manifold [1,56] has already been well explored.
However, a systematic study on problem (1.1) is lacking in the literature al-
beit it captures many applications. The existing works rarely considered the
general problem (1.1), and most of them focused on some special formulations
of (1.1). We briefly review some main existing methods. For solving the ONMF
model (1.3), motivated by the multiplicative update methods for nonnegative
matrix factorization, Ding et al. [26] and Yoo and Choi [62] gave two differ-
ent multiplicative update schemes. By establishing the equivalence of ONMF
with a weighted variant of spherical k-means, Pompoli et al. [50] proposed an
EM-like algorithm. Pompoli et al. [50] also designed an augmented Lagrangian
method via penalizing the nonnegative constraints but keeping the orthogonal-
ity constraints. Li et al. [39] and Wang et al. [54,55] considered the nonconvex
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penalty approach by keeping the nonnegative constraints. Some theoretical
properties of the nonconvex penalty model were investigated in [55] but the
results may not be applied directly to the general problem (1.1). Zhang et al.
[66] proposed a greedy orthogonal pivoting algorithm which can promote exact
orthogonality. For solving OPNMF model (1.4), Yang and Oja [61] designed a
specific multiplicative update method. Pan and Ng [49] introduced a convex
relaxation model, wherein the relaxed model is solved by the alternating direc-
tion method of multipliers. We remark that the multiplicative update scheme
for solving problem (1.3) or (1.4) highly depends on the specific formulation
of the objective function, so it is not easy to extend this class of methods to
solve the general problem (1.1). In addition, Chen et al. [20] proposed a semi-
convex relaxation model and construct a double-layered alternating projection
scheme to solve the K-indicators model (1.5). For the case where k = n, Wen
and Yin [56] designed an augmented Lagrangian method by penalizing the
nonnegative constraints but keeping the orthogonality constraints for solving
the quadratic assignment problem, and Jiang et al. [33] developed an efficient
`p regularization methods for optimization over permutation matrices.

1.3 Our contribution

Let [k] := {1, . . . , k}, r be an arbitrary positive integer and V ∈ Rk×r be a
constant matrix satisfying

‖V ‖F = 1 and ω := min
i,j∈[k]

[V V >]ij > 0. (1.6)

By well exploring the structure of Sn,k+ , we give a new characterization of Sn,k+

as
Sn,k+ = XV := OBn,k+ ∩ {X ∈ Rn×k : ‖XV ‖F = 1}, (1.7)

where OBn,k+ = {X ∈ Rn×k : ‖xj‖ = 1,xj ≥ 0, j ∈ [k]}, in which xj denotes
the j-th column of X. Based on this equivalent characterization, a reformula-
tion of problem (1.1) is given as

min
X∈OBn,k

+

f(X) s.t. ‖XV ‖F = 1. (1.8)

We show that the classical constraint qualifications (CQs) including cone-
continuity property (CCP) and Abadie CQ (ACQ) only hold when ‖X‖0 = n
while the weakest Guignard CQ (GCQ) always holds. The first- and second-
order optimality conditions are also given for problem (1.8). We then explore
the relationship between problems (1.1) and (1.8) and show that the two for-
mulations not only share the same minimizers but also the same optimality
conditions.

To motivate the exact penalty approach, we prove that a local error bound
with exponent 1/2 holds for Sn,k+ . Therefore, via keeping the simple constraints

OBn,k+ and penalizing the constraint ‖XV ‖F = 1, we propose a class of exact
penalty models:
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min
X∈OBn,k

+

{Pθ(X) := f(X) + σ (ζq(X) + ε)
p} , (1.9)

where ζq(X) := ‖XV ‖qF − 1, σ > 0 is the penalty parameter and p, q > 0 and
ε ≥ 0 are the model parameters. For simplicity of notation, throughout this
paper, we use θ := {σ, p, q, ε}. An important feature of (1.9) is that it allows
smooth penalty by choosing appropriate model parameters, such as choosing
p ≥ 1 and ε = 0. We show that if the penalty parameter σ is chosen to be larger
than a positive constant, the optimal solution of the exact penalty problem
(possibly a postprocessing will be invoked) is also optimal for the original
problem. A more general exact penalty model (3.9) is also discussed. Then
we develop a practical exact penalty algorithm which approximately solves a
series of penalty subproblems of the form (1.9) and performs a postprocessing
procedure to further improve the solution quality. We study the asymptotic
convergence of the penalty algorithm and show that any limit point of the
sequence generated by the algorithm is a weakly stationary point of (1.8). We
also provide some mild conditions under which the limit point is a stationary
point of (1.8). To solve the subproblem (1.9) efficiently, we develop a second-

order algorithm for solving optimization over OBn,k+ , which is of independent
interest.

The reason of using (1.8) rather than (1.1) is that it can better motivate us

to design the exact penalty approach. Simply speaking, the constraints OBn,k+

in (1.9) is separable with respect to the columns of X and only one simple
constraint ‖XV ‖F = 1 has to be penalized in our approach. The penalty term
in (1.9) is general and it reduces to be quadratic if we set p = 1, ε = 0 and
q = 2. Traditionally, penalizing the nonnegative constraints but keeping the
orthogonality constraints makes the constraints of the subproblem coupled,
while penalizing the orthogonality constraints but keeping the nonnegative
constraints will introduce quartic or nonsmooth penalty terms. Therefore, our
framework is quite different from traditional exact penalty approaches applied
to (1.1) directly.

We also discuss how to use the proposed penalty algorithmic framework to
solve a two block model

min
X∈Sn,k

+ ,Y ∈Y
f(X,Y ), (1.10)

where Y is some simple closed set of a finite-dimensional Euclidean space such
that the orthogonal projection onto the set Y is easy to compute. Finally, nu-
merical results on the problem of computing the orthogonal projection onto
Sn,k+ and the ONMF model on synthetic data, text clustering, hyperspectral
unmixing and the K-indicators model demonstrate the efficiency of our ap-
proach.
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1.4 Organization

The rest of this paper is organized as follows. A new characterization of Sn,k+

and the equivalent reformulation of problem (1.1) are given in section 2. We
propose the exact penalty model in section 3. A practical penalty algorithm
together with its convergence results and a second-order method for solving
the penalty subproblem is presented in section 4. A variety of numerical results
are presented in section 5. Finally, we make some concluding remarks in section
6.

1.5 Notations

For a positive integer n, we denote [n] := {1, . . . , n}. The j-th column (resp.
i-th row) of a matrix Z with appropriate dimension is denoted by Z:,j (resp.
Zi,:). For simplicity, we also denote zj := Z:,j . The number of nonzero elements
of Z is ‖Z‖0. The Frobenius norm of Z is ‖Z‖F while the 2-norm of a vector
z is ‖z‖. For z ∈ Rn, Diag(z) ∈ Rn×n is a diagonal matrix with the main
diagonal being z. For Z ∈ Rn×n, diag(Z) ∈ Rn is the main diagonal of Z.
For simplicity, we use Diag(Z) to denote Diag(diag(Z)). Let Off(Z) = Z −
Diag(Z). The inner product between two matrices A and B with the same
sizes is 〈A,B〉 = tr(A>B). The notation 0 ≤ A ⊥ B ≥ 0 means that A ≥ 0
and B ≥ 0 component-wisely and A ◦ B = 0, where ◦ means the Hadamard
product operation. Similarly, min(A,B) takes the minimum of matrices A and
B component-wisely. Let S be a nonempty, closed and possibly nonconvex set
of a finite-dimensional Euclidean space E . The orthogonal projection operator
is the set-valued mapping ΠS : E ⇒ E with ΠS(x) = {u ∈ S : ‖u − x‖E =
dist(x,S) := miny∈S ‖y − x‖E}, where ‖ · ‖E is the endowed norm on E . If S
is closed and convex, ΠS : E → E becomes a single-valued mapping and we
identify ΠS(x) = argminy∈S ‖y − x‖E .

2 Reformulation of problem (1.1)

Let f∗ and X ∗ be the optimal value and the optimal solution set of problem
(1.1) or (1.8), respectively. We define

sgn(Sn,k+ ) := {H ∈ {0, 1}n,k : H = sgn(X) with X ∈ Sn,k+ },

where sgn(X)ij = 1 if Xij > 0 and sgn(X)ij= 0 otherwise. The set sgn(X ∗)
is defined accordingly. For ease of reference, we state a blanket assumption on
problem (1.1) or (1.8).

Assumption 1 We assume that ∅ 6= sgn(Sn,k+ ) \ sgn(X ∗) := {H ∈ {0, 1}n,k :

H ∈ sgn(Sn,k+ ) but H 6∈ sgn(X ∗)}, namely, the constant χf := f̃∗ − f∗ > 0
with

f̃∗ = min
X∈Rn×k

f(X) s.t. X ∈ Sn,k+ , sgn(X) ∈ sgn(Sn,k+ ) \ sgn(X ∗).
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If Assumption 1 does not hold, then sgn(Sn,k+ ) \ sgn(X ∗) = ∅, which with

sgn(X ∗) ⊆ sgn(Sn,k+ ) tells sgn(Sn,k+ ) = sgn(X ∗). In this case, problem (1.1) or

(1.8) is trivial in the sense that any X ∈ Sn,k+ with ‖X‖0 = k is a global min-
imizer. However, we can verify that Assumption 1 holds for the test problems
in section 5 by randomly choosing some matrices with k nonzero elements in
Sn,k+ with different sign matrices and comparing their function values.

For X ∈ Sn,k+ , we define supp(X) := {(i, j) ∈ [n] × [k] : Xij 6= 0} and
Ω0(X) = {(i, j) ∈ [n]× [k] : Xij = 0}. The set Ω0(X) is split into two disjoint
sets as Ω′0(X) = {(i, j) ∈ Ω0(X) : ‖Xi,:‖ > 0} and Ω′′0 (X) = {(i, j) ∈ Ω0(X) :
‖Xi,:‖ = 0}.

We first give an equivalent algebraic characterization of Sn,k+ .

Lemma 2.1 For any X ∈ OBn,k+ and V ∈ Rk×r satisfying (1.6), there holds

that ‖XV ‖F ≥ 1, where the equality holds if and only if X ∈ Sn,k+ . Furthermore,
the characterization (1.7) holds.

Proof With ‖V ‖F = 1 and X ∈ OBn,k+ , we have

‖XV ‖2F − 1 =
〈
V V >, X>X − Ik

〉
=

∑
i,j∈[k],i6=j

[V V >]ij(x
>
i xj),

which with V V > > 0 implies that ‖XV ‖2F − 1 ≥ 0. The equality holds if and

only if x>i xj = 0 for i, j ∈ [k] and i 6= j, which with X ∈ OBn,k+ means that

X ∈ Sn,k+ . Hence (1.7) follows directly. The proof is completed. ut

With the equivalent characterization (1.7) of Sn,k+ and Lemma 2.3, we
reformulate problem (1.1) as problem (1.8). Throughout this paper, we mainly
focus on the formulation (1.8) since it gives us more insight to design our exact
penalty approach. We are now going to discuss the CQs and first- and second-
order optimality conditions (1.8) and investigate the relationship between the
two formulations (1.1) and (1.8).

2.1 Constraint qualifications of problem (1.8)

In this subsection, we investigate several CQs of problem (1.8) which are im-
portant to establish the optimality conditions. We mainly consider, GCQ,
which is the weakest CQ, ACQ and CCP, which is the weakest strict CQ [3].
Note that the following implications hold: CCP =⇒ ACQ =⇒ GCQ.

We first give the expression of the tangent cone TXV
(X) and linearized

cone LXV
(X) at X ∈ XV . Following the definition of linearized cone, we have

LXV
(X) =

{
D ∈ Rn×k :

x>j dj = 0 ∀j ∈ [k],
Dij ≥ 0 ∀(i, j) ∈ Ω0(X), 〈D,XV V >〉 = 0

}
. (2.1)
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With the choice of V and (1.7), 〈D,XV V >〉= 0 tells that d>i
∑
j∈[k](V V

>)jixj
= 0 which further implies that Dij = 0 if (i, j) ∈ Ω′0(X). This together with
the definitions of Ω′0(X) and Ω′′0 (X) and (2.1) yields

LXV
(X)

=

{
D ∈ Rn×k :

x>j dj = 0 ∀j ∈ [k], Dij = 0 ∀(i, j) ∈ Ω′0(X),
Dij ≥ 0 ∀(i, j) ∈ Ω′′0 (X)

}
.

(2.2)

The tangent cone at X is given as TXV
(X) = {D ∈ Rn×k : ∃αl > 0, αl →

0, Dl → D such that X l := X + αlDl ∈ XV }. Clearly we have TXV
(X) ⊆

LXV
(X). For each l and fixed i ∈ [n], there is at most one element of {(X l −

X)ij : (i, j) ∈ Ω′′0 (X)} being nonzero. Hence, any D ∈ TXV
(X) must satisfy

‖Di,:‖0 ≤ 1 if Xi,: = 0. On the other hand, for any D ∈ LXV
(X) with ‖Di,:‖0 ≤

1 if Xi,: = 0, choosing Dl ≡ D, αl = 1/l and X l as xlj = (xj + αldj)/‖xj +

αldj‖, it is clear that X l ∈ XV . This means that D ∈ TXV
(X). In summary,

we have

TXV
(X) = LXV

(X) ∩
{
D ∈ Rn×k : ‖Di,:‖0 ≤ 1 if Xi,: = 0 ∀i ∈ [n]

}
. (2.3)

We now discuss the CQs in the following lemma.

Lemma 2.2 Consider a feasible X̄ ∈ XV of (1.8). If k = 1, then the linear
independence constraint qualification (LICQ) holds at X̄; if 2 ≤ k ≤ n and
‖X̄‖0 = n, then CCP holds; if 2 ≤ k ≤ n and ‖X̄‖0 < n, then GCQ holds but
ACQ fails to hold.

Proof Case I. k = 1. It is straightforward to check that LICQ holds at X̄.
Case II. 2 ≤ k ≤ n and ‖X̄‖0 = n, namely, each row of X̄ has exactly one

positive element. In this case Ω′0(X̄) = Ω0(X̄) and Ω′′0 (X̄) = ∅. For a sequence
{X l} ⊂ XV and X l → X̄, we consider the closed convex cone (see equation
(2.11) in [3] for its definition), which is related to CCP, as

KXV
(X l)

=

X lDiag(Λ) + λX lV V > −
∑

(i,j)∈Ω0(X̄)

ZijEij : Λ ∈ Rk, λ ∈ R, Zij ∈ R+

 ,

where Eij ∈ Rn×k with (i, j) element being one while the remaining elements
being zeros. Since XV 3 X l → X̄ and Ω′′0 (X̄) = ∅, we have Ω0(X l) = Ω0(X̄)
and supp(X l) = supp(X̄) for sufficiently large l. Thus X lV V > = X lDiag(V V >)
+
∑

(i,j)∈Ω0(X̄) ZijEij for some Zij ∈ R+. By some easy calculations, one has

KXV
(X l) =

X lDiag(Λ) +
∑

(i,j)∈Ω0(X̄)

ZijEij : Λ ∈ Rk, Zij ∈ R

 (2.4)

for sufficiently large l, which with X l → X̄ implies that lim supXl→X̄ KXV
(X l)

⊂ KXV
(X̄). This means that CCP holds in this case. See Theorem 3.2 in [3].
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Case III. 2 ≤ k ≤ n and ‖X̄‖0 < n. In this case, Ω′′0 (X̄) 6= ∅. By definition,
it is easy to verify that the polar cones of T (X) and L(X) coincide, namely,

TXV
(X)◦ = LXV

(X)◦

=

{
D ∈ Rn×k :

Dij = λjXij , λj ∈ R ∀(i, j) ∈ supp(X),
Dij ≤ 0 ∀(i, j) ∈ Ω′′0 (X)

}
.

This means GCQ holds. Recalling Ω′′0 (X̄) 6= ∅, we know from (2.2) and (2.3)
that TXV

(X) ( LXV
(X), which tells that ACQ does not hold. The proof is

completed. ut

2.2 Optimality conditions of problem (1.8)

Since the oblique manifold OBn,k := {X ∈ Rn×k : ‖xj‖ = 1, j ∈ [k]} is
embedded in the Euclidean space Rn×k, we adopt the Riemannian metric on
the tangent space as the usual Euclidean metric. The Riemannian gradient
and Riemannian Hessian [1] are given as

grad f(X) = ∇f(X)−XDiag
(
X>∇f(X)

)
(2.5)

and

〈D1,Hess f(X)[D2]〉 =
〈
D1,∇2f(X)[D2]

〉
−
〈
D1, D2Diag

(
X>∇f(X)

)〉
,

(2.6)
where 〈·, ·〉 is the usual Euclidean inner product, D1 and D2 are in the tangent
space TOBn,k(X) := {D ∈ Rn×k : x>j dj = 0, j ∈ [k]}.

Theorem 2.1 (First-order necessary conditions) Suppose that X̄ ∈ XV
is a local minimizer of (1.8). Then X̄ is a stationary point of (1.8), namely,
−∇f(X̄) ∈ LXV

(X̄)◦, which can be further represented as

[grad f(X̄)]ij = 0 ∀(i, j) ∈ supp(X̄), (2.7a)

[∇f(X̄)]ij ≥ 0 ∀(i, j) ∈ Ω′′0 (X̄). (2.7b)

Proof Lemma 2.2 tells that GCQ holds at X̄. Thus, X̄ must be a stationary
point and −∇f(X̄) ∈ LXV

(X̄)◦ due to [9, Proposition 3.3.14]. Hence, there
exists Lagrange multiplier vector Λ̄ ∈ Rk corresponding to ‖xj‖ = 1, j ∈ [k],
Lagrange multiplier λ̄ ∈ R corresponding to ‖XV ‖F = 1 and Lagrange multi-
plier matrix Z̄ ∈ Rn×k+ corresponding to X ≥ 0 such that 0 ≤ X̄ ⊥ Z̄ ≥ 0 and
∇XL(X̄, Λ̄, Z̄, λ̄) = 0, namely,

∇f(X̄)− X̄Diag
(
Λ̄− λ̄diag(V V >)

)
− Z̄ + λ̄X̄Off(V V >) = 0. (2.8)

Here, the Lagrangian function is given as

L(X, Λ̄, Z̄, λ̄) = f(X)−
∑
j∈[k]

Λ̄j(‖xj‖ − 1)−
〈
Z̄,X

〉
+ λ̄(‖XV ‖F − 1). (2.9)
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Multiplying X̄> on both sides of (2.8) and then performing the diag(·) opera-
tor, with X̄>X̄ = Ik, we have Λ̄−λ̄diag(V V >) = diag(X̄>∇f(X̄)), which again
with (2.8) and (2.5) implies that Z̄ = grad f(X̄)+λ̄X̄Off(V V >). Recalling X̄ ∈
XV , it is easy to verify that [X̄Off(V V >)]ij = 0, ∀(i, j) ∈ supp(X̄) ∪ Ω′′0 (X̄),
[X̄Off(V V >)]ij > 0 ∀(i, j) ∈ Ω′0(X̄) and [grad f(X̄)]ij= [∇f(X̄)]ij , ∀(i, j) ∈
Ω′0(X̄) ∪Ω′′0 (X̄). Hence, we have

Z̄ij =


[grad f(X̄)]ij (i, j) ∈ supp(X̄),

[∇f(X̄)]ij + λ̄[X̄Off(V V >)]ij (i, j) ∈ Ω′0(X̄),

[∇f(X̄)]ij (i, j) ∈ Ω′′0 (X̄).

(2.10)

Besides, we can always choose λ̄ ≥ λ(X̄) := max(i.j)∈Ω′0(X̄)
−[∇f(X̄)]ij

[X̄Off(V V >)]ij
such

that Z̄ij ≥ 0, ∀(i, j) ∈ Ω′0(X̄). Thus we arrive at the equivalent formulation
(2.7). ut

We borrow the idea from mathematical programs with complementarity
constraints, see [2, Definition 2.2] for instance, to define a weakly stationary
point X̄ of problem (1.8).

Definition 1 We call X̄ ∈ XV a weakly stationary point of problem (1.8) if
(2.7a) holds at X̄.

Note that a weakly stationary point X̄ has no requirements on the sign of
the Lagrange multiplier corresponding to the constraint Xij ≥ 0 with (i, j) ∈
Ω′′0 (X̄). Such multiplier is equal to [∇f(X̄)]ij ; see the third case in (2.10).
Actually, similar to the proof of Theorem 2.1, one can verify that a weakly
stationary point X̄ is a stationary point of the following relaxed problem

min
X∈Rn×k

f(X)

s.t. ‖XV ‖F = 1, ‖xj‖ = 1, j ∈ [k],

Xij ≥ 0 ∀(i, j) ∈ supp(X̄) ∪Ω′0(X̄),

Xij = 0 ∀(i, j) ∈ Ω′′0 (X̄).

Due to page limit, we omit the details here. In the case when Ω′′0 (X̄) = ∅,
namely, ‖X̄‖0 = n or ∇f(X̄) ≥ 0 always holds, then the weakly stationary
point X̄ becomes a stationary point of problem (1.8).

We now assume that f in problem (1.8) is twice continuously differentiable.
The set of all sequential null constraint directions at a stationary point X̄ (see
Definition 8.3.1 in [53]) of problem (1.8) is given as

NXV
(X̄, Z̄) =

{
D ∈ Rn×k :

X l := X̄ + αlDl ∈ XV , αl > 0, αl → 0, Dl → D,
X l
ij = 0 if Z̄ij > 0, X l

ij ≥ 0 if Z̄ij = 0

}
.

Notice that NXV
(X̄, Z̄) ⊆ TXV

(X̄), with (2.3), (2.7) and (2.10), and we have

NXV
(X̄, Z̄) = TXV

(X̄) ∩ D(X̄), (2.11)
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where D(X̄) =
{
D ∈ Rn×k : Dij = 0 if [∇f(X̄)]ij > 0 ∀(i, j) ∈ Ω′′0 (X̄)

}
. Since

NXV
is independent of Z, we write NXV

(X̄, Z̄) as NXV
(X̄) for short. Similarly,

we have the set of all linearized null constraint directions at X̄, also known as
the critical cone, CXV

(X̄) = LXV
(X̄)∩{D ∈ Rn×k : Dij = 0 if Z̄ij > 0, (i, j) ∈

Ω0(X̄)}. Using (2.2), (2.7) and (2.10), we further have

CXV
(X̄) = LXV

(X̄) ∩ D(X̄). (2.12)

We are now ready to establish the second-order optimality conditions as
follows.

Theorem 2.2 (Second-order necessary conditions) If X̄ ∈ XV is a local
minimizer of problem (1.8), then〈

D,Hess f(X̄)[D]
〉
≥ 0, for all D ∈ NXV

(X̄). (2.13)

Proof The proof of Theorem 2.1 tells Λ̄− λ̄diag(V V >) = diag(X̄>∇f(X̄)). By
[53, Theorem 8.3.3] and the fact that X̄ is a local minimizer of problem (1.8),
we have from (2.9) and (2.6) that〈

D,∇2
XXL(X̄, Λ̄, Z̄, λ̄)[D]

〉
=
〈
D,Hess f(X̄)[D] + λ̄DOff(V V >)

〉
≥ 0,

(2.14)
for all D ∈ NXV

(X̄). For D ∈ NXV
(X̄), we know from (2.3) and (2.11) that

D>D must be diagonal. Thus,〈
D,DOff(V V >)

〉
= tr(D>DOff(V V >)) = 0, (2.15)

which with (2.14) implies (2.13). The proof is completed. ut

Theorem 2.3 (Second-order sufficient conditions) Suppose that X̄ ∈
XV is a stationary point of problem (1.8) and that there exists a Lagrange
multiplier λ̄ associated to ‖XV ‖F = 1 with λ̄ ≥ λ(X̄) such that〈

D,Hess f(X̄)[D] + λ̄DOff(V V >)
〉
> 0, for all D ∈ CXV

(X̄) \ {0}. (2.16)

Then X̄ is a strict local minimizer of (1.8).

Proof It follows directly from, for instance [53, Theorems 8.3.4]. ut

Remark 2.1 Consider the case when Ω′′0 (X̄) = ∅, namely, ‖X̄‖0 = n. Fol-
lowing from (2.11), (2.12) and TXV

(X̄) = LXV
(X̄), we have NXV

(X̄) =
CXV

(X̄) = LXV
(X̄). Recalling (2.15), we thus know that (2.13) and (2.16)

become
〈
D,Hess f(X̄)[D]

〉
≥ 0 ∀D ∈ LXV

(X̄) and
〈
D,Hess f(X̄)[D]

〉
> 0

∀D ∈ LXV
(X̄)/{0}, respectively.
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2.3 Relationship between problems (1.1) and (1.8)

It is clear that formulations (1.1) and (1.8) share the same minimizers. More-
over, the two problems share the same stationary points.

Lemma 2.3 (i) The statements in Lemma 2.2 hold for problem (1.1); (ii)
Problems (1.1) and (1.8) share the same minimizers and optimality conditions.

Proof We first claim that that problems (1.1) and (1.8) have the same tan-
gent and linearized cones. Obviously, we know TSn,k

+
(X) = TXV

(X). For the

linearized cone, we have

LSn,k
+

(X) = {D ∈ Rn×k : X>D +D>X = 0, Dij ≥ 0 ∀(i, j) ∈ Ω0(X)}.

The linear equation above tells that x>l dj + d>l xj = 0 ∀l, j ∈ [k]. With X ∈
Sn,k+ and Dij ≥ 0 ∀(i, j) ∈ Ω0(X), we further know that x>l dj ≥ 0. Therefore,
we have x>l dj = 0 ∀l, j ∈ [k] and thus x>j dj = 0 ∀j ∈ [k] and Dij = 0 ∀(i, j) ∈
Ω′0(X). This means that LSn,k

+
(X) ⊆ LXV

(X). On the other hand, it is easy

to see that D ∈ LXV
(X) must imply that D ∈ LSn,k

+
(X). Hence, we have

LSn,k
+

(X) = LXV
(X). Besides, by some easy calculations, the cones KSn,k

+
(X)

and KXV
(X) coincide, see (2.4) for the definition. This completes the proof of

(i).
The proof of (ii) can be verified since TXV

(X̄) = TSn,k
+

(X̄) and NSn,k
+

(X̄) =

NXV
(X̄) and CSn,k

+
(X̄) = CXV

(X̄). The details are omitted to save space. ut

Based on the above lemma, problem (1.1) can be equivalently written as
problem (1.8).

3 An exact penalty approach

As pointed by [16], the exact penalty methods are efficient for solving difficulty
nonlinear programs especially when the standard CQs are not satisfied, see
the references therein for some successful examples.We first present the exact
penalty properties. Let Xθ be a global minimizer of (1.9) and denote XR

θ as the
matrix returned by Procedure 1 in section 3.1 with an input Xθ. The solution
quality can be further improved by solving an auxiliary problem constructed
from XR

θ as

X♦θ = arg min
X∈OBn,k

+

f(X) s.t. Xij = 0 if (i, j) 6∈ supp(XR
θ ). (3.1)

Let Lf ≥ 0 be the Lipschitz constant of f , namely,

|f(X1)− f(X2)| ≤ Lf‖X1 −X2‖F, ∀X1, X2 ∈ OBn,k+ . (3.2)

Such Lf exists since the convex hull of OBn,k+ is compact.
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The next theorem shows that if σ is chosen sufficiently large but finite, the
optimal sign matrix can be obtained from XR

θ , thus X♦θ is also a solution of
(1.8).

Theorem 3.1 Under Assumption 1, we choose

σ > %2p
q Lfν, (3.3)

where ν = (
√

2k)1−2p if 0 < p ≤ 1/2 and ε = 0, ν = (κf )1−2p if p >

1/2 and ε = 0, and ν =
√

2k
(κf )2p−(%q

√
ε)2p

if p > 0 and 0 < ε < κ2
f/%

2
q. Here

κf = χf/Lf and the constant %q is defined later in Lemma 3.1. Then it holds

that (i) sgn(XR
θ ) ∈ sgn(X ∗); (ii) X♦θ is a global minimizer of the problem (1.8).

Remark 3.1 We further explain Theorem 3.1 on the smooth penalty function
in (1.9). There are two main ingredients for establishing the exact penalty
property: the error bound estimation (3.4) and the “combinatorial nature” of

problem (1.8). The latter one is the key and it means that each X ∈ Sn,k+

corresponds to a unique 0-1 matrix sgn(X), and the cardinality of sgn(Sn,k+ )
is finite. Thus, in nontrivial case, the optimal sgn(X ∗) and the non-optimal

sgn(Sn,k+ ) \ sgn(X ∗) are entirely different in the sense that the minimal f over

them have positive gap, namely, f̃∗ > f∗, see Assumption 1. Therefore, once
we find a matrix X ∈ Sn,k+ with a function value smaller than f̃∗ but probably
still larger than f∗, the job is almost done since one element sgn(X) ∈ sgn(X ∗)
is already in hand and a solution of the auxiliary problem (3.1) is enough to
recover the optimal solution of (1.8).

Remark 3.2 Consider the case when Xθ is only a local minimizer of the sub-
problem (1.9). If X�θ is a local minimizer of the subproblem (1.9) or ‖X�θ ‖0 = n,
we can say that X�θ is a local minimizer of the problem (1.8). Otherwise, it is
still not clear whether X�θ is a local minimizer of the problem (1.8). However,
our practical algorithm, namely, Algorithm 2, can return a local minimizer of
the problem (1.8) in finite steps provided that the solution of each subproblem
(1.9) is a local minimizer. See Remark 4.3 and Corollary 4.2 for details.

We next investigate the error bound for Sn,k+ in section 3.1, then give the
proof of Theorem 3.1 via establishing a class of general exact penalty models
in section 3.2.

3.1 Error bound for Sn,k+

It is well known that the error bound plays a key role in establishing the
exact penalty results, see [43] for more discussion. By [45, Theorem 16.7],

we know that there exist positive scalars ρ and γ such that dist(X,Sn,k+ ) ≤
ρ(ζ2(X))γ ,∀X ∈ OBn,k+ . However, the exponent γ is not immediately clear for
our case. We next show that the exponent is γ = 1/2. Our key step is based
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on rounding Procedure 1. The basic idea for rounding is simply keeping one
largest element in each row and setting the remaining elements to be zeros,
and then doing normalization such that each column takes the unit norm.
Here, we use the convention that 0/0 = 0.

Procedure 1: A procedure for rounding X ∈ OBn,k+ to be XR ∈ Sn,k+ .

1 Initialization: Set H ∈ Rn×k as a zero matrix.
2 For i ∈ [n], set Hij∗ = 1 with j∗ is the smallest index in the set argmaxj∈[k]Xij .

3 Set the j-th column of XR as xR
j =

xj◦hj

‖xj◦hj‖
, j ∈ [k].

4 Reset XR = In,k if XR 6∈ Sn,k+ .

Lemma 3.1 For any X ∈ OBn,k+ , we have XR ∈ Sn,k+ and

dist(X,Sn,k+ ) ≤ ‖XR −X‖F ≤ %q
√
ζq(X), (3.4)

where %q = (2k%̃q/ω)
1
2 with ω defined in (1.6), and %̃q is 1 if q ≥ 2, and is

√
k+1
q if 1 ≤ q < 2, and is 2

√
k(
√
k+1)

q(q+1) if 0 < q ≤ 1.

Proof We first focus on q = 2. Recalling ‖V ‖F = 1 and ω > 0, we have

ζ2(X) =
∑
j∈[k]

x>j

( ∑
l∈[k]\{j}

(V V >)jlxl

)
≥ ω

∑
j∈[k]

(
x>j

∑
l∈[k]\{j}

xl

)
. (3.5)

The proof of (3.4) for q = 2 is split into two cases.

Case I. ζ2(X) ≥ ω. Since XR ∈ Sn,k+ and X ∈ OBn,k+ , we obtain ‖XR‖2F =

‖X‖2F = k and thus ‖X−XR‖2F ≤ 2k. Hence, there holds ‖X−XR‖F ≤
√

2k ≤
%
√
ζ2(X).
Case II. ζ2(X) < ω. First, we prove that XR generated by Line 3 lies in

Sn,k+ . Clearly, it follows from Line 2 that each row of H has at most one element
being 1. We now claim that each column of H has at least one element being
1. Otherwise, without loss of generality, we assume h1 = 0. This together with
Line 2 implies that Xi1 ≤ maxl∈[k]\{1}Xil, ∀i ∈ [n], which with (3.5) tells that
ζ2(X) ≥ ω

∑
i∈[n]Xi1 maxl∈[k]\{j}Xil ≥ ω

∑
i∈[n]X

2
i1 = ω‖x1‖2 = ω. This

gives a contradiction to ζ2(X) < ω. The similar arguments tell that xj ◦hj 6= 0
for j ∈ [k]. In summary, we know that ‖hj‖0 ≥ 1,∀j ∈ [k] and h>i hj =
0,∀i, j ∈ [k] and i 6= j and

xj ◦ hj 6= 0, (xj ◦ hj)
>(xj ◦ (e− hj)) = 0, ∀j ∈ [k]. (3.6)

Therefore, using the construction of XR in Line 3, we must have XR ∈ Sn,k+ .
Using Line 3, (3.6), and the decomposition xj = xj ◦ hj + xj ◦ (e − hj), we
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obtain ‖xj − xR
j ‖2 ≤ 2‖xj ◦ (e− hj)‖2. With Line 2, we have

‖xj ◦ (e− hj)‖2 =
∑

i∈[n],Hij=0

X2
ij ≤

∑
i∈[n]

Xij max
l∈[k]\{j}

Xil ≤ x>j
∑

l∈[k]\{j}

xl,

which with (3.5) implies ‖X−XR‖2F =
∑
j∈[k] ‖xj−xR

j ‖2 ≤ 2
∑
j∈[k] ‖xj ◦ (e−

hj)‖2 ≤ 2kζ2(X)/ω ≤ %2ζ2(X). Combining the above two cases gives (3.4) for
q = 2.

It is ready to prove (3.4) for general q. For X ∈ OBn,k+ , there holds that

1 ≤ ‖XV ‖F ≤ ‖X‖2‖V ‖F ≤
√
k. We consider three cases. Case I. q ∈ [2,+∞).

It is easy to have ζq(X) ≥ ζ2(X). Case II. q ∈ [1, 2). We first have ζ1(X) =
ζ2(X)
‖XV ‖F+1 ≥

ζ2(X)√
k+1

. Then we have ζq(X) = (1 + ζ1(X))q − 1 ≥ qζ1(X) ≥
q√
k+1

ζ2(X), where the first inequality uses the fact that (1 + a)q − 1 > qa for

a ∈ (0,+∞) and q ∈ [1, 2). Case III. q ∈ (0, 1). Since ‖XV ‖F = 1 + ζ1(X) ≥
1+ ζ1(X)√

k
, we have ζq(X) ≥

(
1 + ζ1(X)√

k

)q
−1 ≥ q(q+1)

2
√
k
ζ1(X) ≥ q(q+1)

2
√
k(
√
k+1)

ζ2(X),

where the second inequality uses the fact that (1 + a)q − 1 ≥ q(q+1)
2 a for a ∈

(0, 1), q ∈ (0, 1). Combining the above three cases, we have ζ2(X) ≤ %̃qζq(X),
which with (3.4) for q = 2 implies that (3.4) holds for general q. ut

We remark that the order 1/2 in the local error bound (3.4) is the best.

Example 3.1 Take q = 2 and V = 1/
√

2
[
1 1
]>

. Let 0 < ε� 1. Consider X ∈
R3×2 with X11 = X22 =

√
1− ε2 − ε, X12 = X21 = ε, X31 = X32 =

√
ε and

X̂ ∈ R3×2 with X̂11 =
√

(1− ε2 − ε)/(1− ε2), X̂22 = 1, X̂31 =
√
ε/(1− ε2),

X̂12 = X̂21 = X̂32 = 0. It is easy to see that X̂ ∈ ΠSn,k
+

(X) and dist(X,Sn,k+ ) =

‖X̂ −X‖F ≈
√
ε while ζ2(X) = x>1 x2 ≈ 3ε.

3.2 A general exact penalty model

Let 0 ≤ Q0 < κf = χf/Lf be a constant and Ψ : [Q0,+∞) → R+ be strictly

increasing. Choose Q : OBn,k+ → R+ such that

Q(X) ≥ %q
√
ζq(X) ∀X ∈ OBn,k+ , (3.7a)

Q(X) ≡ Q0 ∀X ∈ Sn,k+ , Q(X) ≥ Q0 ∀X ∈ OBn,k+ . (3.7b)

Note that (3.7a) and (3.4) imply that

Q(X) ≥ ‖XR −X‖F ≥ dist(X,Sn,k+ ), ∀X ∈ OBn,k+ . (3.8)

Our general penalty model, including (1.9) as a special case, is given as

min
X∈OBn,k

+

f(X) + σΨ(Q(X)). (3.9)

Let Xσ,Ψ be a global minimizer of (3.9), and XR
σ,Ψ be the matrix returned by

Procedure 1 with an input Xσ,Ψ .
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Lemma 3.2 For the penalty model (3.9), it holds

f(X∗) ≤ f(XR
σ,Ψ ) ≤ f(X∗) + LfΥσ,Q0,Ψ , (3.10)

where X∗ is a global minimizer of problem (1.8) and

Υσ,Q0,Ψ := max
z∈R

z s.t. Ψ(z) ≤ Ψ(Q0) +
Lf
σ
z, 0 ≤ z ≤ Ψ−1

(
Ψ(Q0) +

√
2kLf/σ

)
.

(3.11)

Proof Using the Lipschitz continuity of f in (3.2), we have

f(XR
σ,Ψ ) ≤ f(Xσ,Ψ ) + Lf‖XR

σ,Ψ −Xσ,Ψ‖F ≤ f(Xσ,Ψ ) + LfQ(Xσ,Ψ ), (3.12)

where the second inequality is due to (3.8). By the optimality of Xσ,Ψ , we
obtain

f(Xσ,Ψ ) + σΨ (Q(Xσ,Ψ )) ≤ f(X) + σΨ (Q(X)) = f(X) + σΨ(Q0) ∀X ∈ XV .
(3.13)

Taking X = X∗ in (3.13) and using the strictly increasing property of Ψ and
(3.7b), we have f(Xσ,Ψ ) ≤ f(X∗). Hence, we know from (3.12) that

f(X∗) ≤ f(XR
σ,Ψ ) ≤ f(X∗) + LfQ(Xσ,Ψ ). (3.14)

The remaining is to estimate Q(Xσ,Ψ ). Taking X to be XR
σ,Ψ in (3.13), we

get

Ψ (Q(Xσ,Ψ )) ≤ Ψ(Q0) +
f(XR

σ,Ψ )− f(Xσ,Ψ )

σ
≤ Ψ(Q0) +

Lf‖XR
σ,Ψ −Xσ,Ψ‖F
σ

,

(3.15)

where the second inequality is due to (3.2). Since Xσ,Ψ ∈ OBn,k+ , it is easy to

see that ‖XR
σ,Ψ−Xσ,Ψ‖F ≤

√
2k. Thus, we have from (3.15) that Ψ (Q(Xσ,Ψ )) ≤

Ψ(Q0) +
√

2kLf/σ. Since Ψ is strictly increasing, we obtain

Q(Xσ,Ψ ) ≤ Ψ−1
(
Ψ(Q0) +

√
2kLf/σ

)
. (3.16)

On the other hand, recalling (3.8), we have from (3.15) that Ψ (Q(Xσ,Ψ )) ≤
Ψ(Q0) +

Lf

σ Q(Xσ,Ψ ), which together with (3.16) and (3.14) establishes (3.10).
The proof is completed. ut

Let X♦σ,Ψ be a global minimizer of the problem (3.1) with XR
θ = XR

σ,Ψ . We
now have the following exact penalty property.

Theorem 3.2 Suppose Assumption 1 holds and σ > 0 is chosen such that

Υσ,Q0,Ψ < κf . (3.17)

Then it holds that (i) sgn(XR
σ,Ψ ) ∈ sgn(X ∗); (ii) X♦σ,Ψ is a global minimizer of

problem (1.8), namely, f(X♦σ,Ψ ) = f(X∗).
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Proof We first claim that sgn(XR
σ,Ψ ) ∈ sgn(X ∗). Otherwise, it follows from

Assumption 1 that f(XR
σ,Ψ ) ≥ f(X∗) + χf . By using (3.10) and κf = χf/Lf ,

we thus have Υσ,Q0,Ψ ≥ κf , which makes a contradiction to (3.17). Using

sgn(XR
σ,Ψ ) ∈ sgn(X ∗) and the definition of X♦σ,Ψ , see problem (3.1) with XR

θ

being XR
σ,Ψ , we know that X♦σ,Ψ is a global minimizer of problem (1.8). The

proof is completed. ut

It follows from (3.11) that Υσ,Q0,Ψ ≤ Ψ−1
(
Ψ(Q0) +

√
2kLf/σ

)
. To make

(3.17) hold, we can choose 0 ≤ Q0 < κf and σ >
√

2kLf
(
Ψ(κf )− Ψ(Q0)

)−1
.

For some particular Ψ(·), we next show that this lower bound can be improved.

Proof of Theorem 3.1 Let us chooseQ(X) = %q
√
ζq(X) + ε and Ψ(z) = (z/%q)

2p

with 0 ≤ ε < κ2
f/%

2
q and Q0 = %q

√
ε. By Theorem 3.2, we only need to prove

Υσ,Q0,Ψ < κf if σ > %2p
q Lfν. We consider three cases.

Case I. ε = 0 and 0 < p ≤ 1/2. Since σ > %2p
q Lfν = (

√
2k)1−2p%2p

q Lf ,

we have from Ψ(z) ≤ Ψ(Q0) +
Lf

σ z that z = 0 or z >
√

2k and have from

0 ≤ z ≤ Ψ−1(Ψ(Q0) +
√

2kLf/σ) that 0 ≤ z <
√

2k. By definition (3.11), we
have Υσ,Q0,Ψ = 0 < κf .

Case II. ε = 0 and p > 1/2. Using the definition of χf in Assumption 1,

(3.2) and ‖X − Y ‖F ≤
√

2k for X,Y ∈ OBn,k+ , we have χf ≤
√

2kLf , i.e.,

κf ≤
√

2k. By σ > %2p
q Lfν = (κf )1−2p%2p

q Lf , it is easy to obtain from (3.11)
that Υσ,Q0,Ψ < κf .

Case III. 0 < ε < κ2
f/%

2
q, p > 0. We thus have %2p

q Lfν =
√

2kLf
(
Ψ(κf ) −

Ψ(Q0)
)−1

. Thus, we have Υσ,Q0,Ψ < κf by (3.11). The proof is completed. ut

Remark 3.3 The threshold %2p
q Lfν of the exact penalty parameter depends

on the parameter κf = χf/Lf , except that for model (1.9) with p ∈ (0, 1/2]
and ε = 0, %2p

q Lfν is independent of κf but the corresponding penalty term
is nonsmooth. Usually, estimating Lf is possible for the instances such as the
orthogonal nonnegative matrix factorization models (1.3) and (1.4). However,
computing χf is hard since it needs to know f∗ in advance and solves an
optimization problem. In fact, calculating a threshold of the exact penalty
parameter is not always easy, see [8,44,28,21] for some convex and nonconvex
examples. In practice, we simply solve approximately a series of problems (1.9)
with an increasing σ; see section 4 for a detailed description.

A few more remarks on the exact penalty model (1.9) are listed in or-
der. (i) To make the objective function in problem (1.9) smooth, we need to
choose ε ∈ (0, κ2

f/%
2
q) for p ∈ (0, 1). As for p ∈ [1,+∞), we can simply choose

ε = 0. (ii) By directly using the results in [21, Lemma 3.1], we can show that
a global minimizer of (1.9) with p = 1/2 and ε = 0 is also a global minimizer
of (1.8) under the condition that σ > %qLf . However, the results therein do
not apply to the general Ψ(·) and Q0. By contrast, our results in Theorem
3.2 or Theorem 3.1 allow more flexible choices of Ψ(·) and Q0 or p and ε.
(iii) The multiple spherical constraints in model (1.9) are not only important
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to establish the exact penalty property but also make model (1.9) working
over a compact set. It should be mentioned that for a variant of ONMF prob-
lem (1.3), [55] proposed an exact penalty model without keeping the multiple
spherical constraints. However, their results only hold on this special formula-
tion (1.3) rather than the general problem (1.1). Besides, Gao et al. [29] used
a customized augmented Lagrangian type method to solve optimization with
orthogonality constraints but without the nonnegative constraints. The mul-
tiple spherical constraints are also kept therein to make their method more
robust. However, their method can not be directly used to solve problem (1.1)
or (1.8) due to the nonnegative constraints, which make the problem totally
different.

4 A practical exact penalty algorithm

We now focus on the exact penalty model (1.9). A practical exact penalty
method, named as EP4Orth+, is presented in Algorithm 2. We adopt the way
in [21] to choose a feasible initial point X feas. In each iteration, the penalty
parameter σ is dynamically increased and we find an approximate station-
ary point Xt satisfying the approximate first-order optimality condition (4.1)
and the sufficient descent condition (4.2). Such Xt can be found in a finite
number of iterations; see section 4.1 for more discussion. To obtain an exact
orthogonal nonnegative matrix and improve the solution quality, we perform
a postprocessing procedure at the end of the algorithm.

Algorithm 2: EP4Orth+: A practical exact penalty method for solv-
ing (1.8)

1 Initialization: Choose an initial point X0 ∈ OBn,k+ , Xfeas ∈ Sn,k+ and p, q > 0.

Choose a positive integer tmax and tolfeas, εgrad0 , εgradmin ∈ [0, 1), σ0 > 0 and γ2 > 1.

Choose ε0 > 0, γ1 = γ
−1/p
2 if p ∈ (0, 1) and set ε0 = 0, γ1 = 1 if p ≥ 1. Choose

η ∈ (0, γ
−1/p
2 ) and set X0,0 = X0.

2 for t = 0, 1, 2, . . . , tmax do
3 If Pσt,p,q,εt (Xt,0) > Pσt,p,q,εt (Xfeas), set Xt,0 = Xfeas.

4 Starting from Xt,0, we find an approximate stationary point Xt of (1.9) with
θ = θt := {σt, p, q, εt} such that

‖min(Xt, gradPθt (Xt))‖F ≤ εgradt , (4.1)

Pθt (Xt) ≤ Pθt (Xt,0). (4.2)

5 if ‖XtV ‖2F − 1 ≤ tolfeas then
6 break
7 end

8 Set εt+1 = γ1εt, σt+1 = γ2σt, ε
grad
t+1 = max{ηεgradt , εgradmin } and Xt+1,0 = Xt.

9 end

10 Set XR = (Xt)R using Procedure 1 and solve (3.1) approximately with XR
θ = XR

to get X♦ such that f(X♦) ≤ f(XR). // Postprocessing
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It should be mentioned that the postprocessing procedure is always easy
to perform. Consider a separable function f(X) =

∑k
j=1 fj(xj), where fj :

Rn → R. Let xR
j be the j-th column of XR. The corresponding problem (3.1)

is split to the form of

min
xj∈Rn

fj(xj) s.t. x>j xj = 1,xj ≥ 0, (xj)i = 0 if i 6∈ supp(xR
j ).

(i) If f(X) is −〈C,X〉 as in the K-indicators model (1.5) with fixed Y , the j-th
column of the global minimizer X♦ is x♦

j = ΠOBn,k
+

(cj ◦hR
j ), where hR

j is the j-

th column of sgn(XR). (ii) Consider f(X) = −tr(X>MX) with M = M> ≥ 0
in the ONMF models (1.3) and (1.4). Then (x♦

j )i = 0 if i 6∈ supp(xR
j ) and

(x♦
j )supp(xR

j ) is the dominant eigenvector of Mj , which is a principal submatrix

of M whose rows and columns indices are both supp(xR
j ). Since Mj ≥ 0, there

always exists a nonnegative dominant eigenvector due to Perron-Frobenius
theorem, see [19, Theorem 1.1]. When f is a general smooth function, we
can use the nonconvex gradient projection method to get an approximate
stationary point X♦ with f(X♦) ≤ f(XR).

One can also solve (1.8) by the augmented Lagrangian method, and the ob-
jective function in the subproblem (1.9) becomes Lσ,λ(X) := f(X)+λ(‖XV ‖F−
1) + σ(‖XV ‖F − 1)2 and the Lagrange multiplier is updated by λt+1 = λt +
σ(‖XtV ‖F − 1). Based on our preliminary numerical tests, we find that it has
a similar performance to our Algorithm 2 and sometimes the augmented La-
grangian method can return a feasible solution quickly but with worse function
values. Therefore, we focus on the exact penalty approach in this paper. More
interestingly, the augumented Lagrangian function Lσ,λ(X) has some close
connections with our penalty approach. Note that we can always choose a non-
negative Lagrange multiplier because ‖XV ‖F = 1 is equivalent to ‖XV ‖F ≤ 1

for X ∈ OBn,k+ ; see Lemma 2.1. Choosing λ = 2σ > 0, then Lσ,λ(X) be-
comes Pθ(X) in (1.9) with q = 2 and p = 1; choosing a fixed λ ≥ 0, then
Lσ,λ(X) falls into a special instance of (3.9) with Q(X) = %q

√
‖XV ‖F − 1

and Ψ(t) = λ(t/%q)
2 + σ(t/%q)

4, and the threshold penalty value in Theorem
3.2 can be estimated accordingly.

We next discuss how to solve the subproblem (1.9) in section 4.1 and then
give the convergence analysis of Algorithm 2 in section 4.2.

4.1 Optimization over OBn,k+

The penalty subproblem (1.9) with suitable choices of parameters is a special

instance of optimization over OBn,k+ , namely,

min
X∈OBn,k

+

h(X), (4.3)

where h : Rn×k → R is continuously differentiable. Note that LICQ holds at
any X ∈ OBn,k+ , namely, X satisfying the constraints ‖xj‖ = 1,xj ≥ 0, j ∈ [k].
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Similar to the discussion in section 2.2, we establish the optimality conditions
for (4.3). To save the space, we omit some details here.

Theorem 4.1 (First-order necessary conditions) If X̄ ∈ OBn,k+ is a local
minimizer of problem (4.3), then X̄ is a stationary point, namely, 0 ≤ X̄ ⊥
gradh(X̄) ≥ 0, which is equivalent to min(X̄, gradh(X̄)) = 0.

Remark 4.1 The two first-order necessary conditions in Theorem 4.1 are fur-
ther equivalent to

ΠL
OBn,k

+

(X̄)(−gradh(X̄)) = ΠT(X̄)(−gradh(X̄)) = 0,

where LOBn,k
+

(X̄) = {D ∈ Rn×k : x̄>j dj = 0, Dij ≥ 0 if X̄ij = 0} and

T(X̄) = {D ∈ Rn×k : x̄>j dj = 0, x̄j + dj ≥ 0}.

Theorem 4.2 (Second-order necessary and sufficient conditions)

i) If X̄ is a local minimizer of problem (4.3) then
〈
D,Hessh(X̄)[D]

〉
≥

0, ∀D ∈ COBn,k
+

(X̄), where Hessh(X̄)[D] is obtained by specializing (2.6)

to h(X̄) and the critical cone COBn,k
+

(X̄) = LOBn,k
+

(X̄) ∩ {D ∈ Rn×k :

Dij = 0 if [∇f(X̄)]ij > 0 and X̄ij = 0}.
ii) If X̄ is a stationary point of (4.3) and

〈
D,Hessh(X̄)[D]

〉
> 0, ∀D ∈

COBn,k
+

(X̄)/{0}, then X̄ is a strict local minimizer of (4.3).

We first introduce a first-order nonconvex gradient projection method:

X l+1 ∈ ΠOBn,k
+

(X l − αl∇h(X l)), αl > 0, (4.4)

where the stepsize αl can be determined by either monotone or non-monotone
linesearch, see [64] and the references therein. Note that ΠOBn,k

+
(·) is explicitly

available and can be computed in O(nk) flops, one can refer [65] for instance.

Since OBn,k+ is compact, by Theorem 3.1 in [58], any limit point of the sequence
{X l} generated by (4.4) is a stationary point of (4.3). If further h is a KL
function, by Theorem 5.3 in [5], the sequence {X l} converges to a stationary
point of (4.3) for αl ∈ (α, 1

Lh
− α) where α ∈ (0, 1

2Lh
) and Lh is the Lipschitz

constant of ∇h on Rn×k.
We next adopt the adaptive quadratically regularized Newton method [31,

32] to solve (4.3) in order to accelerate the convergence of the first-order
nonconvex gradient projection method. At the l-th iteration, we construct
a quadratically regularized subproblem as

min
X∈OBn,k

+

ml(X), (4.5)

where ml(X) := 〈∇h(X l), X −X l〉+ 1
2 〈X −X

l,∇2h(X l)[X −X l]〉+ τl
2 ‖X −

X l‖2F. It holds gradml(X
l) = gradh(X l) and Hessml(X

l)[D] = Hessh(X l)[D]
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+τlD, ∀D ∈ TOBn,k(X l). Since OBn,k+ is compact, there exist positive con-
stants κg and κH such that ‖∇h(X)‖F ≤ κg and ‖∇2h(X)‖ ≤ κH , ∀X ∈
OBn,k+ . Instead of solving the subproblem (4.5) exactly, motivated by condi-

tion (3.1) in [31], we only compute an approximate solution Y l ∈ OBn,k+ of
(4.5) satisfying

ml(Y
l) ≤ − a

κH + κg + τl
‖ΠT(Xl)(−gradh(X l))‖2F, (4.6)

where a is a positive constant. Then, we calculate the ratio ρl between the pre-
dicted reduction and the actual reduction to determine whether the trial point
Y l is accepted or not. The complete algorithm is presented in Algorithm 3. By

Algorithm 3: An adaptive regularized Newton method for (4.3)

1 Initialization: Choose X0 ∈ OBn,k+ , a tolerance ε > 0 and an initial regularization

parameter τ0 > 0. Choose 0 < η1 ≤ η2 < 1, 0 < β0 < 1 < β1 < β2. Set l := 0.
2 while ‖min(Xl, gradh(Xl))‖F > ε do
3 Solve (4.5) (by, e.g., Algorithm 4) to obtain a trial point Y l satisfying (4.6).

4 Calculate ρl =
(
h(Y l)− h(Xl)

)
/ml(Y

l).

5 Set Xl+1 := Y l if ρl ≥ η1 and set Xl+1 := Xl otherwise.
6 Choose τl+1 ∈ (0, β0τl] if ρl ≥ η2; choose τl+1 ∈ [β0τl, β1τl] if η1 ≤ ρl ≤ η2;

choose τl+1 ∈ [β1τl, β2τl] otherwise.
7 Set l := l + 1.

8 end

following the proof of [31, Theorem 4], we can establish ‖ΠT(Xl)(−gradh(X l))‖F
= 0 for some l > 0 or liml→∞ ‖ΠT(Xl)(−gradh(X l))‖F = 0.

We now show that the inexact condition (4.6) is well defined. Let c1 be a
positive constant. For a direction Dl ∈ T(X l) satisfying〈

gradh(X l), Dl
〉
≤ −c1‖ΠT(Xl)(−gradh(X l))‖F‖Dl‖F, (4.7)

we compute

Y l = ΠOBn,k
+

(
X l + αlD

l
)

with αl =
2c1(1− c2)‖ΠT(Xl)(−gradh(X l))‖F

(κg + κH + τl)‖D‖F
,

(4.8)
where c2 ∈ (0, 1) is a constant. For any D ∈ T(X), it is easy to verify that
〈∇h(X), D〉 = 〈gradh(X), D〉 and

‖ΠOBn,k
+

(X+D)−X‖F ≤ ‖D‖F, ‖ΠOBn,k
+

(X+D)−X−D‖F ≤
1

2
‖D‖2F. (4.9)

It follows from the property (4.9) and the arguments in [13, Lemma 2.10] that
such Y l satisfies (4.6) with a = 2c21c2(1 − c2). For sake of saving space, we
omit the tedious details here.
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We give two particular choices of Dl satisfying (4.7). The first one is a
single projected gradient step Dl = ΠT(Xl)(−gradh(X l)). Then (4.7) holds
with c1 = 1. The second one is from the Newton subproblem motived by [32]:

min
D∈T(Xl)

〈
gradml(X

l), D
〉

+
1

2

〈
D,Hessml(X

l)[D]
〉
. (4.10)

Setting D = Z −X l reformulates problem (4.10) as

min
Z∈∆(Xl)

〈
gradml(X

l), Z −X l
〉

+
1

2

〈
Z −X l,Hessml(X

l)[Z −X l]
〉
, (4.11)

where ∆(X l) := {Z ∈ Rn×k : (xl)>j zj = 1, zj ≥ 0, j ∈ [k]}. The first-order
optimality condition is the following nonsmooth equation:

F(Z) := Z −Π∆(Xl)

(
Z − α

(
gradml(X

l) + Hessml(X
l)[Z −X l]

))
= 0,

where α > 0 is a constant. Denote C := Z−α
(
gradml(X

l)+Hessml(X
l)[Z−

X l]
)

for simplicity. Thanks to [40], we can efficiently compute the the HS gen-
eralized Jacobian PC(·) of Π∆(X)(·) efficiently. Define a linear operator Ξ :

Rn×k → Rn×k by [Ξ(H)]ij = 0 if [Π∆(Xl)(C)]ij = 0 and [Ξ(H)]ij = Hij other-

wise for any H ∈ Rn×k. We simply denote Ξ[hj ] = (Ξ(H))j,:, ∀j ∈ [k]. Follow-
ing Proposition 3 in [40] yields the HS-Jacobian of Π∆(X)(·) at C as PC(H) =

Ξ(H)−Ξ(X)M, where M is diagonal with Mjj = x>j Ξ[h
j
]/x>j Ξ[xj ], ∀j ∈ [k].

Hence, we have the HS-Jacobian of F at Z as

∂F(Z)[H] = H − PC
(
H − αHessml(X

l)[H]
)
, ∀H ∈ Rn×k. (4.12)

We then apply the adaptive semi-smooth Newton (ASSN) method in [57,46]
to generate a sequence {Zj} to solve (4.11). It satisfies limj→∞ ‖F(Zj)‖ =
0 by virtue of Theorem 3.10 in [46] under some reasonable assumptions. If
τl > κH + κg and α ∈ (0, 2

κH+κg+τl
), by [57, Theorem 3.4] and the follow-up

comments, we can show that the the limit point of {Dj := Zj −X l} satisfies
(4.7) with c1 =

τl−κH−κg

τl+κH+κg+1 . However, since Hessml(X
l) may not be positive

definite in other cases, it is still not clear whether (4.7) holds or not although
the numerical performance is well. For completeness, a brief description of
the second approach (4.10) for solving the subproblem (4.5) is outlined in
Algorithm 4.

4.2 Convergence Analysis

We now study the asymptotic convergence of Algorithm 2 without postpro-
cessing.

Theorem 4.3 Let {Xt} be the sequence generated by Algorithm 2 with tmax =

∞, tolfeas = −1 and εgrad
min = 0. If X∞ is a limit point of {Xt}, then X∞ is a

weakly stationary point of problem (1.8).
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Algorithm 4: An ASSN based method for inexactly solving (4.5)

1 Initialization: Set δ1 ∈ (0, 1), Z0 = Xl, τl > 0 and j = 0.
2 while “not converged”, do
3 Compute the HS-Jacobian ∂F(Zj) according to (4.12).

4 Solve (inexactly) the linear system ∂F(Zj)[Hj ] + µjH
j = −F (Zj).

5 Compute Uj+1 = Zj +Hj . Set Zj+1 = Uj+1 if the residual ‖F (Uj+1)‖F is

reduced sufficiently. Otherwise, set Zj+1 = Zj . Update µj+1.
6 Set j = j + 1.

7 end

8 Set Dl = Zj+1 −Xl. If (4.7) holds, find the smallest nonnegative integer m such

that Y l :=ΠOBn,k
+

(Xl + δm1 D
l) satisfies (4.6). Otherwise, set Y l := Xl.

Proof Note that tmax = ∞ and tolfeas = −1, the algorithm does not stop
within a finite number of iterations. Since {Xt} is bounded, without loss of
generality, throughout the proof we assume that {Xt} converges to X∞. By
(4.2) and Pθt(X

t,0) ≤ Pθt(X feas), we obtain

f(Xt) + σt(ζq(X
t) + εt)

p ≤ f(X feas) + σtε
p
t . (4.13)

If p ≥ 1, it holds εt = 0 and thus ζp(X
t)→ 0. If p ∈ (0, 1), using (a+b)p−ap ≥

(1− 2−p)bp for b > a > 0 with a = εt and b = ζq(X), we also have ζp(X
t)→ 0

from (4.13). It follows from the proof of Lemma 3.1 that ζ2(Xt) ≤ %̃qζq(X
t)

and thus ζ2(Xt)→ 0.
Denote ct := pq(ζq(X

t) + εt)
p−1‖XV ‖q−2

F . Some easy calculations yield

gradPθt(X
t) = grad f(Xt) + σtgrad (ζq(X

t) + εt)
p (4.14)

with

grad (ζq(X
t) + εt)

p = ctX
t
(
Off(V V >)− Diag

((
(Xt)>Xt − Ik

)
V V >

))
.

(4.15)
Denote ω̄ := maxi,j∈[k][V V

>]ij . For each Xt, we have

ω max
l∈[k]\{j}

Xt
il ≤ [XtOff(V V >)]ij ≤ (k − 1)ω̄ max

l∈[k]\{j}
Xt
il ∀(i, j) ∈ [n]× [k],

(4.16)

0 ≤ [XtDiag
((

(Xt)>Xt − Ik
)
V V >

)
]ij ≤ Xt

ijζ2(Xt) ∀(i, j) ∈ [n]× [k].

(4.17)

We consider the following two cases.
Case I. The sequence {σtct} is unbounded. Since {Xt} converges to X∞,

there exists sufficiently large integer T1 such that for every t > T1, there holds
that

ζ2(Xt) ≤ 1

4
ωX∞min and Xt

ij ≥
1

2
X∞min ∀(i, j) ∈ supp(X∞), (4.18)

where X∞min := min(i,j)∈supp(X∞)X
∞. For any (i, j) ∈ Ω′0(X∞), noting that

X∞ ∈ Sn,k+ , with (4.18), for t > T1, we have that maxl∈[k]\{j}X
t
il ≥ X∞min/2.
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With the first assertion in (4.16), for t > T1 and (i, j) ∈ Ω′0(X∞), there holds
that [

XtOff(V V >)
]
ij
≥ 1

2
ωX∞min. (4.19)

With (4.17) and the first assertion in (4.18), and noting Xt
ij ≤ 1, we derive

for t > T1 and (i, j) ∈ Ω′0(X∞) that

[XtDiag
((

(Xt)>Xt − Ik
)
V V >

)
]ij ≤

1

4
ωX∞min. (4.20)

Combining (4.19), (4.20) and (4.15), for t > T , we have

σt[grad (ζq(X
t) + εt)

p]ij ≥
1

4
ωX∞minσtct ∀(i, j) ∈ Ω′0(X∞), (4.21)

which with the unboundedness of {σtcεt(Xt)} yields lim supt→∞ σt[grad (ζq(X
t)+

εt)
p]ij =∞, ∀(i, j) ∈ Ω′0(X∞). Since grad f(Xt) is bounded and due to (4.14),

we finally have lim supt→∞ [gradPθt(X
t)]ij = ∞ ∀(i, j) ∈ Ω′0(X∞), which

with (4.1) implies that there exists sufficiently large integer T2 and subindices

{tl} with tl > T2 such that Xtl
ij ≤ ε

grad
tl
∀(i, j) ∈ Ω′0(X∞). Using (4.15), (4.16)

and (4.17), we obtain that for any (i, j) ∈ supp(X∞),

− σtlctlζ2(Xtl) ≤ [σtlgrad (ζq(X
tl) + εtl)

p]ij ≤ (k − 1)ω̄σtlctlε
grad
tl

. (4.22)

With the choice of η, γ1 and (4.13), it is easy to verify that σtlctlε
grad
tl
→ 0.

Since

ζ2(Xtl) = tr(((Xt)>(Xt)− Ik)V V >)

≤ k2nω̄(εgrad
tl

+ max
(i,j1),(i,j2)∈Ω′′0 (X∞)

j1 6=j2

Xtl
ij1
Xtl
ij2

), tl > T2

we can show the leftmost term of (4.22) tends to 0 by proving that, for any
i ∈ [n], j1, j2 ∈ [k] with j1 6= j2 such that ‖X∞i,: ‖ = 0, there holds that

liml→∞ σtlctlX
tl
ij1
Xtl
ij2

= 0. Obviously, we can focus on the case in which

min{Xtl
ij1
, Xtl

ij2
} > εgrad

tl
. The approximate optimality conditions (4.1) together

with (4.14) and (4.15) gives

[σtlctlX
tlOff(V V >)]ij1 ≤ ε

grad
tl

+
∣∣[grad f(Xtl)]ij1

∣∣+ σtlctlζ2(Xtl)Xtl
ij1
.

We have from (4.13) and the choice of γ1 that σtlpq(ζq(X
tl)+εtl)

p ≤
√

2kLf +
σtε

p
t is bounded. It follows from the proof of Lemma 3.1 that σtlctlζ2(Xtl) ≤

σtlpq(ζq(X
tl) + εtl)

p‖XtlV ‖q−2
F %̃q is also bounded. Thus

lim
l→∞

σtlctlX
tl
ij1
Xtl
ij2
≤ lim
l→∞

Xtl
ij1

[σtlctlX
tlOff(V V >)]ij1 = 0.

Together with (4.22), the previous equation implies

lim
l→∞

[σtlgrad (ζq(X
tl) + εtl)

p]ij = 0 ∀(i, j) ∈ supp(X∞). (4.23)
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On the other hand, it follows from (4.1) that

lim
l→∞

[gradPθt(X
tl)]ij = 0 ∀(i, j) ∈ supp(X∞). (4.24)

Combining (4.23) and (4.24), we have from (4.14) that liml→∞[grad f(Xtl)]ij =
0 ∀(i, j) ∈ supp(X∞). Considering that Xtl → X∞, we arrive at the conclusion
in this case.

Case II. The sequence {σtct} is bounded by a constant, say, N̄ . Similar to
Case I, for any µ ∈ (0, 1), there exists sufficiently large integer T3 such that
for every t > T3 and (i, j) ∈ supp(X∞), there holds that

ζ2(Xt) ≤ µmin{ωX∞min, 1} and Xt
ij ≥

1

2
X∞min ≥ ε

grad
t ∀(i, j) ∈ supp(X∞).

(4.25)
The second assertion above together with (4.1) tells that for t > T3 there holds
that

|[gradPθt(X
t)]ij | ≤ εgrad

t ∀(i, j) ∈ supp(X∞). (4.26)

Similar to Case I, for (i, j) ∈ Ω′0(X∞) and t > T3, we have maxl∈[k]\{j}X
t
il ≥

X∞min/2 and thus

Xt
ij ≤

2

X∞min

max
l∈[k]\{j}

Xt
ilX

t
ij ≤

2

X∞minω
[V V >]j′j(x

t
j′)
>xtj ≤

2ζ2(Xt)

X∞minω
, (4.27)

where j′ = argmaxl∈[k]\{j}X
t
il and the last inequality uses the fact that

ζ2(Xt) =
∑
i,j∈[k],i6=j [V V

>]ij((x
t
i)
>xtj) which appears in the proof of Lemma

2.1. By the first assertion in (4.25) and (4.27), we have for t > T3 that

Xt
ij ≤ 2µ∀(i, j) ∈ Ω′0(X∞). Noting that X∞ ∈ Sn,k+ , this together with (4.16)

implies that [
XtOff(V V >)

]
ij
≤ 2(k − 1)ω̄µ ∀(i, j) ∈ supp(X∞). (4.28)

Again using (4.17) and noting that Xt
ij ≤ 1 and (4.25), we have

[XtDiag
((

(Xt)>Xt − Ik
)
V V >

)
]ij ≤ µ ∀(i, j) ∈ supp(X∞). (4.29)

Combining (4.28) and (4.29), we have from (4.15) that for t > T3 there holds
that∣∣[σtgrad (ζq(X

t) + εt)
p]ij
∣∣ ≤ N̄ (2(k − 1)ω̄ + 1)µ ∀(i, j) ∈ supp(X∞).

Consequently, by (4.14) and (4.26), for t > T3, we have for each (i, j) ∈
supp(X∞) that |[grad f(Xt)]ij | ≤ N̄ (2(k − 1)ω̄ + 1)µ + εgrad

t . Due to the
arbitrariness of µ, we conclude from Xt → X∞ that |[grad f(X∞)]ij | ≤
limt→∞ εgrad

t = 0∀(i, j) ∈ supp(X∞). The proof is completed. ut
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Example 4.1 Consider problem (1.8) with f(X) = 〈C,X〉 and C ∈ R3×2 with
C11 = C12 = −1 and C21 = C22 = C31 = C32 = 0. For Algorithm 2, we set

V = 1/
√

2
[
1 1
]>

, p = 1, q = 2, ε0 = 0, tolfeas = 0 and tolsub
t = 0 for all

t ≥ 0. By some easy calculations, we see that Xt with Xt
11 = Xt

12 = 1/σt,

X22 = X31 = 0 and X21 = X32 =
√

1− 1/σ2
t is a stationary point of (1.9)

with σ = σt and it also satisfies (4.2). Unfortunately, the limit point X∞ of
{Xt} is not a stationary point of problem (1.8) under the above settings. This
counter-example tells that X∞ is a stationary point only if some additional
conditions are satisfied. On the other hand, we observe numerically that the
point X̄ found by our algorithm satisfies ‖X̄‖0 = n, namely, Ω′′0 (X̄) = ∅.
This implies that all the weakly stationary points encountered in numerical
experiments are stationary points.

Theorem 4.4 Under conditions of Theorem 4.3, if additionally there holds
that

lim
t→∞

σt(ζq(X
t) + εt)

p−1Xt
ij = 0 ∀(i, j) ∈ Ω′′0 (X∞), (4.30)

then X∞ is a stationary point of problem (1.8).

Proof By Theorem 4.3 and Theorem 2.1, it remains to verify the correctness of
the equation [grad f(X∞)]ij ≥ 0 ∀(i, j) ∈ Ω′′(X∞). For any (i, j) ∈ Ω′′0 (X∞),
it is easy to see that (i, l) ∈ Ω′′0 (X∞) for each l ∈ [k]. Together with (4.15)
and (4.16), we have

σt[grad (ζq(X
t) + εt)

p]ij

≤ pq(k − 1)ω̄‖XtV ‖q−2
F

(
σt(ζq(X

t) + εt)
p−1 max

(i,j)∈Ω′′0 (X∞)
Xt
ij

)
,

which with (4.30) and limt→∞ ‖XtV ‖F = 1 gives limt→∞ σt[grad (ζq(X
t) +

εt)
p]ij ≤ 0 ∀(i, j) ∈ Ω′′0 (X∞). By (4.1), we have [gradPθt(X

t)]ij ≥ −εgrad
t

for any (i, j) ∈ [n] × [k]. Consequently, it follows from (4.14) that for any
(i, j) ∈ Ω′′0 (X∞) there holds

[grad f(X∞)]ij = lim
t→∞

[grad f(Xt)]ij ≥ lim
t→∞

[gradPθt(X
t)]ij ≥ 0.

The proof is completed. ut

Furthermore, Theorem 4.3 gives the following corollary.

Corollary 4.1 Consider the same conditions as in Theorem 4.3. If addition-
ally ‖X∞‖0 = n, then X∞ is a stationary point of problem (1.8).

Remark 4.2 Here, we present a different understanding of the above corollary.
Lemma 2.2 tells that CCP holds at X∞ if ‖X∞‖0 = n. By the approximate
optimality conditions (4.1) and the choice of the penalty term, X∞ is an
approximate KKT point (see [3] for its definition). Recalling that CCP is a
strict CQ, a CQ which guarantees an approximate KKT point as a KKT point
(see [3] for details), we thus know that X∞ must be a stationary point.
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Theorem 4.4 implies that the limit point X∞ is stationary as long as Xt
ij

decays to 0 sufficiently fast on (i, j) ∈ Ω′′0 (X∞), while the following theorem
improves the convergence result by requiring a better solution of the subprob-
lem.

Definition 2 We say X̄ ∈ OBn,k+ satisfies the weak second-order optimality
conditions (WSOC) of (1.9) if min

(
X̄, gradh(X̄)

)
= 0 and

〈
D,Hessh(X̄)[D]

〉
≥ 0 for any D ∈ C̃OBn,k

+
(X̄) := {D ∈ Rn×k : x̄>j dj = 0, j ∈ [k], Dij =

0 if X̄ij = 0}.

Theorem 4.5 Let {Xt} be the sequence generated by Algorithm 2 with tmax =

∞, tolfeas = 0, p ≤ 1 and εgrad
0 = εgrad

min = 0. If Xt satisfies the WSOC
conditions of the subproblem (1.9), then the algorithm stops at some t̃ iteration

and X t̃ is a stationary point of problem (1.8).

Proof We prove it by contradiction. Suppose that Xt /∈ Sn,k+ for every t.
Without loss of generality, we assume Xt → X∞. Since p ≤ 1, the sequence
{σtct} tends to infinity. Following Case I in the proof of Theorem 4.3, we have
Xt
ij = 0, ∀(i, j) ∈ Ω′0(X∞) for large enough t since Xt satisfies conditions

(4.1) with εgrad
t = 0.

Since Xt /∈ Sn,k+ for any t, there must exist i1 ∈ [n], j1, j2 ∈ [k] and

a subsequence {tl} such that j1 6= j2, ‖X∞i1,:‖ = 0, Xtl
i1,j1

, Xtl
i1,j2

6= 0 and

supp(X∞) ⊂ supp(Xtl) for all l. Since Xtl satisfies the WSOC conditions of
(1.9), denote θtl = {σtl , p, q, εtl}, we have

〈D,HessPθtl (X
tl)[D]〉 ≥ 0, ∀D ∈ C̃OBn,k

+
(Xtl). (4.31)

Choosing Dtl with Dtl
i1j1

= 1, Dtl
i1j2

= −1, Dtl
k1j1

= −Xtl
i1j1

/Xtl
k1j1

and Dtl
k2j2

=

Xtl
i1j2

/Xtl
k2j2

and the remaining elements of Dtl being zeros. Here, the indices
k1, k2 are chosen such that (k1, j1), (k2, j2) ∈ supp(X∞). One can check via
direct calculation that Dtl ∈ C̃OBn,k

+
(Xtl) and〈

Dtl , DtlOff(V V >)
〉
≤ −ω,

∣∣ 〈Dtl , XtlV V >
〉 ∣∣ ≤ 2kω̄ max

(i,j)∈Ω′′0 (X∞)
Xtl
ij .

(4.32)
Substituting Dtl into the WSOC condition (4.31) yields〈

Dtl ,Hess f(Xtl)[Dtl ]
〉

+ σtl
〈
Dtl ,Hess (ζq(X

tl) + εtl)
p)[Dtl ]

〉
≥ 0, (4.33)

where 〈
Dtl ,Hess (ζq(X

tl) + εtl)
p)[Dtl ]

〉
= ctl

(
a|〈Dtl , XtlV V >〉|2

+
〈
Dtl , Dtl

(
Off(V V >)− Diag

(
((Xtl)>Xtl − Ik)V V >

))〉)
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with a = q−2
‖XtlV ‖2F

+
(p−1)‖XtlV ‖q−2

F

ζq(Xtl )+εtl
. Since p ≤ 1, we can drop the term with

respect to p − 1 when deriving a upper bound for the right-hand side of the
above assertion. A closer check then reveals that the term 〈Dtl , DtlOff(V V >)〉
dominates the equation in the brackets since others tend to 0, according to
Xtl → X∞ ∈ Sn,k+ and (4.32). Hence, we obtain

lim
l→∞

σtl
〈
Dtl ,Hess (ζq(X

tl) + εtl)
p)[Dtl ]

〉
≤ σtlctl〈Dtl , DtlOff(V V >)〉 = −∞.

Together with (4.33) and the fact that 〈Dtl ,Hess f(Xtl)[Dtl ]〉 is bounded, we
reach a contradiction. Therefore, the algorithm stops at some t̃ iteration. Since
(4.1) holds at X t̃ with εgrad

t = 0 we know that X t̃ must be a stationary point
of probelm (1.8). The proof is completed. ut

Remark 4.3 Notice that NXV
(X) ⊂ COBn,k

+
(X). For X ∈ Sn,k+ , there always

holds that
〈
D,XV V >

〉
=
〈
D,DOff(V V >)

〉
= 0 for any D ∈ NXV

(X) and
thus 〈D,Hess f(X)[D]〉 = 〈D,HessPθ(X)[D]〉 ∀D ∈ NXV

(X). Thus, when

p ≤ 1, X t̃ in Theorem 4.5 satisfies the second order necessary conditions (2.13)
of problem (1.8) as long as WSOC conditions therein replaced by the second
order necessary conditions of the subproblem (1.9). Moreover, we immediately
arrive at the following corollary which characterizes the relationship between
the local minimizers of the subproblem and the original problem (1.8). The key
issue is the feasibility of Xt after finite iterations. Guaranteeing that the local
minimizer of the penalty subproblem with sufficiently large penalty value is
feasible to the original problem is not an easy task, we usually need some strong
CQs, such as LICQ or MFCQ. With these CQs, there exists some universal
threshold penalty value (always not explicitly computable), see [23, Theorem
2], [24, Theorem 4], [22, Proposition 7], [25, Theorem 5.3], [27, Theorem 6], to
name a few. However, these CQs do not hold for our problem.

Corollary 4.2 Let {Xt} be the sequence generated by Algorithm 2 with tmax =

∞, tolfeas = 0, p ≤ 1 and εgrad
0 = εgrad

min = 0. If Xt is a local minimizer of the

subproblem (1.9), then the algorithm stops at some t̃ iteration and X t̃ is a
local minimizer of problem (1.8).

Moreover, our exact penalty approach can be applied to the general prob-
lem (1.10). The subproblem (1.9) becomes

min
X∈OBn,k

+ ,Y ∈Y

{
Pθ(X,Y ) := f(X,Y ) + σ (‖XV ‖qF − 1 + ε)

p}
. (4.34)

The corresponding algorithm is almost the same as Algorithm 2 except that
condition (4.1) is replaced by∥∥min(Xt, gradXPθt(X

t, Y t))
∥∥
F
≤ εgrad

t ,

dist
(
Y t, ΠY(Y t −∇Y Pθt(Xt, Y t))

)
≤ εgrad

t
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and condition (4.2) becomes Pθt(X
t, Y t) ≤ Pθt(X

t,0, Y t,0). To obtain a point
satisfying the above conditions, we can employ the proximal alternating lin-
earized minimization (PALM) method in [11]. One can also use the proximal
alternating minimization scheme [4], wherein the X-subproblem can be ap-
proximately solved by the second-order method Algorithm 3. In this case, we
can extend the convergence results to this general model by following almost
the same proof.

5 Numerical experiments

In this section, we present a variety of numerical results to evaluate the per-
formance of our proposed method. All experiments are performed in Windows
10 on an Intel Core 4 Quad CPU at 2.30 GHZ with 8 GB of RAM. All codes
are written in MATLAB R2018b. The matrix V is simply taken as V = e/

√
k,

and the choice of parameters for Algorithm 2 are set as follows: p = 1, q = 2,
εgrad

0 = 10−1, εgrad
min = 10−7, tmax = 300; the choices of γ2, σ0, η, tolfeas and X0

are given in each subsection. In our implementation, instead of using (4.1),
we use the stopping condition when the distance between two consecutive
iterations is small, namely, ‖X l+1 −X l‖F ≤ εgrad

t .

5.1 Computing projection onto Sn,k+

Given C ∈ Rn×k, we consider to compute its projection onto Sn,k+ , which is
formulated as

min
X∈Sn,k

+

‖X − C‖2F. (5.1)

The associated exact penalty model (1.9) with p = 1, q = 2, and ε = 0 becomes

min
X∈OBn,k

+

− 1

σt
〈C,X〉+

1

2
‖XV ‖2F. (5.2)

The Lipschitz constant of the gradient of the objective function in (5.2) is 1
since to V V > � Ik. Thus we can simply use the nonconvex gradient projection
scheme X l+1 ∈ ΠOBn,k

+

(
X l − α(X lV V > − C/σt)

)
with α ≡ 0.99 to solve

the subproblem (5.2). It is always difficult to seek the projection globally
for a general matrix C. Due to Proposition A.1, we can construct a family
of matrices with unique and known projection. For a given B ∈ Sn,k+ , the
MATLAB codes for generating C is given as

X = (B>0).*(1+rand(n,k)); Xstar = X./sqrt(sum(X.*X));

d = 0.5+3*rand(k,1); L = xi*((d*d’).^ 0.5).*rand(k,k);

L(sub2ind([k,k],1:k,1:k))=d; C=Xtar*L;
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The parameter ξ ∈ [0, 1] controls the magnitude of noise level. Larger ξ makes
it harder to find the ground truth X∗. Let X♦ be the solution generated
by EP4Orth+, namely, Algorithm 2. Note that the postprocessing problem
(3.1) has closed form solution. Define gap = ‖X♦ − C‖F/‖X∗ − C‖F − 1 as
a measure of the solution quality. For each ξ, n and k, we run 50 times of
EP4Orth+, and the initial point is generated by rounding C via Procedure 1.
We choose γ2 = 5, tolfeas = 10−8, σ0 = 10−2, η = 0.8. It should be mentioned
that, by setting tolfeas = 10−8, we can always find a nearly feasible solution
even without using the postprocessing. The averaged results are reported in
Table 1, wherein the “suc” means the total number of instances for which the
gap is zero. From this table, we can see that for small ξ, EP4Orth+ can solve
all 50 instances to a zero gap, while for large ξ it can only solve some instances
to a zero gap. However, for all cases, EP4Orth+ always returns an orthogonal
nonnegative matrix with a small gap.

Table 1 Numerical results on computing projection onto Sn,k+ , “t” means the time in
seconds, “nproj” means the number of gradient projection steps.

n = 2000, k = 10 n = 2000, k = 50 n = 2000, k = 100
ξ suc gap t nproj suc gap t nproj suc gap t nproj

0.80 50 0.0e0 0.01 24.5 50 0.0e0 0.06 62.7 50 0.0e0 0.52 95.7
0.90 50 0.0e0 0.01 28.7 50 0.0e0 0.07 82.1 50 0.0e0 0.66 134.6
0.95 49 7.2e-5 0.01 31.9 46 2.1e-4 0.09 112.2 49 6.6e-7 0.87 184.8
0.98 43 8.9e-4 0.01 33.8 22 5.0e-4 0.11 156.3 19 8.0e-4 1.23 268.2
1.00 37 1.2e-3 0.01 38.1 0 2.6e-3 0.12 170.3 0 2.6e-3 1.43 317.5

n = 2000, k = 200 n = 2000, k = 300 n = 2000, k = 400
ξ suc gap time nproj suc gap time nproj suc gap time nproj

0.80 50 0.0e0 1.38 144.7 50 0.0e0 2.62 186.7 50 0.0e0 3.79 211.7
0.90 50 0.0e0 1.6 207.6 50 0.0e0 3.43 276.0 50 0.0e0 5.39 328.7
0.95 50 0.0e0 2.42 295.1 50 0.0e0 5.13 424.9 50 0.0e0 7.74 483.0
0.98 23 4.5e-4 3.93 489.2 20 2.5e-4 8.60 718.6 24 1.7e-4 15.42 962.2
1.00 0 1.9e-3 5.07 636.9 0 1.8e-3 11.31 951.3 0 1.6e-3 20.86 1324.0

5.2 Orthogonal nonnegative matrix factorization

We compare our proposed method with uni-orthogonal NMF (U-onmf) [26],
orthonormal projective nonnegative matrix factorization (OPNMF) [61], or-
thogonal nonnegatively penalized matrix factorization (ONP-MF) [50] and
EM-like algorithm for ONMF (EM-onmf) [50]. In addition to the above meth-
ods, we also compare our method with K-means, which is considered as a
benchmark in clustering problems. We implement U-onmf by ourselves since
the original code is not available. We adopt the implementation of OPNMF
from https://github.com/asotiras/brainparts. The codes of ONP-MF
and EM-onmf can be downloaded from https://github.com/filippo-p/

onmf. As to K-means, we call the MATLAB function kmeans directly. Note

https://github.com/asotiras/brainparts
https://github.com/filippo-p/onmf
https://github.com/filippo-p/onmf
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that our proposed method and OPNMF solve the equivalent formulation (1.4)
while the remaining methods solve directly (1.3). Considering that the objec-
tive function in (1.4) is quartic, to make the subproblem (1.9) easier to solve,
one can consider the Gauss-Newton technique as

‖A−XX>A‖2F = ‖A−XX̃>A−X̃S>A−SS>A‖2F ≈ ‖A−XX̃>A−X̃S>A‖2F,

where S = X − X̃. By neglecting the term X̃S>A, we obtain a partial Gauss-
Newton approximation, namely, ‖A − XX>A‖2F ≈ ‖A − XX̃>A‖2F. More-

over, if X ∈ Sn,k+ , we know that ‖A −XX>A‖2F = ‖A −X(X>X)−1X>A‖2F.
Hence, to make the approximation robust, we consider ‖A − XX>A‖2F ≈
‖A − X(X̃>X̃)−1X̃>A‖2F. The objective function in subproblem (1.9) at t-
th iteration with p = 1, q = 2, and ε = 0 becomes ‖A−X(Y t)>‖2F +σt‖XV ‖2F
with Y t = ΠRr×k

+

(
A>X̃t((X̃t)>X̃t)−1

)
.

In some datasets, the matrix A maybe degenerated, namely, there exists a
row (column) of A with all zero entries. This causes a division by zero error
when running the U-onmf method. Thus we will first remove such degenerate
rows and columns of A. For K-means and EN-onmf, the initial points are
chosen randomly. The other methods adopt the SVD-based initializations [15].
The time cost of generating initial points is relatively low compared to that of
the rest parts. In practice, we utilize the nonconvex projection gradient method
(4.4) if ζ(Xt,0) = ‖Xt,0V ‖2F−1 > ζ̄, otherwise switch to Algorithm 3. We adopt
the Barzilai-Borwein stepsize [6] and use the nonmonotone line search [64] in
the gradient projection iteration (4.4). We set σ0 = 10−3, η = 0.98, and choose
tolfeas = 10−8, ζ̄ = 5 in section 5.2.1 and tolfeas = 0.3, ζ̄ = 0.6 in section 5.2.2.
In section 5.2.1, we set γ2 = 1.05 if ‖XtV ‖2F > 2 and γ2 = 1.03, otherwise.
In section 5.2.2, we set γ2 = 1.1 × 1.05 if ‖XtV ‖2F > 2 and γ2 = 1.1 × 1.03,
otherwise. The main parameters of Algorithm 3 are chosen as η1 = 0.01,
η2 = 0.9, β0 = 0.98, β1 = 1, and β2 = 1.3.

5.2.1 Text and image clustering

We evaluate algorithms on text and image datasets adopted from [17], they are
available at http://www.cad.zju.edu.cn/home/dengcai/Data/data.html.
Since the original text dataset is too huge and disproportionate, we extract
some subsets from original data to make it suitable for testing clustering algo-
rithms. The details of modification are provided in section 6.2.1 in [34] due to
space limits. For text datasets, every article is assigned with a vector, which
reflects the frequency of each word in the article. While for image datasets, a
vector represents the gray level of each pixel in a picture. The data matrix A
is comprised of these vectors. Any solution X∗ ∈ Sn,k+ of ONMF indicates a
partition (clustering result) of the dataset. The scale of each dataset is given
in Table 2, in which “data” denotes the number of rows of data matrix A and
“features” stands for the number of columns.

We consider three criteria to compare the performance of clustering results:
purity, entropy and NMI. The definitions of the three criteria are skipped for
space consideration, see also section 6.2.1 in [34] and the references therein.

http://www.cad.zju.edu.cn/home/dengcai/Data/data.html


32 Optimization with nonnegative orthogonality constraints

Table 2 Description of each dataset.

Name Reuters-t10 Reuters-t20 TDT2-t10 TDT2-t20 NewsG-t5 MNIST Yale
data 1897 2402 1477 1721 2344 4000 165

features 12444 13568 22181 23674 14475 784 1024
clusters 10 20 10 20 5 10 5

Generally, a better clustering result has smaller entropy, larger purity and
NMI. Note that we will not calculate “feasi” for K-means and EN-onmf, as
they only generate the clustering results instead of solutions of ONMF prob-
lem. Since we aim to show that our algorithm can generate a solution with
high quality and small feasibility violation, we remove the postprocessing in
EP4Orth+ for fair comparison. For random algorithms, their results are av-
eraged over 10 runs. In Table 3, we report text and images clustering results.
We can observe from this table that our proposed method performs very well.
Specifically, the clustering results given by our proposed method has the high-
est purity and NMI in most of cases (being close for the rest dataset). As to
the speed, our method is faster than U-onmf and ONP-MF for most of cases,
and it is especially efficient on text dataset. Besides, the feasibility violation
of the solution returned by our method is very small, while those returned
by the other methods are always very large. On the other hand, K-means is
the fastest among all algorithms and performs well on image datasets MNIST
and Yale, but it results poorly when applying to text dataset; EM-onmf and
OPNMF are efficient but their performance is slightly worse than ours.

Table 3 Text clustering results on real datasets. In the table, “c1”, “c2” and “c3” stand for
“purity” (%), ”NMI” (%) and “entropy” (%), respectively; “t” means the time in seconds.

The term “feasi” means the feasibility violation with feasi := ||X̂>X̂−Ik||F + ||min(X̂, 0)||F,
where X̂ is the solution generated by the corresponding algorithm. Results marked in bold
mean better performance in the corresponding index.

EP4Orth+ U-onmf K-means
datasets c1 c2 c3 feasi t c1 c2 c3 feasi t c1 c2 c3 t
Ret-t10 73.1 60.7 37.9 3e-14 9 72.7 59.2 39.4 0.6 55 36.9 22.2 75.1 4
Ret-t20 65.5 56.3 38.4 1e-15 25 60.6 52.7 41.7 0.9 149 33.9 17.4 79.8 4

TDT2-t10 85.7 70.0 20.8 7e-12 9 80.9 65.7 22.8 0.5 115 41.1 17.8 70.5 4
TDT2-t20 82.3 69.6 18.1 3e-15 18 79.3 64.3 21.2 0.7 299 39.1 18.6 65.8 7
NewsG-t5 41.5 22.8 77.1 1e-15 7 39.3 14.9 85.0 0.2 18 21.1 0.4 99.5 2
MNIST 60.1 48.9 51.0 1e-15 26 50.0 41.9 58.0 1.0 39 55.4 45.2 54.7 0.9

Yale 44.8 47.9 52.1 9e-12 2 43.7 45.9 54.0 1.2 2 40.8 44.1 55.9 0.1

OPNMF ONP-MF EM-onmf
datasets c1 c2 c3 feasi t c1 c2 c3 feasi t c1 c2 c3 t
Ret-t10 72.0 58.7 39.9 1.1 15 66.9 52.8 45.6 3e-3 82 71.3 58.6 39.9 17
Ret-t20 62.9 54.6 40.0 1.8 24 62.0 53.5 41.6 4e-3 386 64.1 57.4 37.8 30

TDT2-t10 82.2 64.3 24.4 0.9 10 82.9 65.3 23.8 3e-3 133 85.0 71.3 20.1 21
TDT2-t20 79.1 62.5 21.4 1.1 14 81.1 65.0 20.4 4e-3 542 80.8 67.2 19.3 25
NewsG-t5 37.1 13.1 86.7 0.4 11 42.9 22.6 77.2 2e-3 44 35.7 15.4 84.5 14
NMIST 55.1 44.1 55.9 1.3 218 57.4 46.1 53.8 5e-2 61 56.3 47.8 52.2 4

Yale 43.7 45.4 54.6 1.4 4 40.0 43.6 56.6 1e-2 10 38.1 41.7 58.3 0.1
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5.2.2 Hyperspectral unmixing

A set of images taken on the same object at different wavelengths is called a
hyperspectral image. At a given wavelength, images are generated by surveying
reflectance on each single pixel. Hyperspectral unmixing plays an essential role
in hyperspectral image analysis [10]. Let n be the total number of pixels. It
assumes that each pixel spectrum ai ∈ Rr+ with i ∈ [n] is a composite of
k spectral bases {yj}kj=1 ∈ Rr+, where r is the number of wavelengths. Each
spectral base is denoted as an endmember, which represents the pure spectrum.
For example, a spectral base could be the spectrum of “rock”, “tree”, etc.
Linear mixture model [35,68] approximates the pixel spectrum ai by a linear
combination of endmembers as ai = Y x̃i + ri, where x̃i ∈ Rk+ is called the
abundance vector corresponding to pixel ai, ri ∈ Rr is a residual term and
Y = [y1, . . . ,yk] ∈ Rr×k+ is the endmember matrix. When ONMF is applied
to hyperspectral unmixing, we assume that both endmember and abundances
remain unknown. In addition, each pixel only corresponds to one material.
That is to say, x̃i only has one non-zero element. For all the pixels combined
together, the ONMF formulation of hyperspectral image unmixing becomes
(1.3). Specifically, we adopt the formulation in [50,68], where the matrix A =
[a1, . . . ,an]> ∈ Rn×r+ represents n pixels observed at r different wavelengths
and each column of A corresponds to an image observed at a given wavelength.
This approach can be seen as unfolding a 3-order tensor for representing a set
of images observed at r wavelengths to a matrix by vectorizing the 2-D image.
The matix X ∈ Sn,k+ is the abundance matrix having x̃>i as its i-th row.

We test algorithms on three widely used hyperspectral image datasets,
Samson, Jasper Ridge and Urban [68]. They are widely used datasets in the hy-
perspectral unmixing study and can be downloaded at http://www.escience.
cn/people/feiyunZHU/Dataset_GT.html. Since the sizes of the first two im-
ages are huge, we choose a region in each image. This process is common in
the context of hyperspectral unmixing. For Samson, a region which contains
95 × 95 pixels is chosen, starting from the (252, 332)-th pixel in original im-
age. We choose a subimage of Jasper Ridge with 100× 100 pixels, whose first
pixel corresponds to the (105, 269)-th pixel in the original image. The refined
Samson has 156 wavelengths and it contains three endmembers: water, tree
and rock. The refined Jasper Ridge has 198 wavelengths, and its endmembers
include water, tree, dirt and road. Urban is the largest hyperspectral data with
307×307 pixels observed at 162 wavelengths, and there are four endmembers:
asphal, grass, tree and roof.

Since the groundtruth of abundance matrix X does not satisfy the or-
thogonality constraints, the criteria utilized in the preceding subsection are
not appropriate to measure the quality of hyperspectral unmixing. Here we
consider spectral angle distance (SAD) (see for instance [68]) to evaluate the
performance of algorithms. SAD uses an angle distance between ground truth
and estimated endmembers to measure the accuracy of endmember estima-

tion. It is defined as SAD := 1
k

∑k
i=1 arccos

(
y>i ŷi
‖yi‖‖ŷi‖

)
, where ŷi and yi are

http://www.escience.cn/people/feiyunZHU/Dataset_GT.html
http://www.escience.cn/people/feiyunZHU/Dataset_GT.html


34 Optimization with nonnegative orthogonality constraints

Fig. 1 Three real hyperspectral images

estimation of i-th endmember and its corresponding ground truth. Smaller
SAD corresponds to better performance. Since other algorithms cannot gen-
erate a solution of problem (1.3) with small feasibility violation, to keep a fair
comparison, we perform the rounding procedure and postprocessing on the
solution generated by each method. We report in Table 4 the SAD and time
cost for the three hyperspectral image datasets. From this table, we know that
the efficiency of the proposed method is competitive to other algorithms. Par-
ticularly, our method achieves satisfying SAD among all algorithms. Besides,
although EM-onmf is faster than our method on these datasets, the unmix-
ing quality given by EM-onmf is unstable. The unmixing results of Samson,

Table 4 Results on the hyperspectral image datasets. For “Samson”, r = 156, n = 95 ×
95, k = 3, for “Jasper Ridge”, r = 198, n = 100 × 100, k = 4, for “Urban”, r = 162, n =
307× 307, k = 4.

Samson Jasper Ridge Urban
method SAD time(s) SAD time(s) SAD time(s)

EP4Orth+ 0.081 1.0 0.150 1.3 0.114 22
U-onmf 0.365 10 0.306 19 0.128 99
OPNMF 0.348 44 0.336 85 0.132 545
K-means 0.296 0.2 0.174 0.4 0.266 4
ONP-MF 0.085 16 0.276 34 0.112 339
EM-onmf 0.196 0.4 0.192 0.8 0.091 17

Jasper Ridge and Urban in illustrated in Figs. 2, 3 and 4, respectively. For
Samson image, our method and ONP-MF are able to separate three endmem-
bers, while the rest methods mix them together. For Jasper Ridge image, none
of the methods can identify the road endmember, while our method and K-
means can split water from other endmembers completely. All of algorithms
perform relatively well on Urban dataset except for K-means, being able to
separate four endmembers.

5.3 K-indicators model

We first remove the zero norm constraints from (1.5). The exact penalty model
(4.34) with p = 1, q = 2, and ε = 0 for solving the K-indicator model (1.5)
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Fig. 2 Unmixing results of Samson, from top to bottom: rock, tree, water.

Fig. 3 Unmixing results of Jasper Ridge, from top to bottom: tree, water, dirt, road

Fig. 4 Unmixing results of Urban, from top to bottom: asphal, grass, tree, roof

becomes

min
X∈OBn,k

+ ,Y ∈Sk,k

{
P̂σ(X,Y ) := ‖UY −X‖2F + σ‖XV ‖2F

}
, (5.3)
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which is further equivalent to

min
X∈OBn,k

+ ,Y ∈Sk,k

{
Pσ(X,Y ) := − 1

σ
〈UY,X〉+

1

2
‖XV ‖2F

}
. (5.4)

With a fixed Y , (5.4) is exactly (5.2) with C = UY . Similar to the discussion
therein, we obtain the main PALM iterations [11] for solving (5.4) in Algorithm
2 as

Y l+1 = ΠSk,k

(
β−1Y l + U>X l

)
, β > 0, (5.5a)

X l+1 ∈ ΠOBn,k
+

(
X l − α

(
X lV V > − UY l+1/σ

))
, 0 < α < 1. (5.5b)

Theorem 1 in [11] tells that the sequence {(X l, Y l)} generated by (5.5a) and
(5.5b) converges to a stationary point of (5.4). However, we find the conver-
gence is slow if we fix the constant stepsizes α and β. Note that the closed
form solution of (5.4) with respect to Y for a fixed X = X l is ΠSk,k

(
U>X l

)
,

which corresponds to setting β = +∞ in (5.5a). For the tested problem, by
some easy calculations, we can see αlLBB ≥ 1. The practical PALM iterations
for solving (5.4) is thus given as

Y l+1 = ΠSk,k

(
U>X l

)
. (5.6a)

X l+1 ∈ ΠOBn,k
+

(
X l − αl

(
X lV V > − UY l+1/σ

))
, (5.6b)

where αl = min{αlLBB, 10k}. The flops for (5.6a) and (5.6b) are 2nk2 + O(k3)
and 2nk2 +O(nk), respectively.

Chen et al. [20] proposed a semi-convex relaxation model to solve (1.5).

Their intermediate model corresponds to (5.3) with σ = 0 and OBn,k+ replaced
by {X ∈ Rn×k : 0 ≤ X ≤ 1}. A double-layered alternating projection frame-
work was investigated in [20] to solve the relaxation model. The method was
named KindAP. To evaluate the efficiency of our method, we compare it with
KindAP (downloaded from https://github.com/yangyuchen0340/Kind) on
data clustering problems. We adopt eight datasets in Table 5 and perform
post-processing on all datasets according to the KindAP algorithm [20]. We
set γ2 = 10, σ0 = 10, η = 0.5 and tolfeas = 0.1 and X0 = ΠOBn,k

+
(U) in

our method. The initial points of KindAP is set as ΠRn,k
+

(U). Similar as in

section 5.2.1, purity, entropy and NMI are adopted to judge the performance
of proposed algorithms. The results are presented in Table 5.

It shows that the clustering results given by our methods are comparable
to that provided by KindAP, which means both methods are able to solve (1.5)
with a relatively high quality. On the other hand, our algorithm is generally
2-5 times faster than KindAP on most of the datasets. Our algorithm is espe-
cially efficient on datasets birch, worm, omniglot and UKbench, in which the
numbers of samples and clusters are relatively large. Although we relax the
zero norm constraints from problem (1.5), the obtained matrix X is always
feasible to (1.5). By contrast, the matrix X returned by KindAP may not be

https://github.com/yangyuchen0340/Kind
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Table 5 Comparison of KindAP and our methods on data clustering problems. In the table,
“a” and “b” stand for KindAP and EP4Orth+, respectively. Results marked in bold mean
better performance in the corresponding index.

purity(%) NMI(%) entropy(%) time(s)
datasets n k a b a b a b a b

CIFAR100-test [36] 10000 100 69.42 69.44 71.34 71.36 28.66 28.64 0.63 0.41
CIFAR100-train [36] 50000 100 99.63 99.63 99.57 99.57 0.43 0.43 3.13 1.66

COIL100 [47] 7200 100 91.93 91.93 97.30 97.41 2.70 2.59 1.47 0.44
birch [67] 100000 100 83.23 83.44 93.78 93.84 6.22 6.16 16.47 5.22

worm1 [52] 186432 67 47.87 48.81 62.63 62.39 37.37 37.61 48.78 5.76
worm2 [52] 165720 62 49.34 50.31 63.50 63.47 36.50 36.53 25.56 6.46

omniglot [38] 17853 1623 21.95 21.97 70.86 70.94 29.14 29.06 1176 432
UKBench [48] 10200 2550 90.64 91.04 97.64 97.76 2.36 2.24 3215 1268

an orthogonal nonnegative matrices although it always satisfies the zero norm
constraints.

To end this section, we make some remarks on the numerical performance.
Overall, our proposed algorithm can make some effective improvement over
the best baselines in terms of the solution quality and speed. In addition,
we provide an exact penalty algorithmic framework with convergence guaran-
tee for solving optimization with nonnegative orthogonality while the existing
methods focused on some specific models of (1.1) or (1.10).

6 Concluding remarks

In this paper, we consider optimization with nonnegative and orthogonality
constraints. We focus on an equivalent formulation of the concerned prob-
lem, and show that the two formulations share the same minimizers and first-
and second-order optimality conditions. By estimating a local error bound of
Sn,k+ , we provide a general class of exact and possibly smooth penalty models
as well as a practical penalty algorithm with postprocessing. We investigate
the asymptotic convergence of the penalty method and show that any limit
point is a weakly stationary point of the concerned problem and becomes a
stationary point under some more mild conditions. A second-order method
for solving the penalty subproblem, namely, optimization with nonnegative
and multiple spherical constraints, is also given. Our numerical results show
that the proposed penalty method performs well for the problem of computing
the orthogonal projection onto nonnegative orthogonality constraints, ONMF
and the K-indicators model and it can always return high quality orthogonal
nonnegative matrices.
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A Construction of problem (5.1) with unique solution

Proposition A.1 Choose X∗ ∈ Sn,k+ and L ∈ Rk×k with positive diagonal elements satis-

fying LiiLjj > max{Lij , Lji, 0}2 ∀i, j ∈ [k], i 6= j. Then the optimal solution of (5.1) with
C = X∗L> is unique and equals to X∗.

Proof For simplicity of notation, we use
∑
i to denote

∑
i∈[k] in the proof. Since problem

(5.1) is equivalent to max
X∈Sn,k

+
〈C,X〉, we only need to show that 〈C, Y 〉 < 〈C,X∗〉 =∑

i Lii, ∀ S
n,k
+ 3 Y 6= X∗. Let Z = sgn(Y ) and P = ΠRn

+
(L). We have

〈C, Y 〉 = tr(L(X∗)>Y ) =
∑

i

∑
j
Ljiy

>
i x∗j ≤

∑
i

∑
j
Pjiy

T
i (x∗j ◦ zi). (A.1)

Define wji = ‖x∗j ◦ zi‖2. With X∗ ∈ Sn,k+ , we have ‖
∑
j Pji(x

∗
j ◦ zi)‖ = (

∑
i P

2
jiwji)

1/2.

Using the Cauchy-Schwarz inequality, ‖yi‖ = 1 and the requirements on L, we have

∑
j
Pjiy

T
i (x∗j ◦ zi) ≤

(∑
j
P 2
jiwji

) 1
2 ≤ Pii

(∑
j

Pjj

Pii
wji

) 1
2
. (A.2)

With (A.1) and 〈C,X∗〉 =
∑
i Lii =

∑
i Pii, we further have

〈C, Y 〉 ≤
∑

i
Pii

(∑
j

Pjj

Pii
wji

) 1
2 ≤

(∑
i
Pii

) 1
2
(∑

i

∑
j
Pjjwji

) 1
2 ≤ 〈C,X∗〉, (A.3)

where the second inequality uses the fact that
∑
i aix

1/2
i ≤ (

∑
i ai)

1/2(
∑
i aixi)

1/2 for
ai > 0 and xi ≥ 0, and the third inequality uses

∑
i wji ≤ 1. Obviously, the equalities in

(A.2) and (A.3) hold if and only if Y = X∗. The proof is completed. ut
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