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1. Introduction. Let (Ξ,A, P ) be a probability space induced by a random16

vector ξ with the support set Ξ ⊆ Rd. Let Y be the space consisting of A-measurable17

functions from Ξ to Rm. We are interested in developing a globally and superlinearly18

convergent algorithm for computing a pair (x, y(·)) ∈ Rn×Y that solves the following19

two-stage stochastic variational inequality (SVI) [2]20

−E[G(x, y(ξ), ξ)] ∈ ND(x),(1.1)21

−F (x, y(ξ), ξ) ∈ NC(ξ)(y(ξ)), for almost every (a.e.) ξ ∈ Ξ,(1.2)2223

where24

• G : Rn × Rm × Rd → Rn is a vector-valued function, Lipschitz continuous25

with respect to (x, y) for a.e. ξ ∈ Ξ with Lipschitz constant LG(ξ), and26

A-measureable and integrable with respect to ξ;27

• F : Rn × Rm × Rd → Rm is a vector-valued function, continuously differen-28

tiable with respect to (x, y) for a.e. ξ ∈ Ξ, and A-measureable with respect29

to ξ;30

• E[·] denotes the expected value over Ξ, D ⊆ Rn is a nonempty closed convex31

set, C(ξ) ⊆ Rm is a polyhedral set for a.e. ξ ∈ Ξ, ND(x) and NC(ξ)(y(ξ))32

are normal cones to the set D at x ∈ Rn and the set C(ξ) at y(ξ) ∈ Rm,33

respectively.34

In a solution pair (x, y(·)) ∈ Rn × Y of (1.1)-(1.2), x is the first stage decision vari-35

able independent of ξ and y(·) is the second stage decision variable. The two-stage36

SVI characterizes the first-order optimality condition of the two-stage stochastic pro-37

gramming [2] and models some equilibrium problems under uncertain environments.38

The research for the two-stage SVI has received much attention; see [4, 5, 25, 28] for39

references.40

In the case that G(·, ·, ξ) and F (·, ·, ξ) are both linear with respect to (x, y) for41

a.e. ξ ∈ Ξ, D = Rn
+, and C(ξ) = Rm

+ for a.e. ξ ∈ Ξ, (1.1)-(1.2) reduces to a two-stage42
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2 X. WANG, AND X. CHEN

stochastic linear complementarity problem (SLCP) as follows:43

0 ≤ x⊥Ax+ E[B(ξ)y(ξ)] + q1 ≥ 0,(1.3)44

0 ≤ y(ξ)⊥N(ξ)x+M(ξ)y(ξ) + q2(ξ) ≥ 0, for a.e. ξ ∈ Ξ,(1.4)4546

where A ∈ Rn×n, q1 ∈ Rn, B : Rd → Rn×m, N : Rd → Rm×n, M : Rd → Rm×m,47

q2 : Rd → Rm. In [5], the existence and uniqueness of a solution of the two-stage48

SLCP were established under the strong monotonicity assumption. In addition, a new49

discretization scheme was proposed and a distributionally robust two-stage SLCP was50

studied.51

Numerically, we solve the sample approximation discretization problem of (1.1)-52

(1.2). More specifically, given a sample set Ξν = {ξ1, . . . , ξν} of the random vector ξ,53

its discrete approximation problem has the following form54

−
ν∑

ℓ=1

pℓG(x, y(ξℓ), ξℓ) ∈ ND(x),(1.5)55

−F (x, y(ξℓ), ξℓ) ∈ NC(ξℓ)(y(ξℓ)), ℓ = 1, . . . , ν,(1.6)5657

where pℓ > 0 for ℓ = 1, . . . , ν and
∑ν

ℓ=1 pℓ = 1. If the sample set is independent iden-58

tically distributed (i.i.d.), then (1.5)-(1.6) is called a sample average approximation59

(SAA) discretization problem of (1.1)-(1.2). See [2, 4, 5] for the convergence analy-60

sis of the solution of the SAA discretization problem to that of the two-stage SVI61

(1.1)-(1.2). The dimension of variables in problem (1.5)-(1.6) is n+mν. In practice,62

the sample size ν is very large and thus (1.5)-(1.6) is a large-scale problem. Most63

deterministic VI solvers [3, 9, 12, 15, 18, 19, 20, 26] encounter difficulties in handling64

such large-scale problems. Hence, it is necessary to develop efficient algorithms for65

solving (1.5)-(1.6).66

The progressive hedging algorithm (PHA) was first proposed by Rockafellar and67

Wets [23] to solve multi-stage stochastic optimization problems. Recently, it was68

extended to solve the monotone multi-stage SVI by Rockafellar and Sun with finite69

samples [22]. PHA decomposes the original large-scale problem into a sequence of in-70

dependent small sample-based subproblems and solves them in parallel. Theoretically,71

PHA is globally convergent for the monotone multi-stage SVI. However, only linear72

convergence rate is established for the affine monotone SVI and it is not applicable to73

nonmonotone problems. Recently, an elicited PHA was proposed by Zhang, Sun and74

Xu [28] to solve the elicited monotone (not necessarily monotone) two-stage SVI. But75

it is difficult to verify the elicited monotonicity of the problem, and the convergence76

rate is still linear. To the best of our knowledge, globally and superlinearly convergent77

algorithms have not been studied for solving the two-stage SVI.78

In this paper, we propose a globally and superlinearly convergent projection semis-79

mooth Newton algorithm (PSNA) for solving (1.5)-(1.6), which is a hybrid algorithm80

of the semismooth Newton algorithm and extragradient algorithm. We assume that81

(1.5)-(1.6) has relatively complete recourse [4]; that is, for any x ∈ D and ξ ∈ Ξν , the82

second stage problem (1.6) has at least one solution. Let S(x, ξ) be the solution set of83

the second stage problem (1.6) for a given (x, ξ) ∈ D× Ξν . Then problem (1.5)-(1.6)84

can be equivalently written as85

−
ν∑

ℓ=1

pℓG(x, y(ξℓ), ξℓ) ∈ ND(x), y(ξℓ) ∈ S(x, ξℓ), ℓ = 1, . . . , ν.(1.7)86

87
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SOLVING TWO-STAGE SVI BY A HYBRID PSNA 3

From an iterate xk, PSNA finds yk(ξℓ) ∈ S(xk, ξℓ), ℓ = 1, . . . , ν in parallel, and then88

finds xk+1 by using the linear Newton approximation scheme with the projection89

algorithm for the variational inequality (VI) in (1.7).90

In convergence analysis, we define a solution function ŷ : D×Ξ → Rm by selecting91

a vector ŷ(x, ξℓ) ∈ S(x, ξℓ) for any x ∈ D and ξℓ ∈ Ξν , and two functions Ĝ : D×Ξν →92

Rn and H : D → Rn with93

(1.8) Ĝ(x, ξℓ) = G(x, ŷ(x, ξℓ), ξℓ) and H(x) =

ν∑
ℓ=1

pℓĜ(x, ξℓ).94

It is easy to see that if x∗ is a solution of the VI95

(1.9) −H(x) ∈ ND(x),96

then (x∗, ŷ(x∗, ξ1), . . . , ŷ(x
∗, ξν)) is a solution of (1.5)-(1.6).97

The main contribution of this paper is the development of a globally and su-98

perlinearly convergent algorithm called PSNA for solving large-scale two-stage SVI99

(1.5)-(1.6). Convergence analysis and numerical experiments with over 107 variables100

show the effectiveness and efficiency of the proposed PSNA. To guarantee the global101

convergence of PSNA, we provide sufficient conditions for the function H being Lip-102

schitz continuous and monotone. Moreover, we show that H is semismooth under103

these conditions, which ensures the superlinear convergence of PSNA. It is worth104

noting that if the two-stage SVI (1.5)-(1.6) is monotone, then H is monotone, but105

conversely it is not true. Hence the conditions for global convergence of PSNA are106

weaker than the conditions for global convergence of PHA [22]. Comparing PSNA and107

PHA regarding convergence rate, PSNA has the superlinear convergence rate under108

proper assumptions (see Theorems 3.3 and 4.5 and Corollary 4.6), while PHA has lin-109

ear convergence rate for solving the affine monotone SVI [22, Theorem 2]. Moreover,110

preliminary numerical results show that PSNA can find a solution of (1.5)-(1.6) using111

much less CPU time than PHA.112

The paper is organized as follows. In section 2, we investigate the Lipschitz113

continuity, semismoothness, linear Newton approximation scheme and monotonicity114

of the functions in the two-stage SVI (1.5)-(1.6). In section 3, we propose PSNA and115

give the convergence analysis. In section 4, PSNA is applied to solve a special class116

of (1.5)-(1.6), where the VI in the second stage is a linear complementarity problem117

(LCP) and in the first stage
∑ν

ℓ=1 pℓG(x, y(ξℓ), ξℓ) = A(x) +
∑ν

ℓ=1 pℓB(ξℓ)y(ξℓ). In118

section 5, we conduct numerical experiments for large-scale nonmonotone two-stage119

SVI and applications in traffic assignments to show the efficiency of PSNA. Section120

6 is devoted to the conclusions.121

We use the following notation and terminology through out the paper. ∥ · ∥122

represents the Euclidean norm. Rn
+ is the nonnegative orthant of Rn. ΠD(x) =123

argminy∈D ∥x − y∥2 denotes the projection of x onto the closed convex set D. B(x)124

represents an open neighborhood of x. [m] denotes the set {1, . . . ,m} for any posi-125

tive integer m. If K : Rk → Rs is differentiable, ∇K(x) denotes its Jacobian at x126

and K ′(x;h) is the directional derivative at x along the direction h. A set-valued127

mapping Ψ : Rk ⇒ Rs is said to be outer semicontinuous (osc) at x̄ relative to a128

set X ⊆ Rk if lim supx→X x̄ Ψ(x) ⊆ Ψ(x̄) where lim supx→X x̄ Ψ(x) := {v ∈ Rs :129

∃xk → x̄, ∃vk → v with xk ∈ X, vk ∈ Ψ(xk) }, see [24, Defintion 5.4]. A matrix M130

is called a P -matrix if all its principal minors are positive. A matrix M is called a131

Z-matrix if all its off-diagonal entries are non-positive. M ⪰ 0 means that matrix132

M is positive semidefinite. We use VI(D,K) and LCP(q,M) to denote the problems133

This manuscript is for review purposes only.



4 X. WANG, AND X. CHEN

−K(x) ∈ ND(x) and 0 ≤ x⊥Mx+ q ≥ 0, respectively. SOL(q,M) is the solution set134

of LCP(q,M). en denotes the n-dimensional vector with all components being 1.135

2. Properties of problem (1.5)-(1.6). In this section, we study the Lipschtiz136

continuity, semismoothness, linear Newton approximation scheme and monotonicity137

of the functions in (1.5)-(1.6) and the function in the single-stage SVI with a finite138

support set Ξν for the convergence analysis of PSNA.139

Let K : Rk → Rs be a locally Lipschitz continuous function. According to140

Rademacher’s Theorem, K is differentiable almost everywhere. Let ΩK be the set of141

differentiable points of K. The generalized Jacobian of K at x in the sense of Clarke142

[10] is defined as follows:143

∂K(x) := conv{V ∈ Rs×k : V = lim
xt∈ΩK ,xt→x

∇xK(xt)},144

where “conv” denotes the convex hull. Function K is said to be semismooth at x if145

K is locally Lipschitz continuous around x and the limit146

lim
V ∈∂K(x+th′)

h′→h, t↓0

{V h′}147

148

exists for any h ∈ Rk; see [12, 20, 27] for details.149

Throughout the paper, D ⊆ Rn denotes an open set containing the set D. It150

is said that (1.5)-(1.6) has relatively complete recourse on D if for any x ∈ D and151

ξ ∈ Ξν , the second stage problem (1.6) has at least one solution.152

We make the following basic assumption for Lipschitz continuous selection of153

S(x, ξ). For continuous selection of S(x, ξ), see [24, Defintion 5.58 (Michael represen-154

tations)].155

Assumption 2.1. The two-stage SVI (1.5)-(1.6) has relatively complete recourse156

on D; i.e., S(x, ξ) is nonempty for any x ∈ D and ξ ∈ Ξν . Moreover, for any ξ ∈ Ξν ,157

there exists a Lipschitz continuous selection ŷ(x, ξ) ∈ S(x, ξ), i.e.158

∥ŷ(x, ξ)− ŷ(x′, ξ)∥ ≤ Lŷ(ξ)∥x− x′∥, ∀ x, x′ ∈ D,159

where Lŷ(ξ) > 0 is the Lipschitz constant.160

Some sufficient conditions for Assumption 2.1 can be found in [12]. For example,
the condition that for any x ∈ D and ξ ∈ Ξν , F (x, ·, ξ) is strongly monotone on C(ξ)
in the sense that there is ρξ > 0, independent of x, such that for any u, v ∈ C(ξ),

(u− v)T (F (x, u, ξ)− F (x, v, ξ)) ≥ ρξ∥u− v∥2

holds. Other conditions for ensuring Assumption 2.1 will be discussed in section 4.161

The following proposition studies the Lipschitz continuity of H and the solvability162

of (1.5)-(1.6).163

Proposition 2.1. Under Assumption 2.1, the following assertions hold.164

(i) The function H is Lipschitz continuous on D with a Lipschitz constant LH =165 ∑ν
ℓ=1 pℓ(LG(ξℓ)Lŷ(ξℓ) + LG(ξℓ)).166

(ii) If D is bounded, then (1.5)-(1.6) is solvable.167

(iii) If D is a box and S(x, ξ) is a singleton for any x ∈ D and ξ ∈ Ξν , and H is a168

uniformly P function, then (1.5)-(1.6) has a unique solution.169
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SOLVING TWO-STAGE SVI BY A HYBRID PSNA 5

Proof. (i) By the Lipschitz continuity of G(·, ·, ξ) and ŷ(·, ξ) for any ξ ∈ Ξν , we170

have for any x, x′ ∈ D171

∥H(x)−H(x′)∥ =

∥∥∥∥∥
ν∑

ℓ=1

pℓ(Ĝ(x, ξℓ)− Ĝ(x′, ξℓ))

∥∥∥∥∥172

≤
ν∑

ℓ=1

pℓ∥G(x, ŷ(x, ξ), ξℓ)−G(x′, ŷ(x′, ξℓ), ξℓ)∥173

≤
ν∑

ℓ=1

pℓ(LG(ξℓ)Lŷ(ξℓ) + LG(ξℓ))∥x− x′∥ = LH∥x− x′∥.174

175

(ii) Since D is bounded and H is Lipschitz continuous, from [12, Corollary 2.2.5],176

we immediately know that (1.9) is solvable, which implies that (1.5)-(1.6) is solvable.177

(iii) From [12, Proposition 3.5.10], problem (1.9) has a unique solution x∗. From178

the assumption that S(x, ξ) is singleton for any x ∈ D and ξ ∈ Ξν , we find that179

(x∗, ŷ(x∗, ξ1), . . . , ŷ(x
∗, ξν)) is the unique solution of (1.5)-(1.6).180

Next, we will discuss the semismoothness and the linear Newton approximation181

scheme of H.182

By the Lipschitz continuity of G(·, ·, ξ) and ŷ(·, ξ), Ĝ(·, ξ) is Lipschitz continuous.183

The set-valued mapping H : D ⇒ Rn×n defined by184

H(x) = E[∂Ĝ(x, ξ)] =

{
ν∑

ℓ=1

pℓV (x, ξℓ) : V (x, ξℓ) ∈ ∂Ĝ(x, ξℓ)

}
185

is Aumann’s (set-valued) expectation of ∂Ĝ(x, ξ) [1].186

The following proposition provides some properties of H.187

Proposition 2.2. Under Assumption 2.1, H(x) is nonempty, convex and com-188

pact at any x ∈ D. Moreover, H is osc and closed at any x ∈ D relative to D; that189

is, if xk →D x, W k ∈ H(xk) and W k → W , then W ∈ H(x).190

Proof. From Assumption 2.1, for any ξ ∈ Ξν , the generalized Jacobian ∂Ĝ(·, ξ)191

of Ĝ(·, ξ) is nonempty, convex, compact and osc at any x ∈ D relative to D. By the192

definition of H, we have the properties in this proposition.193

The following definition of linear Newton approximation scheme is important for194

the development of Newton-type algorithms.195

Definition 2.3 ([12], Definition 7.5.13). Let K : Rs → Rs be a locally Lipschitz196

continuous function. We say that K admits a linear Newton approximation at x̄, if197

there is a set-valued mapping Ψ : Rs ⇒ Rs×s such that Ψ has nonempty compact198

images, is osc at x̄, and for any h → 0, W ∈ Ψ(x̄+ h)199

∥K(x̄+ h)−K(x̄)−Wh∥ = o(∥h∥).(2.1)200201

We also say that Ψ is a linear Newton approximation scheme of K at x̄.202

By Definition 2.3, ∂H is a linear Newton approximation scheme of H if H is203

semismooth. However, the calculation of ∂H is difficult since the explicit form of H is204

not available and it holds that ∂H(x) ⊆
∑ν

ℓ=1 pℓ∂Ĝ(x, ξℓ) in general by [10, Corollary205

2]. As we will see in Section 4, elements of ∂Ĝ(x, ξℓ) can be easily calculated for the206

two-stage semi-linear SVI, which allows us to obtain elements of H(x). Hence from207
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6 X. WANG, AND X. CHEN

a practical point of view, it is more appropriate to use H in the study of the linear208

Newton approximation scheme of H.209

To establish that H is a linear Newton approximation scheme of H, the semis-210

moothness of Ĝ(·, ξ) is needed. Note that Ĝ(·, ξ) = G(·, ŷ(·, ξ), ξ). The semismooth-211

ness of Ĝ(·, ξ) is related to the semismoothness of the second stage solution ŷ(·, ξ). To212

this end, we introduce the Strong Regularity Condition (SRC) proposed by Robinson213

[21]. Facchinei and Pang also thoroughly discussed this property in the monograph214

[12].215

Without loss of generality, for ξ ∈ Ξν let216

C(ξ) := {y ∈ Rm : T (ξ)y ≤ b(ξ)},217

with T : Rd → Rs×m and b : Rd → Rs. For any given x ∈ D and ξ ∈ Ξν , define the218

critical cone of the pair (C(ξ), F (x, ·, ξ)) at ŷ(x, ξ) ∈ C(ξ) as follows219

Cx(ŷ;C(ξ), F ) = {v ∈ Rm : T̄ (ξ)v ≤ 0, F (x, ŷ(x, ξ), ξ)T v = 0},220

where T̄ (ξ) is a sub-matrix of T (ξ) consisting of rows of T (ξ) satisfying T̄ (ξ)ŷ(x, ξ)221

= b̄(ξ) with b̄(ξ) being the corresponding sub-vector of b(ξ).222

We make the following SRC assumption for the second stage problem. In the case223

of the VI with a polyhedral set, by [12, Theorem 5.3.17(e)], the SRC condition is224

equivalently defined as follows.225

Assumption 2.2. For any ξ ∈ Ξν , the SRC holds at ŷ(x, ξ) for the VI(C(ξ),226

F (x, ·, ξ)) for any x ∈ D; that is, for any x ∈ D, the following affine VI admits a227

unique solution for each q ∈ Rm228

0 ∈ q +∇yF (x, ŷ(x, ξ), ξ)z +NCx(ŷ;C(ξ),F )(z).229

By the SRC assumption, it is clear that Assumption 2.2 holds if F (x, ·, ξ) is230

strongly monotone on C(ξ) for any x ∈ D and ξ ∈ Ξν . In the case that C(ξ) = Rm
+ for231

any ξ ∈ Ξν , a sufficient condition for guaranteeing Assumption 2.2 is that F (x, ·, ξ) is232

a uniformly P function for any x ∈ D and ξ ∈ Ξν .233

The following proposition establishes the semismoothness of H at x and shows234

that H is a linear Newton approximation scheme of H.235

Proposition 2.4. Let D×C(ξ) be contained in an open set D×C̄(ξ) for any ξ ∈236

Ξν . Suppose that Assumptions 2.1-2.2 holds, and that for any fixed ξ ∈ Ξν , G(·, ·, ξ)237

is semismooth at (x, ŷ(x, ξ)) ∈ D × C̄(ξ). Then we have the following assertions.238

(i) H is semismooth at x ∈ D.239

(ii) H is a linear Newton approximation scheme of H at x ∈ D.240

Proof. (i) With Assumption 2.2, by [12, Theorem 5.4.6], we know that for any241

fixed ξ ∈ Ξν , ŷ(·, ξ) is a piecewise smooth function on D, and hence it is semismooth242

on D. By [12, Proposition 7.4.4], the composition of semismooth functions is also243

semismooth. Then, we deduce that Ĝ(·, ξ) is semismooth at x ∈ D for any fixed244

ξ ∈ Ξν . Since the sum of finite semismooth functions is also semismooth [20], we245

know that H is semismooth at x ∈ D.246

(ii) By Proposition 2.2, H has nonempty compact images and is osc at any x ∈ D247

relative to D. For any h → 0, W ∈ H(x + h), let V (ξℓ) ∈ ∂Ĝ(x + h, ξℓ) such that248
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W =
∑ν

ℓ=1 pℓV (ξℓ). It follows that249

lim
h→0,

W∈∂H(x+h)

∥H(x+ h)−Wh−H(x)∥
∥h∥

250

= lim
h→0,

V (ξℓ)∈∂Ĝ(x+h,ξℓ)

∥
∑ν

ℓ=1 pℓ(Ĝ(x+ h, ξℓ)− V (ξℓ)h− Ĝ(x, ξℓ))∥
∥h∥

251

≤ lim
h→0,

V (ξℓ)∈∂Ĝ(x+h,ξℓ)

∑ν
ℓ=1 pℓ∥Ĝ(x+ h, ξ)− V (ξ)h− Ĝ(x, ξ)∥

∥h∥
= 0,252

253

where the last equality is due to the semismoothness of Ĝ(·, ξ) at x for any ξ ∈ Ξν .254

Hence H is a linear Newton approximation scheme of H at x ∈ D.255

Next, we study the monotonicity of H. The function H is said to be monotone256

on D if for any u, v ∈ D, the following inequality holds257

(2.2) (H(u)−H(v))T (u− v) ≥ 0.258

Using the definition of the monotonicity of the two-stage SVI in [22], we define the259

monotonicity of (1.5)-(1.6). Define a mapping T : Rn ×Yν → Rn ×Yν with Yν being260

the linear space consisting of all mappings from Ξν to Rm as261

T (x, y(·)):=
(

E[G(x, y(ξ), ξ)]
F (x, y(·), ·)

)
.262

We say that T is monotone on D × C̄(·) if for any (x, y(·)), (x′, y′(·)) ∈ D × C̄(·)1, it263

holds [22] that264 〈
T (x, y(·))− T (x′, y′(·)),

(
x− x′

y(·)− y′(·)

)〉
265

=

ν∑
ℓ=1

pℓ[(x− x′)T (G(x, y(ξℓ), ξℓ)−G(x′, y′(ξℓ), ξℓ))266

+(y(ξℓ)− y′(ξℓ))
T (F (x, y(ξℓ), ξℓ)− F (x′, y′(ξℓ), ξℓ))] ≥ 0.267

The SVI (1.5)-(1.6) is said to be monotone if T is monotone on D × C(·).268

Let Θ : Rn × Rm × Rd → Rn × Rm be269

Θ(x, y(ξ), ξ):=

(
G(x, y(ξ), ξ)
F (x, y(ξ), ξ)

)
.270

Assumption 2.3. The function Ĝ(·, ξ) defined in (1.8) is monotone on D for271

each fixed ξ ∈ Ξν .272

The following proposition gives sufficient conditions for Assumption 2.3.273

Proposition 2.5. Let H(x) =
∑ν

ℓ=1 pℓĜ(x, ξℓ), where Ĝ(x, ξ) = G(x, ŷ(x, ξ), ξ)274

with ŷ(x, ξ) being a Lipschitz continuous selection from S(x, ξ). Then Assumption275

2.3 holds and H is monotone on D, under Assumption 2.2 and the following two276

conditions:277

(i) For any ξ ∈ Ξν , Θ(·, ·, ξ) is monotone on D × C̄(ξ);278

(ii) For any x̄ ∈ D and ξ ∈ Ξν with ȳ := ŷ(x̄, ξ), ∇yF (x̄, ȳ, ξ)v is contained in279

the column space of ∇xF (x̄, ȳ, ξ) for any v ∈ Cx̄(ȳ;C(ξ), F ).280

1(x, y(·)) ∈ D × C̄(·) if (x, y(ξ)) ∈ D × C̄(ξ) for any ξ ∈ Ξν .
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Proof. It suffices to show that every element of ∂Ĝx(x, ξ) is positive semidefinite281

for any x ∈ D and ξ ∈ Ξν by [16, Proposition 2.3]. Under Condition (i), for any282

(x, y(ξ)) ∈ D × C̄(ξ) and ξ ∈ Ξν , it holds283 (
Vx(x, y(ξ), ξ) Vy(x, y(ξ), ξ)

∇xF (x, y(ξ), ξ) ∇yF (x, y(ξ), ξ)

)
⪰ 0,(2.3)284

285

where Vx(x, y(ξ), ξ) ∈ ∂xG(x, y(ξ), ξ) and Vy(x, y(ξ), ξ) ∈ ∂yG(x, y(ξ), ξ).286

For any ∇yF (x, y(ξ), ξ) with rank(∇yF (x, y(ξ), ξ)) = r ≥ 1, define the set

Z(x, y(ξ), ξ) = {Z ∈ Rm×j : [ZT∇yF (x, y(ξ), ξ)Z] is nonsingular with j = 1, . . . , r}.

Let287

UZ(x, y(ξ), ξ) = −Z[ZT∇yF (x, y(ξ), ξ)Z]−1ZT∇xF (x, y(ξ), ξ)288

for arbitrary Z ∈ Z(x, y(ξ), ξ).289

For any u ∈ Rn, let v = UZ(x, y(ξ), ξ)u ∈ Rm. Then from (2.3), we have290

uT (Vx(x, y(ξ), ξ) + Vy(x, y(ξ), ξ)UZ(x, y(ξ), ξ))u ≥ 0. Hence291

Vx(x, y(ξ), ξ) + Vy(x, y(ξ), ξ)UZ(x, y(ξ), ξ) ⪰ 0.(2.4)292293

Under Assumption 2.2, ŷ(·, ξ) is a semismooth function by Proposition 2.4. Let294

Ωŷ(·,ξ) be the set of differentiable points of ŷ(·, ξ). Under Assumptions 2.2 and (ii),295

by [12, Corollary 5.4.14], we have that Cx̄(ŷ;C(ξ), F ) is a linear subspace for any296

x̄ ∈ Ωŷ(·,ξ), i.e., Cx̄(ŷ;C(ξ), F ) = Cx̄(ŷ;C(ξ), F ) ∩ −Cx̄(ŷ;C(ξ), F ). Therefore, by [17,297

Theorem 2.2], the Jacobian ∇xŷ(x̄, ξ) at any x̄ ∈ Ωŷ(·,ξ) can be represented as298

∇xŷ(x̄, ξ) = UZ(x̄, ŷ(x̄, ξ), ξ), Z ∈ Ẑ(x̄, ŷ(x̄, ξ), ξ),(2.5)299300

where Ẑ(x̄, ŷ(x̄, ξ), ξ) is a set consisting of matrices in Rm×l with l being the dimen-301

sion of Cx̄(ŷ;C(ξ), F ), and each element Z ∈ Ẑ(x̄, ŷ(x̄, ξ), ξ) satisfies that ZTZ and302

ZT∇yF (x̄, ŷ(x̄, ξ), ξ)Z are nonsingular and z ∈ Cx̄(ŷ;C(ξ), F ) if and only if z = Zv303

for some v ∈ Rl. Under the SRC assumption, by [17, Lemma 2.1], we know that304

Ẑ(x̄, ŷ(x̄, ξ), ξ) is not empty, and it is clear that Ẑ(x̄, ŷ(x̄, ξ), ξ) ⊆ Z(x̄, ŷ(x̄, ξ), ξ).305

Let B(x) ⊂ D be an open neighborhood of x ∈ D. Since Ĝ(·, ξ) and ŷ(·, ξ)306

are Lipschitz continuous, they are differentiable almost everywhere over B(x). Let307

Ω̂ŷ(x, ξ) and Ω̂Ĝ(x, ξ) be the sets of differentiable points of ŷ(·, ξ) and Ĝ(·, ξ) over the308

neighbourhood B(x), respectively. By the Lipschitz continuity of G(·, ·, ξ), we know309

that ∇G(x, ŷ(x, ξ), ξ) exists almost everywhere over B(x), and we denote this set by310

Ω̂G(x, ξ). Let Ω̂(x, ξ) = Ω̂ŷ(x, ξ) ∩ Ω̂Ĝ(x, ξ) ∩ Ω̂G(x, ξ). It is clear that311

Ω̂(x, ξ) ⊆ Ω̂ŷ(x, ξ), Ω̂(x, ξ) ⊆ Ω̂Ĝ(x, ξ), Ω̂(x, ξ) ⊆ Ω̂G(x, ξ),312

and the measures of Ω̂ŷ(x, ξ) \ Ω̂(x, ξ), Ω̂Ĝ(x, ξ) \ Ω̂(x, ξ) and Ω̂G(x, ξ) \ Ω̂(x, ξ) over313

the neighbourhood B(x) are all zero. Then, it follows that314

∂xĜ(x, ξ)315

=conv{ lim
x̄→x

∇xĜ(x̄, ξ) : x̄ ∈ Ω̂Ĝ(x, ξ)}316

=conv{ lim
x̄→x

∇xG(x̄, ŷ(x̄, ξ), ξ) +∇yG(x̄, ŷ(x̄, ξ), ξ)∇xŷ(x̄, ξ) : x̄ ∈ Ω̂(x, ξ)}317

=conv{ lim
x̄→x

∇xG(x̄, ŷ(x̄, ξ), ξ) +∇yG(x̄, ŷ(x̄, ξ), ξ)UZ̄(x̄, ŷ(x̄, ξ), ξ) :318

x̄ ∈ Ω̂(x, ξ), Z̄ ∈ Ẑ(x̄, ŷ(x̄, ξ), ξ)}319

⊆conv{Vx(x, ŷ(x, ξ), ξ) + Vy(x, ŷ(x, ξ), ξ)UZ(x, ŷ(x, ξ), ξ) : Z ∈ Z(x, ŷ(x, ξ), ξ)},320321
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where the third equality is due to (2.5) and the last inclusion is due to Ẑ(x, ŷ(x, ξ), ξ) ⊆322

Z(x, ŷ(x, ξ), ξ) and the outer semicontinuity of ∂ŷ(·, ξ). By (2.4), we know that for323

any ξ ∈ Ξν , all elements in ∂xĜ(x, ξ) are positive semidefinite for any x ∈ D, which324

implies the monotonicity of Ĝ(·, ξ) on D for any ξ ∈ Ξν . Therefore, we conclude that325

H is monotone on D.326

Remark 2.6. It is worth noting that the monotonicity of H does not imply the327

monotonicity of (1.5)-(1.6). For example, for any x ∈ D, let328

(2.6) ∥G(x, y(ξ), ξ)−G(x, y′(ξ), ξ)∥ ≤ L(ξ)∥y(ξ)− y′(ξ)∥, ∀ y(ξ), y′(ξ) ∈ C(ξ).329

If for any ξ ∈ Ξν and y(ξ) ∈ C(ξ), G(·, y(ξ), ξ) is strongly monotone such that330

(2.7) (x− x′)T (G(x, y(ξ), ξ)−G(x′, y(ξ), ξ)) ≥ σ(ξ)∥x− x′∥2, ∀ x, x′ ∈ D,331

with σ(ξ) := L(ξ)Lŷ(ξ) > 0, then by the Lipschitz continuity of G(·, ·, ξ) and ŷ(·, ξ)332

and (2.6) we have333

(x− x′)T (H(x)−H(x′))334

=(x− x′)T (

ν∑
ℓ=1

pℓ[G(x, ŷ(x, ξℓ), ξℓ)−G(x′, ŷ(x, ξℓ), ξℓ)335

+G(x′, ŷ(x, ξℓ), ξℓ)−G(x′, ŷ(x′, ξℓ), ξℓ)])336

≥
ν∑

ℓ=1

pℓ
(
σ(ξℓ)∥x− x′∥2 − ∥x− x′∥ ∥G(x′, ŷ(x, ξℓ), ξℓ)−G(x′, ŷ(x′, ξℓ), ξℓ)∥

)
337

≥
ν∑

ℓ=1

pℓ(σ(ξℓ)− L(ξℓ)Lŷ(ξℓ))∥x− x′∥2 ≥ 0, ∀ x, x′ ∈ D,338

339

which implies the monotonicity of H on D. However, the conditions (2.6)-(2.7) do not340

imply that (1.5)-(1.6) is monotone. Thus, the global convergence of PHA for solving341

(1.5)-(1.6) cannot be guaranteed under (2.6)-(2.7).342

3. The hybrid projection semismooth Newton algorithm. In this sec-343

tion, we propose the hybrid projection semismooth Newton algorithm (PSNA), which344

combines the semismooth Newton algorithm with the extrgradient projection algo-345

rithm. The global convergence and superlinear convergence rate are established under346

suitable assumptions.347

Define the residual function of (1.9) as348

(3.1) Q̂(x):=x−ΠD(x−H(x)).349

Proposition 1.5.8 in [12] claims that x∗ solves (1.9) if and only if Q̂(x∗) = 0. The350

function Q̂ is Lipschitz continuous due to the Lipschitz continuity of H and the non-351

expansiveness of the projection operator. Let LQ̂ denote the Lipschitz constant of352

Q̂.353

We define a linear approximation of H and let the solution of the corresponding354

linear VI subproblem355

(3.2) −H(xk)− (W k + ϵkI)(x− xk) ∈ ND(x), W k ∈ H(xk),356

be xk+1, where ϵk > 0 with ϵk → 0 as k → ∞ is a regularized parameter forcing the357

linear VI (3.2) to be strongly monotone provided that W k is positive semidefinite.358
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A main issue for Newton-type algorithms is that they are locally convergent in359

general. Since H is nonsmooth and an implicit function, the line search technique360

frequently used in Newton-type algorithms cannot be directly applied to our prob-361

lem. Therefore, we turn to the extragradient projection algorithm to globalize the362

semismooth Newton iteration (3.2).363

Define a projection operator364

(3.3) Π̃D,α(x) := ΠD[x− αH(π(x))], with π(x) := ΠD[x− αH(x)],365

where α > 0 is the step size. Notice that (3.3) is called the extragradient algorithm366

for solving (1.9) in [12, Algorithm 12.1.9].367

Under Assumptions 2.1 and 2.3, choosing 0 < α < 1
LH

with LH being the Lip-368

schitz constant of functionH in Proposition 2.1, by [12, Lemma 12.1.10] the projection369

operator Π̃D,α is nonexpansive. Then, a natural fixed-point iteration is as follows370

xk+1 = Π̃D,α(x
k).371

It is shown in [12, Theorem 12.1.11] that {xk} generated by the above iteration372

globally converges to a fixed point x∗ of x = Π̃D,α(x) from any starting point x0 ∈373

Rn, where x∗ is also a solution of (1.9). However, the convergence rate is linear.374

To achieve a superlinear convergence rate, a hybrid algorithm with the semismooth375

Newton algorithm (3.2) is proposed in Algorithm 2.1.376

Algorithm 3.1. The Hybrid Projection Semismooth Newton Algorithm
Step 0: Choose an initial point x0 ∈ D, η ∈ (0, 1), step size 0 < α < 1

LH
and initial

regularized parameter ϵ0 > 0. Set k = 0.
Step 1: For ℓ = 1, . . . , ν, compute ŷ(xk, ξℓ) that solve the second stage problem (1.6).
Step 2: If ∥Q̂(xk)∥ = 0, stop. Otherwise, calculate a W k ∈ H(xk) and compute x̂k+1

that solves

(3.4) −H(xk)− (W k + ϵkI)(x− xk) ∈ ND(x).

If ∥Q̂(x̂k+1)∥ ≤ η∥Q̂(xk)∥, let xk+1 = x̂k+1 and go to Step 4. Otherwise, go to Step
3.
Step 3: Let xk,0 = xk. Compute

xk,j+1 = Π̃D,α(x
k,j), j = 0, 1, . . . ,(3.5)

until ∥Q̂(xk,j+1)∥ ≤ η∥Q̂(xk)∥ is satisfied. Set xk+1 = xk,j+1.
Step 4: Let ϵk+1 = min{1, ∥Q̂(xk+1)∥}. Set k := k + 1; go back to Step 1.

Under Assumptions 2.3, any element of H(x) is positive semidefinite for any377

x ∈ D. Thus, subproblem (3.4) is strongly monotone for any ϵk > 0, which has a378

unique solution and is easy to solve. In Step 3 of PSNA, the projection iteration (3.5)379

is well-defined and is equivalent to solving a strongly convex program.380

Lemma 3.1. Under Assumptions 2.1 and 2.3, for any xk with ∥Q̂(xk)∥ > 0, Step381

3 of PSNA is terminated in finite times, i.e., there is j ≥ 0 such that ∥Q̂(xk,j+1)∥ ≤382

η∥Q̂(xk)∥.383

Proof. By [12, Theorem 12.1.11], we know that {xk,j}∞j=1 generated by (3.5) con-384

verges to a solution x∗ of (1.9). By the Lipschitz continuity of Q̂, we have385

∥Q̂(xk,j+1)∥ = ∥Q̂(xk,j+1)− Q̂(x∗)∥ ≤ LQ̂∥x
k,j+1 − x∗∥.386
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Hence ∥Q̂(xk,j+1)∥ → 0 as j → ∞, which implies that there exists j such that the387

assertion of the lemma holds.388

Assumption 3.1. There exists a constant δ > 0 such that the level set L0 = {x ∈389

D : ∥Q̂(x)∥ ≤ δ} is bounded.390

It is clear that if D is bounded, then L0 is bounded. By [12, Corollary 3.6.5(c)],391

Assumption 3.1 is satisfied if H is monotone and the solution set of (1.9) is nonempty392

and compact. Moreover, if D is a box, then H being a P0 function with a bounded393

solution set can ensure Assumption 3.1.394

Theorem 3.2. Suppose that Assumptions 2.1, 2.3 and 3.1 hold. Let {xk} be395

an infinite sequence generated by PSNA. Then every accumulation point of {xk} is396

a solution of (1.9). In particular, if the Newton iteration is performed finite times,397

then {xk} converges to a solution of (1.9).398

Proof. Let K := {k : ∥Q̂(x̂k+1)∥ ≤ η∥Q̂(xk)∥, k ≥ 0}.399

If K is finite, this implies that there exists an integer k̄ > 0 such that for all k ≥ k̄400

the projection iteration (3.5) is always executed. By [12, Theorem 12.1.11], it follows401

that {xk} converges to a solution of (1.9).402

If K is infinite, let K consist of 0 ≤ k0 < k1 · · · . For any kj+1, kj ∈ K, it follows403

that404

∥Q̂(xkj+1)∥ ≤ η∥Q̂(xkj+1−1)∥ ≤ . . . ≤ ηkj+1−kj∥Q̂(xkj )∥,405406

which implies that limj→∞,kj∈K ∥Q̂(xkj )∥ = 0. By the construction of the algorithm,407

it is easy to see that {xk} ∈ L0 for sufficiently large k and limk→∞ ∥Q̂(xk)∥ = 0.408

Then, by the boundedness of {xk} and the continuity of Q̂, we deduce that every409

accumulation point of {xk} is a solution of (1.9).410

Next, we study the superlinear convergence rate of PSNA.411

Theorem 3.3. Suppose that Assumptions 2.1-2.3 and 3.1 hold and x∗ is an accu-412

mulation point of {xk} generated by PSNA. If G(·, ·, ξ) is semismooth at (x∗, ŷ(x∗, ξ))413

for any ξ ∈ Ξν , D is a polyhedron, and all W ∗ ∈ H(x∗) are positive definite, then414

{xk} converges to x∗ superlinearly.415

Proof. By Proposition 2.4, we know that H is semismooth at x∗ and H is a416

linear Newton approximation scheme of H at x∗. Let K0 be the subsequence such417

that limk→∞,k∈K0
xk = x∗. By Theorem 3.2, x∗ is a solution of (1.9), which implies418

Q̂(x∗) = 0.419

The positive definiteness of all W ∗ ∈ H(x∗) implies that there exists a constant420

λ > 0 and a neighborhood B(x∗) of x∗ such that for all x ∈ B(x∗), all W ∈ H(x)421

are positive definite with vTWv ≥ 1
2λ∥v∥

2,∀v ∈ Rn. This implies that H is strongly422

monotone around x∗, and x∗ is an isolated zero of Q̂. Let W k
ϵk

= W k + ϵkI. For423

all sufficiently large k ∈ K0, x
k ∈ B(x∗). Thus, the subproblem (3.4) has a unique424

solution, denoted by x̂k+1. Hence we have425

(H(xk) +W k
ϵk
(x̂k+1 − xk))T (x∗ − x̂k+1) ≥ 0, H(x∗)T (x̂k+1 − x∗) ≥ 0,426427
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which implies that428

0 ≤ [H(xk) +W k
ϵk
(x̂k+1 − xk)−H(x∗)]T (x∗ − x̂k+1)429

⇔ (x̂k+1 − x∗)TW k
ϵk
(x̂k+1 − x∗) ≤ [H(xk)−H(x∗) +W k

ϵk
(x∗ − xk)]T (x∗ − x̂k+1)430

⇒ 1

2
λ∥x̂k+1 − x∗∥2 ≤ (∥H(xk)−H(x∗)−W k(xk − x∗)∥+ ϵk∥xk − x∗∥)∥x̂k+1 − x∗∥431

⇒ ∥x̂k+1 − x∗∥ ≤ o(∥xk − x∗∥),
(3.6)

432433

where the last inequality is due to the semismoothness of H at x∗ and ϵk → 0.434

Next, we will prove that for all k sufficiently large435

∥Q̂(x̂k+1)∥ = o(∥Q̂(xk)∥).(3.7)436437

By (3.6), we have438

∥x̂k+1 − xk∥ = ∥xk − x∗∥+ o(∥xk − x∗∥).439

Since H is strongly monotone around x∗ and is Lipschitz continuous, by [12, Theorem440

2.3.3], there exists a positive constant c′ > 0 such that441

∥xk − x∗∥ ≤ c′∥Q̂(xk)∥.(3.8)442443

The last two inequalities imply that444

(3.9) ∥x̂k+1 − xk∥ ≤ c′∥Q̂(xk)∥.445

(3.6) also implies that446

(3.10) ∥x̂k+1 − x∗∥ ≤ ε∥xk − x∗∥,447

where ε > 0 is arbitrarily small as k → ∞. Since H is semismooth at x∗ and D is448

polyhedral, then Q̂ is semismooth at x∗ and directionally differentiable at x∗ by [12,449

Theorem 4.1.1]. Since Q̂ is directionally differentiable at x∗ and Lipschitz continuous,450

by [20], we have451

∥Q̂(x̂k+1)− Q̂(x∗)− Q̂′(x∗; x̂k+1 − x∗)∥ ≤ ε∥x̂k+1 − x∗∥,452

which means453

∥Q̂′(x∗; x̂k+1 − x∗)∥ ≤ (LQ̂ + ε)∥x̂k+1 − x∗∥.454

By the last three inequalities, we have455

∥Q̂(x̂k+1)∥ ≤∥Q̂′(x∗; x̂k+1 − x∗)∥+ ε∥x̂k+1 − x∗∥456

≤(LQ̂ + 2ε)∥x̂k+1 − x∗∥457

≤(LQ̂ + 2ε)ε∥xk − x∗∥.(3.11)458
459

From (3.9) and (3.10), it follows460

∥xk − x∗∥ ≤∥x̂k+1 − xk∥+ ∥x̂k+1 − x∗∥461

≤c′∥Q̂(xk)∥+ ε∥xk − x∗∥,462463
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which implies that464

∥xk − x∗∥ ≤ c′

1− ε
∥Q̂(xk)∥.(3.12)465

466

Combining (3.11) with (3.12), it holds that467

∥Q̂(x̂k+1)∥ ≤
(LQ̂ + 2ε)εc′

1− ε
∥Q̂(xk)∥.468

Since ε can be arbitrarily small when k is sufficiently large, the last inequality implies469

(3.7). This means that x̂k+1 computed from the Newton iteration (3.4) is always470

accepted when xk is sufficiently close to x∗. Then, xk+1 = x̂k+1. Therefore, (3.6)471

becomes472

∥xk+1 − x∗∥ ≤ o(∥xk − x∗∥),473

which means that xk converges to x∗ superlinearly.474

Remark 3.4. The assumption on semismoothness of the function G(·, ·, ξ) is stan-475

dard for Newton-type algorithms. If F (x, ·, ξ) is a uniformly P function for any x ∈ D476

and ξ ∈ Ξν , then G(·, ·, ξ) is semismooth. The assumption on the positive definiteness477

of the elements in H(x∗) holds if the Θ(·, ·, ξ) is strongly monotone in an open neigh-478

borhood of (x∗, ŷ(x∗, ξ)) according to the proof in Proposition 2.5. Moreover, from479

Theorem 4.5, the assumption on H(x∗) can be weaken if D is a box. The assumption480

that D is a polyhedron in Theorem 3.3 can be extended to D = {x ∈ Rn : g(x) ≤ 0}481

where g is twice continuously differentiable and convex with the constant rank con-482

straint qualification at x∗. From [12, Theorem 4.5.2], function Q̂ is piecewise smooth483

around x∗ in such case.484

4. A two-stage semi-linear SVI. In this section, we apply PSNA to solve a485

two-stage semi-linear SVI, which is a special class of (1.1)-(1.2) as follows:486

−A(x)− E[B(ξ)y(ξ)] ∈ ND(x),(4.1)487

0 ≤ y(ξ)⊥M(ξ)y(ξ) +N(ξ)x+ q(ξ) ≥ 0, ∀ ξ ∈ Ξν ,(4.2)488489

where the function A : D ⊃ D → Rn is continuously differentiable and Lipschitz490

continuous on an open set D with Lipschitz constant LA, B : Rd → Rn×m, M : Rd →491

Rm×m, N : Rd → Rm×n and q : Rd → Rm. If A is a linear function, then (4.1)-(4.2)492

is a two-stage linear SVI.493

Under proper assumptions, we show that the Lipschitz continuity, semismooth-494

ness, linear Newton approximation scheme and monotonicity properties for the func-495

tion in the single-stage problem hold, which are important to establish the global496

convergence and superlinear convergence rate of PSNA.497

For simplicity, denote yℓ := y(ξℓ), qℓ := q(ξℓ), Mℓ := M(ξℓ), Bℓ := B(ξℓ) and498

Nℓ := N(ξℓ), for ℓ = 1, 2, . . . , ν.499

Assumption 4.1. (i) Mℓ is a P-matrix for all ℓ; or,500

(ii) Mℓ is a Z-matrix for all ℓ, and (4.1)-(4.2) has relatively complete recourse501

on D.502

Lemma 4.1. For any fixed x ∈ D and ξℓ ∈ Ξν , the second stage problem (4.2) has503

a unique solution (or a unique least-element solution2) ŷ(x, ξℓ) if Assumption 4.1 (i)504

2A solution y∗ of the LCP(q,M) is called the least-element solution if y∗ ≤ y (componentwise)
for any y ∈ SOL(q,M), and the least-element solution can be computed by solving a linear program
[11].
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(or Assumption 4.1 (ii)) holds, which reads505

(4.3) ŷ(x, ξℓ) = −U(x, ξℓ)(Nℓx+ qℓ),506

with U(x, ξℓ) := (I − Λ(x, ξℓ) + Λ(x, ξℓ)Mℓ)
−1Λ(x, ξℓ), where Λ(x, ξℓ) is a diagonal507

matrix with508

Λ(x, ξℓ)ii :=

{
1, if (Mℓŷ(x, ξℓ) +Nℓx+ qℓ)i < (ŷ(x, ξℓ))i,

0, otherwise.
509

510

Moreover, ŷ(·, ξℓ) is piecewise affine, strongly semismooth3 and globally Lipschitz con-511

tinuous on D with the Lipschitz constant written as512

Lℓ := ∥Nℓ∥max{∥(Mℓ)
−1
JJ∥ : (Mℓ)JJ is nonsingular for J ⊆ [m]}513514

and515

−U(x, ξℓ)Nℓ ∈ ∂ŷ(x, ξℓ).(4.4)516517

Proof. When Mℓ is a P-matrix, for any given (x, ξℓ) the existence and uniqueness518

of ŷ(x, ξℓ) are due to [11, Theorem 3.3.7]. When Mℓ is a Z-matrix and LCP(Nℓx +519

qℓ,Mℓ) is feasible for all x ∈ D, the existence of the unique least-element solution520

follows from [11, Theorem 3.11.6]. The expression (4.3) follows from Lemma 2.1 and521

Theorem 2.2 in [8]. It is clear that ŷ(·, ξℓ) is piecewise affine from the expression522

(4.3). According to [12, Proposition 7.4.7], every piecewise affine function is strongly523

semismooth.524

When Mℓ is a P-matrix or a Z-matrix, the Lipschitz continuity property of ŷ(·, ξℓ)525

follows from [8, Corollary 2.1] and [8, Theorem 2.3], respectively.526

The generalized Jacobian (4.4) is due to [8, Theorem 3.1].527

As in the last section, substituting the Lipschitz continuous selection ŷ(x, ξℓ)528

into (4.1), we can define Ĝ(x, ξℓ) := A(x) + Bℓŷ(x, ξℓ). Thus the single-stage SVI529

formulation (1.9) is as follows530

H(x) :=

ν∑
ℓ=1

pℓĜ(x, ξℓ) = A(x) +Bν ŷν(x),(4.5)531

532

where Bν = (p1B1, . . . , pνBν) ∈ Rn×νm, ŷν(x) = (ŷT (x, ξ1), . . . , ŷ
T (x, ξν))

T ∈ Rνm533

with ŷ(x, ξℓ) ∈ SOL(Nℓx + qℓ,Mℓ), ℓ = 1, . . . , ν. Moreover, function H is Lipschitz534

continuous on D with Lipschitz constant535

(4.6) LH=LA + σ̄, where σ̄=

ν∑
ℓ=1

pℓ∥Bℓ∥Lℓ.536

In addition, the corresponding residual function Q̂ is Lipschitz continuous on D. Un-537

der Assumption 4.1(i), as discussed in Proposition 2.1, (4.5) is an equivalent formula-538

tion to (4.1)-(4.2). Under Assumption 4.1(ii), if D is bounded, then (4.5) is solvable.539

Thus, if x∗ solves (4.5), then (x∗, ŷ(x∗, ξ1), . . . , ŷ(x
∗, ξν)) is a solution to (4.1)-(4.2).540

Let541

Θ(x, yℓ, ξℓ) :=

(
A(x) +Bℓyℓ

Nℓx+Mℓyℓ + qℓ

)
.542

Similar to the Assumption 2.3 in the last section, the monotonicity of H is needed.543

3A locally Lipschitz function K is called strongly semismooth at x if lim sup x+h∈ΩK,
h→0

∥K′(x +

h;h)−K′(x;h)∥/∥h∥2 < ∞; see [20].
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Assumption 4.2. Function Ĝ(·, ξ) is monotone on D for any fixed ξ ∈ Ξν .544

Proposition 4.2. If Assumptions 4.1 holds and Θ(·, ·, ξ) is monotone on D×Rm545

for any fixed ξ ∈ Ξν , then Assumption 4.2 holds and H is monotone on D.546

Proof. Under Assumptions 4.1, using [8, Lemma 2.1], it is known that∇ŷ(x̄, ξℓ) =547

−U(x̄, ξℓ)Nℓ at every differentiable point x̄ of ŷ(·, ξℓ). Then, the assertion follows by548

a similar argument in Proposition 2.5.549

Remark 4.3. The monotonicity of H does not necessarily imply the monotonicity550

of the original problem (4.1)-(4.2). For instance, without the monotonicity assumption551

on Θ(·, ·, ξ), H is monotone if A is strongly monotone on D such that552

(x− x′)T (A(x)−A(x′)) ≥ σ̃∥x− x′∥2, ∀x, x′ ∈ D,(4.7)553554

where σ̃ = max{∥Bℓ∥Lℓ : ℓ = 1, . . . , ν} with Lℓ defined in Lemma 4.1. But condition555

(4.7) and Assumptions 4.1 do not imply the monotonicity of (4.1)-(4.2).556

Note that the nonmonotone problems with monotone single-stage SVI reformu-557

lations are not limited to the case given in Remark 4.3. For instance, consider the558

example559

−
(

1 0
0 − 1

2

)(
x1

x2

)
− E

[(
0 0

−3ξ ξ

)(
y1(ξ)
y2(ξ)

)]
∈ N[0,1]2(x),560

0 ≤
(

y1(ξ)
y2(ξ)

)
⊥
(

0 3ξ
0 −ξ

)(
x1

x2

)
+

(
ξ2 −3ξ2

0 ξ2

)(
y1(ξ)
y2(ξ)

)
≥ 0, ∀ ξ ∈ Ξν ,561

562

where each realization of ξ is uniformly distributed on [1, 2] with probability 1/ν and563

[0, 1]2 := [0, 1]× [0, 1]. This example is nonmonotone since the second stage problem564

is a P-matrix LCP with respect to y for each fixed ξ, and the first stage problem is565

not monotone on [0, 1]2 with respect to x. Substituting the unique solution function566

ŷ(x, ξ) = (0, (1/ξ)x2)
T of the second stage problem into the first stage problem, we567

get the single-stage SVI as568

0 ∈
(

1 0
0 1

2

)(
x1

x2

)
+N[0,1]2(x),569

which is a strongly monotone VI.570

Let571

H(x) :=

ν∑
ℓ=1

pℓ∂Ĝ(x, ξℓ) = ∇A(x) +

ν∑
ℓ=1

pℓBℓ∂ŷ(x, ξℓ).572

By Proposition 2.4, the set-valued mapping H is a linear Newton approximation573

scheme of H. By Lemma 4.1, one particular element of H(x) can be calculated by574

(4.8) ∇A(x)−BνUν(x) ∈ H(x),575

where Uν(x) = ((U(x, ξ1)N1)
T , . . . , (U(x, ξν)Nν)

T )T with U(x, ξℓ) defined in Lemma576

4.1.577

By the same argument as in the proof of Theorems 3.2 and 3.3, we can prove578

the global convergence and superlinear convergence rate of PSNA for solving (4.1)-579

(4.2). We study the superlinear convergence rate of PSNA for D = [l, u], where580

l ∈ {R ∪ −∞}n and u ∈ {R ∪∞}n with l < u. In this case, Q̂(x) is reduced to581

Q̂(x) = mid(x− l, x− u,H(x)),582

where mid(l, u, x)i is equal to li if xi < li, ui if xi > ui and xi if li ≤ xi ≤ ui.583
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16 X. WANG, AND X. CHEN

Lemma 4.4. Suppose that all W ∈ H(x) are P-matrices. Then, there exists a584

neighborhood of x such that for any x̄ in this neighborhood, all W̄ ∈ H(x̄) are P-585

matrices. Moreover, there exists a positive constant β such that ∥(I−Λ+ΛW̄ )−1∥ ≤ β586

for any diagonal matrix Λ with diagonal entries on [0, 1].587

Proof. Since all W ∈ H(x) are P-matrices and thus nonsingular, by the same588

argument in [20, Proposition 3.1], there exist a neighborhood B(x) of x and positive589

constant β̂ such that for any x̄ ∈ B(x), all W̄ ∈ H(x̄) are nonsingular and ∥W̄−1∥ ≤ β̂.590

On the other hand, [13, Theorem 4.3] claims that W̄ is a P-matrix if and only if591

I − Λ + ΛW̄ is nonsingular for any diagonal matrix Λ with Λii ∈ [0, 1].592

Assume that the conclusion is not true. Then, by the above discussion, there593

exists a sequence xk → x, W k ∈ H(xk) such that either all W k are nonsingular but594

not P-matrices or ∥(I −Λk +ΛkW
k)−1∥ → ∞ for some Λk. Since H is bounded in a595

neighbourhood of x, taking a subsequence if necessary, we assume that limk→∞ W k →596

W̃ , where W̃ is not a P-matrix. By the closedness of H at x, it follows that W̃ ∈ H(x),597

which is a contradiction.598

The superlinear convergence of PSNA whenever the second stage problems are599

P-matrix or Z-matrix LCPs can be established under weaker assumptions on the600

elements of H(x∗).601

Theorem 4.5. Suppose that Assumptions 4.1(i) and 4.2 hold, the level set L0 is602

bounded, and D = [l, u]; or Assumptions 4.1(ii) and 4.2 hold, and D = [l, u] is a603

bounded box. Assume that x∗ is an accumulation point of sequence {xk} generated by604

PSNA, and all W ∗ ∈ H(x∗) are P-matrices. Then, {xk} converges to x∗ superlinearly.605

Proof. By Theorem 3.2, there exists a subsequence K0 ⊆ K such that606

lim
k→∞,k∈K0

xk = x∗ with x∗ being a solution.607
608

Since all W ∗ ∈ H(x∗) are P-matrices, by Lemma 4.4, there exists a neighborhood609

of x∗, denoted by B(x∗), such that for any x ∈ B(x∗), any W ∈ H(x) is a P-matrix.610

When k ∈ K0 is sufficiently large, we have xk ∈ B(x∗). Then, all W k ∈ H(xk) are611

P-matrices. Hence, (3.4) has a unique solution x̂k+1 for any ϵk > 0; that is612

−H(xk)−W k
ϵk
(x̂k+1 − xk) ∈ N[l,u](x̂

k+1), with W k
ϵk

= W k + ϵkI,613614

which can be rewritten as615

Q̃(x̂k+1) := mid
(
x̂k+1 − l, x̂k+1 − u,H(xk) +W k

ϵk
(x̂k+1 − xk)

)
= 0.616617

Similarly, since x∗ is a solution, we have618

Q̂(x∗) = mid (x∗ − l, x∗ − u,H(x∗)) = 0.619620

From [6, Lemma 2.1], there exists a diagonal matrix Λk with diagonal entries on [0, 1]621

such that622

0 = Q̃(x̂k+1)− Q̂(x∗)623

= (I − Λk)(x̂
k+1 − x∗) + Λk[H(xk) +W k

ϵk
(x̂k+1 − xk)−H(x∗)]624

= (I − Λk)(x̂
k+1 − x∗) + Λk[H(xk) +W k

ϵk
(x̂k+1 − x∗ + x∗ − xk)−H(x∗)].(4.9)625626
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The matrix I − Λk + ΛkW
k
ϵk

is nonsingular since W k
ϵk

is a P-matrix. Using (4.9), we627

get628

∥x̂k+1 − x∗∥ = ∥(I − Λk + ΛkW
k
ϵk
)−1Λk[H(xk)−H(x∗)−W k

ϵk
(xk − x∗)]∥629

≤ ∥(I − Λk + ΛkW
k
ϵk
)−1Λk∥∥H(xk)−H(x∗)−W k

ϵk
(xk − x∗)∥630

≤ ∥(I − Λk + ΛkW
k
ϵk
)−1Λk∥(∥H(xk)−H(x∗)−W k(xk − x∗)∥631

+ ϵk∥(xk − x∗)∥)632

= o(∥xk − x∗∥),(4.10)633634

where the last equality is due to (2.1), Lemma 4.4 and ϵk → 0.635

There exists a diagonal matrix Λ̃k with diagonal entries on [0, 1] such that636

Q̂(xk) = Q̂(xk)− Q̃(x̂k+1)637

= (I − Λ̃k)(x
k − x̂k+1) + Λ̃kW

k
ϵk
(xk − x̂k+1)638

= (I − Λ̃k + Λ̃kW
k
ϵk
)(xk − x̂k+1),639640

which implies that641

∥x̂k+1 − xk∥ ≤ ∥(I − Λ̃k + Λ̃kW
k
ϵk
)−1∥∥Q̂(xk)∥ ≤ β∥Q̂(xk)∥.642

[12, Proposition 7.4.6] shows that a piecewise semismooth function is also semismooth.643

Since H is semismooth at x∗, Q̂(x) = mid(x − l, x − u,H(x)) is also semismooth at644

x∗. By the same argument of Theorem 3.3, we can prove (3.7). This implies that645

x̂k+1 computed from Newton iteration (3.4) is always accepted when xk is sufficiently646

close to x∗; that is xk+1 = x̂k+1. Therefore, (4.10) means that xk converges to x∗647

superlinearly.648

Corollary 4.6. Let D be a polyhedron. The sequence {xk} generated by PSNA649

globally and superlinearly converges to the unique solution of (1.9) if one of the fol-650

lowing conditions holds.651

(i) Θ(·, ·, ξ) is strongly monotone on D × Rm for any ξ ∈ Ξν ;652

(ii) Mℓ is a P-matrix for any ξℓ ∈ Ξν and (4.7) holds with strict inequality;653

(iii) Mℓ is a Z-matrix for any ξℓ ∈ Ξν , (4.1)-(4.2) has the relatively complete654

recourse, D is bounded and (4.7) holds with strict inequality.655

5. Numerical experiments. In this section, we conduct numerical experiments656

to test the efficiency of PSNA for the large-scale two-stage SVI (4.1)-(4.2), and com-657

pare PSNA with PHA.658

5.1. Randomly generated problems. PSNA is terminated if659

Res := ∥Q̂(xk)∥ ≤ 10−6.660

The starting point x0 ∈ Rn
+ is randomly chosen, α = 0.015 and η = 0.9. The661

regularized parameter is set to ϵk = min{1, ∥Q̂(xk)∥}. All codes were implemented in662

MATLAB R2018a on a laptop with Intel Core i7-4790 (3.6 GHz) and 32 GB RAM.663

Example 5.1. Monotone two-stage SLCP in [22]4664

4For this example, PSNA is applied to solve the regularized problem in which Mℓ is replaced by
Mℓ + µkI for each ℓ with µk = 10−9.
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In this example, the first stage problem is an LCP with A(x) = Ãx + c. Let665

s = ⌈3(n+m)/4⌉, and randomly generate positive numbers αi and vectors (aTi , b
T
i )

T ∈666

Rn+m for i = 1, . . . , s. For ℓ = 1, . . . , ν, randomly create ν antisymmetric matrices667

Oℓ ∈ R(n+m)×(n+m). Set668 (
Ã Bℓ

Nℓ Mℓ

)
=

s∑
i=1

αi

(
ai
bi

)(
aTi bTi

)
+

(
0 (Oℓ)12

(Oℓ)21 (Oℓ)22

)
.669

Randomly generate c, and qℓ for ℓ = 1, . . . , ν.670

Example 5.2. Nonmonotone two-stage SVI with P-matrix LCP in the second671

stage672

In this example, the first stage problem is a box affine VI, while the second stage673

problem is a P-matrix LCP for any fixed x ∈ Rn and ξ. Set A(x) = Ãx+ c. Generate674

Ā ∈ Rn×n, Ū ∈ Rn×n, c ∈ Rn, and Bℓ ∈ Rn×m, Nℓ ∈ Rm×n, Uℓ ∈ Rm×m, qℓ ∈ Rm675

for ℓ = 1, . . . , ν, with entries uniformly distributed on [−5, 5], where Uℓ is strictly upper676

triangular. Create the diagonal matrix Λ̄ ∈ Rn×n with entries uniformly distributed677

on (0, 0.3), and ν diagonal matrices Λℓ ∈ Rm×m with entries from [5, 10]. Following678

Harker and Pang [14], we set679

Ã = ĀT Ā+ Λ̄ + (Ū − ŪT ).680

The second stage problem is as follows681

0 ≤ yℓ⊥Mℓyℓ +Nℓf(x) + qℓ ≥ 0, ℓ = 1, . . . , ν,682

with Mℓ = Λℓ + Uℓ, f(x) = (sinx1, . . . , sinxn)
T .683

Example 5.3. Nonmonotone two-stage SVI with Z-matrix LCP in the second684

stage685

All parameters are generated in a same way as Example 5.2 except for the settings686

of D, Mℓ, Nℓ and qℓ. The set D = [0, nen] is an n-dimensional bounded box. Let687

m = 2k be even with k being a positive integer. All entries of k-th row and (k+1)-688

th row of N̄ ∈ Rm×n are set to 1 and -1, respectively, while all other entries are689

zero. M̄ ∈ Rm×m is a tridiagonal matrix with -1, 2, -1 on its superdiagonal, main690

diagonal and subdiagonal, respectively, except for M̄mm = M̄11 = 1 and M̄21 = . . . =691

M̄k,k−1 = −2. qk = q̃ and qk+1 = −q̃ with q̃ uniformly drawn from [0, 5], and other692

components of q are zero. Generate an i.i.d. sample {ξ1, . . . , ξν} of random variable693

ξ ∈ R following uniformly distribution on [1, 5]. Set694

Mℓ = ξℓM̄, Nℓ = (ξℓ + 1)N̄ , qℓ = (ξℓ + 2)q, ℓ = 1, . . . , ν.695

It is not hard to verify that the LCP(Nℓx + qℓ,Mℓ) is feasible for any x ∈ D696

and ξℓ, and hence it admits a unique least-element solution. For example, y =697

(y1, . . . , yk, yk+1, . . . , y2k)
T with y1 = . . . = yk = 0 and yk+1 = . . . = y2k = [(ξℓ +698

1)
∑n

i=1 xi + (ξℓ + 2)q̃]/ξℓ is a feasible point of the LCP(Nℓx+ qℓ,Mℓ).699

Example 5.4. Nonmonotone and nonsmooth two-stage semi-linear SVI with P -700

matrix LCP in the second stage701

In this case, D = [0, nen]. All other parameters are the same as that of Example702
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5.2 except for A(x), which is of the following form703

A1(x) = x2
1 +

n−1∑
i=2

(xixi+1)−
n∑

i=2

xi + |x1 − 1|,704

A2(x) = x1(1− x3) + x2
2 + |x2 − 2|,705

Ai(x) = x1(1− xi−1 − xi+1) + x2
i + |xi − i|, i = 3, . . . , n− 1,706

An(x) = x1(1− xn−1) + x2
n + |xn − n|,707

A(x) = (A1(x), . . . , An(x))
T + λx+ c, λ > 1.708709

The function A is nonsmooth but semismooth at x with xi = i and any element of710

∂A(x) is positive definite for any x ∈ D when λ > 2n + 1. We set λ = 2n + 2 and711

generate c ∈ Rn in a way such that there is a solution x∗ of 20%, 40%, 60% and 80%712

components being nonsmooth, respectively; that is, the corresponding components713

x∗
i = i. The remaining components are set to 0 or n on a fifty-fifty basis, respectively.714

By Remark 4.3, if mini Λ̄ii − σ̃ ≥ 0 in Examples 5.2-5.3 and λ ≥ 2n + σ̃ +715

1 in Example 5.4 with σ̃ defined in (4.7), then the corresponding single-stage SVI716

reformulations of Examples 5.2-5.4 are monotone. However, since Mℓ is a P-matrix or717

Z-matrix in Examples 5.2-5.4, these examples are not necessarily elicited monotone by718

[28, Theorem 3.5] and thus PHA and elicited PHA cannot be applied to solve them.719

We compared our algorithm with PHA for solving Example 5.1, which is a mono-720

tone problem and also tested in [22]. Parameters of PHA in [22] are used in our nu-721

merical comparison. In Examples 5.1-5.4, each sample in the sample set {ξ1, . . . , ξν}722

has the equal probability 1/ν.723

The numerical results for Example 5.1 are reported in Table 1 and Figure 1, in724

which the average performance profiles for algorithms are listed based on the results of725

ten randomly generated problems, such as the average number of iterations, average726

CPU time, the average solution residual. In Table 1, we set n = m = 20 and 50 and727

increase ν from 1,000 to 20,000. The dimensions of problems (n+νm) are ranging from728

20,020 to 1,000,050. For PSNA, the number of the Newton iteration (3.4) performed729

is denoted as “Iter/N”. One can see that the Newton iteration is always used for all730

problems. Moreover, for PSNA, the number of iterations barely changes for different731

n,m and ν, while the CPU time increases linearly when n,m and ν become large.732

Overall, PSNA computes a more accurate solution with less number of iterations and733

CPU time than PHA. Table 1 shows that PSNA is much faster than PHA in terms734

of CPU time. The left figure of Figure 1 gives an intuitive comparison of the two735

algorithms for different n,m when ν increases from 1,000 to 20,000. The right-hand736

side figure shows the residual history with respect to the iteration number for different737

n and m. It is clear that PSNA is more efficient than PHA in terms of CPU time as738

well as the number of iterations.739

In Table 2, numerical results of PSNA for Example 5.2 are presented. We set740

n = 30,m = 20 and n = 60,m = 50, and increase ν from 10, 000 to 20, 000 to741

test the performance of PSNA. All the problems are successfully solved by PSNA.742

One can see that the number of iterations barely changes when ν increases and the743

superlinear convergence rate is observed. Similar results for Example 5.3 are presented744

in Table 3. Table 4 shows the results of Example 5.4, in which the influence of745

nonsmooth components (NSC) of the solution is explored, where NSC equals to the746

percentage of nonsmooth components Ai of function A at x∗. It can be seen that747

the NSC of the solution does not affect the superlinear convergence rate of PSNA,748

although it requires more projection iterations when NSC is large. These results749
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Table 1: Comparison of PSNA and PHA for Example 5.1

PSNA PHA
n,m ν Iter Iter/N CPU/sec Res Iter CPU/sec Res

20

1,000 4.5 4.5 1.6 6.0e-09 137.5 19.9 9.4e-07
5,000 4.0 4.0 6.1 5.6e-08 134.0 88.9 9.6e-07
10,000 4.0 4.0 12.0 2.0e-07 157.0 214.8 9.5e-07
20,000 4.0 4.0 28.0 6.4e-09 161.5 451.4 9.5e-07

50

1,000 5.0 5.0 4.0 3.2e-15 72.5 22.4 9.6e-07
5,000 4.5 4.5 18.9 9.4e-08 83.0 129.3 8.5e-07
10,000 4.0 4.0 36.1 2.6e-07 78.5 242.5 9.1e-07
20,000 4.0 4.0 70.5 2.0e-07 92.5 577.5 9.3e-07
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Fig. 1: Comparison of PSNA and PHA.

suggest that PSNA is promising even for solving some nonmonotone problems. The750

good numerical performance for nonmonotone Examples 5.2-5.4 is partly supported751

by Corollary 4.6(ii)-(iii), which establishes the global and superlinear convergence752

of PSNA for some special nonmonotone problems, where the first stage problem is753

strongly monotone with respect to the first stage variable x and the second stage754

problem is a P -matrix LCP or Z-matrix LCP with respect to y.755

5.2. Stochastic traffic assignments. In this subsection, we apply the two-756

stage SVI to formulate the stochastic user equilibrium problem with uncertain de-757

mands and capacities, which is an important class of problems in stochastic traffic758

assignments. The uncertainty for demands and link capacities can be caused by some759

unpredictable factors, such as adverse weather, road accidents and some other road760

conditions; see [7, 12]. The random variable ξ with a finite support set Ξν is used to761

describe the uncertainty in demands and capacities.762

First, we give definitions of notation in traffic assignments.763

• Ñ ,P, Ã,W: the node set, the path set, the link set and the origin destination764

(OD) pair set, respectively.765

• Pw: the set of paths that connect the OD pair w ∈ W.766
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Table 2: Numerical results of PSNA for Example 5.2.

Case 1: l = 0, u = ∞
ν=10,000 ν=20,000

n,m Iter Iter/N CPU Res Iter Iter/N CPU Res
Max 3.0 3.0 4.0 2.6e-13 3.0 3.0 8.5 2.9e-13

30, 20 Ave 3.0 3.0 3.8 4.3e-10 3.0 3.0 8.1 3.0e-13
Min 3.0 3.0 3.7 1.6e-13 3.0 3.0 7.9 2.5e-13
Max 4.0 4.0 31.5 4.8e-13 3.0 3.0 55.2 4.8e-13

60, 50 Ave 3.3 3.3 26.8 3.6e-07 3.0 3.0 53.7 2.2e-07
Min 3.0 3.0 24.6 3.3e-07 3.0 3.0 53.0 1.7e-07

Case 2: l = −nen, u = nen
Max 4.0 4.0 4.7 3.5e-13 4.0 4.0 10.3 5.8e-13

30, 20 Ave 3.2 3.2 4.0 3.5e-07 3.1 3.1 8.3 1.3e-07
Min 3.0 3.0 3.7 7.2e-12 3.0 3.0 8.0 2.4e-07
Max 5.0 5.0 40.2 7.5e-13 5.0 5.0 80.0 1.0e-12

60, 50 Ave 4.4 4.4 35.0 8.2e-08 4.1 4.1 67.9 1.3e-07
Min 4.0 4.0 30.9 2.6e-08 4.0 4.0 65.8 5.7e-09

Case 3: li = −n, ui = n if i is even and li = 0, ui = ∞ if i is odd
Max 3.0 3.0 3.8 3.5e-08 3.0 3.0 8.2 3.9e-13

30, 20 Ave 3.0 3.0 3.7 7.1e-08 3.0 3.0 8.0 8.8e-09
Min 3.0 3.0 3.7 3.7e-07 3.0 3.0 7.9 4.0e-13
Max 4.0 4.0 45.0 4.7e-13 4.0 4.0 95.9 1.1e-12

60, 50 Ave 4.0 4.0 34.8 7.1e-13 4.0 4.0 80.3 2.5e-10
Min 4.0 4.0 31.2 8.1e-13 4.0 4.0 64.1 1.0e-12

Table 3: Numerical results of PSNA for Example 5.3.

n,m ν Iter Iter/N CPU/sec Res

20
2,000 1.7 1.7 3.6 1.7e-12
10,000 1.4 1.4 16.6 1.0e-11
20,000 1.5 1.5 37.2 9.3e-12

50
2,000 1.6 1.6 16.0 1.9e-11
10,000 1.3 1.3 73.8 6.8e-11
20,000 1.4 1.4 162.8 7.3e-11

Table 4: Numerical results of PSNA for Example 5.4 with ν = 20, 000.

n,m NSC Iter Iter/N CPU/sec Res

30, 20

0.2 5.7 4.8 13.7 1.2e-07
0.4 6.2 4.5 15.8 1.9e-07
0.6 6.0 4.6 15.9 1.6e-08
0.8 6.5 4.3 16.7 7.0e-08

60, 50

0.2 6.2 4.9 102.2 2.8e-08
0.4 6.0 5.0 101.8 4.9e-10
0.6 6.9 5.0 110.7 2.0e-09
0.8 11.3 5.0 153.2 3.4e-11
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• Υ ∈ R|Ã|×|P|: the link-path incidence matrix where Υap = 1 if link a is on767

path p; otherwise, Υap = 0.768

• Γ ∈ R|W|×|P|: the OD-path incidence matrix where Γwp = 1 if path p connects769

OD pair w; otherwise, Γwp = 0.770

• hp(ξ): the path travel flow on path p.771

• va(ξ): the link travel flow on link a, which satisfies v(ξ) = Υh(ξ).772

• ca(ξ): the link capacity on link a, which is a positive scalar.773

• dw(ξ): the nonnegative demand function for OD pair w ∈ W.774

• Rp(h(ξ), ξ): the travel cost function through path p.775

• ra(v(ξ), ξ): the travel cost function through link a.776

Let777

D̂ξ = {h ∈ R|P| | Γh− d(ξ) = 0, h ≥ 0}, D = {x ∈ R|P| | Γx− E[d(ξ)] = 0, x ≥ 0}.778779

The matrix Γ has elements 0 or 1 only and each column of Γ has exactly one element780

being 1. By the boundedness of d(ξ), it is known that D and D̂ξ are bounded polyhe-781

dral sets. The function r : R|Ã| ×Rd → R|Ã| is the generalized bureau of public road782

(GBPR) link travel time function [2] defined as783

ra(Υh(ξ), ξ) = t0a

(
1.0 + 0.15

(
va(ξ)

ca(ξ)

)na
)
, a ∈ Ã,784

where t0a and na are given positive numbers. Define the path travel cost functions785

R̄ : R|P| → R|P| and R : R|P| × Rd → R|P| as follows786

R̄(x) = ΥTE[r(Υx, ξ)], R(h, ξ) = ΥT r(Υh, ξ).787

The stochastic user equilibrium can be formulated as an SVI [7]: find h(ξ) ∈ D̂ξ788

such that789

(5.1) (h′ − h(ξ))TR(h(ξ), ξ) ≥ 0, ∀ h′ ∈ D̂ξ, for any ξ ∈ Ξν .790

To solve (5.1) with a fixed ξ, one can minimize the following optimization problem791

(5.2) min
x∈D̂ξ

max{(x− h(ξ))TR(x, ξ) | h(ξ) ∈ D̂ξ},792

which can be written as a two-stage optimization problem793

min xTR(x, ξ) +Q(x, ξ)

s.t. x ∈ D̂ξ,

Q(x, ξ) = max{−h(ξ)TR(x, ξ) | h(ξ) ∈ D̂ξ}.

(5.3)794

795

By duality of linear programming, the function Q can be expressed by796

Q(x, ξ) = min{s(ξ)T d(ξ) | ΓT s(ξ) +R(x, ξ) ≥ 0}.797

To calculate a here-and-now solution that does not depend on the realization of ξ, we798

solve the following two-stage stochastic program799

min xT R̄(x) + E[Q(x, ξ)]

s.t. x ∈ D,

Q(x, ξ) = min{s(ξ)T d(ξ) | ΓT s(ξ) +R(x, ξ) ≥ 0}, for any ξ ∈ Ξν .

(5.4)800

801
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Following [2, Example 2.3], we can obtain the first-order optimality condition of (5.4)802

as follows803

−
(
∇R̄(x)Tx+ R̄(x)− E[∇R(x, ξ)Tλ(ξ)]

)
∈ ND(x),(5.5)804

−
[(

0 −Γ
ΓT 0

)
y(ξ) +

(
d(ξ)

R(x, ξ)

)]
∈ NC(y(ξ)), any ξ ∈ Ξν ,(5.6)805

806

where the second stage problem is a mixed LCP with C = R|W| × R|P|
+ , and y(ξ) =807

(s(ξ), λ(ξ))T with λ(ξ) being the multiplier of ΓT s(ξ) +R(x, ξ) ≥ 0.808

Remark 5.1. We can show that problem (5.5)-(5.6) has the relatively complete809

recourse. It is known that R(x, ξ) > 0 for any x ∈ D and ξ ∈ Ξν . Let λ̄(ξ) ≥ 0 with810

Γλ̄(ξ) ≥ d(ξ) and z̄(ξ) = 0. Thus, (z̄(ξ), λ̄(ξ)) is a feasible solution of the following811

LCP812

0 ≤
(

z(ξ)
λ(ξ)

)
⊥
(

0 Γ
−ΓT 0

)(
z(ξ)
λ(ξ)

)
+

(
−d(ξ)
R(x, ξ)

)
≥ 0.(5.7)813

814

Then, the LCP in (5.7) is solvable by [11, Theorem 3.1.2].815

Let (z∗(x, ξ), λ∗(x, ξ))T be a solution of (5.7) for fixed x ∈ D and ξ ∈ Ξν . Now816

we show that (−z∗(x, ξ), λ∗(x, ξ))T is a solution of (5.6). If there is w′ ∈ W such817

that (Γλ∗(x, ξ)−d(ξ))w′ > 0, by the first complementarity condition in (5.7), we have818

z∗w′(x, ξ) = 0. Thus, (R(x, ξ) − ΓT z∗(x, ξ))p = Rp(x, ξ) > 0 for any p ∈ Pw′ . Then,819

we have λ∗
p(x, ξ) = 0 for any p ∈ Pw′ by the second complementarity condition in820

(5.7), which implies that (Γλ∗(x, ξ)− d(ξ))w′ = −d(ξ)w′ ≤ 0. This is a contradiction.821

Hence (−z∗(x, ξ), λ∗(x, ξ))T is a solution of (5.6).822

By the positive semi-definiteness of the coefficient matrix of y(ξ) in (5.6), it ad-823

mits a unique least-norm solution5 by [11, Theorem 3.1.7], denoted by ŷ(x, ξ). By824

substituting ŷ(x, ξ) into the first stage problem (5.5), we can get the single-stage825

SVI formulation of (5.5)-(5.6). We can calculate a solution of the original two-stage826

problem by solving the single-stage problem, since D is a bounded polyhedral set.827

To obtain the least-norm solution, we add a regularized term µkI with µk > 0 and828

µk → 0 as k → ∞ to the coefficient matrix of y(ξ), which forces the second stage829

problem to be strongly monotone and thus admit a unique solution yµk
(x, ξ) for any830

fixed x and ξ. In addition, the solution function ŷµk
(x, ξ) of the regularized second831

stage problem with any µk > 0 is Lipschitz continuous with respect to x for any ξ832

and limk→∞ ŷµk
(x, ξ) = ŷ(x, ξ) by [11, Theorem 5.6.2].833

We test the efficiency of PSNA for solving (5.5)-(5.6) with Nguyen and Dupuis834

network, which has 13 nodes, 19 links, 25 paths and 4 OD pairs; see [7] for details. The835

data for demands d(ξ), capacities c(ξ) and the free travel time t0 are set according to836

the data d̃(ξ), c̃(ξ), t̃0 used in [7] after a scaling, i.e., d(ξ) = 0.1× d̃(ξ), c(ξ) = 0.1× c̃(ξ)837

and t0 = 0.1 × t̃0. Parameter na in R(x, ξ) is set to na = 2, . . . , 5, respectively.838

Note that PHA fails to solve problem (5.5)-(5.6), since the problem is nonmonotone839

for na ≥ 2. The settings for PSNA are µk ≡ 10−12, ϵk ≡ 0, η = 0.9 and the840

step size for the projection iteration (3.5) is set to α = 0.1, 0.05, 0.05, 0.05 for na =841

2, . . . , 5, respectively. The sample size is set to ν = 100, 000 and 400, 000. Numerical842

results were reported in Table 5, which show that PSNA can solve these nonmonotone843

problems efficiently.844

5A solution ȳ of the LCP(q,M) is called the least-norm solution if ∥ȳ∥ ≤ ∥y∥ for any y ∈
SOL(q,M).
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Table 5: Results of PSNA for (5.5)-(5.6) with Nguyen and Dupuis network (n = 25,m = 29).

ν nα Iter Iter/N CPU/sec Res

100, 000

2 5.0 5.0 105.2 2.7e-07
3 7.0 6.0 173.1 4.2e-07
4 12.0 6.0 316.0 2.4e-07
5 10.0 6.0 267.1 6.2e-08

400, 000

2 5.0 5.0 414.0 1.1e-08
3 7.0 6.0 690.5 4.3e-07
4 12.0 6.0 1247.5 2.3e-07
5 10.0 6.0 1063.8 6.2e-08

6. Conclusions. Algorithm 3.1 describes a hybrid projection semismooth New-845

ton algorithm (PSNA) for solving the two-stage SVI (1.5)-(1.6). We give sufficient846

conditions to guarantee that the sequence generated by Algorithm 3.1 globally and su-847

perlinearly converges to a solution of (1.5)-(1.6). Moreover, we show these conditions848

hold for Examples 5.1-5.4 and the example from stochastic traffic assignments with849

properly selected parameters. However Examples 5.2-5.4 are not (elicited) monotone850

two-stage SVI and cannot be solved by PHA and elicited PHA. Preliminary numer-851

ical experiments with over 107 variables show the effectiveness and efficiency of the852

proposed PSNA for solving large-scale two-stage SVI.853
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