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COMPLEXITY OF FINITE-SUM OPTIMIZATION WITH
NONSMOOTH COMPOSITE FUNCTIONS AND NON-LIPSCHITIZ
REGULARIZATION*

XIAO WANGT AND XIAOJUN CHEN#

Abstract. In this paper we present complexity analysis of proximal inexact gradient methods
for finite-sum optimization with a nonconvex nonsmooth composite function and non-Lipschitz reg-
ularization. By getting access to a convex approximation to the Lipschitz function and a Lipschitz
continuous approximation to the non-Lipschitz regularizer, we construct a proximal subproblem at
each iteration without using exact function values and gradients. With certain accuracy control on
inexact gradients and subproblem solutions, we show that the oracle complexity in terms of total
number of inexact gradient evaluations is in order O(e~2) to find an (e, §)-approximate first-order
stationary point, ensuring that within a §-ball centered at this point the maximum reduction of an
approximation model does not exceed e€d. This shows that we can have the same worse-case evalua-
tion complexity order as [5, 12] even if we introduce the non-Lipschitz singularity and the nonconvex
nonsmooth composite function in the objective function. Moreover, we establish that the oracle
complexity regarding the total number of stochastic oracles is in order @(6_2) with high probability
for stochastic proximal inexact gradient methods. We further extend the algorithm to adjust to
solving stochastic problems with expectation form and derive the associated oracle complexity in
order O(e~19/3) with high probability.

Key words. nonconvexity, nonsmoothness, non-Lipschitz regularization, inexact oracle, com-
plexity

MSC codes. 90C30, 90C46, 65K05

1. Introduction. In this paper, we consider the following nonconvex nonsmooth
optimization problem:

(1.1) min - Q(z) := f(z) + h(c(z)) + [[Vallp,

where 7 C R" is nonempty, bounded, closed and convex, f : R — R and ¢ : R" — R"
are continuously differentiable with Lipschitz continuous gradients over 7, h : R”™ — R
is Lipschitz continuous and convex but possibly nonsmooth, V € R"*" with i < n and

€ (0,1). We assume that rows of V', denoted by v;f, i1=1,...,n, are orthonormal,
without loss of generality. Problem (1.1) has numerous applications in data science,
where f is a loss function, h is a penalty function and || - ||} is a sparse regularization.

For instance, with the increasing interest of group sparsity regularization for neural
networks (see e.g. [4, 20, 25, 31]), the loss function f may rely on a large data set
and be defined in the form

1 N
(12) f@) =5 2_ fila),

where f; : R® — R,¢ = 1,..., N, are continuously differentiable and the sample
size N can be very large such that it may be time-consuming and sometimes even
prohibitive to access all component functions to compute the exact gradient of f at
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2 XIAO WANG, AND XTAOJUN CHEN

a query point. Moreover, constraints are often imposed to enforce specific conditions
on variables. For example, constraints of the form c¢(z) < 0, where ¢ : R — R",
are prevalent in a wide range of applications, including image restoration [1], film
restoration [18] and SVM [21]. However, ensuring feasibility of iterates with respect
to these constraints throughout the algorithmic process can be challenging. To tackle
this issue, infeasible methods are commonly employed, which allow for violations of
the constraints. Specifically, with the aid of a penalty function, for instance, ¢; penalty
function, one can remove the constraints by introducing a nonsmooth penalty term
in the objective, e.g. h(c(x)) = p||(c(x))+ |1 with (¢(z))4+ = max(c(z),0) and p being
a penalty parameter. As studied in [10, 15], the resulting problem can be an exact
penalty formulation of the original one to some extent, with nice properties regarding
their minimizers. As is well studied in the literature, the nonconvex, nonsmooth and
non-Lipschitz £, (0 < p < 1) regularizer has shown a good performance for sparse
variable selection. However, in general the non-Lipschitz regularized problems are
strongly NP-hard [9]. Challenges often arise in algorithm design and analysis. The
past decade has witnessed highly productive progress on the study of ¢, (0 <p < 1)
optimization and a surge of works has been proposed, to name a few but not limited
to [2, 3, 13, 14, 16, 19, 21, 30].

Cartis et al. study the evaluation complexities of minimizing f(x) + h(c(z)) to
reach the first-order critical measure within e in [5] and to reach high-order approxi-
mate minimizers in [7]. In recent work [8], they consider minimizing f(x)+h(c(z)) over
a convex set and apply high-order approximation model to reach high-order approxi-
mate minimizers. Gratton et al. in [17] propose an adaptive regularization algorithm
using inexact function and gradient evaluations for minimizing f(x)+h(c(x)) and show
that their algorithm needs at most O(|log(e)|e~2) evaluations of the functions and
their derivatives for finding an e-approximate first-order stationary point. In [11, 12],
high-order algorithms for solving minimization problems with non-Lipschitzian group
sparsity terms are studied, where the objective is the sum of a smooth function and
a non-Lipschitz regularizer. Compared with problems studied in [5, 8, 11, 12, 17],
the objective function in (1.1) has not only the nonsmooth function h(c(z)), but also
the non-Lipschitz regularizer ||[Vz|[}, whose complexity has not been established in
the literature to the best of our knowledge. We also notice that those algorithms
studied in previous works [5, 8, 11, 12] rely on exact function values and gradients
of f, which, however, are expensive to obtain in many scenarios with a large finite-
sum structure. Inspired by above points, in this paper we will focus on complexity
analysis for problem (1.1) to reach approximate first-order stationary point. We will
investigate whether the absence of diffentiability of the Lipschitz term together with
the existence of non-Lipschitz regularization will affect the worst-case complexity,
compared with existing works.

Problems with f in finite-sum structure (1.2) face challenges when computing
exact function information, due to the large number of component functions. To alle-
viate possible difficulties, stochastic oracles are normally called to approximate exact
information. In the past decade, along with the development of data science, studies
on stochastic approximation methods for nonlinear optimization grow rapidly in pop-
ularity, ranging from convex to nonconvex problems and from smooth to nonsmooth
problems. Xu et al. [29] study a class of optimization problems with nonconvex, non-
smooth regularizer, namely minimizing g(z) — h(z) + A(z), where g and h are both
convex and A is a nonconvex and nonsmooth regularizer. Moreover, it requires in the-
oretical analysis that g be smooth and h be Holder smooth. The proposed algorithm
in [29] can be also applied to unconstrained ¢,(0 < p < 1) regularized optimization
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COMPLEXITY ANALYSIS OF PROXIMAL INEXACT GRADIENT METHODS 3

with g in the finite-sum form. The associated gradient complexity to find a nearly
e-critical point is in order O(e~%). Metel and Takeda [22] consider unconstrained
optimization with a nonconvex but Lipschitz continuous regularizer. The proposed
algorithm owns O(e~3) gradient-call complexity for finite-sum minimization when a
variance reduction strategy is applied. However, the Lipschitz continuity assumption
fails for ¢, (0 < p < 1) regularizer. Cheng et al. [14] propose an interior stochas-
tic gradient method for nonnegative constrained optimization with £, regularizer and
investigate the oracle complexities to find an approximate stationary point. Xu et
al. [28] propose stochastic proximal gradient methods for minimizing summation of a
smooth function f and a nonsmooth nonconvex regularizer and show that the O(e~?)
gradient complexity can be achieved to find an e-stationary point. The proposed al-
gorithm in [28] requires the proximal mapping of the nonconvex regularizer be easy
to obtain. However, these existing results cannot be applied to problem (1.1) due to
the nonsmoothness and nonconvexity of f 4+ h or the non-Lipschitz continuity.

Contribution. The main contribution of this paper lies in the complexity analy-
sis of proximal inexact gradient methods for finite-sum optimization with a nonconvex
nonsmooth composite function and non-Lipschitz regularization (1.1). By getting ac-
cess to a convex approximation to the Lipschitz function in the objective, together
with a Lipschitz continuous approximation to the non-Lipschitz regularizer, we build
a proximal subproblem at each iteration without using exact function values and gra-
dients of f. Under certain conditions on inexact gradients and inexact subproblem
solutions, we prove that the oracle complexity in terms of the total number of inexact
gradient evaluations to find an approximate (e, §)-approximate first-order stationary
point is in order O(e~2). This verifies that adding the nonsmooth nonconvex compos-
ite function and non-Lipschitz regularizer and using inexact gradients do not affect
the worst-case oracle complexity, compared with existing results [5, 8, 11, 12]. Fur-
thermore, we use the finite-sum structure of f and propose a stochastic variant of
the algorithm through calls to stochastic first-order oracles. We show that the corre-
sponding oracle complexity in terms of total number of stochastic first-order oracles
is in order @(6_2) with high probability, where we use O to hide the dependence
on logarithmic factor in the complexity order. Furthermore, we extend the proposed
algorithm to solve stochastic problems with f in expectation form and obtain the
O(e~19/3)-oracle complexity with high probability. We present more details on the
significant differences from existing works.

(i) The related convergence and iteration complexity in [5, 8, 11, 12] are established
within trust region schemes, which require accurate function values and derivatives
of function f. However, those analysis cannot be applied to stochastic optimiza-
tion problems, where only approximate or stochastic gradients are available. In this
scenario, the behavior of the objective function can only be characterized based on
inexact derivatives of f. Hence, it is imperative to modify the primary algorithmic
framework to accommodate the reliance on approximate or stochastic gradients and
the absence of a trust region scheme. This adaptation necessitates rigorous analysis
under these altered conditions.

(ii) While our method draws inspiration from existing techniques, such as the convex
approximation to the composite part and the Lipschitz continuous approximation to
the non-Lipschitz regularizer, the coexistence of these two aspects brings significant
challenges for the theoretical analysis, which makes it different from existing works.
For instance, one particular challenge is about ensuring the existence of an inexact
subproblem solution sy that satisfies the required conditions, as presented in Lemma
2.5. Such detailed analysis, however, is not provided in [11, 12]. Another challenge
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4 XIAO WANG, AND XTAOJUN CHEN

arises when considering the approximate criticality of the output of Algorithm 2.1.
Due to the significant modifications made to adapt to the stochastic setting and the
absence of a trust region scheme, the algorithm framework’s analysis differs substan-
tially from existing methods. In addition to addressing these challenges, we present a
unified framework by incorporating various elements and leveraging the strengths of
each element. This enables our algorithm to tackle a broader range of problems.

(iii) When adapting the deterministic proximal inexact gradient method to stochastic
settings, including the finite-sum setting and expectation setting, it causes nontrivial
challenges to the theoretical analysis. In our paper, we go beyond a simple replace-
ment of the deterministic gradient with a stochastic gradient, recognizing the need
for careful consideration of oracle complexity analysis in the stochastic counterpart,
which contributes to the value of our work. Particularly, the extension of the analysis
in [25] to non-Lipschitz regularized optimization and to the expectation case proves
to be a nontrivial task. Our oracle complexity analysis heavily relies on the essential
property of the proposed algorithm, specifically the boundedness of »_, -, l|sx]l? as
demonstrated in Theorem 3.8.

Organization. This paper is organized as follows. In Section 2 we present a
detailed algorithmic framework for proximal inexact gradient methods for (1.1). In
Section 3 we explore the oracle complexity of the proposed framework to find an
(e, 8)-approximate first-order stationary point. In Section 4 we propose a stochastic
variant of the algorithm for problems with f in finite-sum structure (1.2) and establish
the oracle complexity accordingly. In Section 5 we propose an extended stochastic
variant for problems in expectation case and investigate the related oracle complexity.
In Section 6 we illustrate our algorithm by a numerical example. Finally, concluding
remarks are drawn in Section 7.

2. Algorithm description. In this section, we will present an algorithmic
framework for proximal inexact gradient methods for solving (1.1). As the objective
function @ is nonconvex, nonsmooth and non-Lipschitz, it is generally intractable to
approximately find a global or even a local minimizer. Thus our algorithm aims for an
approximate first-order stationary point of (1.1). The core of our algorithm design is
to construct a Lipschitz continuous approximation model of the objective function at
each iteration. We then perform a search within a local neighborhood of the current
iterate while aiming to minimize the approximation model as much as possible. The
use of Lipschitz continuous approximation models helps us predict the behavior of
the objective function while minimizing the impact of approximation errors in the
optimization process. The proposed algorithm differs from existing works on com-
plexity analysis, such as [5, 11, 12], where a trust region scheme is typically employed,
requiring exact evaluations of the function value and its derivatives. In contrast, it
only relies on getting access to inexact first-order derivatives of the objective function,
which enables us to extend its applicability to stochastic variants. By utilizing these
inexact derivatives, we can effectively navigate the search space and make progress to-
wards the optimal solution without the need for precise function value and derivative
evaluations. By adopting this approach, we strike a balance between computational
efficiency and accuracy, making our algorithm more suitable for scenarios where exact
evaluations may be costly or impractical.

We first define the following index sets at a point x for a given nonnegative
constant e:

A(z,e)={ie[n]:|vjz|>¢€}, R(ze)= ﬂ ker (v]),
i€[n]\A(z,e)
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COMPLEXITY ANALYSIS OF PROXIMAL INEXACT GRADIENT METHODS 5

where [] := {1,...,7}. Then for any d € R (x,¢€), it holds that vI'd = 0, i €
[7]\ A (z,€) . Define the function

Qc(@) = f(x) + h(c(@) + > [o]al”.
i€ A(x,€)

Note that |[v]z|P , i € A(z,¢), is differentiable at z, and Q. is a continuous lower
approximation to Q. Also define

€,0 L _ .
(2.1 V@)= Q) i To, (nd)
deR(z,e€), ||d|| <

with
To.(,d) := f(x) + V(@) d+ hie(@) + J(@)d) + Y (o] al” + V(jo] 2[")"d),
i€ A(z,e)
where J(z) = (Vei(2),..., Ve (). Here, T, is a convex approximation to @,

obtained through linearization of smooth functions w.r.t. d, i.e., f(x + d), c¢(z + d)
and |v! (z + d)|P,i € A(z,€). The function 1/)22’5 plays a crucial role in characterizing
the optimality condition of a local minimizer of (1.1). It represents the maximum
reduction of Ty within a neighborhood of current iterate. Intuitively, when current
iterate x is a local minimizer of (1.1) and € = 0, around « there is no feasible point
that can yield a greater reduction in the function value. By [8, Lemma 3.2] and [11,
Theorem 2.1] we obtain the following lemma.

LEMMA 2.1. Let z, be a local minimizer of (1.1). Then there exists § € (0,1]
such that for any § € (0, 6], 1/1%’5 (z+) = 0.

Proof. As x, is a local minimizer of (1.1), there exists §; > 0 such that z, is a
global minimizer of (1.1) on B(z.,d1) N F. Let

02 = min {17 min |va3:*|}
i€A(z4,0)
Obviously, d; € (0,1]. Note that there exists 6 € (0, min(d1,d2)) such that for any
24 + d in the ball B(z.,J),

|v;T(ac* +d)| > |vZTm*| — |v;-Td\ >0, —6>0, i€ Ar,,0).

Then e 4(x. 0) |vl x| is continuously differentiable in B(z.,d). Moreover, since h is

Lipschitz continuous over F and z is the global minimizer of (1.1) on B(z.,d) N F,
it holds that for any ¢ € (0, d],

Q)= min fle.+d)+he(e. +d) + V(. +d);

3 p
min f(@ )+ bl + ) + [V + D
deER(w,,0),|d[| <8

— : T p
= min_ f@tdthle(e.+d)+ Y ol (@ + A
deR(z+,0),[|d||<s i€A(x,0)

IN

Note that the equality in above relations can be reachable at d = 0. Thus 0 is a global
minimizer of the problem

. . ,
(22) Jmin o flotd) (e )+ D0 ol (@t d)l”.
dER(z+,0), ||d]| <6 i€A(z,0)
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6 XIAO WANG, AND XTAOJUN CHEN

Then it yields from [8, Lemma 3.2] that z/)%"s(x*) = 0 which completes the proof. 0O

We call z a first-order stationary point of (1.1), if 1/)%’6(%) = 0 for some
d € (0,1].

Remark 2.2. We now show that if Z is a first-order stationary point of (1.1) , i.e.
w%"s(a’c) = 0 for some 6 € (0,1], then Z is a limiting stationary point for a practice
example. The concept of a limiting stationary point for a proper lower semicontinuous
function has been used in the study for non-Lipschitz continuous minimization [10].
We recall from [24, Definition 8.3] that for a proper lower semicontinuous function @,
the limiting subdifferential is defined as

O A S
09(x) := {v: 32% % 2, vF - vwith liminf ®(2) = 2@”) - {7,z — o) >0, Vk},

zak Iz — =*||

where 2% % 2 means both z* — z and ®(z*) — ®(x). In [10], a first-order stationary
condition using the limiting subdifferential for problem

(2.3) min O (z) := A[([|Az — b]|5 — 0®)4 + [|(Bz — h) ¢ [l1] + ||=|
is defined as
(2.4) 0 € ON(([|[Az = b3 — %)) + ON[[(Bx — h) 1 [l + 9| =|[2,

where A € R™*" B ¢ R*" b € R",h € R", p € (0,1), 0 > 0, and A > 0. In
[10], a point Z is called a first-order stationary point of (2.3) if Z satisfies (2.4). Let
A(z) = {i : |z;] > 0}. From Lemma 2.5 in [10], 9|t[’ = R at ¢ = 0. Hence, the
inclusion in (2.4) is trivial for ¢ € A(z). Let

Q) = A ((|Az = bll5 = 0*) 4 + |(Bz = h)4l) + > el
1€A(x)

To(w,d) = A ((| Az = blI3 — 0® + 2(Az — b)" Ad)4 + ||(Bx — h+ Bd) 1)

+ 3 (il + plasP sgn(a)dy)
i€ A(x)

and

Vg’ (@) = Q(z) — To(x,d), R@)={deR":eld=0,i¢ Ax)}.

min

dER(z),||d]| <o
Following the proof of Lemma 2.1, we can show that if Z is a local minimizer of (2.3),
then 1[122’5(:2) = 0 for some § > 0. Now we show that if 1085(50) = 0 for some 6 > 0,
then Z satisfies (2.4). Let 0 = minjea(z) |Z]. Then for any Z + d € B(z,6) with
6 € (0,0), we have [2+d|; > |2|; —|d|; = 6 —0 >0, Vi € A(Z). Hence 3, 4z |@il" is
differentiable in B(z, §). Moreover, we know that (|| Az —b||3 —o?)4 and ||[(Bz—h) 4|1
are directionally differentiable. Therefore, @ is directionally differentiable at Z in the
direction d € R(Z). Additionally, the directional derivative of @ at Z in the direction
d € R(Z) has the form

Q'(#;d) = A20(z)(Az — )T Ad +w(@)"Bd] + Y plai|P sgn(z:)d,
1€A(Z)

This manuscript is for review purposes only.
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where
1 if [|AZ — b]|3 > o2
v(Z)=¢ 0 if [[Az — b]|3 < 02
(sgn((Az — b)TAd)4  if [ Az — B[} = o2
and
1 if (Bz — h); >0
w(z) =4 0 if (Bz —h); <0

(sgn((Bd);))+ if(Bx—h);=0, i=1,...,L
Let 6 € (0,4) such that

[ Az — b]|3 — o®| |BZ — hl;
1(AZ = )T Allee * [[Blloo

8<min{ } for ||Az — b||3 —0? #0,(Bz — h); # 0.

Then it derives
To(z,d) = Q@)+ Q'(7;d),  VdeR(z), |d] <.
From 1/)22’5(3?) = 0, we have

0=Q(z) — min  Tg(Z,d) = — min  Q'(z;d),
dER(Z),||d]| <o dER(Z),||d]| <o

which implies Q'(Z;d) > 0 for any d € R(Z). From O(Z + d) > Q(Z + d) for d € R"
and O(z) = Q(Z), the subderivative function dO(Z) satisfies

s td) — Ofz
d6(z)(d) = lim in QE +td) = Q@)
tl0 t tl0 t
d' —d d' —d
Hence dO(Z)(d) > 0 for d € R(Z) and dO(Z)(d) = 400 for d € R(Z). By [24, Exercise
8.4], we find that 0 is in the regular subdiffrential of © at Z, and thus by [24, Definition
8.3, Exercise 10.10], the inclusion in (2.4) holds at z.

We now present the definition of an (e, §)-approximate first-order stationary point
of (1.1).

DEFINITION 2.3. Given € > 0, we call x € F an (e,0)-approzimate first-order
stationary point of (1.1), if waé (x) < €d for some § € (0,1].

Oz +td) — O(7)

> lim inf

The concept of (e, d)-approximate first-order stationary points has been used in
[6, 7, 11], which generalizes the concept of e-approximate first-order stationary points
with § = 1 in some papers, e.g. [5, 12, 17]. Our definitions of first-order stationary
point and (e, d)-approximate first-order stationary point are based on the concepts
in [5, 6, 7, 8, 11, 12, 17] and related articles. In Lemma 2.1, we show that a local
minimizer z* of (1.1) is a (0, ¢)-approximate first-order stationary point of (1.1) for
some § > 0, which implies that z* is an (e, d)-approximate first-order stationary
point of (1.1) for e > 0. Within a d-ball centered at an (e, d)-approximate first-order
stationary point, the maximum reduction of the approximation model does not exceed
ed. In practice, the choice of (¢,0) depends on the users’ need for the quality of a
computed solution. For each k, let xj be an (e, 0 )-approximate first-order stationary
point of (1.1) for some §;, with 1 > 65 > 0 and €, > 0. If {§;} has a uniform positive
lower bound as e, — 0, following the proof of [11, Theorem 2.2] we can obtain that
any cluster point of {x} is a first-order stationary point of (1.1).

This manuscript is for review purposes only.
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8 XIAO WANG, AND XTAOJUN CHEN

In the following context, we consider € > 0. We now prepare for the design of the
main algorithm. The main step of the algorithm is to construct a model function to
predict the behavior of the objective function @ at current iterate x along a direction
s. For the non-Lipschitz regularizer in the objective function, we focus on indices in
A(xz,€) and discard those close to non-Lipschitz continuity. We define the following
Lipschitz continuous approximation of |v] (x + s)|P in a similar approach in [11] and
[12]:

(2.5) mi (z,8) = vj al? + plof a7t (o] (@ + )| = ol a]), i€ A(ze).

Supposing that vl'(z + s) # 0, i € A(z,€), as analyzed in [11], m; is the first-

T
V; T

order Taylor’s expansion of |v]x + (; [P expressed as a function of the scalar

[v] x|
G = |l (z+ )| — [vlz| > —|v]'s|. Regarding the smooth function f, the calculation
of exact first-order derivatives of f can be expensive sometimes even impossible in
many scenarios. We can only get access to approximate gradients of f. For ease of
notations, given xj and s, we denote g, as an approximation to Vf at xj, and

A = A(zg,€), R = R (g, €), cx = c(xg), Jr = J(z1) and sf = viTsk

for i € [n]. Due to existence of the convex but possibly nonsmooth function h, we
design the following proximal type subproblem at kth iteration:

1

2.6 i =gl s+h J > m; —||s|?

(2.6) min o om(ek, 5) =gy s+ h(ek +Jks) + ) m (xk,s)+2n||8||,
S ER i€EAy

where n > 0 is a proximal parameter. It is worth noting that subproblem (2.6) is
a strongly convex minimization problem over a convex set, thus it admits a unique
global minimizer. Note that resolution of (2.6) only involves matrx-vector products
and does not affect the evaluations of (inexact) derivatives of f, thus has no impact on
the iteration complexity and oracle complexity of the proposed algorithm. Moreover,
when F and h exhibit polyhedral structures, for example, F = [b;,b,] C R" with
—bi,by € RY, and h(-) = ||(:)4|l1, by introducing z = (¢ + Jis)+ € R", (2.6) is
equivalent to the following linearly constrained convex program:

. _ _ 1
min gf's+e z+ Y plofaP ol (@ + 5)| + 5 18]
$,Z 2
€A
st. b <ap+s<b,, 0<Z¢c+ Jps <z, viTs:O,z'géAk,

where e = (1,1,...,1)T € R". Numerous state-of-the-art approaches have been ex-
tensively studied for solving linearly constrained convex program in the literature.

In theoretical analysis, however, an inexact solution of (2.6) can be enough.
Specifically, we solve (2.6) to look for s, with m(xg,sg) < m(zg,0) such that the
near optimality is achieved in that

(2.7)  ¥S° (zp, 5) < min {Oe,p min  |v] (zp + sk)\}é, for some ¢ € (0, 1],
i€A(z+5k,€)

where 6 € (0,1) and

€,0 .
(g, Sk) = h(ck + Jipsk) — min T (2K, Sk d
P’ (g, Sk) (ck & Sk) o m (Tx, Sk; d)
deER(zr+sk,€), ||d]| <6

This manuscript is for review purposes only.
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COMPLEXITY ANALYSIS OF PROXIMAL INEXACT GRADIENT METHODS 9
with mo (2, s) == g} s + ﬁHSHZ and

Tk, 5;d) = h(ck + Ji(s +d)) + Vemo(ax, )Td+ Y Vemg(wy, s)"d.
1€EA(zr+5,€)

It is noteworthy that 15° describes the potential maximum reduction of T}, within
a neighborhood of s, with radius §. This measure is defined in a similar way to that
in Definition 2.3. When the reduction is below a certain level, s is regarded as an
inexact minimizer of (2.4). Moreover, by the definition of Ry, for any i € [n]\ Ak,
vl'sp = 0, thus v (zx + sx) = vl xp. That is, once |v] x1| < € for some i € [n], the
value of v} (z) + s;) will be fixed and the remaining minimization will be carried out
on R(xy + sk, €). Therefore, the following relations hold:

(2.8) R = R(xp + spy€) SRy, AL = A(wg + spy€) C A

We are now ready to present the main algorithm framework for proximal inexact
gradient methods for (1.1) as Algorithm 2.1.

Algorithm 2.1

Input: zo € F,e € (0,1],7 > 0,3 € (0,w) with w € (0,1), s_; = 0.

1: for k=0,1,..., do

2:  Obtain g from InexactOracle.

3:  Solve (2.6) to find an approximate minimizer s with m(xg,s;) < m(zg,0)
satisfying (2.7), then go to Step 5. If the solution of (2.6) is zero, then go to
Step 4.

. Set s = 0. If sx_1 = 0, terminate and return xy; otherwise, go to Step 5.

5 Set xpy1 = xp + sk If skl + |[sk_1]| < Be and Ap\Ary1 = 0, terminate and
return rp41.

6: k:=k+1.

7: end for

Remark 2.4. In Algorithm 2.1 two termination criteria are employed. One is
Sg—1 = sg = 0 in Step 4. In this case, similar to [6, 11] we terminate the algorithm
and return xg. It will be shown in Lemma 3.1 that zy is an (¢, §)-approximate first-
order stationary point of (1.1) for some § € (0,1]. On the other hand, if Ay41 = Ag
(and hence Ri+1 = Ryi) and ||sg| + ||sk—1| is sufficiently small and Ap\Axy+1 = 0
then there is no i s.t. |[v] xx| > € but [v] (zx + sk)| < €, we return x4, and will prove
that zp;1 is an approximate first-order stationary point when s = 0 in Lemma 3.1
and when s; # 0 in Lemma 3.6, respectively. In addition, as s € Ry for any k > 1,
it follows from (2.8) that Ai1\Ax = 0 for any k& > 1. Moreover, in Algorithm 2.1
we obtain inexact gradient g, through calling the subroutine InexactOracle, which
may adopt different ways to generate an inexact gradient of f at the inquiry iterate
Zg. So we simply omit the required inputs by InexactOracle here and specify them
when necessary.

In the following, we denote the unique global minimizer of (2.6) by si. If sj # 0,
it obviously holds that m(zx, s;.) < m(xk,0). Moreover, we can guarantee that s; = s},
satisfies (2.7) for some § € (0, 1], as shown in the lemma below.

LEMMA 2.5. Suppose that si # 0. Then there exists p, € (0,1] such that (2.7)
holds for s, = s;; and any 6 € (0, p,|.
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Proof. Consider the auxiliary problem
(2.9)
o in o h(ek o+ Ji(sh 4 )+ mo(en, s+ d) + > mi(ak,sp+d).
dER(xr+s],€) 1€A(zk+5],€)

Due to the strong convexity, (2.9) has a unique global minimizer, which is denoted
by 5i. As 5, € R(zp + sj,€) € Ry, we have m;(zk, sf) = mi(zk, s + 5x) for any
i € A\ A(zg + 53, €). Then it yields that
m(zk, s; + Sk)
= h(ck + Ju(sy + 5%)) + mo(wr, sp + 8) + D ma(ak, sj + 5k)
1€ A(zk 5% ,€)

+ Z mi(zk, Sy, + 5k)
’LGA}C\A(CEk +SZ ,6)

< h(eg + Jisi) + mo(xg, si) + Z m;(xg, sy)
1€A(Tk+5%,€)

+ > mi(Tk, sg)= m(zk, si),
1€AR\A(zg+s57 €)

where the inequality follows from the optimality of 5.

Due to the optimality and uniqueness of s} as the global minimizer of (2.6), we
obtain 5; = 0. Thus 0 is the global minimizer of (2.9). Then for any d € R(x,+ s}, €)
satisfying zy + si, +d € F, it holds that

* 1 * * *
gk s+ ool +hien+ esi) + Y0 malan,sp)
" i€ A(zk 55 ,€)

1
<gi(sp+d)+ —llsi +d> + hlce + Je(sp +d) + > mi(ag, si +d)
2n .
1€ A(zr 5] €)
which yields
1
h(ck + Jksi) = h(ck + Ji(si +d)) —ghd— =(sp)Td— > Vmy(ay,s3)"d
n ) — .
1€A(zk+5],€)
(2.10)

* * * 1
< E (mi(xk, sy, + d) — mq(xy, sp) — Vemg(an, i) d) + 2*||d||2-
) n
i€ A(zk+57,€)

Note that there exists fiy such that for any d € R(zy + si,€) with ||d|| < fx and
T+ s +deF,

(2.11)

sgn(v] (zp+sp+d)) = sgn(v] (zp+s3)) and |v} (zr+si+d)| >e€, Vi€ Alzp+sg,e),

which together with (2.10) indicate that

1
h(ck + Jrst) — h(ce + Ju(sh +d)) — ghd — 5s;;Tcz - > Vemi(zk,sp)'d
i€ A(zr+s],€)

1
< ol
n

This manuscript is for review purposes only.
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Hence, by the definition of 5 (zy, s3), there exists #,.€ (0,min{1, fip }] such that for
a’ny 5 € (O7ﬁk]7

1
2.12 Ogp, st) < —8% < min{ﬁe, min ol (), + 5§ }6. |
212) W) < 508 < min {Bep _ min o (o + o)

Define the set S :={s:zx +s € F}N{s:s—s; € R(xzk + s}, ¢)}. Obviously
sy € 8. Without loss of generality, we assume in the following that Si\{s}} # 0.

LEMMA 2.6. Suppose that si, # 0. Then there exist fir, i€ (0,1] such that for
any 0 € (0, fig] and any s € Sy, N B(s}, fix), we have

(2.13) m(xg, s) < m(zy,0) and ¥S°(z1,s) < min {Oe,p‘ A{nin ) |vZT(xk +5)| }5.
1€ Tr+S,€

Proof. Note that if s; # 0, there exists fiy, € (0, 1] such that for any s € B(s}, fix),
m(zg, s) < m(xg,0) and A(zi+sy, €) C A(zk+s, €). Hence, for any s € SyNB(s}, i),

(2.14) Az + st,¢) = A(zi + s,€) C Ay

For any given s € Sy N B(sy, fix), we define Fy := {d : x + s +d € F} which is
obviously convex due to the convexity of F. For any d € F,, we denote its projection
onto Fy: as d. If d = d, then set d; = d. Otherwise, as xj, + sy +d ¢ F, there exists
d, € .7-'5; such that xj + s} 4 d; is the projection of xj, + s} +d onto F. Then it follows

from definition of the projection operator and xy +s+d € F that ||d —d| < ||d — d||
and

[(@k + sk + d) — (z + s+ do)|| < [z + sp +d) — (zr + s+ d)|| = ||s; — s,
thus
(2.15) ld —d|| < |si — s].-
Then by definition of T, (xk, s;d) and (2.14) we obtain that for any d € F,

h(ck + Jks) — Tim(xk, s;d)
= h(ck + Jxsy) + h(ck + Jis) — h(ck + Jrsy) — [h(ck + Ji(sy +d))
+h(ck+Jk(S+d)) (Ck+Jk(8k+d))erTVSmO(:Ek,SZ)

+d" (Vemo (o, 5) = Vemo(zr, )+ > d'Vemg(ag, sp)
i€ A(zk+57,€)

+ Z dT'V ¢mi(xy, s) — Z A"V emi(z, SZ)}

1€A(zk+5],€) 1€A(zk+5],€)
= h(cp + Jpst) — [h(ck + Je(sE + d) + dTV smo (. 55)

+ Z dTV gmi(xy, 32)} + Ty
1€ A(zk+5% ,€)

= h,(Ck + JkSZ) - Tm(xkv 827 d) + Fk
= h(ck + Jisy) — T2k, s d) + Tk + T (g, 853 d) — T (g, 5353 d),

This manuscript is for review purposes only.
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12 XIAO WANG, AND XTAOJUN CHEN

where
T =h(er + Jgs) — h(ek + Jgsy) — (h(ek + Je(s +d)) — h(ck + T (s + d)))
— d¥(Vemo(zy, s) — Vemo(zg, 3))
- Y d"(Vemi(ar, ) — Vemi(ag, s3)).
i€A(zk+s]€)
Note that, on the one hand, by the definition of mg,

* 1 *
IVsmo(z, s) — Vemo(zy, sp)l| < EIIS — sll,

while on the other hand, by (2.5) and (2.14),
Vsmi(zg, s) = p|v;rxk|p_1sgn(uiTxk)Ui = Vsmi(zg,s5), Vie Alz, + s, e€).

Recall that h is Lipschitz continuous over F. It together with the boundedness of J
derives

(2.16) Ty = O(|ls = szl

Besides, it indicates from definition of T, that

Tk, 535 d) — T (e, 533d) = O(|ld — d]|) = O(ls — si ).
Therefore, there exists fi; € (O,min{ﬁk,ﬂk}) such that fiy + [AS“’) <K, with o > 0,
and for any 6 € (0, fi] and s € Sy NB(s}, ' 7¢), the following relations can be derived:

h(c + Jis) — min Tn(zk, 8;d)
Tp+s+deF
deR(x+s,€), ||d||<8
< h(ck—FJkSZ)— min_ Tm(mk,SZ;J)JrO(HS—SZH)
th-‘rSZ"rde]:

deR(wx+sj,€), ||d]| <5461

1+
<Y (an, s3) + O(s — sill)

1
2.17 < — (646192 4+ O(5119)< min {9 , min vl (zp + s} }(57
QIT) < 56+ 6+ 0@ )< min {dep _min (o] (zi + 57)

where y, is introduced in Lemma 2.5, the first inequality is due to Il < ld|| + [Is —
si|l <6+ 6'"¢ and the third inequality follows from (2.12). The proof is completed.O

3. Oracle complexity. In this section, we will analyze the oracle complexity
of Algorithm 2.1 in terms of the total number of inexact gradient evaluations until
the algorithm terminates. In the following, we use K to denote the set of all iteration
indices until the termination of Algorithm 2.1. Let {z\} be the iterate sequence gener-
ated during the algorithm. Since f and c are Lipschitz continuously differentiable and
h is Lipschitz continuous over F, there exist positive constants Mg, s, L¢, Lp, Lo, L}
such that for any z,y € F, ||z]| < MFp and ||V f(2)| < k and

IVi(@) =Vl < Lelle —yl,  [n(z) = h(y)] < Lallz -y,
le(z) — @)l < Lellz =y, IVe(@) = Ve)]l < Lellz — yll.

To derive desired theoretical properties of Algorithm 2.1, we lay out the following
assumption on gradient approximations returned by InexactOracle.
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ASSUMPTION 3.1. For any k € KC, the gradient approzimation gy satisfies
(3.1) gk — Vf (k) | < Bmax {Lmin(|[sg—1], D), €},

where 8 € (0,252),D > 0 and L € (0, 371).

The parameter 6 in Assumption 3.1 was introduced initially in (2.7). And As-
sumption 3.1 ensures that g is uniformly upper bounded, namely,

(3.2) lgll < x := K+ Bmax {LD,e} for any k € K.

We will show in Lemma 3.1 that z is an (e, §)-approximate first-order stationary
point of (1.1) when Algorithm 2.1 terminates in Step 4 or in Step 5 with s; = 0.
When Algorithm 2.1 terminates in Step 5 with s; # 0, we will show in Lemma 3.6
that the output x4 is an approximate first-order stationary point of (1.1).

LEMMA 3.1. Suppose that Algorithm 2.1 terminates in Step 4 or in Step 5 with
s = 0. Then xy, is an (€,0)-approximate first-order stationary point of (1.1) for some
§ € (0,1].

Proof. Whenever Algorithm 2.1 terminates in Step 4 or in Step 5 with s = 0,
it holds that s; = 0 and [[s;_1| < Be. As s = 0, by the algorithmic framework
there is no step s with m(zk, sx) < m(zg,0) satisfying (2.7). Then it follows from
Lemma 2.5 that m (z,d) > m (xg,0) for any d € Ry satisfying xp, + d € F. And by
the definition of T(y_ the following equalities hold:

m (xkv d) -m (lfk, 0)
1
= h(cg + Jxd) — h(cx) + gy d + %Hdﬂ2 + ) [mi (wk, d) — m; (a,0)]
€A
= —|f @)+ h(e) + Y ol el — To. (e, d) | + (90 = V() Td
1€ Ap
Lo T T
+ %HdH + Z (mi(z, d) —mi(zr, 0) = (Vv 2[’|a=s,)" d)
€A
1
= —(Qc(zr) — Tq, (zr, ) + (g — Vf(zx))Td + %Hdﬂ2
+ 37 (mile, d) — mi(ex, 0) — (ol 2 oms, ) ).
i€ Ay
Note that there exists 6 € (0,1] such that for all d with ||d| < 6, sgn(vi (z) + d)) =
sgn(vlzy) for any i € Ay, then
mi(zx, d) — mi(ap, 0) = plof @ P~ (jo] (2 + d)| — [v] z4])
=sgn(v ax) - plof a[P 1ol d
= (V([of z|P)pme,)Td  for any i € Ay.
It follows from [|s,—_1]| < Be and Assumption 3.1 that [|gr —V f (zx)|| < Bmax{Lf, 1}e.

Hence, by 8 < (1—0)/(32Mp+1) and L < B~ we can choose § < § sufficiently small
such that for any d € Ry, satisfying xy + d € F and ||d|| <6,

B B v, lld? 2 ]|

Qe(wr) — Tq. (zk,d) < (gr — Vf(z))" d+ 20 < Bmax{Lp, 1}e||d|| + T €,

which yields the conclusion by Definition 2.3. O
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In the following, we assume that Algorithm 2.1 does not terminate at kth iteration
with s = 0. It derives from definitions of Q. and A that for any = € F,

Qc(x) = Qx) = Y |ofzl? > Q" — |[A]\Akle” > Q" —ne” = QF,
i)\ Ay

where @Q* is the lower bound of Q on F. The lemma below provides an upper bound
on the accumulated square of step lengths.

LEMMA 3.2. Suppose that n < (Ly + L,LL)™'. Then it holds that

(3-3) ( ~ Lot Ik +LhL ) D llskl® <Y (V) Tsik 4+ Qe (w0) — Q.

2
n kek kek

Proof. Tt follows from (2.8) and Lipschitz continuity of V f, h and V¢ that

Qe (zx + 81) — Qe (1)
= f(@r + sp) + hle(ar + s1) = fxr) = hler) + D ol (@ +s0)P= Y ol zil?

i€A+ €A

< hle(xy + s1) — h(er) + (Vf (zx) sp + —||sk\|2+ > (mi(xe, sk) — mi(x,0))
1€EA

= hlex + Jisk) — h(cr) + gi sk + *||Sk||2 + Y (mi (wr, s%) — mi (21, 0))
€A

H(VF (@) = 900" s+ (5 = 30 )l + el + 90)) = hles + Tis)

(3.4)
L¢+ LyL! 1

< m (e ) = m 21 0) (95 (o) = 90) w4 (Z55775 = g ) sl
where the first inequality is due to .A;: C Ay, and [11, Lemma 3.2] which shows that
m;(zg, sk) > [v] (xr+sk)|P for i € Ag. Then (3.4) indicates from m(zy, 0) > m(zy, si)
that

Ly+ Lyl 1 ,

SLZe s
Hence, summing up (3.5) over k € K and by Q.(x) > Q! for all x € F implies (3.3).0

For a given p > 0 which is independent of €, we define

(35) Qe (wp + k) — Qe (wx) < (Vf (21) — F%+(

(3.6) Oy = {i € Af rmin {|v] zp|, [o] (z1, + si)|} > 1},
(3.7) Qo (@)= f(2)+ > mi(,0),
1€k, 1
(3.8) Ty (z,8) == f(2)+ V[ (x Ts4 Z m; (x, )
1€0k, .

The following lemma characterizes the relation between derivatives of Qk, p and Ty, 1
LEMMA 3.3. It holds that for any k > 1,

(3.9) V@ (e + 1) = ViThopu (wy 58) | < L (1) llsil,
2-p)  pe
where L (n) := Ly + ’)(T;’),up 2,
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Proof. By definitions of @y, and T} ,, it is easy to obtain

IVQru (2k + 58) = VT Tk, 55) |
(3.10) < |[Vf(ak+sk) = VIl + Y V(0] 2P) omr4s, — Vemilae, si)]-

’L‘EOk,u

On the one hand, the Lipschitz continuity of V f ensures
(3.11) IV f(@k + sk) = Vf(ze)| < Lyllskll-

On the other hand, it follows from [11, Lemma 5.2] that

2 — _
Z IV (|v] 2P) [omaptse — Vsmi(zr, sk)| < p(lf)up 2|l sy

iGOk,H
P(2—p) oo
3.12 <—uf .
(312) <2220 oy
Hence, plugging (3.11) and (3.12) into (3.10) leads to the conclusion. d

To proceed, we assume the following assumption holds.

ASSUMPTION 3.2. For problem (1.1), it holds that
0 € U?.F, Projker(v’r)f g f7 7/ == ]., ,’fL

Under Assumption 3.2 , it is easy to check that for any z € F, (I — v;vl )z € F due
to |lvil| =1, for any i = 1,..., 7. A simple example of F satisfies Assumption 3.2 is
that F = {z[l <V < u}, where —[,u € R.

We now set w satisfying

(3.13) o<w<min{6pl1,(Q(Lth+§+2MF/n))ll’”}.

Next lemma characterizes properties of points that are close to singularity.

LEMMA 3.4. Suppose € < w, [vlzy| < w for some i € [A] and s, # 0. Then it
holds that |vl (zk + si)| < € or [v] (zk + s1)| > w.

Proof. Tt is straightforward to obtain the conclusion if i € [n]\A}. We now
assume by contradiction that [v}z;| < w and

(3.14) lvl (xy + sx)| € (e,w) for some i € A}

Besides, by (2.7) there exists 8 € (0, 1] such that ¢S (zg, sk) < plvl (z + sk)|0k-
As vl i € [n] are orthogonal, by the definition of R; and (2.8) we have Ry =
span{v;} C R; Consider the following minimization problem:

3.15 i d
(3.15) L, i qr(d)
dER (i}, |d[| <6k

with

qr.(d) = h(ck + Je(sk + d)) — h(ck + Jisk) —l—dTVSmO(Jc;€7 Sk) + Z dTVSmi(xk, Sk)-

i€ Ay
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It is worthy to note that d = 0 is a feasible point of (3.15). Then the optimal function
value of (3.15) must be nonpositive, thus

(3.16)
i d ’< i d)| = &0k < pd + s3)].
o im, qr(d) | < o im, @k (d)| = V5% (g, sk) < poilv] (zn + si)|
dER (33,1l <6k deR},(|d|| <5y,

Note that it follows from Projker(vT)f C F and xp + sx € F that
Tp 4 sp — vl (xh + sp)vi = T + S) — Vvl (T + Sk) = PrOjker(u.T)(xk +si) € F.

Then by the convexity of F and §; € (0,1] we obtain zy + s + d € F, where
d = =61 (v] (xx + sx))vs. Obviously, d € span{v;} = Ry;;. And it follows from (3.14)
that |v] (xk + s;)| < w < 1, thus ||d|| = dk|v] (zx + sk)| < k. Then d is a feasible
point of problem (3.15). Moreover, it holds that

(3.17) qr(d) = =6, (v] (xp + s1))Gr,

where

g_k _ _h(c;c + Jk(sk + d)) — h(ck + Jksk)
Ok (v] (x4 sk))

+ v (V mo(Tk, Sk) Z Vsmi(xk, Sk )

z€A+

We next derive a lower bound of |Gy|. By the definition of m; and s¥ = v s;, we have

sk, if vz >0, vl (z +s) >0

B —2vlzy, —s¥, if vlwp >0, vl (2 +sK) <0

mi(zx, sx) = |vf ax |’ + plof a7 - 9Ty P, ( )=
oIz + sk, ifolz, <0, o () + s,) >0,

—sk, if Iz, <0, vl (2 + sx) <0,

which implies from |v]'z;| < w that
(3.18)
sgn(Vs,my(zx, sx)) = sgn(vy (zx + s1)) and [Vs,mi(zx, s)| = plof @[’ > pwP ™t

As ||z|| € Mp for any x € F, ||sk|| < 2Mp. Then it indicates from (3.2) that

2M,
IVsmo(zk, s)ll = llg + ;Sk” <X+ TF
It together with the Lipschitz continuity of h, ||d|| = d|v] (zx + sk)|, (3.2), (3.18),
o
vl ZieA;r Vemi(zk, sk) = Vs,mi(zg, sg) and w < (2(LhL2+£+2Mp/n))lfp derives the
following lower bound:
1

—(5]C’I)Z-T(.’E]C + Sk)
+ Vg, mi(x, si)

|G| = (h(ck + Ji(sk + d)) — ke, + Jysk)) +vf Vemo(zk, sk)

1
5k|1)iT(l'k + Sk)‘
= [0l Vgmo(k, sp)|
>plof @pP™t = Ly LY — [|Vymo(zg, s1)

IMpy 1
(3.19) >pwP! - (LhLO Fx+ 7) > “pwP L.
)

> |V3imi(1‘k, Sk)| — |h(Ck + Jk(Sk + d)) — h(Ck + Jksk)|

2

This manuscript is for review purposes only.



538
539
540
541
542

546

548

549

COMPLEXITY ANALYSIS OF PROXIMAL INEXACT GRADIENT METHODS 17

Furthermore, (3.18) indicates sgn(Gy) = sgn(Vs,m;(zk, sx)) = sgn(vl (21, + s1)), thus
by (3.17), qi(d) = —0x(v] (wr + s1))Gr = —0k|v] (21 + s1)|Gk| < 0.

We now denote by d* the optimal solution of (3.15). Obviously, d* # 0. As
d* € Ry, there exists o € R such that d* = awv;, thus a # 0 and ||d*|| = |a|. Then
we obtain qx(d*) = aGy, where

1
G, = a(h(ck + Jk(sk +d*))—h(0k + Jksk)) (V mo xkask Z Vsmy xkvsk )
zeA'*,'

Again by the negativeness of the optimal function value of (3.15) it holds that
(3.20) sgn(a) = —sgn(Gx) and |gx(d")| = |aGr| = ||d"[|[Gr-
Meanwhile, by the optimality of d* we obtain

(3.21) 12" (1G] = Oklvf (xx + sk)lIGx-

We next derive a lower bound of ||d*||. From (3.19) it follows that

+ vl Vemo (2, s1)

'_h(ck + Jk(Sk + d)) - h(Ck + Jksk)

1
< 5[Vs,mi , .
ok (vl (zr + s1)) = 2| .M (T, 55|

Moreover, analogy to (3.19) we can obtain |G| > 2pwP~! and

1
+ v;rvsmo(xk, si)| < §|V5imi(xk, Sk)|-

‘h(ck + Jk(sk + d*)) — h(Ck + Jksk)
(6%

Then by definitions of Gj and Q_k, we have

_ (ck+Jk(sk+d h(c Ji Sk
|Qk| |V simi (g, sg)| — | — 2t ’gi(k;(iiﬂi)’f ksk) 4 T g (ks 51|
el = Vs (h, sp)| + |MeatTeloattd DN hekt o) 4 4Ty g (2, 5)|

N élelmz(ﬂcmsk)l 1
= 3 Vemi(ag, sk)| 3

(
which indicates from (3.21) that ||d*|| > 16.|v] (% + sk)|. Based on above inequality
together with (3.16), (3.20) and |G| > pwp ! we obtain

1 _ *
gpwp klof (ke + si)| < lae(d®)] < poilvf (xi + i),

which, however, contradicts w < 67T, Thus, the conclusion is proved by contradic-
tion. ]

To analyze oracle complexity of Algorithm 2.1, we first introduce the following
index sets:

Ky ={keK:zp=umry1}, Ke:={k € K\K, : Ax\Ap1+1 # 0},
1
Ko :={k € K\Ky : ||sk] > iw}, Ko : =K\ (K, UK. UK,).
Due to the monotonely non-increasing property of Ay, it is easy to have

(3.22) K| < 7.
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18 XIAO WANG, AND XTAOJUN CHEN

Since Algorithm 2.1 terminates when both k& and k£ — 1 belong to Ky, it must hold
that

(3.23) ICu| <IKNKy| 4+ 2 < [Ko UK, + 7+ 2.

Define a = %w, where w satisfies (3.13). The following lemma shows properties
of Ay and Agyq1 with k € Ko which are also discussed in [11].

LEMMA 3.5. Suppose that € < a. Then the following relations hold:
(3.24) Ap = Ary1 = Ok oy k€ Ko,

where Oy, o s defined in (3.6).
Proof. By (2.8) and the definition of Ko, it is easy to have Ay = Agy1 for any
k € Ko. For any k € Ko, we partition Ay into the following sets:
Toy = {i € A : minf{|v] zx|, [v] (zk + si)|} > a},
To g =1i € Ayt (Jo] 2| > w, |v] (z + )| € (€, @)
or (|v] zk| € (€,a), [v] (zk + s)| > w)},
Tas = {i € A : [v] 23] € (e,w) and |v] (24 + sk)| € (e,w)} -

Note that for any i € Zy 1,
1
skl > [of sel > [l] (@k + sk)| = [v] zx]| > w—a = v

It then indicates ¢ € K,,. Thus Z¢, , = (). Meanwhile, it follows from Lemma 3.4 that
Iar = 0. Thus, Ay = Zoy, namely, A = {Z : min{|viTxk|, [l (x), + sk)|} > a},
k € Ko. It then yields (3.24) by definition of Oy 4 in (3.6). 0

Motivated by Lemma 2.1, we suppose that dj, k € K is uniformly lower bounded
by & > 0 which is independent of €. Then by the boundedness of F, there exists
M > 0 such that ||sg|| < [|[xg+1]l + |2kl < 2Mp < M§ < My, for any k € K. The
lemma below shows that when Algorithm 2.1 terminates at Step 5 with s # 0, the
output is an approximate first-order stationary point of (1.1), provided that input w
and § in Algorithm 2.1 satisfy

(1 1-6-9
(3.25) ﬂ<mm{3mnmﬂLm)+Un+Lﬂ%U4+1%D}.

We would like to mention that (3.25) can ensure BL < 1, which meets the requirement
on L in Assumption 3.1.

LEMMA 3.6. Suppose that ¢ < «. If Algorithm 2.1 terminates at Step 5 with
sp # 0 and § satisfies (3.25), then xi41 is an (€,9)-approzimate first-order stationary
point of (1.1).

Proof. When Algorithm 2.1 terminates at Step 5 with s, # 0 and k ¢ K., k ¢ K.
Besides, it follows from the algorithmic framework that

1
—w,

4

which indicates k ¢ K, thus k € Ko and (3.24) holds. Recall that (2.7) holds with
§ = &g, for some d;, € (0,1], i.e.

— 1 1
[Iskll + [[sk—1]] < Be < J0e < za =

YOk (2, s1) < min {96,pier%in |va$;€+1|}5;€, for some oy, € (0,1].
k+1
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Note that by (2.1) and (3.24) as well as (3.7),

NT METHODS 19

Y5 (wri1)
= Qc(Tr41) — min Tq. (Tkt1,d)
zk+1+d€}'

dERk+1,||d||<bk

= h(cr+1)

—min b+ end) +dTV(F@) + Y 0l 2l ez )
€Ty €
deRy i |d] <6 €Akt
(3.26) = h(0k+1) — min {h(0k+1 + Jk+1d) + VQk,a(karl)Td}.

T y1+dEF

dE€ERk+1,||d|| <k

As the minimization problem in (3.26) is convex, it admits a global minimizer, which

we still denote as d with a slight abuse of notation. Obviously,

show by contradiction that ws 5’“(

lld|| < 6k. We next

Zipt1) < €dr. We now assume that it were not true.

Then it holds that 1/)Q (Ik+1) = h(ck+1) — h(Ck_;,_l + Jk+1d) — va,a (Ik+1)T d > €§k.

It can further derive
1/129’6'“ (Th+1)
— (VQk.a ($k+1))T d+ (V Tro (ks Sk))T d— (VeTka (zr

—%[V(IISH)Is Wt 5 [ (I512) lome]Td + Blexsn)

<NVQk,a (k41) — VTha (ks si) |||d]| — |:Vs (Th,o (x1,5) +
1
+ Esfd + h(ckt1) — h(ckt1 + Jr41d)

1
< (B + o+ IaLLOT+ 1) lselloe + 195 (ex) — gl +

7sk))T d

h(cry1 + Jry1d)

[s*

)]

065k,

where the last inequality follows from ||d|| < dx, (3.9), (3.24), and

— 1
Hesn) = hlers + Tiad) = V(T (ot ) + 5l
—(Vf () = gi)" d+ h(crsr) = hlexir + Jeiad)

[V Mo (Tk, Sk) Z:VmZ mk,sk} d
€A

< V£ (@x) = gelldl] + masx {0, hersr) = hlersr + Ji

[V mo(Tk, Sk) Z Vsm ( mk,sk)}Td}

i€ Akt

< IV (2r) = grlllldll + &5 (s s8) +A(ck1) = hlex
+lh(ck + Ji(sk + d)) = h(cr1 + Jp41d)]

<|IVf (zr) — gr||0k + O€dy + L, LE(M 4 1)]|s1]| 6%

due to 1/1;;5’“ (zk, sk) < Bedy,

LyL} wl? < LyLIM

|h(cry1) — ek + Jrsk)| < 2

.o

+1d)

+ Jisi)|

Ok Il
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20 XIAO WANG, AND XTAOJUN CHEN

and

[h(ck + Ji(sk +d)) — h(ck+1 + Jpr1d)|

< Lpllex + Ji(sk + d) — chr1 — Jp+1d||

< Lpllex + Jxsk — il + Ll Tk = Jea || l|d]]
LnLl

< — skl + L Ll skl |l

< LhLi(% + 1)5k||81c||-

Then it follows from waé’“ (zk+1) > €0 and Assumption 3.1 with 8 < 1 — 6 that
ey < (Lo) + % + LALAM + 1)) il + Dlsnorl|3e + (8 + 0)edi
which implies
(1= =0)e < max{L(@)+ - + LT + 1), L} (lsull + e )

However, this contradicts ||sx|| + |[sx—1]| < Be by the setting of 3. Therefore, ) is
an (€, d)-approximate first-order stationary point of (1.1). |

Remark 3.7. Lemmas 3.1 and 3.6 show that Algorithm 2.1 can always return an
approximate first-order stationary point of (1.1) when it terminates.

We now partition Ko into K&, U K2, where
Kb = {h € Ko : llsell + Isn1]l > Beb, K3 = {k € Ko : [lsell + llsn_1]| < Bel.

By the definition of Ko, Lemma 3.6 and termination conditions of Algorithm 2.1, we
know that |[K2| < 1, thus |Ko| < [K4] 4 1. Then it together with (3.22) and (3.23)
implies that the total number of iterations until Algorithm 2.1 terminates satisfies

|K:| < |Icu|+ |IC@UICM|+|K:6| S"C@UK:Q.)' +n+2+ |ICQ7UK:UJ|+ﬁ
(3.27) <2IKL UK, |+ 27 + 4.

Based on above relations, to estimate the upper bound of |K|, it suffices to derive an
upper bound on |K{ U K,|. Inspired by this, we establish the oracle complexity of
Algorithm 2.1 in the theorem below. In the following we assume that the positive
parameter 7) in (2.6) satisfies

1 Ly+LyL!

1
L Lytlnle op By L Litbale g7 055

3.28 —
(3:28) 167 16 3= 4y 4

It is noteworthy that the setting of 3 in (3.25) together with (3.28) and Assumption
3.1 ensures the existence of desired input parameters w, 8,7, L and 5. We now proceed
under such parameter settings.

THEOREM 3.8. Suppose that € < «. Then there exists a positive constant C' =
O(1) such that Y, o ||sk||* < C. Furthermore, the mazimum iteration number until
Algorithm 2.1 terminates is in order of O(e~2).
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Proof. 1t follows from Lemma 3.2, s_; = 0 and Assumption 3.1 that
1 Lf + LhL 2
(3, - =) 3 llsil
keK
< V) = grllllskll + Qe(zo) — QF
kek
<> Bmax {Lmin{|[se_1], D}, e} sl + Qc(wo) — Q7
kex
< B(Llise-1lllskll + ellskll) + Qelxo) — Q:
kek
< 30 8(% (lsell? + lsw-al?) + ellsel) +Qelaro) - @:
2 €
kek
(3.29) <> B(LlIskl? + ellskll) + Qo) — Q;-
kex
As
1 1
(3.30) Iskll > za > ¢, ke Ky,
3 37
it indicates
(3.31) L[sk]|® + €llsk]] < (L+3)||se]?, k€ K.
Moreover, by definition of K¢, we have
(3.32) skl + lIsk_1ll > Be, k€K,

thus

Lilsk)|* +ellskll < Llisl® + B~ (lskll + lsk-1D skl
(3.33) < (L4 B Uskll + lse—1lisull, & € Ko
Since s, = 0 for any k € K, plugging (3.31) and (3.33) into (3.29) yields

1 L+LhL
(57 = “L5222) D lswl?

277 ke
< 0 BELA BT Ulskll + lsk—alD) Isell + Y B(L+3) |lskl®
kekl ke,
(3.34) + Y B(Lllskl® + ellskll) + Qclwo) — Q-

ke UKE,

21

Recall that ||sy|| < Be < 1 for any k € K2. Besides, by the boundedness of F we have

Isk]l < 2Mp for any k € K.. Then it follows from (3.34) that

( 1 Ly +LyL} +LhL ) ENE

277 ke
Z B(L ) (Isell + llsk—1l)* + Z B(L+3) lIsl®
keKd, kEK,,
(3.35) + AB(ALME + 2eMp) + B(L + €) + Q(z0) — QF,

This manuscript is for review purposes only.



22 XIAO WANG, AND XTAOJUN CHEN

702 where the last term in above inequality uses the facts that || < n and |K3| < 1.
703 Notice that

1
704 ZIISkHQZ§<2H8k||2+ZHSkII )

kex ke
105 > 1 S sl + sl 3 3 lsel?
4k 25,
706 22 Z Iskll + llsk-11)? Z (e
keIC kelC
707 > = Z (Iskll + llse-1ll)? Z sk,
kelcl kE’C

709  which further derives

1 L+LL
S e O D) DY

277 ke

1 Ly+LyL! 1 L +LhL

2 (g = L) ST (sl llseeaD? (£ = ZEEEE) ST sl
160 16 1 4n

712 keko ek

713 Then it together with (3.35) and the boundedness of F implies that

1 Lf+LhL
714 1 Ly+ Lyl L—f)
: (1677 T > skl + llsk-al)?

keKd,
1 Ly+LyLl - _

713 +(77¥75L73ﬂ>2||5k“2§11

4n 4
716 el

717 with ' = i (4LMF +2eMp)+B(L+€)+Qc (2¢) — QF. Furthermore, from the setting
718 of  as in (3.28) we attain

79 (3.36) Y Usel +llse—al)* + D llsul® <T

k‘EK:é? ke,

20 which leads to the conclusion from (3.35) with C' = Fsgz’ )Ef&r:‘i’z{fgg)fg ). Obviously,

7
721 C=0(1).
722 Moreover, by (3.30) and (3.32) we obtain

. 2 3 1
723 D Usell+llsual) + D lsull* > B2 |Ko| + 5 IKul.

kekd, keK.,

724 Then it together with (3.36) implies |KY| + |K,| = O(e72). Hence by (3.27) the
725 maximum iteration number until the termination of Algorithm 2.1 is in order O(e=2).0

726 Since only one inexact gradient is evaluated at each iteration, the oracle complex-
727 ity of Algorithm 2.1 is in order O(e~2).
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4. Stochastic variant. For problem (1.1), when f owns a finite-sum structure
(1.2), as the sample size N can be very large, it will be expensive to go through all
component functions to compute exact gradients, thereby only approximate gradients
are available. To cope with this type of problems, we propose a stochastic variant of
Algorithm 2.1. The proposed algorithm follows the main framework of Algorithm 2.1,
with InexactOracle specified in Algorithm 4.1. Here inexact gradients are computed
by calling stochastic first-order oracles in a recursive way [23] and [ is a positive integer.

Algorithm 4.1 InexactOracle(zx, Tx—1, gr—1; ks )

Input: Index set Zj generated uniformly at random without replacement from
{1,...,N}.

1+ if mod (k,1) = 0 then

2:  Compute g = \I%I > ier, Viilzr).

3: else

4:  Compute gj = ﬁ Yier, (Vfi(zr) = Vfi(zr-1)) + gr-1.
5: end if

Note that Assumption 3.1 plays a key role in supervising the analysis in previous
section. In this section, adopting a proper sampling strategy we can guarantee As-
sumption 3.1 with high probability. We then establish the complexity of the proposed
algorithm, in terms of number of stochastic first-order oracles, to find an approximate
first-order stationary point. To proceed the analysis, we first introduce a lemma re-
garding the concentration inequality under sampling without replacement. As this
lemma is a duplicate of [27, Theorem 4], we omit its proof here.

LEMMA 4.1. Let X = {X; e R",i=1,...,N}. Suppose | X;|| < o for all i =
1,...,N and some o > 0. Denote A = %Z?;Xz Let Ay,...,A,, v < N be
samples from X under the sampling without replacement. Then, for any € > 0, the
following bound holds:

2

Prob(Hi;Ai —)\H > e) < 2(n+1)exp<_ o (1 +u%e) (1 . %)>

Given ¢ € (0,1), following Lemma 4.1, we can achieve

2

Prob(Hi;Ai 7>\H = e) 21-¢, itv= [% * 160210g(26(n+ 1)/()}_1'

We assume that Vf;,7 = 1,..., N are Lipschitz continuously differentiable. With a
slight abuse of notations, we still use Ly and x to denote the Lipschitz constant and
upper bound of Vf;, i = 1,...,N over F. Then for any k with mod (k,l) = 0, gx
generated by Algorithm 4.1 satisfies

1 5262

-1
Pl TG0 < 0210 2 [ ]

For those k with mod (k,1) # 0, the lemma below provides a sampling strategy such
that Assumption 3.1 can be satisfied with high probability.
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24 XIAO WANG, AND XTAOJUN CHEN

LEMMA 4.2. Under sampling without replacement, for any k with mod (k,1) # 0,
gk generated by Algorithm 4.1 satisfies Assumption 8.1 with probability at least 1 — (,
provided that

1 5262/12 -1 )
(4.1) |7;] > Ll’ * 256L?’|3;jz—:j1||210g(4§n+1)l/C)] ) J =kk—1,... |k/l+1,
{N + W} ) = k/UL

Proof. For any k with mod (k,1) # 0, it follows from the algorithmic framework
that

= ﬁ Z [vfz(fﬂk) - Vfi(xk,l)] + gr—1 — vf(‘fk)
€L

— |117| Z [V fi(ze) = Vfilza1) — (Vf(zr) = Vi (@r-1))] + ge—1 — Vf (@r_1).

1€Ly

We thus obtain g, — V f(xy) = Z;?:Lk/”l Y;, where Y; := ﬁ > iez; Zji with
g A Vfileg) = V(1) = (Vf(z)) = V(1)) j=kk-1... [k/JI+1,
" \ACHERPICHE j=Lk/I

for i = 1,...,N. Define & := Smax {Lmin(|[sg—1],D),e} with L, D and f in
Assumption 3.1. For notation simplicity we denote by B; the event ||Yj|| < m
with j = k,..., [k/IJl + 1, and by B; the event ||Y;| < % with j = [k/I]l. We use
Bj to denote the complement of B;. Then

k k
Prob(|lgx — Vf(zk)| < &) > Prob( ﬂ Bj) =1- Prob( U Bj)
j=Lk/L j=Lk/11

which is no less than 1 — Zj: Lk/11 Prob(B;) by the union bound. Hence, to achieve
that (3.1) holds with probability at least (, it suffices to require

Prob([|Y;]| > g(k_gﬁf/lﬂ» < Q(k_fk/”l)7 j=k,... [k/1Jl+1,
Prob ([|Y;]| > g) < j=k/1L.

— 2

(4.2) Prob(B,) =

Due to the smoothness of f;, || Z;;|| < 2Lsllx;—xj-1l,j =k, k—1,...,|k/l]I+1 and
N Zkpipll <26,i=1,...,N. As Ziil Z;i=0for any j =k,...,|k/l]l, by Lemma
4.1 with A =0, v = |Z;| and Ay = Z;,+,7' = 1,...,v, 7' € [N], we obtain that (4.2)
can be achieved provided that

1, BPmax{L? min(Hsk_lH2,D2),62}/(2(k7[k/lJl))z]71 .
IZ;| > {N t a2, v, P og @G0t D) (b [R/LID /)  J=k LR,
I = {L n 2 max{L? min(|\sk,1\|2,D2),62}/4]—1 = kLl
N 642 log(4(n+1)/¢) ’ J= ’
which can be guaranteed by (4.1) due to €, > fe and k — |k/I|l <. d
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We are now ready to present the oracle complexity in terms of total number of
stochastic first-order oracles required to guarantee that Algorithm 2.1 can find an
(e, 0)-approximate first-order stationary point of (1.1)-(1.2).

THEOREM 4.3. Suppose that conditions of Theorem 3.8 and Lemma 4.2 with | =
O(N'/3) hold, and Algorithm 2.1 with Algorithm 4.1 called to compute inezact oracles
terminates in finite iterations. Then for given p € (0, 1), with probability at least 1—p,
it returns an (e, 0)-approzimate first-order stationary point of (1.1)-(1.2) with the

oracle complexity in order O(N + N3e 2 log(M)). Consequently, the oracle
complexity of Algorithm 2.1 with Algorithm 4.1 is in order @(672).

Proof. We still use K to denote the set of all iteration indices until termination. As
can be seen from previous section, to make sure the algorithm returns an approximate
stationary point with probability at least 1—p, it suffices to guarantee with probability
at least 1 — p that Assumption 3.1 holds for all iterations in K. To realize this,
Assumption 3.1 should be satisfied at each one of the iterations with probability at
least 1 — ¢ for some ¢ € [0, 1] such that 1 — |K|¢ > 1 — p. We may simply set ¢ = I%I'
Furthermore, to achieve Assumption 3.1 with probability at least 1—( at jth iteration
for any given j € K, by Lemma 4.2 the size of Z; can be equal to the right side of
(4.1) after rounding up. With above settings, it holds with probability at least 1 — p
that || = O(¢7?) and Djex |ls;]|> < C, where C' = O(1) by Theorem 3.8. Hence, to
reach an (e, §)-approximate first-order stationary point with probability at least 1 — p,
the total number of stochastic first-order oracles is bounded by

K| LUK/ =111

DIml= > W+ Y T+ > ) [l
iek immod(4,1)=0 i=||K|/L]1+1 i=0  j=1
IK]
Kl

LI SU E il "
=17 N 2. — . 2
l oy N 256L% |2 — zi—-1|* log (4 (n + 1) 1/C)

LK/ -11-1 B2 /12
+
Z Z N " 2612 Hiwis; — wigj—1]*log (4 (n + 1) 1/¢)

|+

K| [K|
< (TWNJF ‘ Z
i=[ K] /1]1+1

Lkt = llzi 256L% |witgj — Tty -1l log (4 (n +1)1/¢)

B2e2 /12

256L% ||z — 2i1][*log (4 (n 4+ 1)1/¢)
6262/12

+ +|K]|
i=0  j=1
K| 5
; 1N + 256C1 Lf

<[5 log (4 (n+1)1/¢) + K|

52 2
which derives the oracle complexity order by the setting of I. 0

5. Extension to expectation case. In this section, we focus on solving the
problem with f in the expectation form, given by:

(1) min Q)= f(x) +hle(@) +[Val} with f(z):=E[F(z,)].
Here, £ € = represents a random variable following the probability function P, and

F : R" x = — R is continuously differentiable with respect to x € F for almost
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26 XIAO WANG, AND XTAOJUN CHEN

every £ € =. To address the challenges posed by problems in the expectation form,
where the sample set can be infinite, we propose a modification to Algorithm 4.1 by
randomly generating a subset of samples from Z, presented in Algorithm 5.1.

Algorithm 5.1 InexactOracle(xg, Tx—_1, gr—1, k, 1)

Input: Generate a sample subset £ uniformly at random from =.
if mod (k,1) = 0 then

2:  Compute gy = ﬁ >oece, VaF(2k,€).

3: else

4 Compute gr = 77 Yeee, (VaF (24, ) = VoF (25-1,€)) + gr1-
5. end if

—

The aim of this section is to investigate the oracle complexity of Algorithm 2.1
with Algorithm 5.1 called to compute stochastic first-order oracles. Before delving
into the analysis, we introduce an assumption that stochastic oracles satisfy.

ASSUMPTION 5.1. There exist A, Ly > 0 such that for all x € F,
E[V.F(z,6) = V@), |V.F(,€) - V()| <A almost surely,

and for any z,y € F, ||V.F(x,€) — VoF(y,§)|| < Ly|lz — y|| almost surely.
The following lemma presents the matrix Bernsterin inequality [26].

LEMMA 5.1. Let Xy,...,X, bei.i.d. random vectors in R™, and satisfy E[X;] =0
and || X;|| < o almost surely for some o > 0 and any i = 1,...,v. Define M :=
max (|| 3277 ELXGXTIL 113272, EIXT X)) Then for any t >0,

42
Prob( ‘ >t><(n+1)~exp(z\4_icit2/3).

>
i=1
Note that M < Y7 E[||X;[|?] < vo?. By Lemma 5.1, we obtain that for any

e >0,
1 v
Prob | — X;

Then for gy, generated by Algorithm 5.1 with & s.t. mod (k, 1) = 0, under Assumption
5.1 and by Lemma 5.1 we attain

—ve/2 ) |

02+ 0¢€/3

>6> <(n+1)-exp<

2

For those k with mod (k,1) # 0, similar to Lemma 4.2, we can provide a sampling
strategy such that Assumption 3.1 holds with high probability.

LEMMA 5.2. Let g be generated by Algorithm 5.1. For any k with mod (k,1) # 0,
Assumption 3.1 holds at kth iteration with probability at least 1 — (, provided that

(5.2)

32L% llzj—a;— Hle 8Lyl|lxj—x;_1]|l 2(n+1)I1 .
o (et et ), i
Jjl =

585 + 45 ) log (20, i = k/UL
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Proof. By the computation of gy in Algorithm 5.1 and Y; := ﬁ Z&eg,- Z;i(€)
with

(5) _ sz(xj,E) - va(-Tj—lag) - Vf($]) + vf(xj—l)v Jj= ka cey Lk/”l +1,

we obtain gp — Vf(zi) = Z?ztk/lﬂ Y;. Under Assumption 5.1 and due to the sm-
moothness of f, | Z;(§)|| < 2L¢|lzj—zj-all, j =k, ..., [k/UI+1and || Z |3/ (O)[| < A.
Similar to the analysis of Lemma 5.2, the remainder is to ensure (4.2). It follows from
Lemma 5.1 that to achieve (4.2) it suffices to require

)

(32L§\|mj—zj__12\|2<k—w/lﬂ>2 N 8Lfnm]-—m_7~§€1ku<kfLk/zm) log (2("+1)UZ_ Lk/lJl)>

€k
&l = J=k, .. k/LL+1,
A2 A 2(n+1) -
(%87 + 48 ) ros (2122 j = /UL
which can be guaranteed by (5.2) and €, > fe. d

We slightly abuse the notation and continue to use K to represent all the iteration
indices until Algorithm 2.1 terminates, with Algorithm 5.1 being called to compute
inexact oracles. According to Lemma 5.2, in order to achieve an (e, d)-approximate
first-order stationary point with a probability at least 1— p, where p € (0, 1), Assump-
tion 3.1 must hold at each iteration with probability at least 1 — ¢ for ¢ € (0, 1) such
that 1 — |K|¢ > 1 — p. Therefore, we set { = %. Consequently, by applying Theorem

3.8 and setting I = O(|K|'/?) we can conclude that the total number of stochastic
first-order oracles is bounded by:

K| LUK/t -11-1
Z &l = Z &) + Z &l + Z Z |Eit-+51
iek i:mod(i,1)=0 i=[|K] /1141 =0 j=1
K|. /842  4A 2n + 1)
LS 28 ) jog (221D
=T W\ g2e Tag ) los ¢
K|
n Z (32[,?“.%]52— 2$j71||2[2 N 8LfH.2?]36— l‘j_1||l> log (Q(n + 1)l>
= RI/U+ ‘ ‘ ¢
LIKI/l]=11-1 2 272
82L&y — ;1|22 8Ljl|z; — 24l 2(n + 1)i
il J FIT; j—1
I
+ ; ;( 522 + 38¢ Og( c >+|K|
Kl 1 1 12 l 2 1)!
=0 (ll(62 + =)+ a7 |/C|1/2€) log <(nz__ ) ) + |K|

We summarize above analysis into the following theorem.

THEOREM 5.3. Suppose that conditions of Theorem 3.8 and Lemma 5.2 hold, with
1 = O(K|'/3), and Algorithm 2.1 with Algorithm 5.1 called to compute inexact oracles
terminates in finite iterations. Then for given p € (0, 1), with probability at least 1—p,
the algorithm returns an (e, d)-approzimate first-order stationary point of (5.1) with
the oracle complexity in order O(e~1%/31og(1/(pe))), i.e., O(e~10/3).
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6. Numerical simulation. In this section, we consider the problem

(6.1) gg}l f(x) +[[Valb, st. Br<b,

where F = {z e R" : b < 2 < b,}, BER™" b e R", and f(z) = & Zfil((Azz -
c¢i)+)? with AT € R” and ¢; € R. By penalizing the constraints of (6.1) with 7 being
a penalty parameter, we obtain the penalty approximation problem in the form of
(1.1)-(1.2):

(6.2) min

N
1
i S (A= o) +7l(Ba = )+ [Vl
b N &

We apply Algorithm 2.1 to solve (6.2) by calling Algorithm 4.1 at kth iteration to
compute inexact first-order oracle g, k > 0. Following (2.6), the subproblem at kth
iteration is defined as

. _ 1
min - g's +7|[(Bug + Bs = b)y [+ Y plo] axl” " o (wr + ) + 515
' i€Ay

st b < xp + 5 < by, UiTs:O, 1 ¢ Ag.

By introducing Z = (Bzy + Bs —b)y € R", and 2 = (%;,i € Ai)T € RM#| with
2 = |vl(zx + s)|,i € Ak, we obtain the following linearly constrained quadratic
program:

. _ A 1
min ggs +7eTz + Z p|viT:z:k|p Lz 4+ §||5||2
€A
st. b <azp+s<b, vls=0, i¢ A,
0<%z Bx,+Bs—b<z —iigv?(ﬂck—l—s)géi, 1€ Ayg.

The numerical implementation was conducted in MATLAB R2022a on a PC
with Intel 17-12700H 2.3GHZ CPU processor, 16GB RAM memory and a Windows
operating system. We use Matlab default solver quadprog to solve each quadratic
program. We generate the optimal solution z* with ||x*|o = K and set V', b, b,, B,
b, A, c as follows.

IndexK = randperm(n); 2o = randn(n, 1); 2* = zeros(n, 1);

z*(IndexK(1 : K)) = 2 * (randn(K, 1) > 0.5) - 1; V= 0.1*eye(n);

b, = -100 * ones(n, 1); b, = 100 * ones(n, 1); B = rand(n, n); B = orth(B’)’;
b = B *xz*, A = randn(N, n); ¢ = max(A *z* + 0.01 * randn(N, 1), 0);

In particular, we set parameters n = 100, N = 10°, K = 10,e = 107%,5 = 0.2,7 =
200,n7 = 0.01,7 = 10 and the batch size as 1000. In Figure 1, we report the perfor-
mances of the proposed algorithm. Specifically, Figures 1(a)-(d) showcase the behav-

ior of different metrics, including the function value error f(xy) — f(z*), the relative

llzk—a"|
flk

the iterate denoted as |||, and the comparison between the nonzero entries of the

output and x*, respectively.

error between the iterate and z* given by , the number of nonzero entries in
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F1G. 1. Numerical profiles on test problem (6.2)

7. Conclusions. We present complexity analysis of proximal inexact gradient
methods for finite-sum optimization with nonsmooth composite functions and a non-
Lipschitz regularizer (1.1). Existence of the nonsmooth function h and non-Lipschitz
term makes it inadequate to build an approximation model simply based on Taylor
expansion as in [5, 8, 11, 12]. Moreover, those algorithms in [5, 8, 11, 12] rely on exact
function values and gradients of f, which have difficulties in computation of problem
(1.1) with the large scale finite-sum of f. In our Algorithm 2.1, we solve a strongly
convex proximal subproblem (2.6) at each iteration without computing the function
values and exact gradients of f, based on convex approximation to f(x)+ h(c(z)) and
a Lipschitz continuous approximation to ||[Vz|[}. By controlling inexactness of inexact
gradients as well as subproblem solutions, we establish O(e~2) oracle complexity to
find an (e, §)-approximate first-order stationary point of problem (1.1). This verifies
that the worst-case oracle complexity still keeps the same with the absence of the
differentiability of the Lipschitz term compared to [11, 12] and with the existence
of non-Lipschitz regularizer in contrast to [5, 8]. Moreover, we propose a stochastic
variant of Algorithm 2.1, by calling stochastic first-order oracles in a recursive way
and applying a proper sampling strategy. We establish that the oracle complexity is
in order O(¢~2) to find an (e, d)-approximate first-order stationary point with high
probability. We further extend the stochastic variant of algorithm to solve problems
in the expectation form and derive the oracle complexity in order @(6_10/ 3) with high
probability. Numerical performances of the proposed algorithm are also reported on
a test problem.
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