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Abstract. In this paper we present complexity analysis of proximal inexact gradient methods5
for finite-sum optimization with a nonconvex nonsmooth composite function and non-Lipschitz reg-6
ularization. By getting access to a convex approximation to the Lipschitz function and a Lipschitz7
continuous approximation to the non-Lipschitz regularizer, we construct a proximal subproblem at8
each iteration without using exact function values and gradients. With certain accuracy control on9
inexact gradients and subproblem solutions, we show that the oracle complexity in terms of total10
number of inexact gradient evaluations is in order O(ϵ−2) to find an (ϵ, δ)-approximate first-order11
stationary point, ensuring that within a δ-ball centered at this point the maximum reduction of an12
approximation model does not exceed ϵδ. This shows that we can have the same worse-case evalua-13
tion complexity order as [5, 12] even if we introduce the non-Lipschitz singularity and the nonconvex14
nonsmooth composite function in the objective function. Moreover, we establish that the oracle15
complexity regarding the total number of stochastic oracles is in order Õ(ϵ−2) with high probability16
for stochastic proximal inexact gradient methods. We further extend the algorithm to adjust to17
solving stochastic problems with expectation form and derive the associated oracle complexity in18
order Õ(ϵ−10/3) with high probability.19
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1. Introduction. In this paper, we consider the following nonconvex nonsmooth23

optimization problem:24

(1.1) min
x∈F

Q(x) := f(x) + h(c(x)) + ∥V x∥pp,25

where F ⊆ Rn is nonempty, bounded, closed and convex, f : Rn → R and c : Rn → Rr26

are continuously differentiable with Lipschitz continuous gradients over F , h : Rr → R27

is Lipschitz continuous and convex but possibly nonsmooth, V ∈ Rn̄×n with n̄ ≤ n and28

p ∈ (0, 1). We assume that rows of V , denoted by vTi , i = 1, . . . , n̄, are orthonormal,29

without loss of generality. Problem (1.1) has numerous applications in data science,30

where f is a loss function, h is a penalty function and ∥ · ∥pp is a sparse regularization.31

For instance, with the increasing interest of group sparsity regularization for neural32

networks (see e.g. [4, 20, 25, 31]), the loss function f may rely on a large data set33

and be defined in the form34

(1.2) f(x) =
1

N

N∑
i=1

fi(x),35

where fi : Rn → R, i = 1, . . . , N, are continuously differentiable and the sample36

size N can be very large such that it may be time-consuming and sometimes even37

prohibitive to access all component functions to compute the exact gradient of f at38
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a query point. Moreover, constraints are often imposed to enforce specific conditions39

on variables. For example, constraints of the form c(x) ≤ 0, where c : Rn → Rr,40

are prevalent in a wide range of applications, including image restoration [1], film41

restoration [18] and SVM [21]. However, ensuring feasibility of iterates with respect42

to these constraints throughout the algorithmic process can be challenging. To tackle43

this issue, infeasible methods are commonly employed, which allow for violations of44

the constraints. Specifically, with the aid of a penalty function, for instance, ℓ1 penalty45

function, one can remove the constraints by introducing a nonsmooth penalty term46

in the objective, e.g. h(c(x)) = ρ∥(c(x))+∥1 with (c(x))+ = max(c(x), 0) and ρ being47

a penalty parameter. As studied in [10, 15], the resulting problem can be an exact48

penalty formulation of the original one to some extent, with nice properties regarding49

their minimizers. As is well studied in the literature, the nonconvex, nonsmooth and50

non-Lipschitz ℓp (0 < p < 1) regularizer has shown a good performance for sparse51

variable selection. However, in general the non-Lipschitz regularized problems are52

strongly NP-hard [9]. Challenges often arise in algorithm design and analysis. The53

past decade has witnessed highly productive progress on the study of ℓp (0 < p < 1)54

optimization and a surge of works has been proposed, to name a few but not limited55

to [2, 3, 13, 14, 16, 19, 21, 30].56

Cartis et al. study the evaluation complexities of minimizing f(x) + h(c(x)) to57

reach the first-order critical measure within ϵ in [5] and to reach high-order approxi-58

mate minimizers in [7]. In recent work [8], they consider minimizing f(x)+h(c(x)) over59

a convex set and apply high-order approximation model to reach high-order approxi-60

mate minimizers. Gratton et al. in [17] propose an adaptive regularization algorithm61

using inexact function and gradient evaluations for minimizing f(x)+h(c(x)) and show62

that their algorithm needs at most O(| log(ϵ)|ϵ−2) evaluations of the functions and63

their derivatives for finding an ϵ-approximate first-order stationary point. In [11, 12],64

high-order algorithms for solving minimization problems with non-Lipschitzian group65

sparsity terms are studied, where the objective is the sum of a smooth function and66

a non-Lipschitz regularizer. Compared with problems studied in [5, 8, 11, 12, 17],67

the objective function in (1.1) has not only the nonsmooth function h(c(x)), but also68

the non-Lipschitz regularizer ∥V x∥pp, whose complexity has not been established in69

the literature to the best of our knowledge. We also notice that those algorithms70

studied in previous works [5, 8, 11, 12] rely on exact function values and gradients71

of f , which, however, are expensive to obtain in many scenarios with a large finite-72

sum structure. Inspired by above points, in this paper we will focus on complexity73

analysis for problem (1.1) to reach approximate first-order stationary point. We will74

investigate whether the absence of diffentiability of the Lipschitz term together with75

the existence of non-Lipschitz regularization will affect the worst-case complexity,76

compared with existing works.77

Problems with f in finite-sum structure (1.2) face challenges when computing78

exact function information, due to the large number of component functions. To alle-79

viate possible difficulties, stochastic oracles are normally called to approximate exact80

information. In the past decade, along with the development of data science, studies81

on stochastic approximation methods for nonlinear optimization grow rapidly in pop-82

ularity, ranging from convex to nonconvex problems and from smooth to nonsmooth83

problems. Xu et al. [29] study a class of optimization problems with nonconvex, non-84

smooth regularizer, namely minimizing g(x) − h(x) + Λ(x), where g and h are both85

convex and Λ is a nonconvex and nonsmooth regularizer. Moreover, it requires in the-86

oretical analysis that g be smooth and h be Hölder smooth. The proposed algorithm87

in [29] can be also applied to unconstrained ℓp(0 < p < 1) regularized optimization88
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with g in the finite-sum form. The associated gradient complexity to find a nearly89

ϵ-critical point is in order O(ϵ−4). Metel and Takeda [22] consider unconstrained90

optimization with a nonconvex but Lipschitz continuous regularizer. The proposed91

algorithm owns O(ϵ−3) gradient-call complexity for finite-sum minimization when a92

variance reduction strategy is applied. However, the Lipschitz continuity assumption93

fails for ℓp (0 < p < 1) regularizer. Cheng et al. [14] propose an interior stochas-94

tic gradient method for nonnegative constrained optimization with ℓp regularizer and95

investigate the oracle complexities to find an approximate stationary point. Xu et96

al. [28] propose stochastic proximal gradient methods for minimizing summation of a97

smooth function f and a nonsmooth nonconvex regularizer and show that the O(ϵ−2)98

gradient complexity can be achieved to find an ϵ-stationary point. The proposed al-99

gorithm in [28] requires the proximal mapping of the nonconvex regularizer be easy100

to obtain. However, these existing results cannot be applied to problem (1.1) due to101

the nonsmoothness and nonconvexity of f + h or the non-Lipschitz continuity.102

Contribution. The main contribution of this paper lies in the complexity analy-103

sis of proximal inexact gradient methods for finite-sum optimization with a nonconvex104

nonsmooth composite function and non-Lipschitz regularization (1.1). By getting ac-105

cess to a convex approximation to the Lipschitz function in the objective, together106

with a Lipschitz continuous approximation to the non-Lipschitz regularizer, we build107

a proximal subproblem at each iteration without using exact function values and gra-108

dients of f . Under certain conditions on inexact gradients and inexact subproblem109

solutions, we prove that the oracle complexity in terms of the total number of inexact110

gradient evaluations to find an approximate (ϵ, δ)-approximate first-order stationary111

point is in order O(ϵ−2). This verifies that adding the nonsmooth nonconvex compos-112

ite function and non-Lipschitz regularizer and using inexact gradients do not affect113

the worst-case oracle complexity, compared with existing results [5, 8, 11, 12]. Fur-114

thermore, we use the finite-sum structure of f and propose a stochastic variant of115

the algorithm through calls to stochastic first-order oracles. We show that the corre-116

sponding oracle complexity in terms of total number of stochastic first-order oracles117

is in order Õ(ϵ−2) with high probability, where we use Õ to hide the dependence118

on logarithmic factor in the complexity order. Furthermore, we extend the proposed119

algorithm to solve stochastic problems with f in expectation form and obtain the120

Õ(ϵ−10/3)-oracle complexity with high probability. We present more details on the121

significant differences from existing works.122

(i) The related convergence and iteration complexity in [5, 8, 11, 12] are established123

within trust region schemes, which require accurate function values and derivatives124

of function f . However, those analysis cannot be applied to stochastic optimiza-125

tion problems, where only approximate or stochastic gradients are available. In this126

scenario, the behavior of the objective function can only be characterized based on127

inexact derivatives of f . Hence, it is imperative to modify the primary algorithmic128

framework to accommodate the reliance on approximate or stochastic gradients and129

the absence of a trust region scheme. This adaptation necessitates rigorous analysis130

under these altered conditions.131

(ii) While our method draws inspiration from existing techniques, such as the convex132

approximation to the composite part and the Lipschitz continuous approximation to133

the non-Lipschitz regularizer, the coexistence of these two aspects brings significant134

challenges for the theoretical analysis, which makes it different from existing works.135

For instance, one particular challenge is about ensuring the existence of an inexact136

subproblem solution sk that satisfies the required conditions, as presented in Lemma137

2.5. Such detailed analysis, however, is not provided in [11, 12]. Another challenge138
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arises when considering the approximate criticality of the output of Algorithm 2.1.139

Due to the significant modifications made to adapt to the stochastic setting and the140

absence of a trust region scheme, the algorithm framework’s analysis differs substan-141

tially from existing methods. In addition to addressing these challenges, we present a142

unified framework by incorporating various elements and leveraging the strengths of143

each element. This enables our algorithm to tackle a broader range of problems.144

(iii) When adapting the deterministic proximal inexact gradient method to stochastic145

settings, including the finite-sum setting and expectation setting, it causes nontrivial146

challenges to the theoretical analysis. In our paper, we go beyond a simple replace-147

ment of the deterministic gradient with a stochastic gradient, recognizing the need148

for careful consideration of oracle complexity analysis in the stochastic counterpart,149

which contributes to the value of our work. Particularly, the extension of the analysis150

in [25] to non-Lipschitz regularized optimization and to the expectation case proves151

to be a nontrivial task. Our oracle complexity analysis heavily relies on the essential152

property of the proposed algorithm, specifically the boundedness of
∑

k∈K ∥sk∥2 as153

demonstrated in Theorem 3.8.154

Organization. This paper is organized as follows. In Section 2 we present a155

detailed algorithmic framework for proximal inexact gradient methods for (1.1). In156

Section 3 we explore the oracle complexity of the proposed framework to find an157

(ϵ, δ)-approximate first-order stationary point. In Section 4 we propose a stochastic158

variant of the algorithm for problems with f in finite-sum structure (1.2) and establish159

the oracle complexity accordingly. In Section 5 we propose an extended stochastic160

variant for problems in expectation case and investigate the related oracle complexity.161

In Section 6 we illustrate our algorithm by a numerical example. Finally, concluding162

remarks are drawn in Section 7.163

2. Algorithm description. In this section, we will present an algorithmic164

framework for proximal inexact gradient methods for solving (1.1). As the objective165

function Q is nonconvex, nonsmooth and non-Lipschitz, it is generally intractable to166

approximately find a global or even a local minimizer. Thus our algorithm aims for an167

approximate first-order stationary point of (1.1). The core of our algorithm design is168

to construct a Lipschitz continuous approximation model of the objective function at169

each iteration. We then perform a search within a local neighborhood of the current170

iterate while aiming to minimize the approximation model as much as possible. The171

use of Lipschitz continuous approximation models helps us predict the behavior of172

the objective function while minimizing the impact of approximation errors in the173

optimization process. The proposed algorithm differs from existing works on com-174

plexity analysis, such as [5, 11, 12], where a trust region scheme is typically employed,175

requiring exact evaluations of the function value and its derivatives. In contrast, it176

only relies on getting access to inexact first-order derivatives of the objective function,177

which enables us to extend its applicability to stochastic variants. By utilizing these178

inexact derivatives, we can effectively navigate the search space and make progress to-179

wards the optimal solution without the need for precise function value and derivative180

evaluations. By adopting this approach, we strike a balance between computational181

efficiency and accuracy, making our algorithm more suitable for scenarios where exact182

evaluations may be costly or impractical.183

We first define the following index sets at a point x for a given nonnegative184

constant ϵ :185

A (x, ϵ) =
{
i ∈ [n̄] : |vTi x| > ϵ

}
, R (x, ϵ) =

⋂
i∈[n̄]\A(x,ϵ)

ker
(
vTi
)
,186
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where [n̄] := {1, . . . , n̄}. Then for any d ∈ R (x, ϵ), it holds that vTi d = 0, i ∈
[n̄]\A (x, ϵ) . Define the function

Qϵ(x) := f(x) + h(c(x)) +
∑

i∈A(x,ϵ)

|vTi x|p.

Note that |vTi x|p , i ∈ A(x, ϵ), is differentiable at x, and Qϵ is a continuous lower187

approximation to Q. Also define188

ψϵ,δ
Q (x) := Qϵ (x)− min

x+d∈F
d∈R(x,ϵ), ∥d∥≤δ

TQϵ
(x, d)(2.1)189

190

with191

TQϵ
(x, d) := f(x) +∇f(x)T d+ h(c(x) + J(x)d) +

∑
i∈A(x,ϵ)

(|vTi x|p +∇(|vTi x|p)T d),192

where J(x) = (∇c1(x), . . . ,∇cr(x))T . Here, TQϵ
is a convex approximation to Qϵ,193

obtained through linearization of smooth functions w.r.t. d, i.e., f(x + d), c(x + d)194

and |vTi (x+ d)|p, i ∈ A(x, ϵ). The function ψϵ,δ
Q plays a crucial role in characterizing195

the optimality condition of a local minimizer of (1.1). It represents the maximum196

reduction of TQϵ
within a neighborhood of current iterate. Intuitively, when current197

iterate x is a local minimizer of (1.1) and ϵ = 0, around x there is no feasible point198

that can yield a greater reduction in the function value. By [8, Lemma 3.2] and [11,199

Theorem 2.1] we obtain the following lemma.200

Lemma 2.1. Let x∗ be a local minimizer of (1.1). Then there exists δ̄ ∈ (0, 1]201

such that for any δ ∈ (0, δ̄], ψ0,δ
Q (x∗) = 0.202

Proof. As x∗ is a local minimizer of (1.1), there exists δ1 > 0 such that x∗ is a
global minimizer of (1.1) on B(x∗, δ1) ∩ F . Let

δ2 = min
{
1, min

i∈A(x∗,0)
|vTi x∗|

}
.

Obviously, δ2 ∈ (0, 1]. Note that there exists δ̄ ∈ (0,min(δ1, δ2)) such that for any203

x∗ + d in the ball B(x∗, δ̄),204

|vTi (x∗ + d)| ≥ |vTi x∗| − |vTi d| ≥ δ2 − δ̄ > 0, i ∈ A(x∗, 0).205

Then
∑

i∈A(x∗,0)
|vTi x| is continuously differentiable in B(x∗, δ̄). Moreover, since h is206

Lipschitz continuous over F and x∗ is the global minimizer of (1.1) on B(x∗, δ̄) ∩ F ,207

it holds that for any δ ∈ (0, δ̄],208

Q(x∗) = min
x∗+d∈F,∥d∥≤δ

f(x∗ + d) + h(c(x∗ + d)) + ∥V (x∗ + d)∥pp209

≤ min
x∗+d∈F

d∈R(x∗,0),∥d∥≤δ

f(x∗ + d) + h(c(x∗ + d)) + ∥V (x∗ + d)∥pp210

= min
x∗+d∈F

d∈R(x∗,0),∥d∥≤δ

f(x∗ + d) + h(c(x∗ + d)) +
∑

i∈A(x∗,0)

|vTi (x∗ + d)|p.211

212

Note that the equality in above relations can be reachable at d = 0. Thus 0 is a global213

minimizer of the problem214

(2.2) min
x∗+d∈F

d∈R(x∗,0), ∥d∥≤δ

f(x∗ + d) + h(c(x∗ + d)) +
∑

i∈A(x∗,0)

|vTi (x∗ + d)|p.215
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Then it yields from [8, Lemma 3.2] that ψ0,δ
Q (x∗) = 0 which completes the proof.216

We call x̄ a first-order stationary point of (1.1), if ψ0,δ
Q (x̄) = 0 for some217

δ ∈ (0, 1].218

Remark 2.2. We now show that if x̄ is a first-order stationary point of (1.1) , i.e.219

ψ0,δ
Q (x̄) = 0 for some δ ∈ (0, 1], then x̄ is a limiting stationary point for a practice220

example. The concept of a limiting stationary point for a proper lower semicontinuous221

function has been used in the study for non-Lipschitz continuous minimization [10].222

We recall from [24, Definition 8.3] that for a proper lower semicontinuous function Φ,223

the limiting subdifferential is defined as224

∂Φ(x) :=

{
v : ∃xk Φ→ x, vk → vwith lim inf

z→xk

Φ(z)− Φ(xk)− ⟨vk, z − xk⟩
∥z − xk∥

≥ 0, ∀k
}
,225

where xk
Φ→ x means both xk → x and Φ(xk) → Φ(x). In [10], a first-order stationary226

condition using the limiting subdifferential for problem227

(2.3) minΘ(x) := λ[(∥Ax− b∥22 − σ2)+ + ∥(Bx− h)+∥1] + ∥x∥pp228

is defined as229

(2.4) 0 ∈ ∂λ((∥Ax− b∥22 − σ2)+) + ∂λ∥(Bx− h)+∥1 + ∂∥x∥pp,230

where A ∈ Rr×n, B ∈ Rl×n, b ∈ Rr, h ∈ Rr, p ∈ (0, 1), σ ≥ 0, and λ > 0. In
[10], a point x̄ is called a first-order stationary point of (2.3) if x̄ satisfies (2.4). Let
A(x) = {i : |xi| > 0}. From Lemma 2.5 in [10], ∂|t|p = R at t = 0. Hence, the
inclusion in (2.4) is trivial for i ̸∈ A(x). Let

Q(x) = λ
(
(∥Ax− b∥22 − σ2)+ + ∥(Bx− h)+∥1

)
+
∑

i∈A(x)

|xi|p,

TQ(x, d) = λ
(
(∥Ax− b∥22 − σ2 + 2(Ax− b)TAd)+ + ∥(Bx− h+Bd)+∥1

)
+
∑

i∈A(x)

(|xi|p + p|xi|p−1sgn(xi)di)

and

ψ0,δ
Q (x) = Q(x)− min

d∈R(x),∥d∥≤δ
TQ(x, d), R(x) = {d ∈ Rn : eTi d = 0, i ̸∈ A(x)}.

Following the proof of Lemma 2.1, we can show that if x̄ is a local minimizer of (2.3),

then ψ0,δ
Q (x̄) = 0 for some δ > 0. Now we show that if ψ0,δ

Q (x̄) = 0 for some δ > 0,

then x̄ satisfies (2.4). Let δ̄ = mini∈A(x̄) |x̄i|. Then for any x̄ + d ∈ B(x̄, δ) with
δ ∈ (0, δ̄), we have |x̄+ d|i ≥ |x̄|i−|d|i ≥ δ̄− δ > 0, ∀ i ∈ A(x̄). Hence

∑
i∈A(x̄) |xi|p is

differentiable in B(x̄, δ). Moreover, we know that (∥Ax−b∥22−σ2)+ and ∥(Bx−h)+∥1
are directionally differentiable. Therefore, Q is directionally differentiable at x̄ in the
direction d ∈ R(x̄). Additionally, the directional derivative of Q at x̄ in the direction
d ∈ R(x̄) has the form

Q′(x̄; d) = λ[2v(x̄)(Ax̄− b)TAd+ u(x̄)TBd] +
∑

i∈A(x̄)

p|x̄i|p−1sgn(x̄i)di,
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where

v(x̄) =

 1 if ∥Ax̄− b∥22 > σ2

0 if ∥Ax̄− b∥22 < σ2

(sgn((Ax̄− b)TAd))+ if ∥Ax̄− b∥22 = σ2

and

ui(x̄) =

 1 if (Bx̄− h)i > 0
0 if (Bx̄− h)i < 0
(sgn((Bd)i))+ if (Bx̄− h)i = 0, i = 1, . . . , l.

Let δ̂ ∈ (0, δ̄) such that

δ̂ < min

{
|∥Ax̄− b∥22 − σ2|
∥(Ax̄− b)TA∥∞

,
|Bx̄− h|i
∥B∥∞

}
, for ∥Ax̄− b∥22 − σ2 ̸= 0, (Bx̄− h)i ̸= 0.

Then it derives

TQ(x̄, d) = Q(x̄) +Q′(x̄; d), ∀d ∈ R(x̄), ∥d∥ ≤ δ̂.

From ψ0,δ̂
Q (x̄) = 0, we have

0 = Q(x̄)− min
d∈R(x̄),∥d∥≤δ̂

TQ(x̄, d) = − min
d∈R(x̄),∥d∥≤δ̂

Q′(x̄; d),

which implies Q′(x̄; d) ≥ 0 for any d ∈ R(x̄). From Θ(x̄ + d) ≥ Q(x̄ + d) for d ∈ Rn

and Θ(x̄) = Q(x̄), the subderivative function dΘ(x̄) satisfies

dΘ(x̄)(d) = lim inf
t↓0

d′→d

Θ(x̄+ td′)−Θ(x̄)

t
≥ lim inf

t↓0
d′→d

Q(x̄+ td′)−Q(x̄)

t
.

Hence dΘ(x̄)(d) ≥ 0 for d ∈ R(x̄) and dΘ(x̄)(d) = +∞ for d ̸∈ R(x̄). By [24, Exercise231

8.4], we find that 0 is in the regular subdiffrential of Θ at x̄, and thus by [24, Definition232

8.3, Exercise 10.10], the inclusion in (2.4) holds at x̄.233

We now present the definition of an (ϵ, δ)-approximate first-order stationary point234

of (1.1).235

Definition 2.3. Given ϵ > 0, we call x ∈ F an (ϵ, δ)-approximate first-order236

stationary point of (1.1), if ψϵ,δ
Q (x) ≤ ϵδ for some δ ∈ (0, 1].237

The concept of (ϵ, δ)-approximate first-order stationary points has been used in238

[6, 7, 11], which generalizes the concept of ϵ-approximate first-order stationary points239

with δ = 1 in some papers, e.g. [5, 12, 17]. Our definitions of first-order stationary240

point and (ϵ, δ)-approximate first-order stationary point are based on the concepts241

in [5, 6, 7, 8, 11, 12, 17] and related articles. In Lemma 2.1, we show that a local242

minimizer x∗ of (1.1) is a (0, δ)-approximate first-order stationary point of (1.1) for243

some δ > 0, which implies that x∗ is an (ϵ, δ)-approximate first-order stationary244

point of (1.1) for ϵ > 0. Within a δ-ball centered at an (ϵ, δ)-approximate first-order245

stationary point, the maximum reduction of the approximation model does not exceed246

ϵδ. In practice, the choice of (ϵ, δ) depends on the users’ need for the quality of a247

computed solution. For each k, let xk be an (ϵk, δk)-approximate first-order stationary248

point of (1.1) for some δk with 1 ≥ δk > 0 and ϵk > 0. If {δk} has a uniform positive249

lower bound as ϵk → 0, following the proof of [11, Theorem 2.2] we can obtain that250

any cluster point of {xk} is a first-order stationary point of (1.1).251
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In the following context, we consider ϵ > 0. We now prepare for the design of the252

main algorithm. The main step of the algorithm is to construct a model function to253

predict the behavior of the objective function Q at current iterate x along a direction254

s. For the non-Lipschitz regularizer in the objective function, we focus on indices in255

A(x, ϵ) and discard those close to non-Lipschitz continuity. We define the following256

Lipschitz continuous approximation of |vTi (x+ s)|p in a similar approach in [11] and257

[12]:258

(2.5) mi (x, s) := |vTi x|p + p|vTi x|p−1
(
|vTi (x+ s) | − |vTi x|

)
, i ∈ A (x, ϵ) .259

Supposing that vTi (x + s) ̸= 0, i ∈ A(x, ϵ), as analyzed in [11], mi is the first-260

order Taylor’s expansion of |vTi x + ζi
vT
i x

|vT
i x| |

p expressed as a function of the scalar261

ζi := |vTi (x+ s)| − |vTi x| ≥ −|vTi s|. Regarding the smooth function f , the calculation262

of exact first-order derivatives of f can be expensive sometimes even impossible in263

many scenarios. We can only get access to approximate gradients of f . For ease of264

notations, given xk and sk we denote gk as an approximation to ∇f at xk, and265

Ak = A (xk, ϵ) , Rk = R (xk, ϵ) , ck = c(xk), Jk = J(xk) and ski = vTi sk266267

for i ∈ [n̄]. Due to existence of the convex but possibly nonsmooth function h, we268

design the following proximal type subproblem at kth iteration:269

(2.6) min
xk+s∈F
s∈Rk

m(xk, s) := gTk s+ h(ck + Jks) +
∑
i∈Ak

mi (xk, s) +
1

2η
∥s∥2,270

where η > 0 is a proximal parameter. It is worth noting that subproblem (2.6) is271

a strongly convex minimization problem over a convex set, thus it admits a unique272

global minimizer. Note that resolution of (2.6) only involves matrx-vector products273

and does not affect the evaluations of (inexact) derivatives of f , thus has no impact on274

the iteration complexity and oracle complexity of the proposed algorithm. Moreover,275

when F and h exhibit polyhedral structures, for example, F = [bl, bu] ⊆ Rn with276

−bl, bu ∈ Rn
+, and h(·) = ∥(·)+∥1, by introducing z̄ = (ck + Jks)+ ∈ Rr, (2.6) is277

equivalent to the following linearly constrained convex program:278

min
s,z̄

gTk s+ eT z̄ +
∑
i∈Ak

p|vTi xk|p−1|vTi (xk + s)|+ 1

2
∥s∥2

s.t. bl ≤ xk + s ≤ bu, 0 ≤ z̄, ck + Jks ≤ z̄, vTi s = 0, i /∈ Ak,

279

where e = (1, 1, . . . , 1)T ∈ Rr. Numerous state-of-the-art approaches have been ex-280

tensively studied for solving linearly constrained convex program in the literature.281

In theoretical analysis, however, an inexact solution of (2.6) can be enough.282

Specifically, we solve (2.6) to look for sk with m(xk, sk) < m(xk, 0) such that the283

near optimality is achieved in that284

(2.7) ψϵ,δ
m (xk, sk) ≤ min

{
θϵ, p min

i∈A(xk+sk,ϵ)
|vTi (xk + sk)|

}
δ, for some δ ∈ (0, 1],285

where θ ∈ (0, 1) and286

ψϵ,δ
m (xk, sk) := h(ck + Jksk)− min

xk+sk+d∈F
d∈R(xk+sk,ϵ), ∥d∥≤δ

Tm(xk, sk; d)287
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with m0(xk, s) := gTk s+
1
2η∥s∥

2 and288

Tm(xk, s; d) := h(ck + Jk(s+ d)) +∇sm0(xk, s)
T d+

∑
i∈A(xk+s,ϵ)

∇smi(xk, s)
T d.289

It is noteworthy that ψϵ,δ
m describes the potential maximum reduction of Tm within290

a neighborhood of sk with radius δ. This measure is defined in a similar way to that291

in Definition 2.3. When the reduction is below a certain level, sk is regarded as an292

inexact minimizer of (2.4). Moreover, by the definition of Rk, for any i ∈ [n̄]\Ak,293

vTi sk = 0, thus vTi (xk + sk) = vTi xk. That is, once |vTi xk| ≤ ϵ for some i ∈ [n̄], the294

value of vTi (xk + sk) will be fixed and the remaining minimization will be carried out295

on R(xk + sk, ϵ). Therefore, the following relations hold:296

(2.8) R+
k := R(xk + sk, ϵ) ⊆ Rk, A+

k := A(xk + sk, ϵ) ⊆ Ak.297

We are now ready to present the main algorithm framework for proximal inexact298

gradient methods for (1.1) as Algorithm 2.1.299

Algorithm 2.1

Input: x0 ∈ F , ϵ ∈ (0, 1], η > 0, β̄ ∈ (0, w̄) with w̄ ∈ (0, 1), s−1 = 0.
1: for k = 0, 1, . . . , do
2: Obtain gk from InexactOracle.
3: Solve (2.6) to find an approximate minimizer sk with m(xk, sk) < m(xk, 0)

satisfying (2.7), then go to Step 5. If the solution of (2.6) is zero, then go to
Step 4.

4: Set sk = 0. If sk−1 = 0, terminate and return xk; otherwise, go to Step 5.
5: Set xk+1 = xk + sk. If ∥sk∥ + ∥sk−1∥ ≤ β̄ϵ and Ak\Ak+1 = ∅, terminate and

return xk+1.
6: k := k + 1.
7: end for

Remark 2.4. In Algorithm 2.1 two termination criteria are employed. One is300

sk−1 = sk = 0 in Step 4. In this case, similar to [6, 11] we terminate the algorithm301

and return xk. It will be shown in Lemma 3.1 that xk is an (ϵ, δ)-approximate first-302

order stationary point of (1.1) for some δ ∈ (0, 1]. On the other hand, if Ak+1 = Ak303

(and hence Rk+1 = Rk) and ∥sk∥ + ∥sk−1∥ is sufficiently small and Ak\Ak+1 = ∅304

then there is no i s.t. |vTi xk| > ϵ but |vTi (xk + sk)| < ϵ, we return xk+1 and will prove305

that xk+1 is an approximate first-order stationary point when sk = 0 in Lemma 3.1306

and when sk ̸= 0 in Lemma 3.6, respectively. In addition, as sk ∈ Rk for any k ≥ 1,307

it follows from (2.8) that Ak+1\Ak = ∅ for any k ≥ 1. Moreover, in Algorithm 2.1308

we obtain inexact gradient gk through calling the subroutine InexactOracle, which309

may adopt different ways to generate an inexact gradient of f at the inquiry iterate310

xk. So we simply omit the required inputs by InexactOracle here and specify them311

when necessary.312

In the following, we denote the unique global minimizer of (2.6) by s∗k. If s
∗
k ̸= 0,313

it obviously holds thatm(xk, s
∗
k) < m(xk, 0).Moreover, we can guarantee that sk = s∗k314

satisfies (2.7) for some δ ∈ (0, 1], as shown in the lemma below.315

Lemma 2.5. Suppose that s∗k ̸= 0. Then there exists µ
k
∈ (0, 1] such that (2.7)316

holds for sk = s∗k and any δ ∈ (0, µ
k
].317
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Proof. Consider the auxiliary problem318

(2.9)

min
xk+s∗k+d∈F

d∈R(xk+s∗k,ϵ)

h(ck + Jk(s
∗
k + d)) +m0(xk, s

∗
k + d) +

∑
i∈A(xk+s∗k,ϵ)

mi (xk, s
∗
k + d) .319

Due to the strong convexity, (2.9) has a unique global minimizer, which is denoted320

by s̄k. As s̄k ∈ R(xk + s∗k, ϵ) ⊆ Rk, we have mi(xk, s
∗
k) = mi(xk, s

∗
k + s̄k) for any321

i ∈ Ak\A(xk + s∗k, ϵ). Then it yields that322

m(xk, s
∗
k + s̄k)323

= h(ck + Jk(s
∗
k + s̄k)) +m0(xk, s

∗
k + s̄k) +

∑
i∈A(xk+s∗k,ϵ)

mi(xk, s
∗
k + s̄k)324

+
∑

i∈Ak\A(xk+s∗k,ϵ)

mi(xk, s
∗
k + s̄k)325

≤ h(ck + Jks
∗
k) +m0(xk, s

∗
k) +

∑
i∈A(xk+s∗k,ϵ)

mi(xk, s
∗
k)326

+
∑

i∈Ak\A(xk+s∗k,ϵ)

mi(xk, s
∗
k)= m(xk, s

∗
k),327

328

where the inequality follows from the optimality of s̄k.329

Due to the optimality and uniqueness of s∗k as the global minimizer of (2.6), we330

obtain s̄k = 0. Thus 0 is the global minimizer of (2.9). Then for any d ∈ R(xk+s
∗
k, ϵ)331

satisfying xk + s∗k + d ∈ F , it holds that332

gTk s
∗
k +

1

2η
∥s∗k∥2 + h(ck + Jks

∗
k) +

∑
i∈A(xk+s∗k,ϵ)

mi(xk, s
∗
k)333

≤ gTk (s
∗
k + d) +

1

2η
∥s∗k + d∥2 + h(ck + Jk(s

∗
k + d)) +

∑
i∈A(xk+s∗k,ϵ)

mi(xk, s
∗
k + d)334

335

which yields336

h(ck + Jks
∗
k)− h(ck + Jk(s

∗
k + d))− gTk d−

1

η
(s∗k)

T d−
∑

i∈A(xk+s∗k,ϵ)

∇mi(xk, s
∗
k)

T d337

≤
∑

i∈A(xk+s∗k,ϵ)

(mi(xk, s
∗
k + d)−mi(xk, s

∗
k)−∇smi(xk, s

∗
k)

T d) +
1

2η
∥d∥2.

(2.10)

338

339

Note that there exists µ̂k such that for any d ∈ R(xk + s∗k, ϵ) with ∥d∥ ≤ µ̂k and340

xk + s∗k + d ∈ F ,341

(2.11)
sgn(vTi (xk+s

∗
k+d)) = sgn(vTi (xk+s

∗
k)) and |vTi (xk+s∗k+d)| > ϵ, ∀i ∈ A(xk+s

∗
k, ϵ),342

which together with (2.10) indicate that343

h(ck + Jks
∗
k)− h(ck + Jk(s

∗
k + d))− gTk d−

1

η
s∗k

T d−
∑

i∈A(xk+s∗k,ϵ)

∇smi(xk, s
∗
k)

T d344

≤ 1

2η
∥d∥2.345

346
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Hence, by the definition of ψϵ,δ
m (xk, s

∗
k), there exists µ

k
∈ (0,min{1, µ̂k}] such that for347

any δ ∈ (0, µ
k
],348

(2.12) ψϵ,δ
m (xk, s

∗
k) ≤

1

2η
δ2 ≤ min

{
θϵ, p min

i∈A(xk+s∗k,ϵ)
|vTi (xk + s∗k)|

}
δ.349

Define the set Sk := {s : xk + s ∈ F} ∩ {s : s − s∗k ∈ R(xk + s∗k, ϵ)}. Obviously350

s∗k ∈ Sk. Without loss of generality, we assume in the following that Sk\{s∗k} ≠ ∅.351

Lemma 2.6. Suppose that s∗k ̸= 0. Then there exist µ̃k, µ̄k∈ (0, 1] such that for352

any δ ∈ (0, µ̃k] and any s ∈ Sk ∩ B(s∗k, µ̄k), we have353

(2.13) m(xk, s) < m(xk, 0) and ψϵ,δ
m (xk, s) ≤ min

{
θϵ, p min

i∈A(xk+s,ϵ)

∣∣vTi (xk + s)
∣∣ }δ.354

Proof. Note that if s∗k ̸= 0, there exists µ̄k ∈ (0, 1] such that for any s ∈ B(s∗k, µ̄k),355

m(xk, s) < m(xk, 0) and A(xk+s
∗
k, ϵ) ⊆ A(xk+s, ϵ). Hence, for any s ∈ Sk∩B(s∗k, µ̄k),356

(2.14) A(xk + s∗k, ϵ) = A(xk + s, ϵ) ⊆ Ak.357

For any given s ∈ Sk ∩ B(s∗k, µ̄k), we define Fs := {d : xk + s + d ∈ F} which is358

obviously convex due to the convexity of F . For any d ∈ Fs, we denote its projection359

onto Fs∗k
as d̄. If d = d̄, then set d1 = d. Otherwise, as xk + s∗k + d /∈ F , there exists360

d1 ∈ Fs∗k
such that xk+s

∗
k+d1 is the projection of xk+s

∗
k+d onto F . Then it follows361

from definition of the projection operator and xk + s+ d ∈ F that ∥d− d̄∥ ≤ ∥d− d1∥362

and363

∥(xk + s∗k + d)− (xk + s∗k + d1)∥ ≤ ∥(xk + s∗k + d)− (xk + s+ d)∥ = ∥s∗k − s∥,364

thus365

(2.15) ∥d− d̄∥ ≤ ∥s∗k − s∥.366

Then by definition of Tm(xk, s; d) and (2.14) we obtain that for any d ∈ Fs,367

h(ck + Jks)− Tm(xk, s; d)368

= h(ck + Jks
∗
k) + h(ck + Jks)− h(ck + Jks

∗
k)−

[
h(ck + Jk(s

∗
k + d))369

+ h(ck + Jk(s+ d))− h(ck + Jk(s
∗
k + d)) + dT∇sm0(xk, s

∗
k)370

+ dT (∇sm0(xk, s)−∇sm0(xk, s
∗
k)) +

∑
i∈A(xk+s∗k,ϵ)

dT∇smi(xk, s
∗
k)371

+
∑

i∈A(xk+s∗k,ϵ)

dT∇smi(xk, s)−
∑

i∈A(xk+s∗k,ϵ)

dT∇smi(xk, s
∗
k)
]

372

= h(ck + Jks
∗
k)−

[
h(ck + Jk(s

∗
k + d)) + dT∇sm0(xk, s

∗
k)373

+
∑

i∈A(xk+s∗k,ϵ)

dT∇smi(xk, s
∗
k)
]
+ Γk374

= h(ck + Jks
∗
k)− Tm(xk, s

∗
k; d) + Γk375

= h(ck + Jks
∗
k)− Tm(xk, s

∗
k; d̄) + Γk + Tm(xk, s

∗
k; d̄)− Tm(xk, s

∗
k; d),376377
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where378

Γk =h(ck + Jks)− h(ck + Jks
∗
k)− (h(ck + Jk(s+ d))− h(ck + Jk(s

∗
k + d)))379

− dT (∇sm0(xk, s)−∇sm0(xk, s
∗
k))380

−
∑

i∈A(xk+s∗k,ϵ)

dT (∇smi(xk, s)−∇smi(xk, s
∗
k)).381

382

Note that, on the one hand, by the definition of m0,383

∥∇sm0(xk, s)−∇sm0(xk, s
∗
k)∥ ≤ 1

η
∥s− s∗k∥,384

while on the other hand, by (2.5) and (2.14),385

∇smi(xk, s) = p|vTi xk|p−1sgn(vTi xk)vi = ∇smi(xk, s
∗
k), ∀i ∈ A(xk + s∗k, ϵ).386

Recall that h is Lipschitz continuous over F . It together with the boundedness of Jk387

derives388

(2.16) Γk = O(∥s− s∗k∥).389

Besides, it indicates from definition of Tm that390

Tm(xk, s
∗
k; d̄)− Tm(xk, s

∗
k; d) = O(∥d− d̄∥) = O(∥s− s∗k∥).391

Therefore, there exists µ̃k ∈ (0,min{µ
k
, µ̄k}) such that µ̃k + µ̃

(1+ϱ)
k < µ

k
with ϱ > 0,392

and for any δ ∈ (0, µ̃k] and s ∈ Sk∩B(s∗k, δ1+ϱ), the following relations can be derived:393

h(ck + Jks)− min
xk+s+d∈F

d∈R(xk+s,ϵ), ∥d∥≤δ

Tm(xk, s; d)394

≤ h(ck + Jks
∗
k)− min

xk+s∗k+d̄∈F
d̄∈R(xk+s∗k,ϵ), ∥d̄∥≤δ+δ1+ϱ

Tm(xk, s
∗
k; d̄) +O(∥s− s∗k∥)395

≤ ψϵ,δ+δ1+ϱ

m (xk, s
∗
k) +O(∥s− s∗k∥)396

≤ 1

2η
(δ + δ1+ϱ)2 +O(δ1+ϱ)≤ min

{
θϵ, p min

i∈A(xk+s∗k)
|vTi (xk + s∗k)|

}
δ,(2.17)397

398

where µ
k
is introduced in Lemma 2.5, the first inequality is due to ∥d̄∥ ≤ ∥d∥+ ∥s−399

s∗k∥ ≤ δ+ δ1+ϱ and the third inequality follows from (2.12). The proof is completed.400

3. Oracle complexity. In this section, we will analyze the oracle complexity401

of Algorithm 2.1 in terms of the total number of inexact gradient evaluations until402

the algorithm terminates. In the following, we use K to denote the set of all iteration403

indices until the termination of Algorithm 2.1. Let {xk} be the iterate sequence gener-404

ated during the algorithm. Since f and c are Lipschitz continuously differentiable and405

h is Lipschitz continuous over F , there exist positive constants MF , κ, Lf , Lh, L
0
c , L

1
c406

such that for any x, y ∈ F , ∥x∥ ≤MF and ∥∇f(x)∥ ≤ κ and407

∥∇f(x)−∇f(y)∥ ≤ Lf∥x− y∥, |h(x)− h(y)| ≤ Lh∥x− y∥,408

∥c(x)− c(y)∥ ≤ L0
c∥x− y∥, ∥∇c(x)−∇c(y)∥ ≤ L1

c∥x− y∥.409410

To derive desired theoretical properties of Algorithm 2.1, we lay out the following411

assumption on gradient approximations returned by InexactOracle.412
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Assumption 3.1. For any k ∈ K, the gradient approximation gk satisfies413

(3.1) ∥gk −∇f (xk) ∥ ≤ βmax
{
L̄min(∥sk−1∥, D), ϵ

}
,414

where β ∈ (0, 1−θ
17 ), D > 0 and L̄ ∈ (0, β̄−1).415

The parameter θ in Assumption 3.1 was introduced initially in (2.7). And As-416

sumption 3.1 ensures that gk is uniformly upper bounded, namely,417

(3.2) ∥gk∥ ≤ χ := κ+ βmax
{
L̄D, ϵ

}
for any k ∈ K.418

We will show in Lemma 3.1 that xk is an (ϵ, δ)-approximate first-order stationary419

point of (1.1) when Algorithm 2.1 terminates in Step 4 or in Step 5 with sk = 0.420

When Algorithm 2.1 terminates in Step 5 with sk ̸= 0, we will show in Lemma 3.6421

that the output xk+1 is an approximate first-order stationary point of (1.1).422

Lemma 3.1. Suppose that Algorithm 2.1 terminates in Step 4 or in Step 5 with423

sk = 0. Then xk is an (ϵ, δ)-approximate first-order stationary point of (1.1) for some424

δ ∈ (0, 1].425

Proof. Whenever Algorithm 2.1 terminates in Step 4 or in Step 5 with sk = 0,426

it holds that sk = 0 and ∥sk−1∥ ≤ β̄ϵ. As sk = 0, by the algorithmic framework427

there is no step sk with m(xk, sk) < m(xk, 0) satisfying (2.7). Then it follows from428

Lemma 2.5 that m (xk, d) ≥ m (xk, 0) for any d ∈ Rk satisfying xk + d ∈ F . And by429

the definition of TQϵ
the following equalities hold:430

m (xk, d)−m (xk, 0)431

= h(ck + Jkd)− h(ck) + gTk d+
1

2η
∥d∥2 +

∑
i∈Ak

[mi (xk, d)−mi (xk, 0)]432

= −
[
f (xk) + h(ck) +

∑
i∈Ak

|vTi xk|p − TQϵ (xk, d)
]
+ (gk −∇f(xk))T d433

+
1

2η
∥d∥2 +

∑
i∈Ak

(mi(xk, d)−mi(xk, 0)− (∇|vTi x|p|x=xk
)T d)434

= −(Qϵ(xk)− TQϵ (xk, d)) + (gk −∇f(xk))T d+
1

2η
∥d∥2435

+
∑
i∈Ak

(mi(xk, d)−mi(xk, 0)− (∇|vTi x|p|x=xk
)T d).436

437

Note that there exists δ̄ ∈ (0, 1] such that for all d with ∥d∥ ≤ δ̄, sgn(vTi (xk + d)) =438

sgn(vTi xk) for any i ∈ Ak, then439

mi(xk, d)−mi(xk, 0) = p|vTi xk|p−1(|vTi (xk + d)| − |vTi xk|)440

=sgn(vTi xk) · p|vTi xk|p−1vTi d441

=(∇(|vTi x|p|)x=xk
)T d for any i ∈ Ak.442443

It follows from ∥sk−1∥ ≤ β̄ϵ and Assumption 3.1 that ∥gk−∇f(xk)∥ ≤ βmax{L̄β̄, 1}ϵ.444

Hence, by β < (1−θ)/(32MF +1) and L̄ < β̄−1 we can choose δ < δ̄ sufficiently small445

such that for any d ∈ Rk satisfying xk + d ∈ F and ∥d∥ ≤ δ,446

Qϵ(xk)− TQϵ
(xk, d) ≤ (gk −∇f(xk))T d+

∥d∥2

2η
≤βmax{L̄β̄, 1}ϵ∥d∥+ ∥d∥2

2η
≤ ϵδ,447

448

which yields the conclusion by Definition 2.3.449
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In the following, we assume that Algorithm 2.1 does not terminate at kth iteration450

with sk = 0. It derives from definitions of Qϵ and Ak that for any x ∈ F ,451

Qϵ(x) = Q(x)−
∑

i∈[n̄]\Ak

|vTi x|p ≥ Q∗ − |[n̄]\Ak|ϵp ≥ Q∗ − n̄ϵp =: Q∗
ϵ ,452

where Q∗ is the lower bound of Q on F . The lemma below provides an upper bound453

on the accumulated square of step lengths.454

Lemma 3.2. Suppose that η < (Lf + LhL
1
c)

−1. Then it holds that455

(3.3)
( 1

2η
− Lf + LhL

1
c

2

)∑
k∈K

∥sk∥2 ≤
∑
k∈K

(∇f(xk)− gk)
T sk +Qϵ (x0)−Q∗

ϵ .456

Proof. It follows from (2.8) and Lipschitz continuity of ∇f , h and ∇c that457

Qϵ (xk + sk)−Qϵ (xk)458

= f (xk + sk) + h(c(xk + sk))− f(xk)− h(ck) +
∑
i∈A+

k

|vTi (xk + sk)|p−
∑
i∈Ak

|vTi xk|p459

≤ h(c(xk + sk))− h(ck) + (∇f (xk))T sk +
Lf

2
∥sk∥2 +

∑
i∈Ak

(mi(xk, sk)−mi(xk, 0))460

= h(ck + Jksk)− h(ck) + gTk sk +
1

2η
∥sk∥2 +

∑
i∈Ak

(mi (xk, sk)−mi (xk, 0))461

+ (∇f (xk)− gk)
T
sk +

(Lf

2
− 1

2η

)
∥sk∥2 + h(c(xk + sk))− h(ck + Jksk)462

≤ m (xk, sk)−m (xk, 0) + (∇f (xk)− gk)
T
sk +

(Lf + LhL
1
c

2
− 1

2η

)
∥sk∥2,

(3.4)

463
464

where the first inequality is due to A+
k ⊆ Ak and [11, Lemma 3.2] which shows that465

mi(xk, sk) ≥ |vTi (xk+sk)|p for i ∈ Ak. Then (3.4) indicates fromm(xk, 0) ≥ m(xk, sk)466

that467

(3.5) Qϵ (xk + sk)−Qϵ (xk) ≤ (∇f (xk)− gk)
T
sk +

(Lf + LhL
1
c

2
− 1

2η

)
∥sk∥2.468

Hence, summing up (3.5) over k ∈ K and by Qϵ(x) ≥ Q∗
ϵ for all x ∈ F implies (3.3).469

For a given µ > 0 which is independent of ϵ, we define470

Ok,µ :=
{
i ∈ A+

k : min
{
|vTi xk|, |vTi (xk + sk)|

}
≥ µ

}
,(3.6)471

Q̄k,µ (x) := f (x) +
∑

i∈Ok,µ

mi(x, 0),(3.7)472

T̄k,µ (x, s) := f (x) +∇f (x)T s+
∑

i∈Ok,µ

mi (x, s) .(3.8)473

474

The following lemma characterizes the relation between derivatives of Q̄k,µ and T̄k,µ.475

Lemma 3.3. It holds that for any k ≥ 1,476

(3.9) ∥∇Q̄k,µ (xk + sk)−∇sT̄k,µ (xk, sk) ∥ ≤ L (µ) ∥sk∥,477

where L (µ) := Lf + p(2−p)
1−p µp−2.478
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Proof. By definitions of Qk,µ and Tk,µ, it is easy to obtain479

∥∇Q̄k,µ (xk + sk)−∇sT̄k,µ (xk, sk) ∥480

≤ ∥∇f(xk + sk)−∇f(xk)∥+
∑

i∈Ok,µ

∥∇(|vTi x|p)|x=xk+sk −∇smi(xk, sk)∥.(3.10)481

482

On the one hand, the Lipschitz continuity of ∇f ensures483

(3.11) ∥∇f(xk + sk)−∇f(xk)∥ ≤ Lf∥sk∥.484

On the other hand, it follows from [11, Lemma 5.2] that485 ∑
i∈Ok,µ

∥∇(|vTi x|p)|x=xk+sk −∇smi(xk, sk)∥ ≤ p(2− p)

1− p
µp−2|vTi sk|486

≤ p(2− p)

1− p
µp−2∥sk∥.(3.12)487

488

Hence, plugging (3.11) and (3.12) into (3.10) leads to the conclusion.489

To proceed, we assume the following assumption holds.490

Assumption 3.2. For problem (1.1), it holds that491

0 ∈ vTi F , Projker(vT
i )F ⊆ F , i = 1, ..., n̄.492

Under Assumption 3.2 , it is easy to check that for any x ∈ F , (I − viv
T
i )x ∈ F due493

to ∥vi∥ = 1, for any i = 1, . . . , n̄. A simple example of F satisfies Assumption 3.2 is494

that F = {x|l ≤ V x ≤ u}, where −l, u ∈ Rn̄
+.495

We now set ω satisfying496

(3.13) 0 < ω < min
{
6

1
p−1 ,

( p

2(LhL0
c + χ+ 2MF /η)

) 1
1−p
}
.497

Next lemma characterizes properties of points that are close to singularity.498

Lemma 3.4. Suppose ϵ < ω, |vTi xk| < ω for some i ∈ [n̄] and sk ̸= 0. Then it499

holds that |vTi (xk + sk)| ≤ ϵ or |vTi (xk + sk)| ≥ ω.500

Proof. It is straightforward to obtain the conclusion if i ∈ [n̄]\A+
k . We now501

assume by contradiction that |vTi xk| < ω and502

(3.14) |vTi (xk + sk)| ∈ (ϵ, ω) for some i ∈ A+
k .503

Besides, by (2.7) there exists δk ∈ (0, 1] such that ψϵ,δk
m (xk, sk) ≤ p|vTi (xk + sk)|δk.504

As vTi , i ∈ [n̄] are orthogonal, by the definition of R+
k and (2.8) we have R{i} :=505

span{vi} ⊆ R+
k . Consider the following minimization problem:506

(3.15) min
xk+sk+d∈F

d∈R{i},∥d∥≤δk

qk(d)507

with

qk(d) := h(ck + Jk(sk + d))−h(ck + Jksk)+ dT∇sm0(xk, sk)+
∑
i∈A+

k

dT∇smi(xk, sk).
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It is worthy to note that d = 0 is a feasible point of (3.15). Then the optimal function508

value of (3.15) must be nonpositive, thus509

∣∣∣ min
xk+sk+d∈F

d∈R{i},∥d∥≤δk

qk(d)
∣∣∣ ≤ ∣∣∣ min

xk+sk+d∈F
d∈R+

k ,∥d∥≤δk

qk(d)
∣∣∣ = ψϵ,δk

m (xk, sk) ≤ pδk|vTi (xk + sk)|.
(3.16)

510

511

Note that it follows from Projker(vT
i )
F ⊆ F and xk + sk ∈ F that512

xk + sk − vTi (xk + sk)vi = xk + sk − viv
T
i (xk + sk) = Projker(vT

i )
(xk + sk) ∈ F .513

514

Then by the convexity of F and δk ∈ (0, 1] we obtain xk + sk + d ∈ F , where515

d = −δk(vTi (xk + sk))vi. Obviously, d ∈ span{vi} = R{i}. And it follows from (3.14)516

that |vTi (xk + sk)| < ω < 1, thus ∥d∥ = δk|vTi (xk + sk)| < δk. Then d is a feasible517

point of problem (3.15). Moreover, it holds that518

(3.17) qk(d) = −δk(vTi (xk + sk))Ḡk,519

where520

Ḡk = −h(ck + Jk(sk + d))− h(ck + Jksk)

δk(vTi (xk + sk))
+ vTi

(
∇sm0(xk, sk) +

∑
i∈A+

k

∇smi(xk, sk)
)
.521

We next derive a lower bound of |Ḡk|. By the definition of mi and s
k
i = vTi sk, we have522

mi(xk, sk) = |vTi xk|p + p|vTi xk|p−1 ·


ski , if vTi xk > 0, vTi (xk + sk) > 0,

−2vTi xk − ski , if vTi xk > 0, vTi (xk + sk) < 0,

2vTi xk + ski , if vTi xk < 0, vTi (xk + sk) > 0,

−ski , if vTi xk < 0, vTi (xk + sk) < 0,

523

which implies from |vTi xk| < ω that524

(3.18)
sgn(∇simi(xk, sk)) = sgn(vTi (xk + sk)) and |∇simi(xk, sk)| = p|vTi xk|p−1 > pωp−1.525

As ∥x∥ ≤MF for any x ∈ F , ∥sk∥ ≤ 2MF . Then it indicates from (3.2) that526

∥∇sm0(xk, sk)∥ = ∥gk +
1

η
sk∥ ≤ χ+

2MF

η
.527

It together with the Lipschitz continuity of h, ∥d∥ = δk|vTi (xk + sk)|, (3.2), (3.18),528

vTi
∑

i∈A+
k
∇smi(xk, sk) = ∇simi(xk, sk) and ω < ( p

2(LhL0
c+χ+2MF /η) )

1
1−p derives the529

following lower bound:530

|Ḡk| =
∣∣∣ 1

−δkvTi (xk + sk)
(h(ck + Jk(sk + d))− h(ck + Jksk)) + vTi ∇sm0(xk, sk)531

+∇simi(xk, sk)
∣∣∣532

≥ |∇simi(xk, sk)| −
1

δk|vTi (xk + sk)|
|h(ck + Jk(sk + d))− h(ck + Jksk)|533

− |vTi ∇sm0(xk, sk)|534

≥ p|vTi xk|p−1 − LhL
0
c − ∥∇sm0(xk, sk)∥535

>pωp−1 −
(
LhL

0
c + χ+

2MF

η

)
≥ 1

2
pωp−1.(3.19)536

537
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Furthermore, (3.18) indicates sgn(Ḡk) = sgn(∇simi(xk, sk)) = sgn(vTi (xk + sk)), thus538

by (3.17), qk(d) = −δk(vTi (xk + sk))Ḡk = −δk|vTi (xk + sk)||Ḡk| < 0.539

We now denote by d∗ the optimal solution of (3.15). Obviously, d∗ ̸= 0. As540

d∗ ∈ R{i}, there exists α ∈ R such that d∗ = αvi, thus α ̸= 0 and ∥d∗∥ = |α|. Then541

we obtain qk(d
∗) = αGk, where542

Gk =
1

α
(h(ck + Jk(sk + d∗))−h(ck + Jksk))+v

T
i (∇sm0(xk, sk)+

∑
i∈A+

k

∇smi(xk, sk)).543

Again by the negativeness of the optimal function value of (3.15) it holds that544

(3.20) sgn(α) = −sgn(Gk) and |qk(d∗)| = |αGk| = ∥d∗∥|Gk|.545

Meanwhile, by the optimality of d∗ we obtain546

(3.21) ∥d∗∥|Gk| ≥ δk|vTi (xk + sk)||Ḡk|.547

We next derive a lower bound of ∥d∗∥. From (3.19) it follows that548 ∣∣∣∣−h(ck + Jk(sk + d))− h(ck + Jksk)

δk(vTi (xk + sk))
+ vTi ∇sm0(xk, sk)

∣∣∣∣ ≤ 1

2
|∇simi(xk, sk)|.549

Moreover, analogy to (3.19) we can obtain |Gk| ≥ 1
2pω

p−1 and550 ∣∣∣∣h(ck + Jk(sk + d∗))− h(ck + Jksk)

α
+ vTi ∇sm0(xk, sk)

∣∣∣∣ ≤ 1

2
|∇simi(xk, sk)|.551

Then by definitions of Gk and Ḡk, we have552

|Ḡk|
|Gk|

≥
|∇simi(xk, sk)| − | − h(ck+Jk(sk+d))−h(ck+Jksk)

δk(vT
i (xk+sk))

+ vTi ∇sm0(xk, sk)|

|∇simi(xk, sk)|+ |h(ck+Jk(sk+d∗))−h(ck+Jksk)
α + vTi ∇sm0(xk, sk)|

553

≥
1
2 |∇simi(xk, sk)|
3
2 |∇simi(xk, sk)|

=
1

3
,554

555

which indicates from (3.21) that ∥d∗∥ ≥ 1
3δk|v

T
i (xk + sk)|. Based on above inequality556

together with (3.16), (3.20) and |Gk| ≥ 1
2pω

p−1 we obtain557

1

6
pωp−1δk|vTi (xk + sk)| ≤ |qk(d∗)| ≤ pδk|vTi (xk + sk)|,558

559

which, however, contradicts ω < 6
1

p−1 . Thus, the conclusion is proved by contradic-560

tion.561

To analyze oracle complexity of Algorithm 2.1, we first introduce the following562

index sets:563

Ku := {k ∈ K : xk = xk+1}, Kϵ := {k ∈ K\Ku : Ak\Ak+1 ̸= ∅},564

Kω := {k ∈ K\Ku : ∥sk∥ ≥ 1

4
ω}, K♡ := K\ (Ku ∪ Kϵ ∪ Kω) .565

566

Due to the monotonely non-increasing property of Ak, it is easy to have567

(3.22) |Kϵ| ≤ n̄.568
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Since Algorithm 2.1 terminates when both k and k − 1 belong to Ku, it must hold569

that570

|Ku| ≤|K\Ku|+ 2 ≤ |K♡ ∪ Kω|+ n̄+ 2.(3.23)571572

Define α = 3
4ω, where ω satisfies (3.13). The following lemma shows properties573

of Ak and Ak+1 with k ∈ K♡ which are also discussed in [11].574

Lemma 3.5. Suppose that ϵ < α. Then the following relations hold:575

(3.24) Ak = Ak+1 = Ok,α, k ∈ K♡,576

where Ok,α is defined in (3.6).577

Proof. By (2.8) and the definition of K♡, it is easy to have Ak = Ak+1 for any578

k ∈ K♡. For any k ∈ K♡, we partition Ak into the following sets:579

I♡,k :=
{
i ∈ Ak : min{|vTi xk|, |vTi (xk + sk)|} ≥ α

}
,580

I♢,k :=
{
i ∈ Ak :

(
|vTi xk| ≥ ω, |vTi (xk + sk)| ∈ (ϵ, α)

)
581

or
(
|vTi xk| ∈ (ϵ, α), |vTi (xk + sk)| ≥ ω

)}
,582

I♣,k :=
{
i ∈ Ak : |vTi xk| ∈ (ϵ, ω) and |vTi (xk + sk)| ∈ (ϵ, ω)

}
.583584

Note that for any i ∈ I♢,k,585

∥sk∥ ≥ |vTi sk| ≥
∣∣|vTi (xk + sk)| − |vTi xk|

∣∣ ≥ ω − α =
1

4
ω.586

It then indicates i ∈ Kω. Thus I♢,k = ∅. Meanwhile, it follows from Lemma 3.4 that587

I♣,k = ∅. Thus, Ak = I♡,k, namely, Ak =
{
i : min

{
|vTi xk|, |vTi (xk + sk)|

}
≥ α

}
,588

k ∈ K♡. It then yields (3.24) by definition of Ok,α in (3.6).589

Motivated by Lemma 2.1, we suppose that δk, k ∈ K is uniformly lower bounded590

by δ > 0 which is independent of ϵ. Then by the boundedness of F , there exists591

M > 0 such that ∥sk∥ ≤ ∥xk+1∥ + ∥xk∥ ≤ 2MF ≤ Mδ ≤ Mδk for any k ∈ K. The592

lemma below shows that when Algorithm 2.1 terminates at Step 5 with sk ̸= 0, the593

output is an approximate first-order stationary point of (1.1), provided that input w̄594

and β̄ in Algorithm 2.1 satisfy595

(3.25) β̄ ≤ min

{
1

3
w̄,

1− β − θ

max(L (α) + 1/η + LhL1
c(M + 1), L̄)

}
.596

We would like to mention that (3.25) can ensure β̄L̄ < 1, which meets the requirement597

on L̄ in Assumption 3.1.598

Lemma 3.6. Suppose that ϵ < α. If Algorithm 2.1 terminates at Step 5 with599

sk ̸= 0 and β̄ satisfies (3.25), then xk+1 is an (ϵ, δ)-approximate first-order stationary600

point of (1.1).601

Proof. When Algorithm 2.1 terminates at Step 5 with sk ̸= 0 and k /∈ Kϵ, k /∈ Ku.
Besides, it follows from the algorithmic framework that

∥sk∥+ ∥sk−1∥ ≤ β̄ϵ ≤ 1

3
w̄ϵ <

1

3
α =

1

4
ω,

which indicates k /∈ Kω, thus k ∈ K♡ and (3.24) holds. Recall that (2.7) holds with602

δ = δk, for some δk ∈ (0, 1], i.e.603

ψϵ,δk
m (xk, sk) ≤ min

{
θϵ, p min

i∈Ak+1

|vTi xk+1|
}
δk, for some δk ∈ (0, 1].604
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Note that by (2.1) and (3.24) as well as (3.7),605

ψϵ,δk
Q (xk+1)606

= Qϵ(xk+1)− min
xk+1+d∈F

d∈Rk+1,∥d∥≤δk

TQϵ(xk+1, d)607

= h(ck+1)608

− min
xk+1+d∈F

d∈Rk+1,∥d∥≤δk

{
h(ck+1 + Jk+1d) + dT∇

(
f(x) +

∑
i∈Ak+1

|vTi x|p
)
|x=xk+1

}
609

= h(ck+1)− min
xk+1+d∈F

d∈Rk+1,∥d∥≤δk

{
h(ck+1 + Jk+1d) +∇Q̄k,α(xk+1)

T d
}
.(3.26)610

611

As the minimization problem in (3.26) is convex, it admits a global minimizer, which612

we still denote as d with a slight abuse of notation. Obviously, ∥d∥ ≤ δk. We next613

show by contradiction that ψϵ,δk
Q (xk+1) ≤ ϵδk. We now assume that it were not true.614

Then it holds that ψϵ,δk
Q (xk+1) = h(ck+1)−h(ck+1 + Jk+1d)−∇Q̄k,α (xk+1)

T
d > ϵδk.615

It can further derive616

ψϵ,δk
Q (xk+1)617

= −
(
∇Q̄k,α (xk+1)

)T
d+

(
∇sT̄k,α (xk, sk)

)T
d−

(
∇sT̄k,α (xk, sk)

)T
d618

− 1

2η
[∇
(
∥s∥2

)
|s=sk ]

T d+
1

2η
[∇
(
∥s∥2

)
|s=sk ]

T d+ h(ck+1)− h(ck+1 + Jk+1d)619

≤ ∥∇Q̄k,α (xk+1)−∇sT̄k,α (xk, sk) ∥∥d∥ −
[
∇s

(
T̄k,α (xk, s) +

∥s∥2

2η

)∣∣
s=sk

]T
d620

+
1

η
sTk d+ h(ck+1)− h(ck+1 + Jk+1d)621

≤
(
L (α) +

1

η
+ LhL

1
c(M + 1)

)
∥sk∥δk + ∥∇f (xk)− gk∥δk + θϵδk,622

623

where the last inequality follows from ∥d∥ ≤ δk, (3.9), (3.24), and624

h(ck+1)− h(ck+1 + Jk+1d)−
[
∇s

(
T̄k,α (xk, s) +

1

2η
∥s∥2

)∣∣∣
s=sk

]T
d625

= − (∇f (xk)− gk)
T
d+ h(ck+1)− h(ck+1 + Jk+1d)626

−
[
∇sm0(xk, sk) +

∑
i∈Ak

∇smi(xk, sk)
]T
d627

≤ ∥∇f (xk)− gk∥∥d∥+max
{
0, h(ck+1)− h(ck+1 + Jk+1d)628

−
[
∇sm0(xk, sk) +

∑
i∈Ak+1

∇smi (xk, sk)
]T
d
}

629

≤ ∥∇f (xk)− gk∥∥d∥+ ψϵ,δk
m (xk, sk)+|h(ck+1)− h(ck + Jksk)|630

+|h(ck + Jk(sk + d))− h(ck+1 + Jk+1d)|631

≤ ∥∇f (xk)− gk∥δk + θϵδk + LhL
1
c(M + 1)∥sk∥δk632633

due to ψϵ,δk
m (xk, sk) ≤ θϵδk,634

|h(ck+1)− h(ck + Jksk)| ≤
LhL

1
c

2
∥sk∥2 ≤ LhL

1
cM

2
δk∥sk∥635
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and636

|h(ck + Jk(sk + d))− h(ck+1 + Jk+1d)|637

≤ Lh∥ck + Jk(sk + d)− ck+1 − Jk+1d∥638

≤ Lh∥ck + Jksk − ck+1∥+ Lh∥Jk − Jk+1∥∥d∥639

≤ LhL
1
c

2
∥sk∥2 + LhL

1
c∥sk∥∥d∥640

≤ LhL
1
c

(M
2

+ 1
)
δk∥sk∥.641

642

Then it follows from ψϵ,δk
Q (xk+1) > ϵδk and Assumption 3.1 with β < 1− θ that643

ϵδk <
(
L(α) +

1

η
+ LhL

1
c(M + 1)

)
∥sk∥δk + L̄∥sk−1∥δk + (β + θ)ϵδk644

645

which implies646

(1− β − θ) ϵ < max
{
L (α) +

1

η
+ LhL

1
c(M + 1), L̄

}
(∥sk∥+ ∥sk−1∥).647

648

However, this contradicts ∥sk∥+ ∥sk−1∥ ≤ β̄ϵ by the setting of β̄. Therefore, xk+1 is649

an (ϵ, δ)-approximate first-order stationary point of (1.1).650

Remark 3.7. Lemmas 3.1 and 3.6 show that Algorithm 2.1 can always return an651

approximate first-order stationary point of (1.1) when it terminates.652

We now partition K♡ into K1
♡ ∪ K2

♡, where653

K1
♡ := {k ∈ K♡ : ∥sk∥+ ∥sk−1∥ ≥ β̄ϵ}, K2

♡ := {k ∈ K♡ : ∥sk∥+ ∥sk−1∥ < β̄ϵ}.654

By the definition of K♡, Lemma 3.6 and termination conditions of Algorithm 2.1, we655

know that |K2
♡| ≤ 1, thus |K♡| ≤ |K1

♡| + 1. Then it together with (3.22) and (3.23)656

implies that the total number of iterations until Algorithm 2.1 terminates satisfies657

|K| ≤ |Ku|+ |K♡ ∪ Kω|+ |Kϵ| ≤ |K♡ ∪ Kω|+ n̄+ 2 + |K♡ ∪ Kω|+ n̄658

≤ 2|K1
♡ ∪ Kω|+ 2n̄+ 4.(3.27)659660

Based on above relations, to estimate the upper bound of |K|, it suffices to derive an661

upper bound on |K1
♡ ∪ Kω|. Inspired by this, we establish the oracle complexity of662

Algorithm 2.1 in the theorem below. In the following we assume that the positive663

parameter η in (2.6) satisfies664

(3.28)
1

16η
− Lf + LhL

1
c

16
− βL̄− β

β̄
≥ 1,

1

4η
− Lf + LhL

1
c

4
− βL̄− 3β ≥ 1.665

It is noteworthy that the setting of β̄ in (3.25) together with (3.28) and Assumption666

3.1 ensures the existence of desired input parameters ω̄, β̄, η, L̄ and β. We now proceed667

under such parameter settings.668

Theorem 3.8. Suppose that ϵ < α. Then there exists a positive constant C =669

O(1) such that
∑

k∈K ∥sk∥2 ≤ C. Furthermore, the maximum iteration number until670

Algorithm 2.1 terminates is in order of O(ϵ−2).671
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Proof. It follows from Lemma 3.2, s−1 = 0 and Assumption 3.1 that672 ( 1

2η
− Lf + LhL

1
c

2

)∑
k∈K

∥sk∥2673

≤
∑
k∈K

∥∇f(xk)− gk∥∥sk∥+Qϵ(x0)−Q∗
ϵ674

≤
∑
k∈K

βmax
{
L̄min{∥sk−1∥, D}, ϵ

}
∥sk∥+Qϵ(x0)−Q∗

ϵ675

≤
∑
k∈K

β
(
L̄∥sk−1∥∥sk∥+ ϵ∥sk∥

)
+Qϵ(x0)−Q∗

ϵ676

≤
∑
k∈K

β
( L̄
2

(
∥sk∥2 + ∥sk−1∥2

)
+ ϵ∥sk∥

)
+Qϵ(x0)−Q∗

ϵ677

≤
∑
k∈K

β(L̄∥sk∥2 + ϵ∥sk∥) +Qϵ(x0)−Q∗
ϵ .(3.29)678

679

As680

(3.30) ∥sk∥ ≥ 1

3
α ≥ 1

3
ϵ, k ∈ Kω,681

it indicates682

(3.31) L̄∥sk∥2 + ϵ∥sk∥ ≤ (L̄+ 3)∥sk∥2, k ∈ Kω.683

Moreover, by definition of K1
♡ we have684

∥sk∥+ ∥sk−1∥ ≥ β̄ϵ, k ∈ K1
♡,(3.32)685686

thus687

L̄∥sk∥2 + ϵ∥sk∥ ≤ L̄∥sk∥2 + β̄−1(∥sk∥+ ∥sk−1∥)∥sk∥688

≤ (L̄+ β̄−1)(∥sk∥+ ∥sk−1∥)∥sk∥, k ∈ K1
♡.(3.33)689690

Since sk = 0 for any k ∈ Ku, plugging (3.31) and (3.33) into (3.29) yields691 ( 1

2η
− Lf + LhL

1
c

2

)∑
k∈K

∥sk∥2692

≤
∑

k∈K1
♡

β(L̄+ β̄−1) (∥sk∥+ ∥sk−1∥) ∥sk∥+
∑
k∈Kω

β
(
L̄+ 3

)
∥sk∥2693

+
∑

k∈Kϵ∪K2
♡

β
(
L̄∥sk∥2 + ϵ∥sk∥

)
+Qϵ(x0)−Q∗

ϵ .(3.34)694

695

Recall that ∥sk∥ < β̄ϵ < 1 for any k ∈ K2
♡. Besides, by the boundedness of F we have696

∥sk∥ ≤ 2MF for any k ∈ Kϵ. Then it follows from (3.34) that697 ( 1

2η
− Lf + LhL

1
c

2

)∑
k∈K

∥sk∥2698

≤
∑

k∈K1
♡

β(L̄+ β̄−1) (∥sk∥+ ∥sk−1∥)2 +
∑
k∈Kω

β
(
L̄+ 3

)
∥sk∥2699

+ n̄β(4L̄M2
F + 2ϵMF ) + β(L̄+ ϵ) +Qϵ(x0)−Q∗

ϵ ,(3.35)700701
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where the last term in above inequality uses the facts that |Kϵ| ≤ n̄ and |K2
♡| ≤ 1.702

Notice that703 ∑
k∈K

∥sk∥2 =
1

2

(∑
k∈K

∥sk∥2 +
∑
k∈K

∥sk∥2
)

704

≥ 1

4

∑
k∈K

(∥sk∥2 + ∥sk−1∥2) +
1

2

∑
k∈Kω

∥sk∥2705

≥ 1

8

∑
k∈K

(∥sk∥+ ∥sk−1∥)2 +
1

2

∑
k∈Kω

∥sk∥2706

≥ 1

8

∑
k∈K1

♡

(∥sk∥+ ∥sk−1∥)2 +
1

2

∑
k∈Kω

∥sk∥2,707

708

which further derives709 ( 1

2η
− Lf + LhL

1
c

2

)∑
k∈K

∥sk∥2710

≥
( 1

16η
− Lf + LhL

1
c

16

) ∑
k∈K1

♡

(∥sk∥+ ∥sk−1∥)2 +
( 1

4η
− Lf + LhL

1
c

4

) ∑
k∈Kω

∥sk∥2.711

712

Then it together with (3.35) and the boundedness of F implies that713

( 1

16η
− Lf + LhL

1
c

16
− βL̄− β

β̄

) ∑
k∈K1

♡

(∥sk∥+ ∥sk−1∥)2714

+
( 1

4η
− Lf + LhL

1
c

4
− βL̄− 3β

) ∑
k∈Kω

∥sk∥2 ≤ Γ̄715

716

with Γ̄ = n̄β(4L̄M2
F +2ϵMF )+β(L̄+ϵ)+Qϵ (x0)−Q∗

ϵ . Furthermore, from the setting717

of η as in (3.28) we attain718

(3.36)
∑

k∈K1
♡

(∥sk∥+ ∥sk−1∥)2 +
∑
k∈Kω

∥sk∥2 ≤ Γ̄719

which leads to the conclusion from (3.35) with C = Γ̄(1+βL̄+βmax{β̄−1,3})
1/(2η)−(Lf+LhL1

c)/2
. Obviously,720

C = O(1).721

Moreover, by (3.30) and (3.32) we obtain722

∑
k∈K1

♡

(∥sk∥+ ∥sk−1∥)2 +
∑
k∈Kω

∥sk∥2 ≥ β̄2ϵ2|K1
♡|+

1

9
ϵ2|Kω|.723

Then it together with (3.36) implies |K1
♡| + |Kω| = O(ϵ−2). Hence by (3.27) the724

maximum iteration number until the termination of Algorithm 2.1 is in order O(ϵ−2).725

Since only one inexact gradient is evaluated at each iteration, the oracle complex-726

ity of Algorithm 2.1 is in order O(ϵ−2).727
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4. Stochastic variant. For problem (1.1), when f owns a finite-sum structure728

(1.2), as the sample size N can be very large, it will be expensive to go through all729

component functions to compute exact gradients, thereby only approximate gradients730

are available. To cope with this type of problems, we propose a stochastic variant of731

Algorithm 2.1. The proposed algorithm follows the main framework of Algorithm 2.1,732

with InexactOracle specified in Algorithm 4.1. Here inexact gradients are computed733

by calling stochastic first-order oracles in a recursive way [23] and l is a positive integer.734

Algorithm 4.1 InexactOracle(xk, xk−1, gk−1, k, l)

Input: Index set Ik generated uniformly at random without replacement from
{1, . . . , N}.

1: if mod (k, l) = 0 then
2: Compute gk = 1

|Ik|
∑

i∈Ik
∇fi(xk).

3: else
4: Compute gk = 1

|Ik|
∑

i∈Ik
(∇fi(xk)−∇fi(xk−1)) + gk−1.

5: end if

735

Note that Assumption 3.1 plays a key role in supervising the analysis in previous736

section. In this section, adopting a proper sampling strategy we can guarantee As-737

sumption 3.1 with high probability. We then establish the complexity of the proposed738

algorithm, in terms of number of stochastic first-order oracles, to find an approximate739

first-order stationary point. To proceed the analysis, we first introduce a lemma re-740

garding the concentration inequality under sampling without replacement. As this741

lemma is a duplicate of [27, Theorem 4], we omit its proof here.742

Lemma 4.1. Let X = {Xi ∈ Rn, i = 1, . . . , N}. Suppose ∥Xi∥ ≤ σ for all i =743

1, . . . , N and some σ > 0. Denote λ = 1
N

∑N
i=1Xi. Let A1, . . . , Aν , ν < N be744

samples from X under the sampling without replacement. Then, for any ϵ > 0, the745

following bound holds:746

Prob
(∥∥∥1
ν

ν∑
i=1

Ai − λ
∥∥∥ ≥ ϵ

)
≤ 2 (n+ 1) exp

(
− νϵ2

8σ2
(
1 + 1

ν

) (
1− ν

N

)).747

Given ζ ∈ (0, 1), following Lemma 4.1, we can achieve748

Prob
(∥∥∥1
ν

ν∑
i=1

Ai − λ
∥∥∥ ≤ ϵ

)
≥ 1− ζ , if ν ≥

[ 1
N

+
ϵ2

16σ2 log (2 (n+ 1) /ζ)

]−1

.749

We assume that ∇fi, i = 1, . . . , N are Lipschitz continuously differentiable. With a750

slight abuse of notations, we still use Lf and κ to denote the Lipschitz constant and751

upper bound of ∇fi, i = 1, . . . , N over F . Then for any k with mod (k, l) = 0, gk752

generated by Algorithm 4.1 satisfies753

Prob (∥gk −∇f(xk)∥ ≤ βϵ) ≥ 1− ζ, if |Ik| ≥
[ 1
N

+
β2ϵ2

16κ2 log (2 (n+ 1) /ζ)

]−1

.754

For those k with mod (k, l) ̸= 0, the lemma below provides a sampling strategy such755

that Assumption 3.1 can be satisfied with high probability.756
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Lemma 4.2. Under sampling without replacement, for any k with mod (k, l) ̸= 0,757

gk generated by Algorithm 4.1 satisfies Assumption 3.1 with probability at least 1− ζ,758

provided that759

(4.1) |Ij | ≥


[

1
N + β2ϵ2/l2

256L2
f∥xj−xj−1∥2 log(4(n+1)l/ζ)

]−1

, j = k, k − 1, . . . , ⌊k/l⌋l + 1,[
1
N + β2ϵ2

256κ2 log(4(n+1)/ζ)

]−1

, j = ⌊k/l⌋l.
760

Proof. For any k with mod (k, l) ̸= 0, it follows from the algorithmic framework761

that762

gk −∇f(xk)763

=
1

|Ik|
∑
i∈Ik

[∇fi(xk)−∇fi(xk−1)] + gk−1 −∇f(xk)764

=
1

|Ik|
∑
i∈Ik

[∇fi(xk)−∇fi(xk−1)− (∇f(xk)−∇f(xk−1))] + gk−1 −∇f(xk−1).765

766

We thus obtain gk −∇f(xk) =
∑k

j=⌊k/l⌋l Yj , where Yj :=
1

|Ij |
∑

i∈Ij
Zj,i with767

Zj,i :=

{
∇fi(xj)−∇fi(xj−1)− (∇f(xj)−∇f(xj−1)), j = k, k − 1, . . . , ⌊k/l⌋l + 1,

∇fi(xj)−∇f(xj), j = ⌊k/l⌋l
768

769

for i = 1, . . . , N . Define ϵ̄k := βmax
{
L̄min(∥sk−1∥, D), ϵ

}
with L̄, D and β in770

Assumption 3.1. For notation simplicity we denote by Bj the event ∥Yj∥ ≤ ϵ̄k
2(k−⌊k/l⌋l)771

with j = k, . . . , ⌊k/l⌋l + 1, and by Bj the event ∥Yj∥ ≤ ϵ̄k
2 with j = ⌊k/l⌋l. We use772

B̄j to denote the complement of Bj . Then773

Prob(∥gk −∇f(xk)∥ ≤ ϵ̄k) ≥ Prob
( k⋂

j=⌊k/l⌋l

Bj

)
= 1− Prob

( k⋃
j=⌊k/l⌋l

B̄j

)
774

775

which is no less than 1−
∑k

j=⌊k/l⌋l Prob(B̄j) by the union bound. Hence, to achieve776

that (3.1) holds with probability at least ζ, it suffices to require777

(4.2) Prob(B̄j) =

Prob
(
∥Yj∥ > ϵ̄k

2(k−⌊k/l⌋l)

)
≤ ζ

2(k−⌊k/l⌋l) , j = k, . . . , ⌊k/l⌋l + 1,

Prob
(
∥Yj∥ > ϵ̄k

2

)
≤ ζ

2 , j = ⌊k/l⌋l.
778

Due to the smoothness of fi, ∥Zj,i∥ ≤ 2Lf∥xj −xj−1∥, j = k, k−1, . . . , ⌊k/l⌋l+1 and779

∥Z⌊k/l⌋l,i∥ ≤ 2κ, i = 1, . . . , N . As
∑N

i=1 Zj,i = 0 for any j = k, . . . , ⌊k/l⌋l, by Lemma780

4.1 with λ = 0, ν = |Ij | and Ai′ = Zj,i′ , i
′ = 1, . . . , ν, i′ ∈ [N ], we obtain that (4.2)781

can be achieved provided that782

|Ij | ≥


[

1
N +

β2 max{L̄2 min(∥sk−1∥2,D2),ϵ2}/(2(k−⌊k/l⌋l))2

64L2
f∥xj−xj−1∥2 log(4(n+1)(k−⌊k/l⌋l)/ζ)

]−1

, j = k, . . . , ⌊k/l⌋l + 1,[
1
N +

β2 max{L̄2 min(∥sk−1∥2,D2),ϵ2}/4
64κ2 log(4(n+1)/ζ)

]−1

, j = ⌊k/l⌋l,
783

784

which can be guaranteed by (4.1) due to ϵ̄k ≥ βϵ and k − ⌊k/l⌋l ≤ l.785
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We are now ready to present the oracle complexity in terms of total number of786

stochastic first-order oracles required to guarantee that Algorithm 2.1 can find an787

(ϵ, δ)-approximate first-order stationary point of (1.1)-(1.2).788

Theorem 4.3. Suppose that conditions of Theorem 3.8 and Lemma 4.2 with l =789

O(N1/3) hold, and Algorithm 2.1 with Algorithm 4.1 called to compute inexact oracles790

terminates in finite iterations. Then for given ρ ∈ (0, 1), with probability at least 1−ρ,791

it returns an (ϵ, δ)-approximate first-order stationary point of (1.1)-(1.2) with the792

oracle complexity in order O(N +N
2
3 ϵ−2 log( 4(n+1)N

1
3

ϵ2ρ )). Consequently, the oracle793

complexity of Algorithm 2.1 with Algorithm 4.1 is in order Õ(ϵ−2).794

Proof. We still use K to denote the set of all iteration indices until termination. As795

can be seen from previous section, to make sure the algorithm returns an approximate796

stationary point with probability at least 1−ρ, it suffices to guarantee with probability797

at least 1 − ρ that Assumption 3.1 holds for all iterations in K. To realize this,798

Assumption 3.1 should be satisfied at each one of the iterations with probability at799

least 1− ζ for some ζ ∈ [0, 1] such that 1− |K|ζ ≥ 1− ρ. We may simply set ζ = ρ
|K| .800

Furthermore, to achieve Assumption 3.1 with probability at least 1−ζ at jth iteration801

for any given j ∈ K, by Lemma 4.2 the size of Ij can be equal to the right side of802

(4.1) after rounding up. With above settings, it holds with probability at least 1− ρ803

that |K| = O(ϵ−2) and
∑

j∈K ∥sj∥2 ≤ C, where C = O(1) by Theorem 3.8. Hence, to804

reach an (ϵ, δ)-approximate first-order stationary point with probability at least 1−ρ,805

the total number of stochastic first-order oracles is bounded by806

∑
i∈K

|Ii| =
∑

i:mod(i,l)=0

|Ii|+
|K|∑

i=⌊|K|/l⌋l+1

|Ii|+
⌊|K|/l⌋−1∑

i=0

l−1∑
j=1

|Iil+j |807

≤ ⌈|K|
l
⌉N +

|K|∑
i=⌊|K|/l⌋l+1

[ 1
N

+
β2ϵ2/l2

256L2
f∥xi − xi−1∥2 log (4 (n+ 1) l/ζ)

]−1

808

+

⌊|K|/l⌋−1∑
i=0

l−1∑
j=1

[ 1
N

+
β2ϵ2/l2

256L2
f∥xil+j − xil+j−1∥2 log (4 (n+ 1) l/ζ)

]−1

+ |K|809

≤ ⌈|K|
l
⌉N +

|K|∑
i=⌊|K|/l⌋l+1

256L2
f∥xi − xi−1∥2 log (4 (n+ 1) l/ζ)

β2ϵ2/l2
810

+

⌊|K|/l⌋−1∑
i=0

l−1∑
j=1

256L2
f∥xil+j − xil+j−1∥2 log (4 (n+ 1) l/ζ)

β2ϵ2/l2
+ |K|811

≤ ⌈|K|
l
⌉N + 256Cl2L2

f

1

β2ϵ2
log (4 (n+ 1) l/ζ) + |K|812

813

which derives the oracle complexity order by the setting of l.814

5. Extension to expectation case. In this section, we focus on solving the815

problem with f in the expectation form, given by:816

(5.1) min
x∈F

Q(x) := f(x) + h(c(x)) + ∥V x∥pp with f(x) := E[F(x, ξ)].817

Here, ξ ∈ Ξ represents a random variable following the probability function P, and818

F : Rn × Ξ → R is continuously differentiable with respect to x ∈ F for almost819
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every ξ ∈ Ξ. To address the challenges posed by problems in the expectation form,820

where the sample set can be infinite, we propose a modification to Algorithm 4.1 by821

randomly generating a subset of samples from Ξ, presented in Algorithm 5.1.

Algorithm 5.1 InexactOracle(xk, xk−1, gk−1, k, l)

Input: Generate a sample subset ξk uniformly at random from Ξ.
1: if mod (k, l) = 0 then
2: Compute gk = 1

|ξk|
∑

ξ∈ξk
∇xF(xk, ξ).

3: else
4: Compute gk = 1

|ξk|
∑

ξ∈ξk
(∇xF(xk, ξ)−∇xF(xk−1, ξ)) + gk−1.

5: end if

822

The aim of this section is to investigate the oracle complexity of Algorithm 2.1823

with Algorithm 5.1 called to compute stochastic first-order oracles. Before delving824

into the analysis, we introduce an assumption that stochastic oracles satisfy.825

Assumption 5.1. There exist ∆, Lf > 0 such that for all x ∈ F ,826

E[∇xF(x, ξ)] = ∇f(x), ∥∇xF(x, ξ)−∇f(x)∥ ≤ ∆ almost surely,827

and for any x, y ∈ F , ∥∇xF(x, ξ)−∇xF(y, ξ)∥ ≤ Lf∥x− y∥ almost surely.828

The following lemma presents the matrix Bernsterin inequality [26].829

Lemma 5.1. Let X1, . . . , Xν be i.i.d. random vectors in Rn, and satisfy E[Xi] = 0830

and ∥Xi∥ ≤ σ almost surely for some σ > 0 and any i = 1, . . . , ν. Define M :=831

max(∥
∑ν

i=1 E[XiX
T
i ]∥, ∥

∑ν
i=1 E[XT

i Xi]∥). Then for any t ≥ 0,832

Prob

(∥∥∥∥∥
ν∑

i=1

Xi

∥∥∥∥∥ ≥ t

)
≤ (n+ 1) · exp

(
−t2/2

M + σt/3

)
.833

Note that M ≤
∑ν

i=1 E[∥Xi∥2] ≤ νσ2. By Lemma 5.1, we obtain that for any834

ϵ > 0,835

Prob

(
1

ν

∥∥∥∥∥
ν∑

i=1

Xi

∥∥∥∥∥ ≥ ϵ

)
≤ (n+ 1) · exp

(
−νϵ2/2
σ2 + σϵ/3

)
.836

Then for gk, generated by Algorithm 5.1 with k s.t. mod (k, l) = 0, under Assumption837

5.1 and by Lemma 5.1 we attain838

Prob (∥gk −∇f(xk)∥ ≤ βϵ) ≥ 1− ζ, if |ξk| ≥
(
2∆2

β2ϵ2
+

2∆

3βϵ

)
log

(
n+ 1

ζ

)
.839

For those k with mod (k, l) ̸= 0, similar to Lemma 4.2, we can provide a sampling840

strategy such that Assumption 3.1 holds with high probability.841

Lemma 5.2. Let gk be generated by Algorithm 5.1. For any k with mod (k, l) ̸= 0,842

Assumption 3.1 holds at kth iteration with probability at least 1− ζ, provided that843

|ξj | ≥


(

32L2
f∥xj−xj−1∥2l2

β2ϵ2 +
8Lf∥xj−xj−1∥l

3βϵ

)
log
(

2(n+1)l
ζ

)
, j = k, . . . , ⌊k/l⌋l + 1,(

8∆2

β2ϵ2 + 4∆
3βϵ

)
log
(

2(n+1)
ζ

)
, j = ⌊k/l⌋l.

(5.2)

844

845
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Proof. By the computation of gk in Algorithm 5.1 and Yj := 1
|ξj |
∑

ξ∈ξj
Zj(ξ)846

with847

Zj(ξ) =

{
∇xF(xj , ξ)−∇xF(xj−1, ξ)−∇f(xj) +∇f(xj−1), j = k, . . . , ⌊k/l⌋l + 1,

∇xF(xj , ξ)−∇f(xj), j = ⌊k/l⌋l,
848

849

we obtain gk − ∇f(xk) =
∑k

j=⌊k/l⌋l Yj . Under Assumption 5.1 and due to the sm-850

moothness of f , ∥Zj(ξ)∥ ≤ 2Lf∥xj−xj−1∥, j = k, . . . , ⌊k/l⌋l+1 and ∥Z⌊k/l⌋l(ξ)∥ ≤ ∆.851

Similar to the analysis of Lemma 5.2, the remainder is to ensure (4.2). It follows from852

Lemma 5.1 that to achieve (4.2) it suffices to require853

|ξj | ≥


(

32L2
f∥xj−xj−1∥2(k−⌊k/l⌋l)2

ϵ̄2k
+

8Lf∥xj−xj−1∥(k−⌊k/l⌋l)
3ϵ̄k

)
log
(

2(n+1)(k−⌊k/l⌋l)
ζ

)
,

j = k, . . . , ⌊k/l⌋l + 1,(
8∆2

ϵ̄2k
+ 4∆

3ϵ̄k

)
log
(

2(n+1)
ζ

)
, j = ⌊k/l⌋l,

854

855

which can be guaranteed by (5.2) and ϵ̄k ≥ βϵ.856

We slightly abuse the notation and continue to use K to represent all the iteration857

indices until Algorithm 2.1 terminates, with Algorithm 5.1 being called to compute858

inexact oracles. According to Lemma 5.2, in order to achieve an (ϵ, δ)-approximate859

first-order stationary point with a probability at least 1−ρ, where ρ ∈ (0, 1), Assump-860

tion 3.1 must hold at each iteration with probability at least 1− ζ for ζ ∈ (0, 1) such861

that 1− |K|ζ ≥ 1− ρ. Therefore, we set ζ = ρ
|K| . Consequently, by applying Theorem862

3.8 and setting l = O(|K|1/3) we can conclude that the total number of stochastic863

first-order oracles is bounded by:864

∑
i∈K

|ξi| =
∑

i:mod(i,l)=0

|ξi|+
|K|∑

i=⌊|K|/l⌋l+1

|ξi|+
⌊|K|/l⌋−1∑

i=0

l−1∑
j=1

|ξil+j |865

≤ ⌈|K|
l
⌉
(
8∆2

β2ϵ2
+

4∆

3βϵ

)
log

(
2(n+ 1)

ζ

)
866

+

|K|∑
i=⌊|K|/l⌋l+1

(
32L2

f∥xj − xj−1∥2l2

β2ϵ2
+

8Lf∥xj − xj−1∥l
3βϵ

)
log

(
2(n+ 1)l

ζ

)
867

+

⌊|K|/l⌋−1∑
i=0

l−1∑
j=1

(
32L2

f∥xj − xj−1∥2l2

β2ϵ2
+

8Lf∥xj − xj−1∥l
3βϵ

)
log

(
2(n+ 1)l

ζ

)
+ |K|868

= O
(
|K|
l
(
1

ϵ2
+

1

ϵ
) +

l2

ϵ2
+ |K|1/2 l

ϵ

)
log

(
2(n+ 1)l

ζ

)
+ |K|869

= O
(
ϵ−10/3 log

(
1

ρϵ

))
.870

871

We summarize above analysis into the following theorem.872

Theorem 5.3. Suppose that conditions of Theorem 3.8 and Lemma 5.2 hold, with873

l = O(|K|1/3), and Algorithm 2.1 with Algorithm 5.1 called to compute inexact oracles874

terminates in finite iterations. Then for given ρ ∈ (0, 1), with probability at least 1−ρ,875

the algorithm returns an (ϵ, δ)-approximate first-order stationary point of (5.1) with876

the oracle complexity in order O(ϵ−10/3 log(1/(ρϵ))), i.e., Õ(ϵ−10/3).877
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6. Numerical simulation. In this section, we consider the problem878

(6.1) min
x∈F

f(x) + ∥V x∥pp, s.t. Bx ≤ b,879

where F = {x ∈ Rn : bl ≤ x ≤ bu}, B ∈ Rr×n, b ∈ Rr, and f(x) = 1
N

∑N
i=1((Aix −880

ci)+)
2 with AT

i ∈ Rn and ci ∈ R. By penalizing the constraints of (6.1) with τ being881

a penalty parameter, we obtain the penalty approximation problem in the form of882

(1.1)-(1.2):883

(6.2) min
x∈[bl,bu]

1

N

N∑
i=1

((Aix− ci)+)
2 + τ∥(Bx− b)+∥1 + ∥V x∥pp.884

We apply Algorithm 2.1 to solve (6.2) by calling Algorithm 4.1 at kth iteration to885

compute inexact first-order oracle gk, k ≥ 0. Following (2.6), the subproblem at kth886

iteration is defined as887

min
s∈Rn

gTk s+ τ∥(Bxk +Bs− b)+∥1 +
∑
i∈Ak

p|vTi xk|p−1|vTi (xk + s)|+ 1

2
∥s∥2888

s.t. bl ≤ xk + s ≤ bu, vTi s = 0, i /∈ Ak.889890

By introducing z̄ = (Bxk + Bs − b)+ ∈ Rr, and ẑ = (ẑi, i ∈ Ak)
T ∈ R|Ak| with891

ẑi = |vTi (xk + s)|, i ∈ Ak, we obtain the following linearly constrained quadratic892

program:893

min
s,z̄,ẑ

gTk s+ τeT z̄ +
∑
i∈Ak

p|vTi xk|p−1ẑi +
1

2
∥s∥2894

s.t. bl ≤ xk + s ≤ bu, vTi s = 0, i /∈ Ak,895

0 ≤ z̄, Bxk +Bs− b ≤ z̄, −ẑi ≤ vTi (xk + s) ≤ ẑi, i ∈ Ak.896897

The numerical implementation was conducted in MATLAB R2022a on a PC898
with Intel I7-12700H 2.3GHZ CPU processor, 16GB RAM memory and a Windows899
operating system. We use Matlab default solver quadprog to solve each quadratic900
program. We generate the optimal solution x∗ with ∥x∗∥0 = K and set V , bl, bu, B,901
b, A, c as follows.902

IndexK = randperm(n); x0 = randn(n, 1); x∗ = zeros(n, 1);903

x∗(IndexK(1 : K)) = 2 ∗ (randn(K, 1) > 0.5) - 1; V= 0.1*eye(n);904

bl = -100 ∗ ones(n, 1); bu = 100 ∗ ones(n, 1); B = rand(n, n); B = orth(B’)’;905

b = B ∗x∗, A = randn(N, n); c = max(A ∗x∗ + 0.01 ∗ randn(N, 1), 0);906907

In particular, we set parameters n = 100, N = 105,K = 10, ϵ = 10−4, β̄ = 0.2, τ =908

200, η = 0.01, l = 10 and the batch size as 1000. In Figure 1, we report the perfor-909

mances of the proposed algorithm. Specifically, Figures 1(a)-(d) showcase the behav-910

ior of different metrics, including the function value error f(xk)− f(x∗), the relative911

error between the iterate and x∗ given by ∥xk−x∗∥
∥xk∥ , the number of nonzero entries in912

the iterate denoted as ∥xk∥0, and the comparison between the nonzero entries of the913

output and x∗, respectively.914
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Fig. 1. Numerical profiles on test problem (6.2)

7. Conclusions. We present complexity analysis of proximal inexact gradient915

methods for finite-sum optimization with nonsmooth composite functions and a non-916

Lipschitz regularizer (1.1). Existence of the nonsmooth function h and non-Lipschitz917

term makes it inadequate to build an approximation model simply based on Taylor918

expansion as in [5, 8, 11, 12]. Moreover, those algorithms in [5, 8, 11, 12] rely on exact919

function values and gradients of f , which have difficulties in computation of problem920

(1.1) with the large scale finite-sum of f . In our Algorithm 2.1, we solve a strongly921

convex proximal subproblem (2.6) at each iteration without computing the function922

values and exact gradients of f , based on convex approximation to f(x)+h(c(x)) and923

a Lipschitz continuous approximation to ∥V x∥pp. By controlling inexactness of inexact924

gradients as well as subproblem solutions, we establish O(ϵ−2) oracle complexity to925

find an (ϵ, δ)-approximate first-order stationary point of problem (1.1). This verifies926

that the worst-case oracle complexity still keeps the same with the absence of the927

differentiability of the Lipschitz term compared to [11, 12] and with the existence928

of non-Lipschitz regularizer in contrast to [5, 8]. Moreover, we propose a stochastic929

variant of Algorithm 2.1, by calling stochastic first-order oracles in a recursive way930

and applying a proper sampling strategy. We establish that the oracle complexity is931

in order Õ(ϵ−2) to find an (ϵ, δ)-approximate first-order stationary point with high932

probability. We further extend the stochastic variant of algorithm to solve problems933

in the expectation form and derive the oracle complexity in order Õ(ϵ−10/3) with high934

probability. Numerical performances of the proposed algorithm are also reported on935

a test problem.936
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