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Abstract. This paper considers the image recovery problem by taking group sparsity into account as the prior5
knowledge. This problem is formulated as a group sparse optimization over the intersection of a6
polyhedron and a possibly degenerate ellipsoid. It is a convexly constrained optimization problem7
with a group cardinality objective function. We use a capped folded concave function to approximate8
the group cardinality function and show that the solution set of the continuous approximation problem9
and the set of group sparse solutions are same. Moreover, we use a penalty method to replace the10
constraints in the approximation problem by adding a convex nonsmooth penalty function in the11
objective function. We show the existence of positive penalty parameters such that the solution sets of12
the unconstrained penalty problem and the group sparse problem are same. We propose a smoothing13
penalty algorithm and show that any accumulation point of the sequence generated by the algorithm14
is a directional stationary point of the continuous approximation problem. Numerical experiments15
for recovery of group sparse image are presented to illustrate the efficiency of the smoothing penalty16
algorithm with adaptive capped folded concave functions.17
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1. Introduction. In the past decades, sparsity has been emerging as one of significant20
properties of natural images and used successfully in image recovery. For example, the authors21
in [13] considered a high-resolution imaging problem of 3D point source image recovery from22
2D data. While finding the location and fluxes of the point sources is a large-scale sparse 3D23
inverse problem, most entries of the recovered 3D variable are zeros. Some images are not24
sparse themselves but can be represented by sparse linear regression. The basic framework of25
image recovery is concerned with the recovery of an unknown vector x from an underdetermined26
system of linear equations b = Ax+ η ∈ Rr, where A ∈ Rr×n is a measurement matrix and η27
is the noise term. The sparse image recovery problem is formulated as28

(1.1)
min ‖x‖0
s.t. ‖Ax− b‖2 ≤ σ, Bx ≤ h,

29

where ‖x‖0 counts the number of nonzero entries of x. The constraint Bx ≤ h with B ∈ Rq×n30
and h ∈ Rq describes some prior knowledge on the true image such as nonnegativity. The31
positive constant σ is a tolerance for the noise.32

Sparse solutions of systems of linear equations for sparse modeling of images have attracted33
growing interests from theoretical and algorithmic aspects [5, 8, 10, 13, 15, 21, 20]. Since the34
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cardinality objective function ‖x‖0 is discontinuous, many convex or nonconvex continuous35
relaxation functions were presented. Compared with convex functions, nonconvex functions36
would promote better sparse solutions [6, 26], such as SCAD penalty [20], continuous exact L037
(CEL0) penalty [42], capped L1 function, [50] and capped Lp function (0 < p ≤ 1) [38].38

It is worth noting that the sparsity of solutions of (1.1) is not structured. However, in39
many scenarios, the nonzero components of solutions tend to cluster in groups. From the40
aspect of sparse image recovery, nonzero pixels may only appear in certain regions. Our goal41
is to explicitly take this predefined group sparse structure into account.42

Let variable x be partitioned into m disjoint groups as x = (x>1 , · · · ,x>m)> with xi ∈ Rni ,
i = 1, · · · ,m and

∑m
i=1 ni = n. The group sparse recovery problem can be formulated as the

following group sparse optimization:

(P0)
min ‖x‖2,0
s.t. ‖Ax− b‖2 ≤ σ, Bx ≤ h,

where ‖x‖2,0 = #{i| ‖xi‖2 6= 0, i = 1, . . . ,m} is the group cardinality function that counts the43
number of nonzero groups of x.44

If ni = 1, i = 1, · · · ,m, problem (P0) reduces to (1.1). If ni = n1 < n, i = 2, · · · ,m, then45
every x>i can be regarded as the ith row of matrix X ∈ Rm×n1 , denoted as Xi. Problem (P0)46
reduces to a row sparse optimization:47

(1.2)
min ‖X‖2,0
s.t. ‖A(X)− b‖2 ≤ σ, B(X) ≤ h,

48

where ‖X‖2,0 is the row cardinality function that counts the number of nonzero rows of X,49
A : Rm×n1 → Rr and B : Rm×n1 → Rq are defined by the trace 〈·, ·〉 of a product of two matrices50
asA(X) = (〈A1, X〉, · · · , 〈Ar, X〉)>, B(X) = (〈B1, X〉, · · · , 〈Bq, X〉)>. Problem (1.2) is known51
as a row selection problem, multiple measurement vector problem and simultaneous sparse52
approximation in various areas [14, 19, 31], and has numerous applications in reconstruction53
of biomedical signals [37] and joint covariate selection [40].54

There are several compelling reasons to consider the group sparsity. In many applications,55
such as neuroimaging [24], gene expression data [39], bioinformatics [51], the group structure56
is an important piece of a prior knowledge about the problem. The use of group structure can57
improve the interpretability of the signals. Moreover, the group sparse optimizations allow to58
significantly reduce the number of required measurements for perfect recovery in the noiseless59
case and can be more stable in the presence of noise [28].60

Group sparse problems have been extensively studied in the last few decades, see [2, 25,61
27, 28, 29, 30, 49]. Many literatures use group L2,1 penalty that yields group Lasso model62
[34, 36, 39, 49]. For example, the group L2,1 sparse optimization model in [23] for spherical63
harmonic representations. In [46], an accelerated proximal method was proposed to solve64
a regularized L2,1 group sparse optimization problem. On the other hand, due to the good65
performance of nonconvex relaxation for sparse optimizations, some group nonconvex penalties66
are presented, such as group SCAD [9, 32], group MCP [9, 32] and group Lp,q (0 ≤ q ≤ 1 ≤67
p) [25]. In [3], the results in standard sparse optimization were extended to group sparse68
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GROUP SPARSE RECOVERY 3

optimization via group cardinality function, which minimizes a continuously differentiable69
objective function over a set composed of blocks corresponding to the group partition.70

In this paper, we consider the following capped folded concave group sparse optimization
problem to solve (P0):

(Rν)
min

m∑
i=1

φ(‖xi‖2)

s.t. ‖Ax− b‖2 ≤ σ, Bx ≤ h,

where function φ(·): R+ → R+ is a capped folded concave function that satisfies the following71
two conditions with a fixed parameter ν > 0:72

(i) φ is continuous, increasing and concave in [0,∞) with φ(0) = 0;73
(ii) there is a ν > 0 such that φ is differentiable in (0, ν), φ′−(ν) := limt↑ν φ

′(t) > 0 and74
φ(t) = 1 for t ∈ [ν,∞).75

Most capped folded concave functions satisfy these two conditions. We list four of them as76
follows.77

(1) Capped L1: φCapL1(t) = min{1, tν };78
(2) Capped Lp: φCapLp(t) = min{1, tpνp }, 0 < p < 1;79

(3) Capped Fraction: φCapF(t) = min{1, (1+αν)t
ν(1+αt)};80

(4) Capped Minimax Concave Penalty (MCP):

φC−MCP(t) = min{1, 2α

ν(2α− ν)
φMCP(t)}, 0 < ν < α,

with φMCP(t) =

{
t− t2

2α , 0 ≤ t ≤ α,
α
2 , t > α.

81

To solve (Rν), we replace its constraints by adding a convex nonsmooth penalty function
in its objective function as the following

(Pν) min
m∑
i=1

φ(‖xi‖2) + λ
(
(‖Ax− b‖22 − σ2)+ + ‖(Bx− h)+‖1

)
,

where λ > 0 and z+ ∈ Rq with (z+)i := max{0, zi}. Moreover, to study the relation between82
(Pν) and (P0), we consider the corresponding penalty problem83

(1.3) min ‖x‖2,0 + λ
(
(‖Ax− b‖22 − σ2)+ + ‖(Bx− h)+‖1

)
.84

In the following discussion, for simplicity, we denote

Φ(x) =

m∑
i=1

φ(‖xi‖2)

F (x) = (‖Ax− b‖22 − σ2)+ + ‖(Bx− h)+‖1, Ω = {x ∈ Rn : ‖Ax− b‖2 ≤ σ,Bx ≤ h}.

In this paper, we have the following assumption for our theorems.85
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Assumption We assume matrix A has full row rank, 0 6∈ Ω and there exists x0 ∈ Ω such86
that ‖Ax0 − b‖2 < σ.87

From this Assumption, the optimal value of problem (P0) is a positive integer, which is88
denoted as k in this paper.89

Using nonconvex continuous functions to approximate the discontinuous function ‖x‖0 in90
optimization problems has been studied in [7, 11, 21, 22, 35, 42, 43, 44]. Some equivalence91
results of minimal L0 and Lp norm solutions of linear equalities and inequalities for sufficiently92
small p have been proved [22]. The relations between minimizers of the L0 regularized least93
squares minimization problem and its exact continuous relaxation have been investigated in [42,94
43]. However, the relationship between problems (P0) and (Pν) regarding optimal solutions95
are unknown in group structure. Compared with component sparse optimizations, the variables96
in one group are not separable and the norm ‖x‖2 is not differentiable at x = 0. Moreover,97
the functions Φ(·) and F (·) in (Pν) are not differentiable and F (·) is not globally Lipschitz98
continuous in Rn. Group sparse optimization contains component sparse optimization as a99
special case with more challenges.100

Our contributions can be summarized as following:101
• We establish the equivalence between problem (P0) and its capped folded concave102

relaxation (Rν) regarding global minimizers.103
• We give a lower bound for nonzero group ‖xi‖ of directional stationary points of (Pν)104

by using directional derivatives. Furthermore, the lower bound is used to establish105
the relationship between problems (P0) and (Pν) regarding global minimizers. These106
results on relationships between (P0), (Rν) and (Pν) are summarized in Figure 1.107
• We propose a smoothing penalty algorithm to solve (Rν) and show any accumulation108

point generated by the algorithm is a directional stationary point of (Rν). It is known109
that directional stationary points are sharper than lifted stationary points, critical110
points and C-stationary points for the local optimality [1].111
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(P0)
min ‖x‖2,0
s.t. x ∈ Ω

(Rν)
min Φ(x)

s.t. x ∈ Ω

(Pν) min Φ(x) + λF (x)

(1.3) min ‖x‖2,0 + λF (x)

Figure 1. The relationships of global minimizers between problems (P0), (Rν), (1.3) and (Pν).

R1 [Theorem 3.6], R2 [Theorem 3.4], R3 [Theorem 3.7], R4 [ Theorem 2.1], R5 [Theorem 3.3].112

Notation. For a vector x ∈ Rn, we denote L2 norm by ‖x‖, L1 norm by ‖x‖1 and L0

norm by ‖x‖0 =
∑n

i=1 |xi|0 where |xi|0 =

{
1, xi 6= 0,
0, xi = 0.

Letters in bold font denote that they

are partitioned in the same way as x. The group support set of x is denoted by

Γ(x) = {i | ‖xi‖ 6= 0, i = 1, . . . ,m} = Γ1(x) ∪ Γ2(x),
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GROUP SPARSE RECOVERY 5

Γ1(x) = {i | ‖xi‖ < ν, i ∈ Γ(x)} and Γ2(x) = {i | ‖xi‖ ≥ ν, i ∈ Γ(x)}.

For a fixed subset Γ ⊂ {1, . . . ,m}, let xΓ be an n-dimensional vector with (xΓ)i = 0, for i /∈ Γ113
and (xΓ)i = xi for i ∈ Γ. Let (Bj)> (j = 1, · · · , q) be the jth row of matrix B. The distance114
from x to a closed set S ⊆ Rn is defined by dist(x,S) = inf{‖x− y‖ : y ∈ S}.115

The paper is organized as follows. The link between problems (P0) and (Rν) and link116
between problems (P0) and (Pν) are studied in Section 2 and Section 3, respectively. The117
smoothing penalty algorithm using adaptive capped folded concave functions for (Rν) is pro-118
posed in Section 4. In Section 5, numerical performance of the smoothing penalty algorithm119
is illustrated through randomly generated examples and image recovery examples. Section 6120
gives conclusions.121

2. Link between problems (P0) and (Rν). From the conditions of φ(·), we see that

|t|0− φ(|t|) > 0 if |t| ∈ (0, ν), φ(|t|) = |t|0 if |t| ∈ {0} ∪ [ν,∞) and

∫ ∞
0
|t|0− φ(|t|) ∈ (0, ν].

In this section, we show that there is ν̂ > 0, such that problems (P0) and (Rν) have the same122
global optimal solutions for any ν ∈ (0, ν̂).123

To show the existence of ν̂, we define a positive constant ν based on the global minimum124
of problem (P0). For an integer s with 0 ≤ s ≤ m, denote Qs := {x ∈ Rn : ‖x‖2,0 ≤ s} and125
dist(Ω, Qs) := inf{dist(x, Qs) : x ∈ Ω}. Recall that the global minimum of (P0) is a positive126
integer k. Then the feasible set Ω of (P0) does not have a vector x with ‖x‖2,0 < k, which127
means dist(Ω, Qk−K) > 0 for all K = 1, · · · , k. Define128

(2.1) ν = min

{
1

K
dist(Ω, Qk−K) : K = 1, · · · , k

}
.129

In the following, we show the equivalence of global optimality of problems (P0) and (Rν).130

Theorem 2.1. For any capped folded concave function φ satisfying 0 < ν < ν and φCapL1(t)131
≤ φ(t) < |t|0 for t ∈ (0, ν), problems (P0) and (Rν) have same global minimizers and same132
optimal value.133

Proof. (i) Let x∗ ∈ Rn with ‖x∗‖2,0 = k be a global minimizer of (P0). We prove x∗ is134
also a global minimizer of (Rν) for any 0 < ν < ν. Since the global optimality of (P0) yields135
‖x‖2,0 ≥ k for x ∈ Ω, we show the conclusion by two cases.136

Case 1. ‖x‖2,0 = k. It is easy to see that for any i ∈ Γ(x),

‖xi‖ ≥ min{‖xj‖ > 0 : j = 1, · · · ,m} = dist(x, Qk−1) ≥ dist(Ω, Qk−1) ≥ ν,

where the last inequality comes from (2.1). By 0 < ν < ν, we obtain ‖xi‖ > ν for all i ∈ Γ(x),137
which means that Φ(x) = k = Φ(x∗).138

Case 2. ‖x‖2,0 = r > k. If |Γ2(x)| = r′ ≥ k, from φ(t) > 0 for t > 0 and r > k, we have
Φ(x) > k. Now assume r′ < k, without loss of generality, assume ‖x1‖, · · · , ‖xr−r′‖ ∈ (0, ν).
Since r′ < k, we know from (2.1) that 1

k−r′dist(Ω, Qr′) ≥ ν. Together with

‖x1‖+ · · ·+ ‖xr−r′‖ ≥
√
‖x1‖2 + · · ·+ ‖xr−r′‖2 ≥ dist(x, Qr′) ≥ dist(Ω, Qr′),
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we get139

Φ(x) = φ(‖x1‖) + · · ·+ φ(‖xr−r′‖) + · · ·+ φ(‖xr‖)(2.2)140

≥ φCapL1(‖x1‖) + · · ·+ φCapL1(‖xr−r′‖) + r′141

=
1

ν
(‖x1‖ · · ·+ ‖xr−r′‖) + r′142

≥ 1

ν
dist(Ω, Qr′) + r′ ≥ 1

ν
(k − r′)ν + r′143

>
1

ν
(k − r′)ν + r′ = k,144

where the first inequality comes from φ(t) ≥ φCapL1(t) for t ∈ (0, ν) and the last inequality145
comes from 0 < ν < ν. The above two cases imply that Φ(x) ≥ k = Φ(x∗) for all x ∈ Ω.146
Hence x∗ is also a global minimizer of (Rν). Moreover, we have ‖x∗‖0 = Φ(x∗) for each global147
minimizer x∗ of (Rν).148

(ii) Let x∗ be a global minimizer of (Rν) with 0 < ν < ν. Assume on the contrary x∗149
is not a solution of (P0). Let x̃ be a global minimizer of (P0), that is, ‖x̃‖2,0 = k. By150
φCapL1(t) ≤ φ(t) ≤ |t|0, we have Φ(x̃) ≤ ‖x̃‖2,0. Using similar ways in the proof for Case 2151
above, we will obtain Φ(x∗) > k = ‖x̃‖2,0 ≥ Φ(x̃) for any 0 < ν < ν. This contradicts the152
global optimality of x∗ for (Rν). Hence x∗ is a global minimizer of (P0).153

Therefore, whenever 0 < ν < ν, (P0) and (Rν) have the same global minimizers and154
optimal values.155

Remark 2.2. We can easily see that the four capped folded concave penalty functions given156
in Section 1 satisfy the conditions of Theorem 2.1. Hence problems (P0) and (Rν) with any157
one of the four functions have same global minimizers and same optimal values, whenever158
0 < ν < ν.159

For simplicity, in the theoretical results of this paper, we will use ν ∈ (0, ν) such that160
problems (P0) and (Rν) have same global minimizers and same optimal value.161

3. Links between problems (P0), (1.3) and (Pν). We first characterize the d(directional)-162
stationary point of (Pν), which can be used to study the relationship of global optimal solutions163
of problems (P0), (1.3) and (Pν).164

3.1. d-stationary point of (Pν). Let f : Rn → R be locally Lipschitz continuous and165
directionally differentiable at point x ∈ Rn. The directional derivative of f along a vector166
w ∈ Rn at x is defined by167

f ′(x;w) := lim
τ↓0

f(x+ τw)− f(x)

τ
.168

If f is differentiable at x, then f ′(x;w) = 〈∇f(x), w〉. Next, we consider the directional169
derivative of L2 norm and F (x). Denote L2 norm as l(x) := ‖x‖. By simple computation, we170
have171

(3.1) l′(x∗;x− x∗) =

{
‖x‖, ‖x∗‖ = 0,
〈x∗,x−x∗〉
‖x∗‖ , otherwise.

172
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Then by [41, Exercise 8.31], the directional derivative of F at x∗ has the form173

(3.2) F ′(x∗;x− x∗) = ∆a + ∆b,174

where175

∆a :=


0, if ‖Ax∗ − b‖2 < σ2,
max{0, 〈2A>(Ax∗ − b),x− x∗〉}, if ‖Ax∗ − b‖2 = σ2,
〈2A>(Ax∗ − b),x− x∗〉, otherwise

176

and ∆b =
∑q

j=1 ∆b
j with177

∆b
j :=


0, if 〈Bj ,x∗〉 < hj ,
max{0, 〈Bj ,x− x∗〉}, if 〈Bj ,x∗〉 = hj ,
〈Bj ,x− x∗〉, otherwise.

178

179

Definition 3.1. We say that x∗ ∈ Rn is a d-stationary point of (Pν) if180

Φ′(x∗;x− x∗) + λF ′(x∗;x− x∗) ≥ 0, ∀x ∈ Rn.181

From (3.2), x∗ ∈ Rn is a d-stationary point of (Pν) if182

(3.3) Φ′(x∗;x− x∗) + λ∆a + λ∆b ≥ 0, ∀x ∈ Rn.183

184
It is known that [16, Lemma 2.1] there exists a β > 0 such that for all x ∈ Rn, we have185

(3.4) dist(x,Ω) ≤ β[(‖Ax− b‖22 − σ2)+ + ‖(Bx− h)+‖1] = βF (x).186

Let L : Rn → R be defined as

L(x) = 2‖A‖F ‖Ax− b‖+
√
q‖B‖F .

Since A has nonzero entries and φ′−(ν) → ∞ as ν → 0, for any Υ > σ and λ > 0, there are187
x̂ ∈ Rn and a sufficiently small ν > 0 such that ‖Ax̂ − b‖ ≥ Υ and φ′−(ν) > λL(x̂). In the188
rest of this paper, we choose Υ, ν, λ and x̂ ∈ Rn satisfying189

(3.5) ‖Ax̂− b‖ ≥ Υ, λ >
β

ν̄
and φ′−(ν) > λL(x̂).190

At the end of this section, we show how to choose these parameters by Example 3.8.191

Lemma 3.2. Let x∗ ∈ Rn be a d-stationary point of (Pν) satisfying ‖Ax∗ − b‖ ≤ Υ and192
φ′−(ν) > λL(x̂), then either ‖x∗i ‖ ≥ ν or ‖x∗i ‖ = 0 for i = 1, · · · ,m.193

Proof. To prove this Lemma, we only need to show Γ1(x∗) = ∅. Assume on contradiction194
that Γ1(x∗) 6= ∅. From (3.3), we have the following inequality for any x ∈ Rn satisfying195
xj = x∗j for all j /∈ Γ1(x∗) and for which ∃ i ∈ Γ1(x∗) such that xi 6= x∗i ,196

(3.6)
∑

i∈Γ1(x∗)

φ′(‖x∗i ‖)
〈x∗i ,xi − x∗i 〉
‖x∗i ‖

+ λ∆a + λ∆b ≥ 0.197
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Notice that ∆a ≤
∑

i∈Γ1(x∗) ‖2A>i (Ax∗ − b)‖‖xi − x∗i ‖ and ∆b ≤
∑

i∈Γ1(x∗)

∑q
j=1 ‖Bj‖‖xi −198

x∗i ‖. By (3.6) and letting xi = x∗i − εx∗i (ε > 0), i ∈ Γ1(x∗), we have199

∑
i∈Γ1(x∗)

φ′(‖x∗i ‖)‖x∗i ‖ ≤ λ
∑

i∈Γ1(x∗)

(
2‖A>i (Ax∗ − b)‖+

q∑
j=1

‖Bj‖
)
‖x∗i ‖

≤λ
∑

i∈Γ1(x∗)

(
2‖A>i (Ax∗ − b)‖+

√
q‖B‖

)
‖x∗i ‖ ≤ λL(x̂)

∑
i∈Γ1(x∗)

‖x∗i ‖.
200

By φ′(‖x∗i ‖) ≥ φ′−(ν) for all i ∈ Γ1(x∗), we have φ′−(ν) ≤ λL(x̂). This contradicts the201
condition of φ′−(ν) > λL(x̂). The proof is completed.202

3.2. Link between problems (P0) and (Pν). Utilizing Lemma 3.2, we obtain the following203
relationship between the global optimality of problems (P0) and (Pν). We recall the choice of204
λ in (3.5) for the following theorem.205

Theorem 3.3. Let λ > β
ν̄ and φ′−(ν) > λL(x̂).206

(i) If x∗ ∈ Rn is a global minimizer of (Pν) with ‖Ax∗ − b‖ ≤ Υ, then x∗ is a global207
minimizer of (P0).208

(ii) If x∗ ∈ Rn is a global minimizer of (P0) and (Pν) has a global minimizer x̃ with209
‖Ax̃− b‖ ≤ Υ, then x∗ is a global minimizer of (Pν).210

Proof. (i) Since x∗ ∈ Rn is a global minimizer of (Pν) and the objective function is locally211
Lipschitz continuous, x∗ is a d-stationary point of (Pν). From ‖Ax∗ − b‖ ≤ ‖Ax̂ − b‖ and212
Lemma 3.2, Φ(x∗) = ‖x∗‖2,0. Assume now that x∗ is not a global minimizer of (P0) and x′213
with ‖x′‖2,0 = k is a global minimizer of (P0).214

Then, we distinguish two cases.215
• x∗ ∈ Ω. Then ‖x′‖2,0 < ‖x∗‖2,0 by the assumption. From F (x∗) = 0, we have216

Φ(x′) + λF (x′) ≤ ‖x′‖2,0 + λF (x′) = ‖x′‖2,0 < ‖x∗‖2,0 ≤ Φ(x∗) + λF (x∗),217

which contradicts the global optimality of x∗ for (Pν).218
• x∗ /∈ Ω. Then we consider two cases with F (x∗) > 0.219

– If ‖x∗‖2,0 ≥ k, it holds that220

Φ(x′) + λF (x′) ≤ ‖x′‖2,0 + λF (x′) = k < ‖x∗‖2,0 + λF (x∗) = Φ(x∗) + λF (x∗)221

which contradicts the global optimality of x∗ for (Pν).222
– If ‖x∗‖2,0 = k′ < k, then as x′ ∈ Ω we have ‖Ax′− b‖2 ≤ σ2 < Υ2 and Lemma

3.2 implies ‖x′‖2,0 = Φ(x′). From the definition of ν, k ≥ k − k′ ≥ 1 and
(3.4)-(3.5), we have

ν ≤ 1

k − k′
dist(Ω, Qk′) ≤

1

k − k′
dist(Ω,x∗) ≤ βF (x∗)

k − k′
.
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This together with λ > β
ν gives223

Φ(x∗) + λF (x∗) = k′ + λF (x∗)

> k′ +
β

ν
F (x∗)≥ k′ + β

ν

(k − k′)ν
β

= k = ‖x′‖2,0 + λF (x′)

≥ Φ(x′) + λF (x′),

224

which contradicts the global optimality of x∗ for (Pν).225
This shows that x∗ is a global minimizer of (P0).226

(ii) Suppose that x∗ is a global minimizer of (P0) but not a global minimizer of (Pν).
Since x̃ is a global minimizer of (Pν) with ‖Ax̃ − b‖ ≤ Υ, from Lemma 3.2 and (i), we have
Φ(x̃) = ‖x̃‖2,0 and x̃ ∈ Ω. Using this, we conclude that

‖x̃‖2,0 ≤ ‖x̃‖2,0 + λF (x̃) = Φ(x̃) + λF (x̃) < Φ(x∗) + λF (x∗) = Φ(x∗) ≤ ‖x∗‖2,0,

which leads to a contradiction with the global optimality of x∗ for (P0). Hence x∗ is a global227
minimizer of problem (Pν) and the proof is completed.228

3.3. Link between problems (1.3) and (Pν). In [7], the authors showed the relationship229
between (1.3) and (Pν) regarding global minimizers in the case where m = n, Ω is a box230
feasible set, φ is the capped L1 penalty function and F is a Lipschitz continuous function.231
Although the objective functions here are not globally Lipschitz continuous, by Lemma 3.2232
and similar method as in [7], we can prove problems (1.3) and (Pν) have the same optimal233
solutions if the parameters λ and ν satisfy (3.5). For completeness, we state it as following.234

Theorem 3.4. Suppose that φ′−(ν) > λL(x̂). If x∗ is a global minimizer of problem (Pν)235
and satisfies ‖Ax∗ − b‖ ≤ Υ, then x∗ is a global minimizer of problem (1.3). Conversely, if236
problem (Pν) has a global minimizer x̃ satisfying ‖Ax̃− b‖ ≤ Υ and x∗ is a global minimizer237
of problem (1.3), then x∗ is a global minimizer of problem (Pν).238

Proof. Firstly, if x∗ is a global minimizer of problems (Pν), by Lemma 3.2, we have Φ(x∗) =
‖x∗‖2,0. Therefore, it holds that

‖x∗‖2,0 + λF (x∗) = Φ(x∗) + λF (x∗) ≤ Φ(x) + λF (x) ≤ ‖x‖2,0 + λF (x), ∀x ∈ Rn,

which means x∗ is a global minimizer of problem (1.3).239
Secondly, assume x∗ is a global minimizer of problem (1.3). Then from from Φ(x∗) ≤

‖x∗‖2,0, we have

Φ(x∗) + λF (x∗) ≤ ‖x∗‖2,0 + λF (x∗) ≤ ‖x‖2,0 + λF (x) ∀x ∈ Rn.

From Lemma 3.2 and the assumption of this theorem, the global minimizer x̃ of problem (Pν)
satisfies ‖x̃‖2,0 = Φ(x̃). Hence the above inequalities imply

Φ(x̃) + λF (x̃) ≤ Φ(x∗) + λF (x∗) ≤ ‖x∗‖2,0 + λF (x∗) ≤ ‖x̃‖2,0 + λF (x̃) = Φ(x̃) + λF (x̃).

This shows x∗ is a global minimizer of problem(Pν).240

Remark 3.5. From Theorem 3.4, we can claim that problem (1.3) has a unique solution if241
and only if (Pν) has a unique solution. Moreover, (1.3) and (Pν) have the same unique solution242
if one of the two problems has a unique solution.243
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3.4. Link between (Rν) and (Pν) and link between (P0) and (1.3). The authors of [16]244
showed the link between (Rν) and (Pν) with m = n and the authors of [17] showed the link245
between (P0) and (1.3) with ni = n1, i = 1, . . . ,m regarding global minimizers under certain246
conditions, respectively. The following Theorem 3.6 and Theorem 3.7 extend these results in247
[16] and [17] to the group cases, respectively. The proof is similar, and we omit it.248

Theorem 3.6. Suppose that φ is globally Lipschitz continuous on [0, ν], then there exists a249
λ∗ > 0 such that any global minimizer of (Rν) is a global minimizer of (Pν) whenever λ ≥ λ∗;250
moreover, if x∗ is a global minimizer of (Pν) for some λ > λ∗, then x∗ is a global minimizer251
of (Rν).252

Theorem 3.7. There exists a λ∗ > 0 such that any global minimizer of (P0) is a global253
minimizer of (1.3) whenever λ ≥ λ∗; moreover, if x∗ is a global minimizer of (1.3) for some254
λ ≥ λ∗, then x∗ is a global minimizer of (P0).255

To end this section, we use the following example to illustrate the choice of these parameters256
in (3.5) for the links between problems (P0), (Rν), (1.3) and (Pν).257

Example 3.8 Let A = 1√
2
[1, 1], b = 1√

2
, σ ∈ (0, 1√

2
) and

Ω = {x ∈ R2 : ‖Ax− b‖2 ≤ σ} = {x ∈ R2 :
1√
2
|x1 + x2 − 1| ≤ σ}.

The feasible set Ω is from Example 1.1 in [18].258
The solution set of problem (P0) is

X∗ := {(0, t)> : t ∈ [1−
√

2σ, 1 +
√

2σ]} ∪ {(t, 0)> : t ∈ [1−
√

2σ, 1 +
√

2σ]}.

259
The solution set of problem (Rν) with capped L1 function φ is X∗ for any 0 < ν < ν,260

where ν = dist(0,Ω) = 1−
√

2σ√
2

.261

To consider the link between problem (P0) and the two penalty problems (Pν) and (1.3),262
we need parameters β, Υ and λ. By [16, Lemma 2.2], we can set β = 1

σ‖A
>(AA>)−1‖ = 1

σ263
such that for any x ∈ R2, dist(x,Ω) ≤ βF (x), where F (x) = [‖Ax − b‖2 − σ2]+ = [1

2(x1 +264
x2 − 1)2 − σ2]+.265

We choose x̂ = 0. Then Υ = ‖b‖ > σ. Moreover for λ > β
ν̄ = 1

σν̄ and ν < 1√
2λ
< σν̄√

2
< ν̄

2 ,266

we have λL(0) = λ
√

2 < φ′−(ν) = 1
ν . Hence all inequalities in (3.5) holds.267

The solution set of problem (1.3) is X∗ if λ >
√

2
σ(1−

√
2σ)

.268

The solution set of problem (Pν) with capped L1 function φ is X∗ if λ >
√

2
σ(1−

√
2σ)

and269

ν < 1√
2λ
.270

Moreover, we can use other three capped functions in Section 1 with ν satisfying λL(0) =271

λ
√

2 < φ′−(ν). From the concavity of φ(t) on [0, ν] , we have φ′−(ν) ≤ φ(ν)−φ(0)
ν−0 = 1

ν . Table 1272
gives the value of φ′−(ν).273
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capped L1 capped Lp capped MCP capped fraction

φ′−(ν) 1
ν

p
ν

2(α−ν)
ν(2α−ν)

1
ν(1+αν)

Table 1

φ′−(ν) = limt↑ν φ
′(t)

4. Algorithm. We propose a smoothing penalty method to solve problem (Rν). The274
following smoothing function is used to approximate t+:275

hµ(t) := max
0≤s≤1

{
ts− µ

2
s2
}

=


t− µ

2 , t ≥ µ
t2

2µ , 0 < t < µ

0, t ≤ 0

276

where µ > 0 and h′µ(t) = min
{

max
{
t
µ , 0
}
, 1
}
. The smoothing function of F (x) is277

Fµ(x) := hµ(‖Ax− b‖2 − σ2) +

q∑
i=1

hµ([Bx− h]i).278

Since 0 ≤ t+ − hµ(t) ≤ µ
2 , we have that for x ∈ Rn279

0 ≤ Fµ(x) ≤ F (x) ≤ Fµ(x) +
q + 1

2
µ.280

The smoothing penalty method for solving problem (Rν) is presented as follows.281

Algorithm 4.1 Smoothing penalty algorithm for problem (Rν)
Choose xfeas ∈ Ω, x0 ∈ Rn, λ0 > 0, µ0 > 0, ε0 > 0, ρ > 1, and θ ∈ (0, 1) arbitrarily. Set k = 0
and x0,0 = x0.

(1) If Fµk
(xk,0) > Fµk

(xfeas), set xk,0 = xfeas. Use xk,0 as an initial point to find an
approximate solution xk of min{Gλk,µk

(x) := Φ(x) + λkFµk
(x)} such that

(4.1) max
{

0,− min
x∈Rn
{Φ′(xk,x− xk) + λk〈∇Fµk

(xk),x− xk〉}
}
≤ εk.

(2) Set λk+1 = ρλk, µk+1 = θµk, εk+1 = θεk, and xk+1,0 = xk.

(3) Set k ← k + 1 and go to step (1).

end

Algorithm 4.1 is motivated by the smoothing penalty method for minimizing ‖x‖pp over282
Ω where 0 < p < 1 in [16]. In Step 1, Gλk,µk(x) is a smoothing approximation of the283
objective function Φ(x) + λkF (x) of problem (Pν) with λ = λk. Compared the objective284
function in [16] and the objective function in (Pν), there are three differences. Firstly, the285
function ‖x‖pp in [16] has bounded level sets, while our Φ(·) does not. Secondly, ‖x‖pp in [16] is286
differentiable on R except points involving zero components, while our Φ(·) is not differentiable287
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at points that have components with values of zero or ν. Moreover, our Φ(·) is a composite288
function of φ and L2 norm, and L2 norm is not differentiable at original point. At last, ‖x‖pp289
is not Lipschitz continuous at zero, while our φ(·) is Lipschitz continuous and directionally290
differentiable. Hence, the stop condition (4.1) for solving the subproblem is different and it291
can generate d-stationary points of (Rν). It is known that d-stationary points are sharper than292
critical points and C-stationary points for local optimality [1]. In view of these differences, for293
completeness we give the convergence analysis for Algorithm 4.1 with Capped L1 function in294
the following. For simplicity, in the subsequent arguments, φ refers to φCapL1. The convergence295
of Algorithm 4.1 with other capped folded concave functions can be derived similarly.296

We will use the directional derivative of Φ at x∗, which is

Φ′(x∗,x− x∗) =
m∑
i=1

φ′(‖x∗i ‖,xi − x∗i ),

297

φ′(‖x∗i ‖,xi − x∗i ) =


‖xi‖
ν , ‖x∗i ‖ = 0,
〈x∗i ,xi−x∗i 〉
ν‖x∗i ‖

, ‖x∗i ‖ ∈ (0, ν),

max{0, 〈x
∗
i ,xi−x∗i 〉
ν‖x∗i ‖

}, ‖x∗i ‖ = ν,

0, otherwise.

298

299

Theorem 4.1. Let {xk} be generated by Algorithm 4.1 with Capped L1 function. Then any
accumulation point x∗ of {xk} is a d-stationary point of (Rν), that is,

x∗ ∈ Ω and Φ(x∗,x− x∗) ≥ 0, ∀x ∈ Ω.

Proof. Let {xk}K be a subsequence of {xk} such that xk → x∗ as k →∞, k ∈ K.300
First we prove x∗ is a feasible point of problem (Rν). From Gλk,µk(xk) ≤ Gλk,µk(xfeas),301

we have302

(‖Axk − b‖2 − σ2)+ + ‖(Bxk − h)+‖1

≤Fµk(xk) +
q + 1

2
µk =

1

λk
Gλk,µk(xk) +

q + 1

2
µk

≤ 1

λk
Gλk,µk(xfeas) +

q + 1

2
µk =

1

λk
Φ(xfeas) +

q + 1

2
µk.

303

Taking limits as k → ∞, k ∈ K, we have (‖Ax∗ − b‖2 − σ2)+ + ‖(Bx∗ − h)+‖1 ≤ 0. Hence304
x∗ ∈ Ω.305

Now we prove that x∗ a d-stationary point of problem (Rν). Denote I∗ = {i : (Bx∗−h)i =306
0}. Then (Bx∗ − h)i < 0 and (Bxk − h)i < 0 for sufficiently large k if i /∈ I∗. Using this, we307
have wki := h′µk((Bxk − h)i) = 0 for i /∈ I∗, when k is sufficiently large.308

From (4.1), we have309

(4.2) Φ′(xk,x− xk) + λkF
′
µk

(xk,x− xk) ≥ −εk, x ∈ Rn.310
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Combining the expression of directional derivative, there exist ζk :=
(
(ζk1 )>, · · · , (ζkm)>

)> with311
ζki ∈ ∂φ(‖xki ‖), i = 1, · · · ,m such that312

(4.3)
〈
ζk + 2λkh

′
µk

(‖Axk − b‖2 − σ2)A>(Axk − b) + λk
∑
j∈I∗

wkjB
j ,x− xk

〉
≥ −εk, x ∈ Rn.313

The global Lipschitz continuity yields that {‖ζki ‖}, i = 1, · · · ,m are bounded. Then let314

{ζk}K → ζ∗ =
(
(ζ∗1 )>, · · · , (ζ∗m)>

)> ∈ ∂Φ(‖x∗‖).315
We consider two case: ‖Ax∗ − b‖2 < σ2 and ‖Ax∗ − b‖2 = σ2.316
Case 1. Suppose that ‖Ax∗−b‖2 < σ2. Then for sufficiently large k, we have ‖Axk−b‖2 <317

σ2 and h′µk(‖Axk − b‖2 − σ2) = 0. Hence, (4.3) reduces to318 〈
ζk + λk

∑
j∈I∗

wkjB
j ,x− xk

〉
≥ −εk, x ∈ Rn.319

By passing to the limit on the above inequality, making use of εk → 0, the closedness of the320
conical hull of the finite set {Bj : j ∈ I∗}, there exist yj , j ∈ I∗ such that for any x ∈ Rn, it321
holds322

0 ≤
〈
ζ∗ +

∑
j∈I∗

yjB
j ,x− x∗

〉
≤ max

ζ∗i ∈∂φ(‖x∗i ‖)
〈ζ∗i ,xi − x∗i 〉+ ȳ

∑
j∈I∗

max{0, 〈Bj ,x− x∗〉}

= max
ζ∗i ∈∂φ(‖x∗i ‖)

〈ζ∗i ,xi − x∗i 〉+ ȳ
∑
j∈I∗

max
i∈Ij2(x∗)

ξ′i(〈Bj ,x∗〉 − hj)〈Bj ,x− x∗〉

=Φ′(x∗,x− x∗) + ȳF ′(x∗,x− x∗),

323

where ȳ = max{|yj | : j ∈ I∗}.324
Case 2. Suppose that ‖Ax∗ − b‖2 = σ2. Denote tk := λkh

′
µk

(‖Axk − b‖2 − σ2) ≥ 0. We325
claim {tk} is bounded. Assume on the contrary that {tk} is unbounded and {tk} → ∞. From326
(4.3), we have327

〈ζk
tk

+A>(Axk − b) +
∑
j∈I∗

wkj
tk
Bj ,x− xk

〉
≥ −εk, x ∈ Rn.328

Passing to the limit in the above equality and using the boundedness of {ζk} as well as the329
closedness of finitely generated cones, we find330

0 ∈ A>(Ax∗ − b) +NB·≤h(x∗).331

This means that x∗ is an optimal solution of the problem {min 1
2‖Ax−b‖

2 s.t. Bx ≤ h}. Since332
‖Ax∗ − b‖ = σ, this contradicts our assumption that there is x0 ∈ Ω with ‖Ax0 − b‖ < σ.333
Thus {tk} is a nonnegative bounded sequence. Let {tk} → t∗ ≥ 0. Taking limits on both334
sides of (4.3), invoking the closedness of finitely generated cones, we can see that there exists335
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ζ∗ ∈ ∂Φ(‖x∗‖) such that336

0 ≤〈ζ∗,x− x∗〉+ 〈t∗A>(Axk − b) +
∑
j∈I∗

yjB
j ,x− x∗〉

≤ Φ′(x∗,x− x∗) + ȳF ′(x∗,x− x∗), x ∈ Rn,
337

where ȳ := max{|t∗|, |yj | : j ∈ I∗}. Therefore, we have Φ′(x∗,x − x∗) + ȳF ′(x∗,x − x∗) ≥ 0338
for any x ∈ Rn.339

From the expression of directional derivative, it holds that for any x ∈ Rn,340
(4.4)

0 ≤ Φ′(x∗,x− x∗) + ȳF ′(x∗,x− x∗) = max
v1∈∂Φ(x∗)

〈v1,x− x∗〉+ ȳ max
v2∈∂F (x∗)

〈v2,x− x∗〉.341

Notice that for x∗ ∈ Ω, ∂F (x∗) = ϑA>(Ax∗ − b) +
∑l

j=1 µ
′
jB

j with342

(4.5) ϑ

{
∈ [0, 1], ‖Ax∗ − b‖2 = σ2,
= 0, ‖Ax∗ − b‖2 < σ2 and µ′j

{
∈ [0, 1], 〈Bj ,x〉 = hj ,
= 0, 〈Bj ,x〉 < hj .

343

From [41, Theorem 6.42], we have ∂F (x∗) ⊆ NΩ(x∗). Hence 〈v2,x − x∗〉 ≤ 0 for any v2 ∈344
∂F (x∗) and x ∈ Ω. Together with (4.4), it yields that Φ′(x∗,x − x∗) = maxv∈∂Φ(x∗)〈v,x −345
x∗〉 ≥ 0 for any x ∈ Ω and x∗ is a d-stationary point of (Rν).346

5. Numerical simulations. In our numerical simulations, we use the nonmonotone prox-347
imal gradient (NPG) method [16, 47] to solve the subproblem in Step (1) of Algorithm 4.1.348
The subproblem is an unconstrained optimization problem349

(5.1) min
x∈Rn

Gλ,µ(x) := Φ(x) + λFµ(x).350

The NPG method for solving (5.1) is presented as follows.351

Algorithm 5.1 NPG method for (5.1)
Let x0 ∈ Ω be given. Choose Lmax ≥ Lmin > 0, κ > 1, c > 0 and an integer M ≥ 0 arbitrarily. Set
k = 0.
(1) Choose L0

k ∈ [Lmin, Lmax] arbitrarily. Set Lk = L0
k.

(1a) Solve the subproblem

(5.2) u ∈ Argminx

{
λ〈∇Fµ(xk),x− xk〉+

Lk
2
‖x− xk‖2 + Φ(x)

}
.

(1b) If Gλ,µ(u) ≤ max[k−M ]+≤i≤kGλ,µ(u)(xi)− c
2‖u− xk‖2, then go to step (2).

(1c) Set Lk ← κLk and go to step (1a).
(2) Set xk+1 ← u, L̄k ← Lk, k ← k + 1 and go to step (1).
end

We can find u in (5.2) by solvingm optimization problems in Rni for each group in parallel.
Moreover, (5.2) can be written as a proximal operator

u ∈ Argminx

{
1

2

∥∥x− xk +
λ

Lk
∇Fλ,µ(xk)

∥∥2
+

1

Lk
Φ(x)

}
,
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which has a closed form solution. See Appendix A.352
For the NPG method to solve the unconstrained subproblem (5.1) at λ = λk and µ = µk,353

we set Lmin = 1, Lmax = 108, κ = 2, c = 10−4, L0
0 = 1, and for any l ≥ 1,354

L0
l := min

{
max

{ [xk,l − xk,l−1]>[∇Fλk,µk(xk,l)−∇Fλk,µk(xk,l−1)]

‖xk,l − xk,l−1‖2
, Lmin

}
, Lmax

}
.355

The NPG method is terminated when356

‖xk,l − xk,l−1‖∞ ≤
√
εk and

|∇Fλk,µk(xk,l)−∇Fλk,µk(xk,l−1)|
max{1, |∇Fλk,µk(xk,l)|}

≤ min{ε2k, 10−4}.357

Algorithm 4.1 is terminated when358

max{(‖Axk − b)‖2 − σ2)+, 0.01εk} ≤ 10−6359

and εk+1 in Step (2) of Algorithm 4.1 is updated as max{θεk, 10−6} in our numerical imple-360
mentation.361

All codes are written in MATLAB, and the experiments were performed in MATLAB362
R2017a on a laptop computer with 2.6GHz CPU and 8GB RAM. Our testing problems in363
this section are from recovering a group sparse solution and images from an underdetermined364
linear system with noisy measurements, which are formulated as optimization problem (Rν)365
without the constraint Bx ≤ h.366

5.1. Random data. For problem (Rν), we set ν = 0.02 and ni = 8. Parameters in367
Algorithm 4.1 and Algorithm 5.1 are set as x0 = 1n, the vector of all ones, λ0 = 40, µ0 = ε0 =368
1, ρ = 2, θ = 1

ρ , M = 3 and xfeas = A†b.369
We compare Algorithm 4.1 with SPGl1 [45] ( http://www.cs.ubc.ca/.mpf/SPGl1/) for370

solving group lasso model min ‖x‖2,1 s.t. ‖Ax− b‖ ≤ σ, and FISTA [4] for solving min 1
2‖Ax−371

b‖2 + λ‖x‖2,1 (https://github.com/tiepvupsu/FISTA), where ‖x‖2,1 =
∑m

i=1 ‖xi‖. We use372
warm restart strategy for FISTA: start from λ = 5, decrease it by half in every iteration and373
use the result as the initial point in the next iteration until ‖Ax− b‖2 < 1 at λ = 0.01. Then374
we use FISTA with fixed λ = 0.01 for the rest of iterations. The data is generated as [45],375
where Kg is the number of nonzero groups in the signal. In Table 2, we report the number376
of nonzero groups (nnz) in the approximate solution x obtained by the algorithms and the377
CPU time in seconds. One can observe that Algorithm 4.1 produces sparser solutions than the378
group SPGl1 method and FISTA. Among the four capped folded concave functions given in379
Section 1, capped L1 outperforms the other three functions in terms of CPU time for this test.380
Since the group lasso model min ‖x‖2,1 s.t. ‖Ax − b‖ ≤ σ is closely related to problem (P0),381
we compare Algorithm 4.1 with SPGl1 only in the following image recovery test problems.382
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Data FISTA G-SPGl1 L1 MCP L1/2 Fraction
r m Kg nnz Time nnz Time nnz Time nnz Time nnz Time nnz Time

720 768 38 633 12.82 561 7.37 554 1.37 554 5.69 554 3.20 554 3.14
900 960 48 770 20.96 717 9.67 699 1.90 700 9.90 697 4.53 697 4.49
1080 1152 57 933 31.72 849 11.49 837 2.48 836 13.79 836 6.26 836 6.17
1260 1344 67 1091 45.52 1045 15.64 964 2.88 962 10.82 961 8.07 961 8.01
1440 1536 76 1218 64.66 1117 22.82 1099 3.60 1106 11.81 1096 7.02 1096 6.97
1620 1728 86 1419 81.73 1263 22.34 1255 3.79 1253 15.77 1252 13.05 1252 12.92
1800 1920 96 1524 106.64 1448 25.01 1389 5.34 1390 23.62 1385 11.16 1385 11.26

Table 2
Comparing Algorithm 4.1 with four capped folded concave functions (α = 20 for MCP and Fraction) and

Group SPGl1, FISTA with λ = 0.01.

383

5.2. Multichannel Image Reconstruction. We consider recovering four 2D images from384
compressive and noisy measurement by Group SPGl1 and Algorithm 4.1. We set parameters385
µ0 = 1 and ε0 = 1 for the four images. Other parameters are set according to different images.386
We use the output iterates obtained by group SPGl1 as the initial point of Algorithm 4.1. In387
our tables, the PSNR is defined by PSNR = 10·log V 2

MSE , where V andMSE are the maximum388
absolute value and the mean squared error of the reconstruction, respectively. Parameters in389
group SPGl1 are default.390

The first example is a multichannel image recovery problem (denoted as Image 1) taken391
from [29, 45]. We adopt the same method as in [29] to process the image. The observational392
data b is generated by b = Axorig + η, where A is a random Gaussian matrix (without corre-393
lation within each group), xorig is the target coefficient with a group sparse structure and η is394
Gaussian noise with the noise level V ar(η). The parameters are set as r = 1152, m = 2304,395
ni = 3 (i = 1, · · · ,m), Kg = 152. Parameters in Algorithm 4.1 and Algorithm 5.1 are set as396
λ0 = 40, M = 3, ρ = 5, θ = 1

ρ , ν = 0.02 for Capped L1, ν = 0.01 for other three functions.397
The PSNR and CPU time are reported in Table 3 and the recovered images with noise level398
V ar(η) = 10−3 are presented in Figure 2.399

Group SPGl1 L1 MCP, α = 4 L1/2 Fraction, α = 4

Var(η) PSNR Time(s) PSNR Time(s) PSNR Time(s) PSNR Time(s) PSNR Time(s)
10−1 19.2400 0.2581 19.6033 1.1254 19.5734 1.0860 19.5734 1.2206 19.5734 1.2337
10−2 23.8819 1.1281 48.2727 1.8495 48.2611 1.8204 48.2611 1.9159 48.2611 1.9206
10−3 23.8675 1.1066 64.2713 1.9797 64.2079 2.0062 64.3523 2.3888 64.2079 2.1527
10−4 23.6657 3.4767 88.3341 4.9455 87.2615 4.7036 87.2615 4.8911 87.2615 4.7603
10−5 23.4267 4.2950 103.6857 6.0991 106.8684 5.6479 106.8684 5.8563 106.8684 5.8547
10−6 24.0451 3.9983 105.3054 5.5021 107.7318 5.3069 107.7318 5.4371 107.7318 5.3849

Table 3
Comparing Algorithm 4.1 with four capped folded concave functions and Group SPGl1 using Image 1.
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Figure 2. Recovery results of Image 1.

The second color image with three-channels (denoted as Image 2) is downloaded from400
http://www.med.harvard.edu/AANLIB/cases/case12/mr2-tc2/007.html.401
We preprocess the image at first, including resizing the image into 96 × 96 and setting the402
pixels less than 0.3 as zero. We then take the same method as the first example to produce the403
group sparse target signal, which has 9216 groups with 1363 nonzero groups (each of group size404
3). The sampling matrix A is a random Gaussian matrix with a size 6912×27648. Parameters405
in Algorithm 4.1 and Algorithm 5.1 are set as ρ = 3, M = 5, λ0 = 55, θ = 1

ρ , ν = 0.001 for406
Capped L1, ν = 0.03 for other three functions. The PSNR and CPU time are reported in407
Table 4 and the recovered images with noise level V ar(η) = 10−3 are presented in Figure 3.408

Group SPGl1 L1 MCP, α = 10 L1/2 Fraction, α = 10

Var(η) PSNR Time(s) PSNR Time(s) PSNR Time(s) PSNR Time(s) PSNR Time(s)
10−1 21.4192 4.3258 21.7508 15.5052 21.6872 15.5435 21.7846 16.0082 21.6872 16.2580
10−2 23.9901 23.4516 35.2165 44.4575 35.9986 47.3201 35.9986 48.6960 35.9986 48.5604
10−3 24.3623 49.7471 52.0845 81.3036 52.1006 75.9230 52.1006 77.7247 52.1006 77.4327
10−4 24.4011 66.4492 71.5541 108.9791 71.3558 105.9179 71.3558 108.6231 71.3558 106.9660
10−5 24.3855 126.2611 90.5679 174.5781 94.7775 173.9237 94.7775 177.3438 94.7775 175.7780
10−6 24.4086 195.3681 101.6114 245.3174 99.4979 243.8206 97.0763 241.1279 99.4979 246.7084

Table 4
Comparing Algorithm 4.1 with four capped folded concave functions and Group SPGl1 using Image 2.
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Figure 3. Recovery results of Image 2.

The third example is a multichannel MRI recovery problem (denoted as Image 3) taken409
from [29, 45]. The sampling matrix A is the composition of a partial FFT with an inverse410
wavelet transform, with a size 3771 × 12288, where we have used 6 levels of Daubechies 1411
wavelet. The three channels for each wavelet expansion are organized into one group, and the412
underlying image has 4096 groups (each of group size 3) with 724 nonzero groups. The data413
is formed as b = Axorig + η, where xorig is the target coefficient with a group sparse structure414
and η is the Gaussian noise. The recovered image is then obtained by applying the inverse415
wavelet transform to the estimated coefficient. Parameters of Algorithm 4.1 and Algorithm416
5.1 are set as ρ = 3, M = 5, λ0 = 40, θ = 1

ρ . We set ν = 0.001 for Capped L1 and ν = 0.01417
for other three functions. The results are reported in Table 5 and the recovered images with418
noise level V ar(η) = 10−3 are presented in Figure 4.419

Group SPGl1 L1 MCP, α = 10 L1/2 Fraction, α = 10

Var(η) PSNR Time(s) PSNR Time(s) PSNR Time(s) PSNR Time(s) PSNR Time(s)
10−1 17.9925 1.5646 18.1336 1.4649 18.1336 1.4655 18.1336 1.4708 18.1336 1.4560
10−2 23.9676 4.3351 39.0348 4.2087 38.9066 4.2006 38.9066 4.2438 38.9066 4.2089
10−3 24.9022 11.7074 57.7403 11.4018 58.4163 11.3901 58.4163 11.4976 58.4163 11.5707
10−4 24.9071 19.4300 78.1145 18.5822 76.5253 18.3975 76.5253 18.3766 76.5253 18.1372
10−5 24.8083 34.8007 103.1244 33.8207 96.2496 33.7517 96.2496 33.6962 96.2496 33.7564
10−6 24.7521 28.1514 106.5624 26.9065 103.5421 26.9485 103.5421 27.0806 103.5421 26.9169

Table 5
Comparing Algorithm 4.1 with four capped folded concave functions and Group SPGl1 using Image 3.
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Figure 4. Recovery results of Image 3.

The fourth 256× 256 grayscale image (denoted as Image 4) is download from420
http://www.med.harvard.edu/AANLIB/cases/caseNN1/mr1-dg1/015.htm.421
We resize the image into 128 × 128 and set the pixels less than 0.3 as zero to reduce the422
group sparsity. Then we partition the image into 4096 grids with size of 2× 2. The pixels in423
the same grid are organized into one group and reordered into a vector.. All the groups are424
reordered into a vector and the target coefficient with group sparsity structure is obtained.425
The sampling matrix A is a random Gaussian matrix with a size 4096 × 16384. Parameters426
of penalty methods for three-dimensional image, where ν = 0.001, M = 8, λ0 = 40, θ = 1

ρ427
are the same. We set ρ = 1.5 for Capped L1, ρ = 1.2 for Capped MCP, ρ = 2 for Capped428
Lp and Capped fraction. The results of PSNR and CPU time are reported in Table 6 and the429
recovered images with noise level V ar(η) = 10−3 are presented in Figure 5.430

Group SPGl1 L1 MCP, α = 10 L1/2 Fraction, α = 10.
Var(η) PSNR Time(s) PSNR Time(s) PSNR Time(s) PSNR Time(s) PSNR Time(s)
10−1 23.5054 2.0878 23.8205 1.5634 23.8205 2.5109 23.8205 1.4602 23.8205 1.4539
10−2 25.4102 7.8816 29.4150 9.2259 29.8325 29.4280 29.8325 12.0694 29.8325 11.2612
10−3 25.4730 17.6577 39.7290 59.7255 39.6593 61.1911 39.6593 63.5210 39.6593 59.6978
10−4 25.6481 29.3783 41.0732 69.9874 40.4339 70.0647 40.4339 62.6833 40.4339 58.7915
10−5 25.4717 31.4714 40.3723 58.1390 40.5878 66.8393 40.5878 60.5256 40.5878 57.3971
10−6 25.4778 39.1183 41.7962 67.0524 40.6657 65.4038 40.6657 74.7206 40.6657 70.9018

Table 6
Comparing Algorithm 4.1 with four capped folded concave functions and Group SPGl1 using Image 4.

To see the influence of parameter ν to PSNR, we fix the noise level V ar(η) = 10−3 and431
use the same parameter for Table 6 to present PSNR with different ν for Image 4 in Table 7.432
The results show that decreasing ν can increase PSNR.433

This manuscript is for review purposes only.



20 LILI PAN, XIAOJUN CHEN

ν 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
L1 38.5384 38.5384 35.8403 35.6003 36.5972 33.2918 34.7058 34.2895 33.4616 31.8339

MCP 39.6427 39.6427 39.6427 38.7634 38.5288 38.8392 38.9495 39.1603 38.5645 37.3792
L1/2 39.6427 39.6427 39.6427 38.7634 38.5288 38.8392 38.9495 39.1603 38.5645 37.3792

Fraction 39.6427 39.6427 39.6427 38.7634 38.5288 38.8392 38.9495 39.1603 38.5645 37.3792

Table 7
PSNR of Image 4 by Algorithm 4.1 with different values of parameter ν.

Figure 5. Recovery results of Image 4.

To summarize the numerical experiments, we give the variation of PSNR and CPU time434
of the SPGl1 and Algorithm 4.1 with respect to the noise level in Figure 6, where we present435
the average of the results of the four capped folded concave penalty functions.436
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Figure 6. Comparing Algorithm 4.1 with Group SPGl1 on PSNR and CPU time (specified in second) for
Images 1-4. The red star line stands for Algorithm 4.1 and blue circle line stands for group SPGl1.

Our numerical results show that Algorithm 4.1 with capped folded concave functions can437
significantly improve PSNR values obtained by group SPGl1 method as the noise level decrease.438

6. Conclusions. In this paper, we consider constrained group sparse optimization (P0) for439
image recovery problem. We study its continuous relaxation problem (Rν), its exact penalty440
problem (1.3) and its continuous relaxation penalty problem (Pν). We establish the links441
between the four problems regarding global minimizers. Moreover, we propose a smoothing442
penalty algorithm (Algorithm 4.1) to solve problem (Rν) and show any accumulation point443
generated by Algorithm 4.1 is a d-stationary point of (Rν). The numerical experiments show444
that Algorithm 4.1 with the four capped folded concave functions can achieve higher quality445
solutions.446

Appendix A. Proximal operator. Given a function h : Rn → R ∪ {∞}, the proximal
operator of x ∈ Rn with respect to h is defined as

proxh(x) = Argmin{1

2
‖z − x‖2 + h(z) : z ∈ Rn}.

When h is not convex, the proximal operator may return multiple minimizers and should447
therefore be multivalued. In this section, we list the proximal operators of the four capped448
folded concave functions given in Section 1. We first observe449

(A.1) ψ(‖z‖) z

‖z‖
∈ Argmin{1

2
‖x− z‖2 + λφ(‖x‖) : x ∈ Rn}, z ∈ Rn,450
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where ψ(z) ∈ Argmin{1
2 (u− z)2 + λφ(u) : u ∈ R+}. Indeed, it is from451

1

2

∥∥ψ(‖z‖) z

‖z‖
− z

∥∥2
+ λφ (ψ(‖z‖)) =

1

2
(ψ(‖z‖)− ‖z‖)2 + λφ (ψ(‖z‖))

≤1

2
(‖x‖ − ‖z‖)2 + λφ(‖x‖) ≤ 1

2

∥∥x− z
∥∥2

+ λφ(‖x‖), ∀x ∈ Rn.
452

A.1. Proximal operator of capped L1 penalty function. Let453

(A.2) uCapL1(z) ∈ Argminu∈Rn{fCapL1(u) :=
1

2
‖u− z‖2 + λ

m∑
i=1

φCapL1(‖ui‖)},454

where z ∈ Rn and λ > 0. Since problem (A.2) is separable on group level, we compute every
uCapL1
i (z), i = 1, · · · ,m. From (A.1), we only need to compute the following problem:

uCapL1(z) = argmin{fCapL1(u) :=
1

2
(u− z)2 + λφCapL1(u) : u ∈ R+}.

Note that fCapL1(u) can be written as

fCapL1(u) =

{
1
2(u− z)2 + λ

νu, 0 ≤ u < ν,
1
2(u− z)2 + λ, u ≥ ν.

When 0 ≤ u < ν, the minimizer of fCapL1(u) is u∗ = z − λ
ν . By 0 ≤ u∗ < ν, we obtain455

λ
ν ≤ z < ν + λ

ν . Therefore, we have uCapL1(z) = 0 if z < λ
ν and uCapL1(z) = z − λ

ν if456
λ
ν ≤ z < ν + λ

ν . This means uCapL1(z) = (z − λ
ν )+ when z ≤ ν + λ

ν .457
We compare the values of fCapL1(u∗) and fCapL1(z) and find the minimizer458

uCapL1
i (zi) =

{
(‖zi‖ − λ

ν )+
zi
‖zi‖ , ‖zi‖ ≤ ν + λ

2ν ,

zi, ‖zi‖ > ν + λ
2ν , i = 1, . . . ,m.

459

A.2. Proximal operator of capped MCP penalty function. Let

uC−MCP(z) ∈ argminu∈Rn{fC−MCP(u) :=
1

2
‖u− z‖2 + λ

m∑
i=1

φC−MCP(‖ui‖)},

where z ∈ Rn and λ > 0. The corresponding single variable minimization problem is

uC−MCP(z) ∈ argminu∈R{fC−MCP(u) :=
1

2
(u− z)2 + λφC−MCP(u)}.

For simplicity, denote νM := 2α
2αν−ν2 . The function fC−MCP(u) can be expressed as

fC−MCP(u) =

{
1
2(u− z)2 + λ

νM
(u− u2

2α), 0 ≤ u < ν,
1
2(u− z)2 + λ, u ≥ ν.

This manuscript is for review purposes only.



GROUP SPARSE RECOVERY 23

When 0 ≤ u < ν, let d
duf

C−MCP(u) = u− z + λ
νM

(1− u
α) = 0. We have u∗(z) =

z− λ

νM

1− λ

ανM

. Then

the minimizer of fC−MCP(u) in [0, ν] is

u∗1(z) = min

{( z − λ
νM

1− λ
ανM

)
+
, ν

}
,

and the minimizer of fC−MCP(u) in [ν,∞) is u∗2(z) = max{z, ν}. Hence we have460

uC−MCP
i (zi) =

{
u∗1(‖zi‖) zi

‖zi‖ , fC−MCP(u∗1(‖zi‖)) ≤ fC−MCP(u∗2(‖zi‖)),
u∗2(‖zi‖) zi

‖zi‖ , otherwise, i = 1, · · · ,m.461

A.3. Proximal operator of capped Lp penalty function. Let

uCapLp(z) ∈ argminu∈Rn{fCapLp(u) := ‖u− z‖2 + λ

m∑
i=1

φCapLp(‖ui‖)},

where z ∈ Rn, p = 1
2 and λ > 0. Denote ũCapLp(z) ∈ Argmin{1

2(u − z)2 + λ

ν
1
2
u

1
2 : u ≥ 0},462

which was given in [48] that463

ũCapLp(z) =
2

3
z
(
1 + cos(

2π

3
− 2

3
ϕλ,ν(z))

)
,464

where ϕλ,ν(z) = arccos
(

λ

4ν
1
2

( z3)−
3
2

)
. The minimizer of fCapLp(u) in [0, ν] is

u∗1(z) = min

{(
ũCapLp(z)

)
+
, ν

}
,

and the minimizer of fCapLp(u) in [ν,∞) is u∗2(z) = max{z, ν}. Hence we have465

uCapLp
i (zi) =

{
u∗1(‖zi‖) zi

‖zi‖ , fCapLp(u∗1(‖zi‖)) ≤ fCapLp(u∗2(‖zi‖)),
u∗2(‖zi‖) zi

‖zi‖ , otherwise, i = 1, · · · ,m.466

A.4. Proximal operator of capped fraction penalty function. Let

uCapF(z) ∈ argminu∈Rn{fCapF(u) :=
1

2
‖u− z‖2 + λ

m∑
i=1

φCapF(‖ui‖)},

where z ∈ Rn and λ > 0. Denote νF := 1+αν
αν and

ũCapF(z) ∈ Argmin{1

2
(u− z)2 +

λ

νF
αu

1 + αu
: u ≥ 0}.

It was given in [33] that467

ũCapF(z) =

{
sgn(t)

1+αt
3

(1+2 cos(
ϕ(t)
3
−π

3
))−1

α , |z| > t,
0, |z| ≤ t,

468
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where ϕ(t) = arccos( 27λα2

2νF (1+α|z|)3 −1), t =

{
t∗1, λ ≤ νF

2α2 ,

t∗2, λ > νF

2α2 ,
with t∗1 := λα

νF
and t∗2 :=

√
2λ
νF
− 1

2α .

The minimizer of fCapF(u) in [0, ν] is

u∗1(z) = min

{(
ũCapF(z)

)
+
, ν

}
,

and the minimizer of fCapF(u) in [ν,∞) is u∗2(z) = max{z, ν}. Hence we have469

uCapF
i (zi) =

{
u∗1(‖zi‖) zi

‖zi‖ , fCapF(u∗1(‖zi‖)) ≤ fCapF(u∗2(‖zi‖)),
u∗2(‖zi‖) zi

‖zi‖ , otherwise, i = 1, · · · ,m.470
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