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SOLVING TWO-STAGE STOCHASTIC VARIATIONAL
INEQUALITIES BY A HYBRID PROJECTION SEMISMOOTH
NEWTON ALGORITHM*

XIAOZHOU WANGT AND XIAOJUN CHENT

Abstract. A hybrid projection semismooth Newton algorithm (PSNA) is developed for solving
two-stage stochastic variational inequalities, which is globally and superlinearly convergent under
suitable assumptions. PSNA is a hybrid algorithm of the semismooth Newton algorithm and extra-
gradient algorithm. At each step of PSNA, the second stage problem is split into a number of small
variational inequality problems and solved in parallel for a fixed first stage decision iterate. The
projection algorithm and semismooth Newton algorithm are used to find a new first stage decision
iterate. Numerical results for large-scale nonmonotone two-stage stochastic variational inequalities
and applications in traffic assignments show the efficiency of PSNA.
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1. Introduction. Let (Z,.A, P) be a probability space induced by a random
vector ¢ with the support set Z C R?. Let ) be the space consisting of A-measurable
functions from = to R™. We are interested in developing a globally and superlinearly
convergent algorithm for computing a pair (z,y(-)) € R™ x ) that solves the following
two-stage stochastic variational inequality (SVI) [2]

(L1)  -E[G(z,y(8),£)] € Np(=),
(1.2) —F(x,y(£),) € Now) (y(8)), for almost every (a.e.) £ € 2,

where

e G:R"xR™ x R? - R" is a vector-valued function, Lipschitz continuous
with respect to (x,y) for a.e. & € Z with Lipschitz constant Lg(§), and
A-measureable and integrable with respect to &;

e F:R" x R™ x R* - R™ is a vector-valued function, continuously differen-
tiable with respect to (x,y) for a.e. £ € =, and A-measureable with respect
to &;

e E[-] denotes the expected value over =, D C R" is a nonempty closed convex
set, C(§) € R™ is a polyhedral set for a.e. £ € E, Np(z) and N (e (y(€))
are normal cones to the set D at x € R™ and the set C'(§) at y(§) € R™,
respectively.

In a solution pair (z,y(-)) € R™ x Y of (1.1)-(1.2), x is the first stage decision vari-
able independent of ¢ and y(-) is the second stage decision variable. The two-stage
SVI characterizes the first-order optimality condition of the two-stage stochastic pro-
gramming [2] and models some equilibrium problems under uncertain environments.
The research for the two-stage SVI has received much attention; see [4, 5, 25, 28] for
references.

In the case that G(-,-, &) and F(-,-, &) are both linear with respect to (x,y) for
ae. £ €2, D=R%, and C(§) =R} for a.e. £ € =, (1.1)-(1.2) reduces to a two-stage
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2 X. WANG, AND X. CHEN

stochastic linear complementarity problem (SLCP) as follows:

(1.3) 0<zlAz+E[BE)y)]+q >0,
(1.4) 0 <y(§)LN(E)z+ M(E)y(§) +q2(§) >0, for ae. £ €=,

where A € R"™" ¢ € R*, B : R? = R™™ N : R4 — R™*" M : R? — R™*™,
g2 : RY — R™. In [5], the existence and uniqueness of a solution of the two-stage
SLCP were established under the strong monotonicity assumption. In addition, a new
discretization scheme was proposed and a distributionally robust two-stage SLCP was
studied.

Numerically, we solve the sample approximation discretization problem of (1.1)-
(1.2). More specifically, given a sample set E, = {{1,...,&,} of the random vector &,
its discrete approximation problem has the following form

(1.5) = PG, y(&), &) € Np(),

(=1
(1'6) _F($7y<§€)>€f) ENC(&)(ZU(&))’ =1,...,v,

where py >0 for / =1,...,v and ZZ:1 pe = 1. If the sample set is independent iden-
tically distributed (i.i.d.), then (1.5)-(1.6) is called a sample average approximation
(SAA) discretization problem of (1.1)-(1.2). See [2, 4, 5] for the convergence analy-
sis of the solution of the SAA discretization problem to that of the two-stage SVI
(1.1)-(1.2). The dimension of variables in problem (1.5)-(1.6) is n 4+ mwv. In practice,
the sample size v is very large and thus (1.5)-(1.6) is a large-scale problem. Most
deterministic VI solvers [3, 9, 12, 15, 18, 19, 20, 26] encounter difficulties in handling
such large-scale problems. Hence, it is necessary to develop efficient algorithms for
solving (1.5)-(1.6).

The progressive hedging algorithm (PHA) was first proposed by Rockafellar and
Wets [23] to solve multi-stage stochastic optimization problems. Recently, it was
extended to solve the monotone multi-stage SVI by Rockafellar and Sun with finite
samples [22]. PHA decomposes the original large-scale problem into a sequence of in-
dependent small sample-based subproblems and solves them in parallel. Theoretically,
PHA is globally convergent for the monotone multi-stage SVI. However, only linear
convergence rate is established for the affine monotone SVI and it is not applicable to
nonmonotone problems. Recently, an elicited PHA was proposed by Zhang, Sun and
Xu [28] to solve the elicited monotone (not necessarily monotone) two-stage SVI. But
it is difficult to verify the elicited monotonicity of the problem, and the convergence
rate is still linear. To the best of our knowledge, globally and superlinearly convergent
algorithms have not been studied for solving the two-stage SVI.

In this paper, we propose a globally and superlinearly convergent projection semis-
mooth Newton algorithm (PSNA) for solving (1.5)-(1.6), which is a hybrid algorithm
of the semismooth Newton algorithm and extragradient algorithm. We assume that
(1.5)-(1.6) has relatively complete recourse [4]; that is, for any € D and £ € Z,, the
second stage problem (1.6) has at least one solution. Let S(z, ) be the solution set of
the second stage problem (1.6) for a given (z,&) € D x E,. Then problem (1.5)-(1.6)
can be equivalently written as

(17) *prG(wvy(fe)’gi) GND(:E)? y(é'f) GS(.’ﬂ,f@), = L...,v

{=1
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SOLVING TWO-STAGE SVI BY A HYBRID PSNA 3

From an iterate 2%, PSNA finds y*(&,) € S(2*,&,),£ = 1,...,v in parallel, and then
finds z**! by using the linear Newton approximation scheme with the projection
algorithm for the variational inequality (VI) in (1.7).

In convergence analysis, we define a solution function g : D x= — R™ by selecting
a vector §j(x, &) € Sz, &) for any x € D and & € E,, and two functions G : DxZ,, —
R™ and H : D — R” with

(1.8) Gla,&) = Gz, §(x,&),&) and  H(z) =Y peG(x,&).
=1

It is easy to see that if x* is a solution of the VI
(1.9) — H(z) € Np(z),

then (z*,g(z*, &), ..., 9(x*,&)) is a solution of (1.5)-(1.6).

The main contribution of this paper is the development of a globally and su-
perlinearly convergent algorithm called PSNA for solving large-scale two-stage SVI
(1.5)-(1.6). Convergence analysis and numerical experiments with over 107 variables
show the effectiveness and efficiency of the proposed PSNA. To guarantee the global
convergence of PSNA, we provide sufficient conditions for the function H being Lip-
schitz continuous and monotone. Moreover, we show that H is semismooth under
these conditions, which ensures the superlinear convergence of PSNA. It is worth
noting that if the two-stage SVI (1.5)-(1.6) is monotone, then H is monotone, but
conversely it is not true. Hence the conditions for global convergence of PSNA are
weaker than the conditions for global convergence of PHA [22]. Comparing PSNA and
PHA regarding convergence rate, PSNA has the superlinear convergence rate under
proper assumptions (see Theorems 3.3 and 4.5 and Corollary 4.6), while PHA has lin-
ear convergence rate for solving the affine monotone SVI [22, Theorem 2]. Moreover,
preliminary numerical results show that PSNA can find a solution of (1.5)-(1.6) using
much less CPU time than PHA.

The paper is organized as follows. In section 2, we investigate the Lipschitz
continuity, semismoothness, linear Newton approximation scheme and monotonicity
of the functions in the two-stage SVI (1.5)-(1.6). In section 3, we propose PSNA and
give the convergence analysis. In section 4, PSNA is applied to solve a special class
of (1.5)-(1.6), where the VI in the second stage is a linear complementarity problem
(LCP) and in the first stage > ,_; peG (2, y(&), &) = A(z) + Y,_; peB(&)y(&). In
section 5, we conduct numerical experiments for large-scale nonmonotone two-stage
SVI and applications in traffic assignments to show the efficiency of PSNA. Section
6 is devoted to the conclusions.

We use the following notation and terminology through out the paper. | - ||
represents the Euclidean norm. R’ is the nonnegative orthant of R™. IIp(x) =
arg mingep ||z — y||? denotes the projection of x onto the closed convex set D. B(x)
represents an open neighborhood of x. [m] denotes the set {1,...,m} for any posi-
tive integer m. If K : R¥ — R® is differentiable, VK (z) denotes its Jacobian at x
and K'(z;h) is the directional derivative at = along the direction h. A set-valued
mapping ¥ : R¥ = R? is said to be outer semicontinuous (osc) at Z relative to a
set X C R* if limsup,_, ;¥(z) C ¥(z) where limsup,_, ;¥(z) := {v € R* :
3ok — 7, 30% — v with 2% € X, v% € U(2*) }, see [24, Defintion 5.4]. A matrix M
is called a P-matrix if all its principal minors are positive. A matrix M is called a
Z-matrix if all its off-diagonal entries are non-positive. M > 0 means that matrix
M is positive semidefinite. We use VI(D, K) and LCP(q, M) to denote the problems
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4 X. WANG, AND X. CHEN

—K(z) € Np(z) and 0 < zL Mz + g > 0, respectively. SOL(q, M) is the solution set
of LCP(q, M). e, denotes the n-dimensional vector with all components being 1.

2. Properties of problem (1.5)-(1.6). In this section, we study the Lipschtiz
continuity, semismoothness, linear Newton approximation scheme and monotonicity
of the functions in (1.5)-(1.6) and the function in the single-stage SVI with a finite
support set =, for the convergence analysis of PSNA.

Let K : R¥ — R® be a locally Lipschitz continuous function. According to
Rademacher’s Theorem, K is differentiable almost everywhere. Let Qk be the set of
differentiable points of K. The generalized Jacobian of K at x in the sense of Clarke
[10] is defined as follows:

OK(z) :==conv{V € R*** : V= lim  V,K(2')},

rtEQK ,xt—x

where “conv” denotes the convex hull. Function K is said to be semismooth at x if
K is locally Lipschitz continuous around z and the limit
lim {Vh'}
)

VEOK (z+th!
h!—h, tlO

exists for any h € RF; see [12, 20, 27] for details.

Throughout the paper, D C R™ denotes an open set containing the set D. It
is said that (1.5)-(1.6) has relatively complete recourse on D if for any z € D and
¢ € £, the second stage problem (1.6) has at least one solution.

We make the following basic assumption for Lipschitz continuous selection of
S(z,€). For continuous selection of S(z, €), see [24, Defintion 5.58 (Michael represen-
tations)].

ASSUMPTION 2.1. The two-stage SVI (1.5)-(1.6) has relatively complete recourse
on D; i.e., S(x,€) is nonempty for any x € D and £ € Z,. Moreover, for any £ € E,,
there exists a Lipschitz continuous selection §(x,€) € S(x, ), i.e.

19(2,&) — 92", Ol < Ly(©)llx — 2'l|, ¥V x,2’ € D,

where Ly(&) > 0 is the Lipschitz constant.

Some sufficient conditions for Assumption 2.1 can be found in [12]. For example,
the condition that for any € D and £ € E,,, F(z,-,§) is strongly monotone on C(§)
in the sense that there is p¢ > 0, independent of x, such that for any u,v € C(§),

(u - U)T(F($7u,£) - F($>’U7£)) > ngu - U||2

holds. Other conditions for ensuring Assumption 2.1 will be discussed in section 4.
The following proposition studies the Lipschitz continuity of H and the solvability
of (1.5)-(1.6).

PROPOSITION 2.1. Under Assumption 2.1, the following assertions hold.
(i) The function H is Lipschitz continuous on D with a Lipschitz constant Ly =

21 Pe(La(€e)Ly(&e) + La(6e))-

(i) If D is bounded, then (1.5)-(1.6) is solvable.

(iii) If D is a box and S(x,&) is a singleton for any x € D and § € E,, and H is a
uniformly P function, then (1.5)-(1.6) has a unique solution.
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SOLVING TWO-STAGE SVI BY A HYBRID PSNA 5

Proof. (i) By the Lipschitz continuity of G(,-,€) and §(-,£) for any £ € E,, we
have for any z, 2’ € D

[H () — H(2")|| =

G(z,&) - G’ fe))||

< ZpeHG(l‘, :l)(.’L‘, g)v f@) - G(l‘/, ]j(.’L‘/, §€)7 5@)“
=1

<D peLa()Ly(&) + Loz — 2'|| = Lille — /).
{=1

(ii) Since D is bounded and H is Lipschitz continuous, from [12, Corollary 2.2.5],
we immediately know that (1.9) is solvable, which implies that (1.5)-(1.6) is solvable.
(iii) From [12, Proposition 3.5.10], problem (1.9) has a unique solution z*. From
the assumption that S(z,¢) is singleton for any € D and £ € =,, we find that
(x*,g(x*,&1),...,9(x*, &) is the unique solution of (1.5)-(1.6). 0

Next, we will discuss the semismoothness and the linear Newton approximation
scheme of H.

By the Lipschitz continuity of G(-,-,&) and (-, ), G’(, €) is Lipschitz continuous.
The set-valued mapping H : D = R™"*"™ defined by

H(z) = E[0G(x,€))] {ZP@V z,&) « V(z, &) € 3(;(%52)}

is Aumann’s (set-valued) expectation of dG(z, €) [1].
The following proposition provides some properties of H.

PROPOSITION 2.2. Under Assumption 2.1, H(x) is nonempty, convex and com-
pact at any x € D. Moreover, H is osc and closed at any x € D relative to D; that
is, if 2% —p x, Wk € H(2*) and WF — W, then W € H(x).

_Proof. From Assumption 2.1, for any { € Z,, the generalized Jacobian G(-,€)
of G(+,€) is nonempty, convex, compact and osc at any x € D relative to D. By the
definition of H, we have the properties in this proposition. 0

The following definition of linear Newton approximation scheme is important for
the development of Newton-type algorithms.

DEFINITION 2.3 ([12], Definition 7.5.13). Let K : R® — R?® be a locally Lipschitz
continuous function. We say that K admits a linear Newton approximation at T, if
there is a set-valued mapping ¥ : R® = R**® such that ¥ has nonempty compact
images, is osc at T, and for any h — 0, W € U(Z 4 h)

(2.1) 1K (z + h) = K(z) = Whi| = o(|[])-

We also say that U is a linear Newton approximation scheme of K at Z.

By Definition 2.3, 0H is a linear Newton approximation scheme of H if H is
semismooth. However, the calculation of OH is difficult since the explicit form of H is
not available and it holds that H (z) C >°,_, pedG(x, &) in general by [10, Corollary
2]. As we will see in Section 4, elements of dG(z,&;) can be easily calculated for the
two-stage semi-linear SVI, which allows us to obtain elements of H(z). Hence from
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6 X. WANG, AND X. CHEN

a practical point of view, it is more appropriate to use H in the study of the linear
Newton approximation scheme of H.

To establish that H is a linear Newton approximation scheme of H, the semis-
moothness of G(-,€) is needed. Note that G(-,€) = G(-,§(-,€),€). The semismooth-
ness of G(-, &) is related to the semismoothness of the second stage solution §(-,€). To
this end, we introduce the Strong Regularity Condition (SRC) proposed by Robinson
[21]. Facchinei and Pang also thoroughly discussed this property in the monograph
[12].

Without loss of generality, for £ € =, let

C€)={yeR": T(&)y <b&)},

with 7 : R? — R**™ and b : R* — R®. For any given « € D and & € =, define the
critical cone of the pair (C(§), F(z,-,§)) at §(x,&) € C(£) as follows

Co(5:C(€), F) = {v e R™ : T(§)v < 0, F(a,5(x,€), )T v = 0},

where T(€) is a sub-matrix of T'(¢) consisting of rows of T'(¢) satisfying T(&)3(z, €)
= b(¢) with b(€) being the corresponding sub-vector of b(¢).

We make the following SRC assumption for the second stage problem. In the case
of the VI with a polyhedral set, by [12, Theorem 5.3.17(e)], the SRC condition is
equivalently defined as follows.

ASSUMPTION 2.2. For any £ € Z,, the SRC holds at §(x,&) for the VI(C(E),
F(x,-,£)) for any x € D; that is, for any x € D, the following affine VI admits a
unique solution for each ¢ € R™

0€q+ VyF(z,9(x,8),8)z+ N, g:00),r) (2)-

By the SRC assumption, it is clear that Assumption 2.2 holds if F(x,-,£) is
strongly monotone on C(&) for any x € D and £ € Z,. In the case that C(§) = R for
any £ € Z,, a sufficient condition for guaranteeing Assumption 2.2 is that F'(x, -, &) is
a uniformly P function for any z € D and £ € E,,.

The following proposition establishes the semismoothness of H at x and shows
that H is a linear Newton approximation scheme of H.

PROPOSITION 2.4. Let D x C(£) be contained in an open set D x C(€) for any & €
E,. Suppose that Assumptions 2.1-2.2 holds, and that for any fized £ € =, G(-,-,§)
is semismooth at (z,9(z,£)) € D x C(§). Then we have the following assertions.

(i) H is semismooth at x € D.

(i) H is a linear Newton approzimation scheme of H at x € D.

Proof. (1) With Assumption 2.2, by [12, Theorem 5.4.6], we know that for any
fixed £ € 2, §(-,£) is a piecewise smooth function on D, and hence it is semismooth
on D. By [12, Proposition 7.4.4], the composition of semismooth functions is also
semismooth. Then, we deduce that G(~,§) is semismooth at z € D for any fixed
¢ € Z,. Since the sum of finite semismooth functions is also semismooth [20], we
know that H is semismooth at x € D.

(ii) By Proposition 2.2, H has nonempty compact images and is osc at any x € D
relative to D. For any h — 0, W € H(z + h), let V(&) € dG(z + h, &) such that
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W =3",_,peV(&). It follows that

iy L)Wt

W edH (z+h)
N AT (SRR Lok Vigoh - Ga,&)|

V(€p)€0G (x+h,Eyp)
< g Zpdein ﬁl - V(©h =G0

V(£0)€dG (z+h,&yp)

:07

where the last equality is due to the semismoothness of G(, €) at x for any € € =Z,.
Hence H is a linear Newton approximation scheme of H at x € D. O

Next, we study the monotonicity of H. The function H is said to be monotone
on D if for any u,v € D, the following inequality holds

(2.2) (H(u) — H©)" (u - v) > 0.
Using the definition of the monotonicity of the two-stage SVI in [22], we define the

monotonicity of (1.5)-(1.6). Define a mapping 7 : R™ x ), — R™ x ), with ), being
the linear space consisting of all mappings from =, to R™ as

_{ E[G(z,y(€),€)]

T(z,y():= ( F(x,:g(')v ) ) '
We say that 7 is monotone on D x C(-) if for any (z,y(+)), (z/,%'(:)) € D x C(-)!, it
holds [22] that

(T =T o (5700 )
= Zpe[(ﬂf - xl)T(G($7y(£g),§g) - G(m/7y/(£€)>€l))

7+(y(§e) — ' (&))" (F(z,y(&), &) — Fa',y' (&), &))] 2 0

The SVI (1.5)-(1.6) is said to be monotone if T is monotone on D x C(-).
Let © : R" x R™ x R? — R™ x R™ be

G(z,y(€),€
@(%Z/(ﬁ)af);( FE.T,zEfg’g; ) .

AssUMPTION 2.3. The function é(,{) defined in (1.8) is monotone on D for
each fixed £ € E,,.

The following proposition gives sufficient conditions for Assumption 2.3.

PROPOSITION 2.5. Let H(z) = Y ,_, peG(z, &), where G(x, &) = Gz, §(z, ), €)
with §(x,&) being a Lipschitz continuous selection from S(x,&). Then Assumption
2.3 holds and H is monotone on D, under Assumption 2.2 and the following two
conditions:

(i) For any £ € 2, O(+,+,§) 2'3 monotone on D x C(€);

(i1) For any T € D and § € =, with § = §(Z,§), V,F(Z,§,§)v is contained in
the column space of V F(Z,4,&) for any v € Cz(g;C(§), F).

Ya,y(-)) € D x C(-) if (x,y(€)) € D x C(€) for any & € =,.
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8 X. WANG, AND X. CHEN

Proof. Tt suffices to show that every element of G, (x,€) is positive semidefinite
for any z € D and § € Z, by [16, Proposition 2.3]. Under Condition (i), for any
(z,y(§)) € D xC(€) and & € 5,, it holds

(2.3) < Vo F(z,y(£),€) 'V, F(x y(f) £) > =0

where Vi (2, y(£), €) € 9,G(2,y(£),§) and V, (2,y(£),§) € 9,G(x,y(§), E)-
For any V,F(z,y(£),&) with rank(V,F'(z,y(£),§)) = > 1, define the set

Z(x,y(€),8) ={Z e R™I . [ZTV,F(z,y(£),£)Z] is nonsingular with j = 1,...,7}.

Let
Uz(2,y(€),€) = =Z[27V, F(2,y(€), 27 2"V F (2, y(8), €)
for arbitrary Z € Z(z,y(§),§).
For any v € R", let v = Uz(z,y(§),§)u € R™. Then from (2.3), we have
T (Vo y(€),€) + Vy (@, 9(6), )Uz (2, y(€). €))u > 0. Hence

(2.4) Ve(z,9(£),8) + Vy (2, y(£), Uz(x, y(£), §) = 0.

Under Assumption 2.2, g(-,£) is a semismooth function by Proposition 2.4. Let
Qy(.¢) be the set of differentiable points of §(-,£). Under Assumptions 2.2 and (ii),
by [12, Corollary 5.4.14], we have that Cz(g;C(£),F) is a linear subspace for any
S QQ(~,f)a Le., CE(Q,C(f),F) = CE(Q,C(f),F) N —Cj(@,C(f),F) Therefore, by [17a
Theorem 2.2], the Jacobian V,§(z,&) at any T € Q. ¢) can be represented as

(2.5) Voil(Z,8) = Uz(7,3(2,£),€), Z € 2(z,§(z,€),€),

where 2(9‘:, 9(z,€),€) is a set consisting of matrices in R™*! with [ being the dimen-
sion of Cz(7; C(€), F), and each element Z € Z(&,§(Z,&),£) satisfies that Z7Z and
ZTV,F(z,9(z,€),€)Z are nonsingular and z € Cz(9; C(£), F) if and only if 2 = Zv
for some v € R'. Under the SRC assumption, by [17, Lemma 2.1], we know that
2‘:’(5:,@(5:,{),5) is not empty, and it is clear that é(j,g(i,g),f) C Z(z,9(x,€),8).

Let B(z) C D be an open neighborhood of # € D. Since G(-,€) and §(-,€)
are Lipschitz continuous, they are differentiable almost everywhere over B(z). Let
Qy(x, &) and QG(;U, €) be the sets of differentiable points of §(-,&) and G(-,£) over the
neighbourhood B(z), respectively. By the Lipschitz continuity of G(,-,&), we know
that VG(z,9(z,§),$) ex1sts almost everywhere over B(z), and we denote this set by
Qc(,8). Let Q(z,8) = Qu(x,€) N Qp(x,€) N Qa(a,€). It is clear that

O(z,€) € Qy(a,8), Qa,€) € Qu(2,8), A, €) € Qg(w,8),

and the measures of ;(z, &)\ Q(z,£), Qé(x,@ \ Q(z,€) and Qg(x,€) \ Q(z, €) over
the neighbourhood B(x) are all zero. Then, it follows that

0:G(x,¢)
—conv{ lim V,, G(

&

€)1 7€ Qp(z,9)}
—conv{hm V.G(Z,9(7,§),8) + Vy,G(Z,9(%,£),§)VL9(T,€) : &
:conv{llm V.G(Z,9(Z,§),€) + V,G(Z,9(z, (@, 9(

z € O(,€),Z € 2(2.§(z,€),€)}
Ceonv{ Vs (z,9(x,8), &) + Vy(2,9(x,€), Uz (x,§(x,§),€) : Z € Z(x,§(,£),€)},

This manuscript is for review purposes only.
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where the third equality is due to (2.5) and the last inclusion is due to Z(, §(x, €),€) C
Z(x,y(x,€),€) and the outer semicontinuity of 9j(-,£). By (2.4), we know that for
any £ € =,, all elements in 8z(§'(x, £) are positive semidefinite for any « € D, which
implies the monotonicity of G (-,€) on D for any £ € E,. Therefore, we conclude that
H is monotone on D. 0

Remark 2.6. It is worth noting that the monotonicity of H does not imply the
monotonicity of (1.5)-(1.6). For example, for any x € D, let

(2.6)  [IG(z,y(£),8) — Gz, y'(£), Ol < LEw(&) — v I, ¥ y(&),y'(£) € C&).
If for any € € 2, and y(§) € C(&), G(-,y(£),&) is strongly monotone such that

27)  (z—2)T(G(z,y(€),6) — G, y(€),8) 2 o (§)llz —2'|?, Va2’ €D,

with (&) := L(§)Ly(&) > 0, then by the Lipschitz continuity of G(-,-,§) and (-, &)
and (2.6) we have

(o — x’>T<H(x) — H(x"))
=(z — ') Zm z,9(2, &), &) — G, 9. &), &)
+ G, g, &), &) — G, 9, &), €0)))
> Zm Eo)llz =2 = |z — 2| |G (2, §(2, &), &) — G2, 9(2', &), €o))

>Zp€ ff) (5@))||$—$/H2 ZO’ Vac,x’ ED,

which implies the monotonicity of H on D. However, the conditions (2.6)-(2.7) do not
imply that (1.5)-(1.6) is monotone. Thus, the global convergence of PHA for solving
(1.5)-(1.6) cannot be guaranteed under (2.6)-(2.7).

3. The hybrid projection semismooth Newton algorithm. In this sec-
tion, we propose the hybrid projection semismooth Newton algorithm (PSNA), which
combines the semismooth Newton algorithm with the extrgradient projection algo-
rithm. The global convergence and superlinear convergence rate are established under
suitable assumptions.

Define the residual function of (1.9) as

(3.1) Q(z):=z —Ip(x — H(x)).

Proposition 1.5.8 in [12] claims that z* solves (1.9) if and only if Q(z*) = 0. The
function @ is Lipschitz continuous due to the Lipschitz continuity of H and the non-
expansiveness of the projection operator. Let LQ denote the Lipschitz constant of

Q.
We define a linear approximation of H and let the solution of the corresponding
linear VI subproblem

(3.2) — H(2") — (W* + e D) (x — 2%) e Np(z), WF e H(z"),

be 2**1 where € > 0 with €, — 0 as k — oo is a regularized parameter forcing the
linear VI (3.2) to be strongly monotone provided that W is positive semidefinite.

This manuscript is for review purposes only.
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A main issue for Newton-type algorithms is that they are locally convergent in
general. Since H is nonsmooth and an implicit function, the line search technique
frequently used in Newton-type algorithms cannot be directly applied to our prob-
lem. Therefore, we turn to the extragradient projection algorithm to globalize the
semismooth Newton iteration (3.2).

Define a projection operator

(3.3) Mpo(z) :=Tplz — aH(x(z))], with n(z):=Tplz - aH(zx)],

where a > 0 is the step size. Notice that (3.3) is called the extragradient algorithm
for solving (1.9) in [12, Algorithm 12.1.9].

Under Assumptions 2.1 and 2.3, choosing 0 < a < +— with Ly being the Lip-
schitz constant of function H in Proposition 2.1, by [12, Lemma 12.1.10] the projection
operator II D, is nonexpansive. Then, a natural fixed-point iteration is as follows

= l:[D,a(xk).

It is shown in [12, Theorem 12.1.11] that {2*} generated by the above iteration
globally converges to a fixed point z* of & = II D.o(7) from any starting point z° €
R™, where z* is also a solution of (1.9). However, the convergence rate is linear.
To achieve a superlinear convergence rate, a hybrid algorithm with the semismooth
Newton algorithm (3.2) is proposed in Algorithm 2.1.

Algorithm 3.1. The Hybrid Projection Semismooth Newton Algorithm
Step 0: Choose an initial point 2° € D, € (0,1), step size 0 < a < ﬁ and initial
regularized parameter ¢y > 0. Set k = 0.

Step 1: For / = 1,...,v, compute §(z*, &) that solve the second stage problem (1.6).
Step 2: If |Q(2*)|| = 0, stop. Otherwise, calculate a W* € H(z*) and compute #++!
that solves

(3.4) — H(2") — (W* + ep ) (z — 2%) € Np(z).

If [|Q(&F )| < nl|Q(z®)|, let 2F+1 = 2+1 and go to Step 4. Otherwise, go to Step
3.
Step 3: Let 250 = 2%, Compute

(35) xk’jJrl = ﬁD,a(xk’j% .7 = Oa 17 cee

until [|Q(zF711)|| < 77||Q(xk)||A is satisfied. Set zF*! = ghJ+1,
Step 4: Let ¢4 = min{1, |Q(z**1)||}. Set k := k + 1; go back to Step 1.

Under Assumptions 2.3, any element of H(z) is positive semidefinite for any
x € D. Thus, subproblem (3.4) is strongly monotone for any €, > 0, which has a
unique solution and is easy to solve. In Step 3 of PSNA, the projection iteration (3.5)
is well-defined and is equivalent to solving a strongly convex program.

LEMMA 3.1. Under Assumptions 2.1 and 2.3, for any z* with ||Q(x’i)|| > 0, Step
3 of PSNA is terminated in finite times, i.e., there is j > 0 such that ||Q(x*7T1)|| <

1)l Q(*)]l.
Proof. By [12, Theorem 12.1.11], we know that {z*7}22, generated by (3.5) con-
verges to a solution z* of (1.9). By the Lipschitz continulty of Q, we have

Q@ )| = Q") = Q(a™)|| < Lglla*I*" — 2¥||.

This manuscript is for review purposes only.
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Hence ||Q(z%31)|| — 0 as j — oo, which implies that there exists j such that the
assertion of the lemma holds. O

ASSUMPTION 3.1. There exists a constant 6 > 0 such that the level set Lo = {z €
D :||Q(x)|| < 48} is bounded.

It is clear that if D is bounded, then Ly is bounded. By [12, Corollary 3.6.5(c)],
Assumption 3.1 is satisfied if H is monotone and the solution set of (1.9) is nonempty
and compact. Moreover, if D is a box, then H being a P, function with a bounded
solution set can ensure Assumption 3.1.

THEOREM 3.2. Suppose that Assumptions 2.1, 2.5 and 3.1 hold. Let {x*} be
an infinite sequence generated by PSNA. Then every accumulation point of {x*} is
a solution of (1.9). In particular, if the Newton iteration is performed finite times,
then {z*} converges to a solution of (1.9).

Proof. Let K :={k : [Q(#"1)|| < nl|Q(«")], k > 0}.

If K is finite, this implies that there exists an integer k& > 0 such that for all k > k
the projection iteration (3.5) is always executed. By [12, Theorem 12.1.11], it follows
that {z*} converges to a solution of (1.9).

If K is infinite, let K comnsist of 0 < kg < k1 --- . For any kj41,k; € K, it follows
that

Q™) < nllQ™ =~ < ... < g M Q),

which implies that lim; o0 x;ex [ Q(x*)|| = 0. By the construction of the algorithm,
it is easy to see that {z¥} € Ly for sufficiently large k and limy_,o [|Q(zF)|| = 0.
Then, by the boundedness of {z*} and the continuity of Q, we deduce that every
accumulation point of {z*} is a solution of (1.9). d

Next, we study the superlinear convergence rate of PSNA.

THEOREM 3.3. Suppose that Assumptions 2.1-2.3 and 3.1 hold and x* is an accu-
mulation point of {x*} generated by PSNA. If G(-,-,€) is semismooth at (z*,§(x*,£))
for any £ € 2, D is a polyhedron, and all W* € H(x*) are positive definite, then
{x*} converges to x* superlinearly.

Proof. By Proposition 2.4, we know that H is semismooth at z* and H is a
linear Newton approximation scheme of H at z*. Let Iy be the subsequence such
that limy_ o0 kex, ©° = #*. By Theorem 3.2, * is a solution of (1.9), which implies
Q™) =0.

The positive definiteness of all W* € H(z*) implies that there exists a constant
A > 0 and a neighborhood B(z*) of z* such that for all z € B(z*), all W € H(x)
are positive definite with v” Wov > IA||v[|?, Vv € R™. This implies that H is strongly
monotone around x*, and x* is an isolated zero of Q Let We’fc = W* + ¢.1. For
all sufficiently large k € Ko, 2* € B(z*). Thus, the subproblem (3.4) has a unique
solution, denoted by #**1. Hence we have

(H(.Tk) + W:; (i,k+1 o l’k))T(:L'* . jngrl) > O, H(:L'*)T(i‘k+1 . I*) > 0’

This manuscript is for review purposes only.
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which implies that

0< [H(xk) + Weli(ijrl o xk) . H(x*)]T(x* . i,k+1)
= (£k+1 _ x*)TW!Z (i,k+1 _ Z'*) < [H({Ek) _ H({E*) + Wekk (1'* _ .’Ek)]T(.’E* _ i,k+1)

1
= S =2 < ([H (@) = H(z") = WHa" =) + ella® — 2" [Dl|2" = 2]

(3.6)
= (|25 — 2| < o(fl2* — &),

where the last inequality is due to the semismoothness of H at x* and €, — 0.
Next, we will prove that for all £ sufficiently large

(3.7) 1QE* )1l = o(lQ(")I)-
By (3.6), we have
12551 = a* )| = fla® = 2*|| + o(fla* — ).

Since H is strongly monotone around x* and is Lipschitz continuous, by [12, Theorem
2.3.3], there exists a positive constant ¢’ > 0 such that

(3-8) lz* — 2| < ¢[|Q(=")].
The last two inequalities imply that

(3.9) 1251 — 2| < Q).
(3.6) also implies that

(3.10) 125 — 2|l < efla® — 2™,

where € > 0 is arbitrarily small as & — oco. Since H is semismooth at z* and D is
polyhedral, then Q is semismooth at z* and directionally differentiable at x* by [12,
Theorem 4.1.1]. Since Q is directionally differentiable at * and Lipschitz continuous,
by [20], we have

HQ(ii'k—H) _ Q(:L‘*) _ Q/(CC*;QA?IH_I —z%)| < &_ij-i-l -z,

which means .
1@/ (844 = 27)| < (L + )"+ — 7).

By the last three inequalities, we have

IQEM || <@ (%5 24! — 2%)|| + el 2! — 27|
<(Lg +2¢)[|2"H" — 2|
(3.11) <(Lg + 2¢)ellz® — 2.

From (3.9) and (3.10), it follows

2% — || <[|*F — 2¥|| + [ - 27

<c1Q")| +ellz* — "I,

This manuscript is for review purposes only.
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which implies that
k < Ak
(3.12) 2" = ™| < 37— llQ=")ll

Combining (3.11) with (3.12), it holds that

(Lo +2e)ec”
THQ(JT -

Since € can be arbitrarily small when k is sufficiently large, the last inequality implies
(3.7). This means that #5T! computed from the Newton iteration (3.4) is always
accepted when z* is sufficiently close to x*. Then, z**1 = ¥+ Therefore, (3.6)
becomes

lQE )] <

lz*+ = 2*[| < o([la® — =*|)),
which means that =¥ converges to z* superlinearly. |

Remark 3.4. The assumption on semismoothness of the function G(-, -, €) is stan-
dard for Newton-type algorithms. If F'(x, -, ) is a uniformly P function for any z € D
and £ € Z,, then G(+, -, &) is semismooth. The assumption on the positive definiteness
of the elements in H(z*) holds if the ©(-, -, £) is strongly monotone in an open neigh-
borhood of (x*,g(x*,£)) according to the proof in Proposition 2.5. Moreover, from
Theorem 4.5, the assumption on H(z*) can be weaken if D is a box. The assumption
that D is a polyhedron in Theorem 3.3 can be extended to D = {x € R™ : g(z) < 0}
where ¢ is twice continuously differentiable and convex with the constant rank con-
straint qualification at *. From [12, Theorem 4.5.2], function Q is piecewise smooth
around z* in such case.

4. A two-stage semi-linear SVI. In this section, we apply PSNA to solve a
two-stage semi-linear SVI, which is a special class of (1.1)-(1.2) as follows:

(4.1) — A(z) —E[B(§)y ()] € Np(),
(4.2) 0 <y() LM y(§) + Nz +4q() 20,  VEEE,,

where the function A : D D D — R" is continuously differentiable and Lipschitz
continuous on an open set D with Lipschitz constant L4, B : R — R™*™ M : RY —
R™Xm N : R? — R™ " and ¢ : R — R™. If A is a linear function, then (4.1)-(4.2)
is a two-stage linear SVI.

Under proper assumptions, we show that the Lipschitz continuity, semismooth-
ness, linear Newton approximation scheme and monotonicity properties for the func-
tion in the single-stage problem hold, which are important to establish the global
convergence and superlinear convergence rate of PSNA.

For simplicity, denote g := y(€2), 0 = q(&), My = M(&), By = B(&) and
Ny :=N(&), for £ =1,2,...,v.

ASSUMPTION 4.1. (i) My is a P-matrixz for oll £; or,

(i) My is a Z-matriz for all £, and (4.1)-(4.2) has relatively complete recourse
on D.

LEMMA 4.1. For any fixed x € D and & € =, the second stage problem (4.2) has
a unique solution (or a unique least-element solution?) §(x, &) if Assumption 4.1 (i)

2A solution y* of the LCP(q, M) is called the least-element solution if y* < y (componentwise)
for any y € SOL(g, M), and the least-element solution can be computed by solving a linear program
[11].

This manuscript is for review purposes only.
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14 X. WANG, AND X. CHEN

(or Assumption 4.1 (ii)) holds, which reads

(4.3) 9(w, &) = —U(x, &) (Nex + qe),

with U(x,&) = (I — Az, &) + A, &) M)~ A(z, &), where A(z,&) is a diagonal
matric with

A(x, fﬁ)ii = {

L, df (Mg, &) + New + qe)i < (9(2,€0))i
0, otherwise.

Moreover, (-, &) is piecewise affine, strongly semismooth® and globally Lipschitz con-
tinuous on D with the Lipschitz constant written as

Ly := || Nl max{||(Mg)}}|| 2 (My) gy is nonsingular for J C [m]}
and
(4.4) —U(x,&) N,y € 0y(,&p).

Proof. When M, is a P-matrix, for any given (x, &) the existence and uniqueness
of §(x, &) are due to [11, Theorem 3.3.7]. When M, is a Z-matrix and LCP(N,x +
qe, My) is feasible for all € D, the existence of the unique least-element solution
follows from [11, Theorem 3.11.6]. The expression (4.3) follows from Lemma 2.1 and
Theorem 2.2 in [8]. Tt is clear that §(-,&) is piecewise affine from the expression
(4.3). According to [12, Proposition 7.4.7], every piecewise affine function is strongly
semismooth.

When M; is a P-matrix or a Z-matrix, the Lipschitz continuity property of §(-, &)
follows from [8, Corollary 2.1] and [8, Theorem 2.3], respectively.

The generalized Jacobian (4.4) is due to [8, Theorem 3.1]. O

As in the last section, substituting the Lipschitz continuous selection 7(z, &)
into (4.1), we can define G(z,&) = A(x) + Beg(z,&). Thus the single-stage SVI
formulation (1.9) is as follows

(4.5) H(z) =Y pG(x,&) = A(z) + Buy,(2),

(=1
Where Bl/ = (p1B17 A ?pl/Bl/) 6 Rnxym? yl’(m) = (gT(x3 51)7 MR .@T(x,gl/))T 6 Rym
with g(z,&) € SOL(Nix + qo, My), £ = 1,...,v. Moreover, function H is Lipschitz
continuous on D with Lipschitz constant

(4.6) Lp=La+5, where o= ps|BillLe.

=1
In addition, the corresponding residual function Q is Lipschitz continuous on D. Un-
der Assumption 4.1(i), as discussed in Proposition 2.1, (4.5) is an equivalent formula-
tion to (4.1)-(4.2). Under Assumption 4.1(ii), if D is bounded, then (4.5) is solvable.
Thus, if «* solves (4.5), then (z*, §(x*,&1),...,9(z*, &) is a solution to (4.1)-(4.2).

Let A(z)
- x) + Beye
O(z,ye, &) = ( Nyox + Mpye + q¢ ) .

Similar to the Assumption 2.3 in the last section, the monotonicity of H is needed.

3A locally Lipschitz function K is called strongly semismooth at z if limsupzineay, ||[K'(z +

h—0

hih) — K'(z; h)||/||h][? < oo; see [20].
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SOLVING TWO-STAGE SVI BY A HYBRID PSNA 15

ASSUMPTION 4.2. Function G(-,€) is monotone on D for any fized £ € Z,,.

PROPOSITION 4.2. If Assumptions 4.1 holds and ©(-, -, &) is monotone on D x R™
for any fixed € € =, then Assumption 4.2 holds and H is monotone on D.

Proof. Under Assumptions 4.1, using [8, Lemma 2.1], it is known that V§(Z, &) =
—U(z,&) Ny at every differentiable point & of §(-,&,). Then, the assertion follows by
a similar argument in Proposition 2.5. O

Remark 4.3. The monotonicity of H does not necessarily imply the monotonicity
of the original problem (4.1)-(4.2). For instance, without the monotonicity assumption
on O(+,-, &), H is monotone if A is strongly monotone on D such that

(4.7) (x — 2T (A(x) — A(2")) > ||z — 2'||>, Va2’ €D,
where & = max{||B¢||L¢ : £ =1,...,v} with L; defined in Lemma 4.1. But condition
(4.7) and Assumptions 4.1 do not imply the monotonicity of (4.1)-(4.2).

Note that the nonmonotone problems with monotone single-stage SVI reformu-
lations are not limited to the case given in Remark 4.3. For instance, consider the
example

(5 )5 ) =[S ()] xiren
o= (9L (8 ) (2 (5 E) (1) 20 vees.

where each realization of ¢ is uniformly distributed on [1, 2] with probability 1/ and
[0,1]% := [0,1] x [0, 1]. This example is nonmonotone since the second stage problem
is a P-matrix LCP with respect to y for each fixed &, and the first stage problem is
not monotone on [0,1]? with respect to z. Substituting the unique solution function
§(z,&) = (0,(1/€)x9)T of the second stage problem into the first stage problem, we

get the single-stage SVI as
T
) ( 7 ) + No,j2 (),

e ()
H(z) ==Y pedG(x,&) = VA() + Y peBedj(x,&).
(=1

which is a strongly monotone VI.
— =1

= O

Let

By Proposition 2.4, the set-valued mapping H is a linear Newton approximation
scheme of H. By Lemma 4.1, one particular element of H(z) can be calculated by

(4.8) VA(z) — B,U,(z) € H(),

where U, (z) = (U(z,&)ND)T, ..., (U(x,&,)N,)T)T with U(x, &) defined in Lemma
4.1.

By the same argument as in the proof of Theorems 3.2 and 3.3, we can prove
the global convergence and superlinear convergence rate of PSNA for solving (4.1)-
(4.2). We study the superlinear convergence rate of PSNA for D = [[,u], where
le€ {RU—-00}" and u € {RUoo}™ with I < u. In this case, Q(x) is reduced to

Q(x) = mid(z — I,z — u, H(x)),

where mid(l, u, z); is equal to I; if ©; < ;, u; if x; > w; and x; if [; < x; < w;.
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16 X. WANG, AND X. CHEN

LEMMA 4.4. Suppose that all W € H(z) are P-matrices. Then, there exists a
neighborhood of x such that for any Z in this neighborhood, all W € H(Z) are P-
matrices. Moreover, there exists a positive constant 3 such that ||[(I—A+AW)7| < B8
for any diagonal matriz A with diagonal entries on [0, 1].

Proof. Since all W € H(x) are P-matrices and thus nonsingular, by the same
argument in [20, Proposition 3.1], there exist a neighborhood B(x) of z and positive
constant 3 such that for any z € B(z), all W € H(z) are nonsingular and |[W~1|| < j.
On the other hand, [13, Theorem 4.3] claims that W is a P-matrix if and only if
I — A + AW is nonsingular for any diagonal matrix A with A;; € [0, 1].

Assume that the conclusion is not true. Then, by the above discussion, there
exists a sequence ¥ — x, W* € H(2¥) such that either all W* are nonsingular but
not P-matrices or ||(I — Ay + AxW*)~!|| = oo for some A. Since H is bounded in a
neighbourhood of z, taking a subsequence if necessary, we assume that limy_, o, W* —
W, where W is not a P-matrix. By the closedness of H at z, it follows that W e H(z),
which is a contradiction. O

The superlinear convergence of PSNA whenever the second stage problems are
P-matrix or Z-matrix LCPs can be established under weaker assumptions on the
elements of H(z*).

THEOREM 4.5. Suppose that Assumptions 4.1(i) and 4.2 hold, the level set Lg is
bounded, and D = [l,u]; or Assumptions 4.1(ii) and 4.2 hold, and D = [l,u] is a
bounded box. Assume that z* is an accumulation point of sequence {x*} generated by
PSNA, and all W* € H(z*) are P-matrices. Then, {x*} converges to x* superlinearly.

Proof. By Theorem 3.2, there exists a subsequence Ky C K such that

lim 2* = 2* with z* being a solution.
k—o00,k€EK

Since all W* € H(z*) are P-matrices, by Lemma 4.4, there exists a neighborhood
of z*, denoted by B(z*), such that for any z € B(z*), any W € H(z) is a P-matrix.
When k € K is sufficiently large, we have 2% € B(z*). Then, all Wk € H(z*) are
P-matrices. Hence, (3.4) has a unique solution #**1 for any ¢, > 0; that is

—H(z") = WE (@M — 2%) € Ny (35T,  with WE =W 4+ ¢,

€k

which can be rewritten as
Q&) i=mid (#FT! — 1,28 —u, H(2%) + WE (25! — 2F)) = 0.
Similarly, since x* is a solution, we have
Q(z*) = mid (z* — I, 2* — u, H(z*)) = 0.

From [6, Lemma 2.1], there exists a diagonal matrix Ay with diagonal entries on [0, 1]
such that

0= Q") - Q)
= (I = Ap) (@ — 2%) + AR [H(2") + WE (351 — 2%) — H(2")]
(4.9) = (I — Ap)(E — %) + Ay[H(z") + WE (& — 2% + 27 — 2¥) — H(a")].
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The matrix I — Ay + ApWE is nonsingular since W[ is a P-matrix. Using (4.9), we
get
125 — 2| = [|(Z = Ap + AWE) T A [H (2F) — H(2*) = W] (2" —2")]|
< = A+ M WE) A H (=) — H(a™) = W], (2% — 2*)]
<= A+ M WE) AR (1H (2%) — H(a™) = WH(a* — 27|
+exll(@® —27)l)
(4.10) = o([J* —z*|)),

where the last equality is due to (2.1), Lemma 4.4 and ¢; — 0.
There exists a diagonal matrix Ay with diagonal entries on [0, 1] such that

Q(w’“) ( ") - Q@M
]\ )( k Ak+1) —I—Aka( i‘k_H)
k+ kWekk)(‘T 7‘ik+1)7

/-\ /-\
:>x

which implies that
18541 — 25 < I = Ai + AW IQER) | < BIQEH.

[12, Proposition 7.4.6] shows that a piecewise semismooth function is also semismooth.
Since H is semismooth at z*, Q(z) = mid(z — I, x — u, H(z)) is also semismooth at
2*. By the same argument of Theorem 3.3, we can prove (3.7). This implies that
#**+1 computed from Newton iteration (3.4) is always accepted when z* is sufficiently
close to z*; that is 2**t! = #*+1. Therefore, (4.10) means that z* converges to x*

superlinearly. 0

COROLLARY 4.6. Let D be a polyhedron. The sequence {x*} generated by PSNA
globally and superlinearly converges to the unique solution of (1.9) if one of the fol-
lowing conditions holds.

(i) O(:, -, &) is strongly monotone on D x R™ for any £ € E,;

(i) My is a P-matriz for any & € E, and (4.7) holds with strict inequality;

(iii) My is a Z-matriz for any & € Z,, (4.1)-(4.2) has the relatively complete
recourse, D is bounded and (4.7) holds with strict inequality.

5. Numerical experiments. In this section, we conduct numerical experiments
to test the efficiency of PSNA for the large-scale two-stage SVI (4.1)-(4.2), and com-
pare PSNA with PHA.

5.1. Randomly generated problems. PSNA is terminated if
Res := [|Q(z")| < 107°.

The starting point z° € R? is randomly chosen, @ = 0.015 and n = 0.9. The

regularized parameter is set to e, = min{1, ||Q(z*)||}. All codes were implemented in
MATLAB R2018a on a laptop with Intel Core i7-4790 (3.6 GHz) and 32 GB RAM.

EXAMPLE 5.1. Monotone two-stage SLCP in [22]*

4For this example, PSNA is applied to solve the regularized problem in which M, is replaced by

My + piI for each £ with puy = 1077,

This manuscript is for review purposes only.
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18 X. WANG, AND X. CHEN

In this example, the first stage problem is an LCP with A(x) = Az +c. Let
s = [3(n+m)/4], and randomly generate positive numbers o; and vectors (al,bF)T €
Rt fori =1,...,s. For { = 1,...,v, randomly create v antisymmetric matrices
O, € Rmtm)x(ntm) = Gey

(% 3i) =g ()0t = (oha (632)

i=1

Randomly generate ¢, and qp for { =1,...,v.

EXAMPLE 5.2. Nonmonotone two-stage SVI with P-matriz LCP in the second
stage

In this example, the first stage problem is a box affine VI, while the second stage
problem is a P-matriz LCP for any fixed x € R™ and £. Set A(x) = Az +c. Generate
A e R, U e R"™", ¢ € R?, and By € R**™, N, € R™*" U, € R™*™, ¢, € R™
fort=1,... v, with entries uniformly distributed on [—5, 5], where Uy is strictly upper
triangular. Create the diagonal matriz A € R™ ™ with entries uniformly distributed
on (0,0.3), and v diagonal matrices Ay € R™*™ with entries from [5,10]. Following
Harker and Pang [14], we set

A=ATA+ A+ (U -UT).
The second stage problem is as follows
0< yeJ—MZW‘FNL’f(x)"’QK > Oa = 17"'7’/’

with My = Ay + Uy, f(z) = (sinxy,...,sinz,)T.

EXAMPLE 5.3. Nonmonotone two-stage SVI with Z-matrix LCP in the second
stage

All parameters are generated in a same way as Example 5.2 except for the settings
of D, My, Ny and q;. The set D = [0,ne,] is an n-dimensional bounded box. Let
m = 2k be even with k being a positive integer. All entries of k-th row and (k+1)-
th row of N € R™*" are set to 1 and -1, respectively, while all other entries are
zero. M € R™*™ is a tridiagonal matriz with -1, 2, -1 on its superdiagonal, main
diagonal and subdiagonal, respectively, except for My, = My =1 and My = ... =
My -1 = —2. q&x = G and qr+1 = —q with § uniformly drawn from [0,5], and other
components of q are zero. Generate an i.i.d. sample {&1,...,£,} of random variable
¢ € R following uniformly distribution on [1,5]. Set

My=&M, Ne=(&+ 1N, qo=(&+2)q, £L=1,...,v.

It is not hard to verify that the LCP(Nyz + q¢, M) is feasible for any « € D
and &y, and hence it admits a unique least-element solution. For example, y =

(W1, Uky Yhtts - Y2r)” with yp = ..o =y = 0 and ypgr = ... = Yo = [(& +
1)>°0  a + (€04 2)q] /& is a feasible point of the LCP(Nyx + q¢, My).

EXAMPLE 5.4. Nonmonotone and nonsmooth two-stage semi-linear SVI with P-
matriz LCP in the second stage
In this case, D = [0,ney,]. All other parameters are the same as that of Example

This manuscript is for review purposes only.
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5.2 except for A(x), which is of the following form
n—1 n
Ay(@) =af + ) (iwip1) — Y i+ o — 1],
i=2 i=2
Az ()

Ap(z) = 21(1 = 2po1) + 22 + |20 — 1),
A(z) = (As(@), .., Ap(@) " + Az +¢, A> 1

z1(1 — x3) + 23 + |23 — 2|,

xl(l—xi,l—xi+1)+x?—|—|xi—i|, 1=3,...,n—1,

The function A is nonsmooth but semismooth at x with z; = 7 and any element of
0A(x) is positive definite for any x € D when A > 2n + 1. We set A = 2n + 2 and
generate ¢ € R™ in a way such that there is a solution z* of 20%, 40%, 60% and 80%
components being nonsmooth, respectively; that is, the corresponding components
x; = 1. The remaining components are set to 0 or n on a fifty-fifty basis, respectively.

By Remark 4.3, if min; A;; — & > 0 in Examples 5.2-5.3 and A > 2n + & +
1 in Example 5.4 with & defined in (4.7), then the corresponding single-stage SVI
reformulations of Examples 5.2-5.4 are monotone. However, since M, is a P-matrix or
Z-matrix in Examples 5.2-5.4, these examples are not necessarily elicited monotone by
[28, Theorem 3.5] and thus PHA and elicited PHA cannot be applied to solve them.

We compared our algorithm with PHA for solving Example 5.1, which is a mono-
tone problem and also tested in [22]. Parameters of PHA in [22] are used in our nu-
merical comparison. In Examples 5.1-5.4, each sample in the sample set {&,...,&,}
has the equal probability 1/v.

The numerical results for Example 5.1 are reported in Table 1 and Figure 1, in
which the average performance profiles for algorithms are listed based on the results of
ten randomly generated problems, such as the average number of iterations, average
CPU time, the average solution residual. In Table 1, we set n = m = 20 and 50 and
increase v from 1,000 to 20,000. The dimensions of problems (n+wvm) are ranging from
20,020 to 1,000,050. For PSNA, the number of the Newton iteration (3.4) performed
is denoted as “Iter/N”. One can see that the Newton iteration is always used for all
problems. Moreover, for PSNA, the number of iterations barely changes for different
n,m and v, while the CPU time increases linearly when n,m and v become large.
Overall, PSNA computes a more accurate solution with less number of iterations and
CPU time than PHA. Table 1 shows that PSNA is much faster than PHA in terms
of CPU time. The left figure of Figure 1 gives an intuitive comparison of the two
algorithms for different n, m when v increases from 1,000 to 20,000. The right-hand
side figure shows the residual history with respect to the iteration number for different
n and m. It is clear that PSNA is more efficient than PHA in terms of CPU time as
well as the number of iterations.

In Table 2, numerical results of PSNA for Example 5.2 are presented. We set
n = 30,m = 20 and n = 60,m = 50, and increase v from 10,000 to 20,000 to
test the performance of PSNA. All the problems are successfully solved by PSNA.
One can see that the number of iterations barely changes when v increases and the
superlinear convergence rate is observed. Similar results for Example 5.3 are presented
in Table 3. Table 4 shows the results of Example 5.4, in which the influence of
nonsmooth components (NSC) of the solution is explored, where NSC equals to the
percentage of nonsmooth components A; of function A at x*. It can be seen that
the NSC of the solution does not affect the superlinear convergence rate of PSNA,
although it requires more projection iterations when NSC is large. These results
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20 X. WANG, AND X. CHEN

Table 1: Comparison of PSNA and PHA for Example 5.1

PSNA PHA
n,m v Iter Iter/N CPU/sec Res Iter CPU/sec Res
1,000 | 4.5 4.5 1.6 6.0e-09 | 137.5 19.9 9.4e-07
20 5,000 | 4.0 4.0 6.1 5.6e-08 | 134.0 88.9 9.6e-07
10,000 | 4.0 4.0 12.0 2.0e-07 | 157.0 214.8 9.5e-07
20,000 | 4.0 4.0 28.0 6.4e-09 | 161.5 451.4 9.5e-07
1,000 | 5.0 5.0 4.0 3.2e-15 | 72.5 224 9.6e-07
50 5,000 | 4.5 4.5 18.9 9.4e-08 | 83.0 129.3 8.5e-07
10,000 | 4.0 4.0 36.1 2.6e-07 | 78.5 242.5 9.1e-07
20,000 | 4.0 4.0 70.5 2.0e-07 | 92.5 577.5 9.3e-07

-3
<3
=3
=
o
R

T T
—©— PSNA (n,m=20) —©— PSNA (n,m=20)
4 PHA (n,m=20) 4 PHA (n,m=20)

L PSNA (n,m=50) 1 100 PSNA (n,m=50) | ]
—%— PHA (n,m=50) A —%— PHA (n,m=50)
A V
A DA
| A,
| e 4 -2 L 4
b BA

a
<]
=]

400 102 .
3 _ | \ BA,
S 1 Ay
£ 300 2 40 A A
= 8 Aa
2 « S A
9] LA
200 106
4 -8
100 1005
N — f—‘—eff‘**ﬁ*ﬁ**’ff% 1010 . !
0 02 04 06 08 1 12 14 16 18 2 50 100 150
Sample size »x10% Iter (sample size=20000)
(a) CPU time with increasing sample sizes (b) Residuals

Fig. 1: Comparison of PSNA and PHA.

suggest that PSNA is promising even for solving some nonmonotone problems. The
good numerical performance for nonmonotone Examples 5.2-5.4 is partly supported
by Corollary 4.6(ii)-(iii), which establishes the global and superlinear convergence
of PSNA for some special nonmonotone problems, where the first stage problem is
strongly monotone with respect to the first stage variable x and the second stage

problem is a P-matrix LCP or Z-matrix LCP with respect to y.

5.2. Stochastic traffic assignments. In this subsection, we apply the two-
stage SVI to formulate the stochastic user equilibrium problem with uncertain de-
mands and capacities, which is an important class of problems in stochastic traffic
assignments. The uncertainty for demands and link capacities can be caused by some
unpredictable factors, such as adverse weather, road accidents and some other road
conditions; see [7, 12]. The random variable £ with a finite support set =, is used to
describe the uncertainty in demands and capacities.

First, we give definitions of notation in traffic assignments.

e N,P, A, W: the node set, the path set, the link set and the origin destination
(OD) pair set, respectively.
e P, the set of paths that connect the OD pair w € W.

This manuscript is for review purposes only.
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Table 2: Numerical results of PSNA for Example 5.2.

21

Case 1: [ =0,u =00

v=10,000 v=20,000
n,m Iter Tter/N CPU  Res | Iter Iter/N CPU  Res
Max | 3.0 3.0 4.0 2.6e-13 | 3.0 3.0 8.5 2.9e-13
30,20 Ave | 3.0 3.0 3.8 4.3e-10 | 3.0 3.0 8.1 3.0e-13
Min | 3.0 3.0 3.7 1.6e-13 | 3.0 3.0 7.9  2.5e-13
Max | 4.0 4.0 31.5 4.8e-13 | 3.0 3.0 55.2 4.8e-13
60,50 Ave | 3.3 3.3 26.8  3.6e-07 | 3.0 3.0 53.7  2.2e-07
Min | 3.0 3.0 24.6  3.3e-07 | 3.0 3.0 53.0 1.7e-07
Case 2: | = —ne,,u = ne,
Max | 4.0 4.0 4.7 3.5e-13 | 4.0 4.0 10.3  5.8e-13
30,20 Ave | 3.2 3.2 4.0 3.5e-07 | 3.1 3.1 8.3 1.3e-07
Min | 3.0 3.0 3.7 7.2e-12 | 3.0 3.0 8.0 2.4e-07
Max | 5.0 5.0 40.2  7.5e-13 | 5.0 5.0 80.0 1.0e-12
60,50 Ave | 4.4 4.4 35.0 8.2¢-08 | 4.1 4.1 67.9 1.3e-07
Min | 4.0 4.0 30.9 2.6e-08 | 4.0 4.0 65.8 5.7e-09
Case 3: l; = —n,u; =n if i is even and [; = 0, u; = oo if 7 is odd
Max | 3.0 3.0 3.8 3.5e-08 | 3.0 3.0 8.2  3.9e-13
30,20 Ave | 3.0 3.0 3.7 T7.1e-08 | 3.0 3.0 8.0  8.8e-09
Min | 3.0 3.0 3.7 3.7¢e-07 | 3.0 3.0 7.9 4.0e-13
Max | 4.0 4.0 45.0 4.7e-13 | 4.0 4.0 95.9 1.1le-12
60,50 Ave | 4.0 4.0 34.8 7.1e-13 | 4.0 4.0 80.3  2.5e-10
Min | 4.0 4.0 31.2 8.1le-13 | 4.0 4.0 64.1 1.0e-12

Table 3: Numerical results of PSNA for Example 5.3.

n,m v Iter Tter/N CPU/sec  Res
2,000 1.7 1.7 3.6 1.7e-12
20 10,000 1.4 14 16.6 1.0e-11
20,000 1.5 1.5 37.2 9.3e-12
2,000 1.6 1.6 16.0 1.9e-11
50 10,000 1.3 1.3 73.8 6.8e-11
20,000 14 1.4 162.8 7.3e-11

Table 4: Numerical results of PSNA for Example 5.4 with v = 20, 000.

n,m NSC Tter Iter/N CPU/sec Res
0.2 5.7 4.8 13.7 1.2e-07
0.4 6.2 4.5 15.8 1.9e-07
30,20 06 6.0 4.6 15.9 1.6e-08
0.8 6.5 4.3 16.7 7.0e-08
0.2 6.2 4.9 102.2 2.8e-08
60. 50 0.4 6.0 5.0 101.8 4.9e-10
’ 06 6.9 5.0 110.7 2.0e-09
0.8 11.3 5.0 153.2 3.4e-11
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YT € RMIXIPI: the link-path incidence matrix where Y,, = 1 if link a is on
path p; otherwise, T,, = 0.

e T' ¢ RWIXIPI; the OD-path incidence matrix where I',,, = 1 if path p connects
OD pair w; otherwise, I'y,, = 0.

o h,(€): the path travel flow on path p.
e v,(&): the link travel flow on link a, which satisfies v(£) = Th().
e ¢, (&): the link capacity on link a, which is a positive scalar.
e d,(£): the nonnegative demand function for OD pair w € W.
o R,(h(£),£): the travel cost function through path p.
o 7,(v(£),&): the travel cost function through link a.
Let

De={heRIP|Th—d(¢)=0,h >0}, D= {z e RPl| Tz —E[d&)] =0,z >0}
The matrix I' has elements 0 or 1 only and each column of I" has exactly one element

being 1. By the boundedness of d(§), it is known that D and 155 are bounded polyhe-

dral sets. The function 7 : R4 x R? — RIA is the generalized bureau of public road
(GBPR) link travel time function [2] defined as

ra(Th(E), ) = t° (1.0 10.15 <Z“Eg>n) Lac A

where t% and n, are given positive numbers. Define the path travel cost functions
R:RPI - RIPland R : RIPI x R? — RIPI as follows

R(z) = YTE[r(Yz,8)], R(h, &) = YTr(Th,¢).

The stochastic user equilibrium can be formulated as an SVI [7]: find h(€) € Dy
such that

(5.1) (W —h(€)TR(R(E),6) >0, VI €Dg, forany¢eE,.
To solve (5.1) with a fixed &, one can minimize the following optimization problem
(5.2) min max{ (@ — h(¢))"R(,€) | h(¢) € De},

z€D¢

which can be written as a two-stage optimization problem
min 2" R(z,¢) + Q(z,¢)
(5.3) st. z € D,
Q(x,€) = max{—h(&)" R(z,£) | h(¢) € De}.

By duality of linear programming, the function @ can be expressed by

Q(x,€) = min{s(&)" d(€) | T"s(§) + R(x,€) > 0}.

To calculate a here-and-now solution that does not depend on the realization of &, we
solve the following two-stage stochastic program

min z7 R(z) + E[Q(z,&)]
(5.4) st. x €D,

Q(z,€) = min{s()"d(€) | TTs(§) + R(z,€) > 0}, for any £ € E,.
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Following [2, Example 2.3], we can obtain the first-order optimality condition of (5.4)
as follows

65— (V@2 + Rlx) - EVR(OTAE]) € Np(z).
6o —|(pr o )@+ ( sk )| eaction wyees.,

where the second stage problem is a mixed LCP with C' = Rl x R‘f‘, and y(§) =
(5(6),A\(€))T with A(€) being the multiplier of I'T's(¢) + R(z,&) > 0.

Remark 5.1. We can show that problem (5.5)-(5.6) has the relatively complete
recourse. It is known that R(z,{) > 0 for any x € D and £ € Z,. Let A(§) > 0 with
TA(&) > d(§) and z(€) = 0. Thus, (2(£), A(§)) is a feasible solution of the following
LCP

2(¢) 0o T 2(§) —d(§)
e o<(5@ ) o) (39 )+ (alen ) 2o
Then, the LCP in (5.7) is solvable by [11, Theorem 3.1.2].

Let (2*(z,€), M (2,€))T be a solution of (5.7) for fixed x € D and & € Z,. Now
we show that (—z*(z, &), \*(x,€))T is a solution of (5.6). If there is w’ € W such
that (TA*(z,£) —d(§))w > 0, by the first complementarity condition in (5.7), we have
25 (2,€) = 0. Thus, (R(x,&) — TT2*(2,)), = Rp(x,€) > 0 for any p € Pyr. Then,
we have )\;(ac,ﬁ) = 0 for any p € P, by the second complementarity condition in
(5.7), which implies that (TA*(z,&) — d(§))w = —d(§)w < 0. This is a contradiction.
Hence (—2*(z,€), \*(z,€))7T is a solution of (5.6).

By the positive semi-definiteness of the coefficient matrix of y(£) in (5.6), it ad-
mits a unique least-norm solution® by [11, Theorem 3.1.7], denoted by #(z,&). By
substituting §(z,£) into the first stage problem (5.5), we can get the single-stage
SVI formulation of (5.5)-(5.6). We can calculate a solution of the original two-stage
problem by solving the single-stage problem, since D is a bounded polyhedral set.
To obtain the least-norm solution, we add a regularized term pil with g, > 0 and
ur — 0 as k — oo to the coefficient matrix of y(¢), which forces the second stage
problem to be strongly monotone and thus admit a unique solution y,, (z, ) for any
fixed = and £. In addition, the solution function g, (z,&) of the regularized second
stage problem with any pg > 0 is Lipschitz continuous with respect to x for any £
and limy o0 Ju, (2, &) = §(2,€) by [11, Theorem 5.6.2].

We test the efficiency of PSNA for solving (5.5)-(5.6) with Nguyen and Dupuis
network, which has 13 nodes, 19 links, 25 paths and 4 OD pairs; see [7] for details. The
data for demands d(€), capacities ¢(§) and the free travel time ¢ are set according to
the data d(£), &(€),1° used in [7] after a scaling, i.e., d(&) = 0.1 x d(€), c(€) = 0.1 x &(€)
and t° = 0.1 x £°. Parameter n, in R(z,&) is set to n, = 2,...,5, respectively.
Note that PHA fails to solve problem (5.5)-(5.6), since the problem is nonmonotone
for n, > 2. The settings for PSNA are u, = 107'2, ¢, = 0, n = 0.9 and the
step size for the projection iteration (3.5) is set to « = 0.1,0.05,0.05,0.05 for n, =
2,...,5, respectively. The sample size is set to ¥ = 100,000 and 400, 000. Numerical
results were reported in Table 5, which show that PSNA can solve these nonmonotone
problems efficiently.

5A solution § of the LCP(q, M) is called the least-norm solution if ||g]| < |ly|| for any y €

SOL(q, M).
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24 X. WANG, AND X. CHEN

Table 5: Results of PSNA for (5.5)-(5.6) with Nguyen and Dupuis network (n = 25, m = 29).

v ne Iter Iter/N  CPU/sec Res
2 5.0 5.0 105.2 2.7e-07
3 70 6.0 173.1 4.2e-07
100,000 4 120 6.0 316.0 2.4e-07
5 100 6.0 267.1 6.2¢-08
2 5.0 5.0 414.0 1.1e-08
3 70 6.0 690.5 4.3e-07
400,000 4 120 6.0 1247.5 2.3e-07
5 100 6.0 1063.8  6.2e-08

6. Conclusions. Algorithm 3.1 describes a hybrid projection semismooth New-
ton algorithm (PSNA) for solving the two-stage SVI (1.5)-(1.6). We give sufficient
conditions to guarantee that the sequence generated by Algorithm 3.1 globally and su-
perlinearly converges to a solution of (1.5)-(1.6). Moreover, we show these conditions
hold for Examples 5.1-5.4 and the example from stochastic traffic assignments with
properly selected parameters. However Examples 5.2-5.4 are not (elicited) monotone
two-stage SVI and cannot be solved by PHA and elicited PHA. Preliminary numer-
ical experiments with over 107 variables show the effectiveness and efficiency of the
proposed PSNA for solving large-scale two-stage SVI.
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