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Abstract. In this paper, we consider a class of optimization problems with orthogonality constraints, the feasible region of which is called the
Stiefel manifold. Our new framework combines a function value reduction step with a correction step. Different from the existing approaches, the
function value reduction step of our algorithmic framework searches along the standard Euclidean descent directions instead of the vectors in the
tangent space of the Stiefel manifold, and the correction step further reduces the function value and guarantees a symmetric dual variable at the
same time. We construct two types of algorithms based on this new framework. The first type is based on gradient reduction including the gradient
reflection (GR) and the gradient projection (GP) algorithms. The other one adopts a column-wise block coordinate descent (CBCD) scheme with a
novel idea for solving the corresponding CBCD subproblem inexactly. We prove that both GR/GP with a fixed stepsize and CBCD belong to our
algorithmic framework, and any clustering point of the iterates generated by the proposed framework is a first-order stationary point. Preliminary
experiments illustrate that our new framework is of great potential.
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1. Introduction. We consider numerical methods for solving the following matrix variable optimization problem
with orthogonality constraints

min
X∈Rn×p

f(X)

s. t. X>X = Ip,
(1.1)

where Ip stands for the p-by-p identity matrix, f : Rn×p −→ R, with p ≤ n, satisfying the following assumption.

ASSUMPTION 1.1. (Blanket Assumption)

(i) f is twice differentiable. We define ρ as

ρ := sup
X∈S̃

∥∥∇2f(X)
∥∥

2
,

where S̃ := {Y | ||Y ||2F < p+ 1}1.

(ii) f(X) can be represented as h(X)+tr(G>X), whereG ∈ Rn×p, and h(X) is orthogonal invariant, namely,

h(XQ) = h(X) holds for any Q ∈ Sp,p, and ∇h(X) = H(X)X , where H : Rn×p −→ Sn is a matrix

function.

Here, Sn refers to the set of n-by-n symmetric matrices. The feasible region of problem (1.1) can be consequently
denoted as Sn,p. In practice, the value of ρ is often not known and difficult to estimate. Fortunately, we can overcome
this difficulty in computation as shown in Section 5.1.

∗State Key Laboratory of Scientific and Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences,
University of Chinese Academy of Sciences, China (gaobin@lsec.cc.ac.cn)
†State Key Laboratory of Scientific and Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences,

China (liuxin@lsec.cc.ac.cn). Research supported in part by NSFC grants 11471325, 91530204 and 11622112, the National Center for Mathematics
and Interdisciplinary Sciences, CAS, and Key Research Program of Frontier Sciences, CAS.
‡Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China (xiaojun.chen@polyu.edu.hk). Research

supported in part by Hong Kong Research Council Grant N PolyU504/14.
§State Key Laboratory of Scientific and Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences,

China (yyx@lsec.cc.ac.cn). Research supported in part by NSFC grants 11331012 and 11461161005.
1In fact, S̃ can be defined as any given bounded open set containing Sn,p := {Y ∈ Rn×p| Y >Y = Ip}.

1



Optimization problems of the above type with orthogonality constraints have many applications in scientific engi-
neering computing and data science. More specifically, they play an important role in electronic structure calculation
[45, 46, 44], linear eigenvalue problems [6], low-rank correlation matrix problems [15], sparse principal component
analysis [50, 8], the orthogonal Procrustes problem [35, 11], etc. For other applications, we refer the interested readers
to references [10, 43, 18].

REMARK 1.2. If ρ = 0, the objective function f(X) reduces to a linear function tr(G>X). In this case, the

solution of (1.1) has the closed form X = −RQ>, where RSQ> is the reduced singular value decomposition 2 of G.

In this paper, this special situation will not be discussed.

Assumption 1.1 is sufficient for the global convergence of our algorithmic framework. In this paper, we will not
investigate how to weaken this sufficient condition. Fortunately, many interesting problems satisfy this assumption.
Here are two simple examples.

EXAMPLE 1.1.

f(X) :=
1

2
tr(X>AX) + tr(G>X),

where A ∈ Sn. In this case

∇f(X) = AX +G.

We notice that if the objective function defined in Example 1.1 takes G = 0, the corresponding optimization problem
with orthogonality constraints (1.1) reduces to the Rayleigh-Ritz minimization which is exactly the optimization model
for the eigenvalue problem. However, the problem with G 6= 0 is difficult to solve, even if A is positive definite.
Example 1.1 is a key subproblem in the trust region method for solving optimization problems with orthogonality
constraints (see (4.5) in [46]). Therefore, it is challenging and interesting to explore efficient solvers for this problem.

EXAMPLE 1.2.

f(X) :=
1

2
tr(X>AX) +

1

2

m∑
i=1

qi(z),

where z = diag(XX>), qi : Rn → R (i = 1, · · · ,m) and A ∈ Sn. In this case,

∇f(X) =

(
A+

m∑
i=1

Diag(∇qi(z))
)
X.

This example often appears in electronic structure calculation [23], which is one of the most important topics in
materials science.

1.1. Overview of Existing Methods. In general, it is difficult to find a global solution of problem (1.1) due
to the nonconvexity. In fact, finding a stationary point or a feasible point is not an easy task because it can be
numerically expensive to maintain the orthogonality for large p. There are some existing infeasible methods such as
the splitting method [20] or the penalty method for large-scale eigenspace computation [42]. However, the former
does not guarantee global convergence, and the latter only works for a very special case. Exploring practically useful
infeasible methods for optimization problems with orthogonality constraints is beyond the discussion of this paper.

Recently, some algorithms have been developed for special cases of (1.1), such as electronic structure calculation

2For G ∈ Rn×p with p < n, the reduced singular value decomposition refers to RSQ> where R ∈ Rn×p and Q ∈ Rp×p are orthogonal
matrices and S ∈ Rp×p is diagonal.
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[49, 41], dominant eigenpair calculation [25, 26], computing the coupling between matrices [12]. Usually, these
approaches utilize the special structures of the problems and can hardly be extended to the generic optimization
problems with orthogonality constraints.

The feasible region of problem (1.1), Sn,p, is usually called the Stiefel manifold [37]. Various optimization
methods designed for solving optimization problems restricted on matrix manifold can be applied to problem (1.1).
For instance, gradient based methods [27, 29, 1], conjugate gradient methods [10, 2], trust region methods [46],
Newton methods [10], Quasi-Newton methods [34, 17, 16], etc. The key principle of these methods is to find a
feasible point with lower function value than that at the current iterate. In [10, 3], the authors study the geometric
structure of the Stiefel manifold from the optimization point of view, and bring up a new concept, which is called
“retraction”, to connect previously unrelated algorithms. A map RX : TXSn,p → Sn,p is called a retraction if the
following properties hold.

(1) RX(0X) = X , where 0X is the origin of TXSn,p;
(2) d

dtRX(tZ)|t=0 = Z for all Z ∈ TXSn,p,

where TXSn,p := {Y ∈ Rn×p | Y >X +X>Y = 0} is the tangent space of the Stiefel manifold Sn,p at point X . The
retractionRX maps a tangent vector into the manifold, so it defines an update rule to preserve the orthogonality.

There are two major classes of retractions for optimization problems with orthogonality constraints. The first one
searches along the geodesic of a manifold to find a suitable trial point. Methods in this class are called geodesic-
like retractions [10, 1, 3]. Calculating geodesics involves solving ordinary differential equations which often causes
computational difficulties. The authors of [29] propose a quasi-geodesic updating formula based on the Cayley trans-
formation whose main computation is to solve an n-by-n linear system. The methods in the other major class consist of
two steps, line search in the tangent space and projection back to the Stiefel manifold. Thus, they are called projection-
like methods [27, 3, 4]. The orthogonal projection can be calculated by QR factorization or polar decomposition. The
projection-like methods coincide with the geodesic-like methods, in the special case of p = 1. The above mentioned
retraction based approaches, including both geodesic-like and projection-like methods, should work with a certain line
search strategy, such as the Armijo inexact line search [30, 38] or a nonmonotonic line search strategy. The line search
procedure is to guarantee the global convergence, but at the meantime, it induces additional function value evaluations.

Recently, Wen and Yin [43] proposed a feasible method for optimization with orthogonality constraints. In their
work, an efficient way to calculate the Cayley transformation is introduced. In each iteration, it only requires to solve
a 2p×2p linear system instead of an n×n one. Combining a curvilinear search algorithm [13] with Barzilai-Borwein
(BB) [5] nonmonotonic line search [48], it achieves much lower computational cost than the other existing retraction
based algorithms and is illustrated to have robust numerical performance in solving a bunch of optimization problems
with orthogonality constraints. Later on, Jiang and Dai [18] significantly extended the idea of [43], and found out that
a large group of retraction based methods enjoy such a reducible iterative formulation. It can be proved that all the
algorithms under their framework with BB nonmonotonic line search are globally convergent to a stationary point.

In order to clarify the difference among the aforementioned retraction based algorithms, we demonstrate their
relationship through Figure 1.1.

It is worth mentioning that the retraction based algorithms highly depend on the geometry of the Stiefel manifold
and hence have very low compatibility with additional constraints such as nonnegative constraints or linear inequality
constraints.
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FIG. 1.1. Relationship among retraction-based methods

1.2. Contributions. In this paper, we revisit the first-order optimality condition of problem (1.1), and find that it
is of the following form,

(In −XX>)∇f(X) = 0; sub-stationarity
X>∇f(X) = ∇f(X)>X; symmetry
X>X = Ip. feasibility

(1.2)

For convenience, we call the three equalities of (1.2) sub-stationarity3, symmetry and feasibility, respectively. Based
on the first-order optimality condition, we propose a new algorithmic framework consisting of two main steps.

The first step is function value reduction. Namely, we find a feasible point which reduces the objective function
value to a certain amount in proportion to the norm square of projected gradient. We then propose two types of
algorithms which can achieve such a requirement. Gradient reflection (GR) and gradient projection (GP) are the
representatives of the first type of algorithms, which uses different strategies to pull a gradient descent point back
to the Stiefel manifold. The second type of algorithms employs a column-wise block coordinate descent (CBCD)
iteration. A novel idea of solving the corresponding subproblem efficiently is proposed.

The second step is to find a feasible point satisfying the symmetry property. This correction step, whose main
calculation is a p × p singular value decomposition, is highly dependent on Assumption 1.1. The correction step can
be viewed as a rotation of the trial point obtained in the first step. In the special cases when p = 1 or G = 0, the
symmetry of (1.2) always holds and hence this step can be waived.

It is worth mentioning that GR and GP iterations belong to particular retractions if the correction step is not
necessary, but either CBCD or GR/GP with correction step is not a retraction-based iteration. According to the
construction way, the proposed algorithmic framework is expected to be compatible with additional non-manifold
constraints. Our framework exposes the essential mechanism of the gradient methods for optimization problems with
orthogonality constraints, with which the global convergence of gradient based algorithms with fixed stepsizes can
be established. Moreover, the numerical experiments for solving a class of generic quadratic minimization problems
and the instances arising from electronic structure calculations show that our new algorithmic framework performs
robustly and more efficiently than the existing algorithms.

Finally, the global convergence of CBCD is of great potential itself, as this is the first convergence result for the
BCD method for nonconvex optimization problems with coupled constraints.

1.3. Organization. The rest of this paper is organized as follows. In Section 2, we study the first-order optimality
condition of problem (1.1), and provide a new first-order framework. The main step of our new framework is only re-
quired to meet a condition for sufficient function value reduction. We then develop two types of algorithms, in Section

3 Here, sub-stationarity stands for the stationarity of the gradient of the objective function in the null space of X>.

4



3, to achieve this requirement and form three concrete algorithms under the scheme of the new framework, namely,
GR, GP and CBCD, respectively. Global convergence of our new algorithmic framework is established in Section
4. In Section 5, we demonstrate the efficiency of our algorithmic framework in solving a class of general quadratic
minimization problems and the energy minimization problem arising from the electronic structure calculations. We
show the great potential of our proposed approach in solving large-scale problems. Finally, conclusion remarks are
given in the last section.

1.4. Notation. The Euclidean inner product of two matrices X,Y ∈ Rn×p is defined as 〈X,Y 〉 = tr(X>Y ),
where tr(A) is the trace of a matrix A ∈ Rp×p. ‖·‖2 and ‖·‖F represent the 2-norm and the Frobenius norm, respec-
tively. The notations diag(A) and Diag(x) stand for the vector formed by the diagonal entries of matrix A, and the
diagonal matrix with the entries of x ∈ Rn to be its diagonal, respectively. X† refers to the pseudo-inverse of X . We
denote the smallest positive eigenvalue and the smallest eigenvalue in magnitude of A by λ+

min(A) and λ|min|(A), re-
spectively. The i-th column of matrix X ∈ Rn×p is denoted by Xi. Xī ∈ Rn×(p−1) denotes the matrix X with its i-th
column removed, i.e., Xī = [X1, . . . , Xi−1, Xi+1, . . . , Xp]. We use Xi,v ∈ Rn×p to denote X with its i-th column
replaced by a given vector v, i.e., Xi,v = [X1, · · · , Xi−1, v,Xi+1, · · · , Xp]. Finally, B(C, r) is the ball defined as
{X ∈ Rm1×m2 | ||X − C||F ≤ r}, where C ∈ Rm1×m2 is the center and r is the radius. qr (X) is the Q matrix of
the reduced QR decomposition4 of X . PSn,p

(X) denotes the projection5 of X to the Stiefel manifold Sn,p. Finally,
rand(n, p) and randn(n, p) represent n×p randomly generated matrices under i.i.d. uniformed distribution in [0, 1]

and i.i.d. standard Gaussian distribution, respectively.

2. A New First-order Framework. In this section, we first give a new presentation of the first-order optimality
condition of the optimization problem with orthogonality constraints (1.1), which motivates our new framework. The
details of the new framework will also be presented.

2.1. Optimality Condition. The first-order optimality condition of problem (1.1) can be interpreted as follows.

DEFINITION 2.1. Given a point X ∈ Rn×p, if the relationship{
tr(Y >∇f(X)) ≥ 0;

X>X = Ip
(2.1)

holds for any Y ∈ TXSn,p, we call X a first-order stationary point of (1.1). The set containing all the first-order

stationary points is denoted as ΩFON .

Since condition (2.1) cannot be verified numerically, we show the following equivalent result.

LEMMA 2.2. A point X is a first-order stationary point if and only if equalities (1.2) hold.

Proof. We notice that any Y ∈ TXSn,p can be uniquely decomposed as Y = XS + K6, where S ∈ Rp×p is a
skew matrix (i.e., S> + S = 0) and K ∈ Rn×p satisfies K>X = 0, which is equivalent to K = (In − XX>)K.
Likewise, any matrix of the form XS +K lies in TXSn,p.

Since S and K are arbitrary, condition (2.1) is equivalent to the following relationships

tr(S>X>∇f(X)) ≥ 0, ∀S ∈ Rp×p andS> + S = Ip,(2.2)

tr(K>∇f(X)) ≥ 0, ∀K ∈ Rn×p andK>X = 0,(2.3)

4Q ∈ Rn×p is the Q matrix of the reduced QR decomposition of X ∈ Rn×p, if X = QR, Q ∈ Rn×p is orthogonal and R ∈ Rp×p is an
upper triangle matrix.

5PSn,p (X) = Ũ Ṽ > where ŨΣṼ > is the reduced singular value decomposition of X .
6This is because Y = XX>Y +(In−XX>)Y for any Y . It is not difficult to verify that (In−XX>)Y satisfies Y >(In−XX>)>X = 0.

X>Y is a skew matrix due to the fact that Y ∈ TXSn,p := {Y ∈ Rn×p | Y >X +X>Y = 0}.
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X>X = Ip.

By using (2.2) and the skew symmetry of Q> −Q, where Q := X>∇f(X), we obtain

tr((Q−Q>)Q) ≥ 0.(2.4)

It then follows from (2.4) that

0 ≤ tr((Q−Q>)Q) + tr((Q−Q>)Q) = tr(QQ−Q>Q) + tr(Q>(Q> −Q))

= tr(QQ−Q>Q) + tr((Q> −Q)Q>) = tr(QQ−Q>Q+Q>Q> −QQ>)

= tr((Q−Q>)(Q−Q>)) = −tr((Q−Q>)>(Q−Q>)) ≤ 0.

This implies Q = Q>. On the other hand, if X>∇f(X) is symmetric, the equality tr(S>X>∇f(X)) = 0 holds for
any skew symmetric matrix S. Hence, (2.2) is equivalent to the symmetry of X>∇f(X).

Following from the propertyK = (In−XX>)K and the arbitrariness ofK, we can easily obtain the equivalence
between (2.3) and (In −XX>)∇f(X) = 0. This completes the proof.

REMARK 2.3. It is very easy to check that our first-order optimality condition (1.2) in the Euclidean space is

exactly the same as the one in the tangent space{
∇f(X)−X∇f(X)>X = 0;

X>X = Ip,

which is stated in [43]. Moreover, it actually holds that

||∇f(X)−X∇f(X)>X||2F = ||∇f(X)−XX>∇f(X)||2F + ||X>∇f(X)−∇f(X)>X||2F.(2.5)

2.2. Correction Step and Algorithm Framework. We notice that there are three properties, sub-stationarity,
symmetry and feasibility in our first-order optimality condition (1.2) of problem (1.1). Motivated by the relationship
(2.5), to make the gradient in the tangent space equal to zero, we can adopt the following procedure of two steps. From
the current iterate, we first find a trial point which reduces the function value in proportion to the norm square of the
projected gradient. Based on this trial point, we then find the next iterate which makes the symmetry property hold
without increasing the function value. Then we repeat the procedure till converging. In these two steps, the feasibility
holds all the time. The details of these two steps are described in the following.

Suppose the current iteration point isXk. In the first step, we find an intermediate point X̄ ∈ Sn,p, which satisfies
sufficient function value reduction, i.e.,

f(Xk)− f(X̄) ≥ C1 · ||(In −XkXk>)∇f(Xk)||2F,(2.6)

where C1 > 0 is a positive constant. The right hand side of (2.6) measures the square of the Frobenius norm of the
projected gradient at Xk in the Euclidean space.

Although the intermediate point X̄ ∈ Sn,p satisfies (2.6), it does not satisfy the symmetry property in (1.2). In the
second part, we consider to construct a correction step which makes the symmetry property hold without increasing
the function value.
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Resulting from Assumption 1.1, it holds that

X̄>∇f(X̄) = X̄>H(X̄)X̄ + X̄>G.(2.7)

The term X̄>H(X̄)X̄ is symmetric. Hence, the next iterate Xk+1 can take X̄ , if X̄>G is symmetric. Otherwise, it
suffices to find a point Xk+1 satisfying the symmetry property Xk+1>G = G>Xk+1. To achieve this, we use the
rotation correction, namely, Xk+1 = −X̄UT>, where U and T come from the singular value decomposition (SVD)
of a p× p matrix

(2.8) X̄>G = UΛT>.

The motivation of this correction step is to find a p× p orthogonal matrix Q∗ which minimizes f(X̄Q∗), and then set
Xk+1 = X̄Q∗. By recalling Assumption 1.1, we obtain Q∗ = −UT>, which is the global minimizer of

min
Q∈Sp,p

tr((X̄Q)>G).

Therefore, we set the next iterate as

Xk+1 =

{
X̄, if X̄>G = G>X̄;

−X̄UT>, otherwise.
(2.9)

We can then establish the following properties of such correction step Xk+1.

LEMMA 2.4. Suppose X̄ ∈ Sn,p. Let {Xk+1} be calculated by (2.9), where U and T are determined by (2.8).
Then, it holds that Xk+1 ∈ Sn,p and Xk+1>∇f(Xk+1) is symmetric. Furthermore, we have

8θ
(
f(X̄)− f(Xk+1)

)
≥ ||X̄>∇f(X̄)−∇f(X̄)>X̄||2F,(2.10)

where

θ := ||G||2.(2.11)

Proof. The orthogonality of Xk+1 and the symmetry of Xk+1>∇f(Xk+1) can be directly derived by formula
(2.9). Next, we prove inequality (2.10). If θ = 0, which means∇f(X) = H(X)X , then the symmetry of X̄>∇f(X̄)

implies (2.10) immediately. On the other hand, according to Assumption 1.1, we have

f(X̄)− f(Xk+1) = h(X̄) + tr(G>X̄)− h(Xk+1)− tr(G>Xk+1) = tr(G>X̄ −G>Xk+1)

= tr(UΛT> + Λ) = tr(B + Λ),(2.12)

where B = (ΛT>U + U>TΛ)/2.
On the other hand,

||X̄>∇f(X̄)−∇f(X̄)>X̄||2F = ||X̄>G−G>X̄||2F
= ||UΛT> − TΛU>||2F = 2tr(Λ2)− 2tr(ΛT>UΛT>U) = 4tr(Λ2 −B2),(2.13)
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where the last equality uses the fact that

tr(B2) =
1

2
tr(Λ2) +

1

2
tr(ΛT>UΛT>U).

Moreover, we have

tr(Λ2 −B2) ≤
p∑
i=1

(Λ2
ii −B>i Bi) ≤

p∑
i=1

(Λ2
ii −B2

ii) =

p∑
i=1

(Λii −Bii)(Λii +Bii)

≤
p∑
i=1

2Λii(Λii +Bii) ≤ 2||Λ||2 ·
p∑
i=1

(Λii +Bii) = 2||Λ||2 · tr(Λ +B)

≤ 2||G||2 · tr(Λ +B) = 2θ · tr(Λ +B).(2.14)

Here the third inequality uses the fact that

|Bii| = Λii · |T>i Ui| ≤ Λii.

Combining (2.12)-(2.14), we complete the proof.

We can adopt

c(X) := (In −XX>)∇f(X),(2.15)

because the symmetry and the feasibility of (1.2) hold at each iteration. The complete framework can be described as
the following.

Algorithm 1: First-order Framework for Optimization Problems with Orthogonality Constraints

1 Set tolerance ε > 0; Initialize: X0 ∈ Sn,p; Set k := 0

2 while ||c(Xk)||F > ε do
3 Based on Xk, find a feasible point X̄ satisfying (2.6);
4 Based on X̄ , calculate a feasible point Xk+1 by (2.9);
5 Set k := k + 1.

6 Return Xk.

3. Algorithms for Finding X̄ from Xk. In Section 2, we propose a new algorithmic framework, however, how
to find a point X̄ satisfying sufficient function value reduction (2.6) is still open. In this section, we introduce two
types of algorithms to achieve Step 3 in Algorithm 1. The first type of algorithms is based on gradient descent in
the Euclidean space which will be introduced in the first two subsections. The second type of algorithms adopts a
column-wise coordinate descent idea, and it will be introduced in the third subsection. In the last subsection, we list
the computational cost per iteration of some existing algorithms and our new proposed algorithms.

3.1. Gradient Type Methods. An intuitive idea to reduce the function value in the Euclidean space is to take the
gradient descent direction. Unfortunately, a trial point obtained by a gradient descent step from the current iterate may
violate the orthogonal constraint. Therefore, in this section we discuss two concrete strategies to pull the trial point
back to the Stiefel manifold. Each of them can be used in Step 3 in Algorithm 1.

Both strategies are based on the following observation.
8



LEMMA 3.1. For any Y ∈ BX,τ := B(X − τ∇f(X), τ ||∇f(X)||F), where τ ∈ (0, ρ−1), it holds that

f(X)− f(Y ) ≥ 1− ρτ
2τ

· ||X − Y ||2F.(3.1)

Proof. For any Y ∈ BX,τ , we can derive

〈Y −X,Y −X + 2τ∇f(X)〉 ≤ 0,

which implies

f(Y ) ≤ f(X) + 〈Y −X,∇f(X)〉+
ρ

2
||Y −X||2F

= f(X) +
1

2τ
· 〈Y −X,Y −X + 2τ∇f(X)〉 − τ−1 − ρ

2
· ||Y −X||2F

≤ f(X)− τ−1 − ρ
2

· ||Y −X||2F.

This completes the proof.

We illustrate the relationship among the feasible region, current iterate, gradient step and the auxiliary ball BX,τ
in Figure 3.1.

2.3 Gradient Type Method

An intuitive idea to reduce the function value in the Euclidean space is to take the gradient descent direction. Unfor-
tunately, a gradient step must violate the orthogonal constraint. Therefore, in this section we discuss two strategies to
pull the gradient step back to the Stiefel manifold.

Both of the two strategies are based on the following observation.

Lemma 2.4. Suppose Assumption 1.1 holds. For any Y ∈ BX := B(X − τ∇f(X), τ ||∇f(X)||F), where τ ∈
(0, ρ−1), it holds that

f(X)− f(Y ) ≥ 1− ρτ
2τ

· ||X − Y ||2F. (18)

Proof. For any Y ∈ BX , we can derive

〈Y −X,Y −X + 2τ∇f(X)〉 ≤ 0,

which implies

f(Y ) ≤ f(X) + 〈Y −X,∇f(X)〉+
ρ

2
||Y −X||2F

= f(X) +
1

2τ
· 〈Y −X,Y −X + 2τ∇f(X)〉 − τ−1 − ρ

2
· ||Y −X||2F

≤ f(X)− τ−1 − ρ
2

· ||Y −X||2F.

This completes the proof.

We illustrate the relationship among the feasible region, current iterate, gradient step and the auxiliary ball BX by
the following figure which shows the special case n = 2, p = 1.

-1 -0.5 0 0.5 1 1.5 2 2.5 3

-1

-0.5

0

0.5

1

1.5

2

2.5

0
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2.3.1 Gradient Reflection

The first possibly feasible trial step can take the point which is the farthest away from the current iterate Xk in the
intersection of the Stiefel manifold and the auxiliary ball. This point can actually calculated by the Householder
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− τ∇f(X)

X  

FIG. 3.1. Gradient Type Method

3.1.1. Gradient Reflection. The first possible choice of a feasible trial point is to take the reflection point of
the current iterate Xk reflecting on the null space of Xk − τ∇f(Xk). This point can be actually calculated by the
Householder transformation

GR :

{
V = Xk − τ∇f(Xk), for a fixed chosen τ ∈ (0, ρ−1);

X̄GR = (−In + 2V (V >V )†V >)Xk.
(3.2)

Since X̄GR is the reflection point, we call Algorithm 1 using (3.2) to get X̄ := X̄GR in Step 3 the Gradient Reflection
(GR).

Next, we show the intermediate point X̄GR defined in (3.2) is feasible and achieves sufficient function value
reduction (2.6).

9



LEMMA 3.2. Let Xk ∈ Sn,p and X̄GR be defined by (3.2). Then it holds that X̄GR ∈ Sn,p and

f(Xk)− f(X̄GR) ≥ 2(τ−1 − ρ)

(τ−1 + ρ+ θ)2
· ||(In −XkXk>)∇f(Xk)||2F,(3.3)

where τ ∈ (0, ρ−1), ρ and θ are defined in Assumption 1.1 and equality (2.11), respectively.

Proof. With a slight abuse of notation, we omit the superscript k and use X to denote Xk in this proof.

First, by simple calculation, we have X̄>GRX̄GR = X>
(
−In + 2V (V >V )†V >

)> (−In + 2V (V >V )†V >
)
X =

Ip, which implies X̄GR ∈ Sn,p.

Let RSQ> be the reduced singular value decomposition of V . If S = 0, we have X = τ∇f(X), which implies
that (In − XX>)∇f(X) = 0, and inequality (3.3) holds immediately. Now we consider the case that S 6= 0. We
have

||X̄GR −X||F = 2
∥∥(In − V (V >V )†V >

)
X
∥∥

F
= 2

∥∥(In −RR>)X
∥∥

F
= 2
√
p− ||R>X||2F

= 2
∥∥(In −XX>)R

∥∥
F
≥ 2

∥∥(In −XX>)V QS†
∥∥

F
≥ 2

∥∥(In −XX>)V Q
∥∥

F
· λ+

min(S†)(3.4)

= 2
∥∥(In −XX>)V

∥∥
F
/||S||2 = 2τ ‖c(X)‖F /||V ||2 ≥

2

τ−1 + ρ+ θ
‖c(X)‖F ,

where λ+
min and c(X) are defined in Section 1.4 and equality (2.15), respectively. Here, the second inequality uses the

fact that all the entries of the j-th column of V Q are zero for any j satisfying Sjj = 0 which is implied by the equality
RS = V Q. The last inequality of (3.4) results from

||∇f(X)||2 ≤ ||H(X)X||2 + ||G||2 ≤ ρ+ θ,(3.5)

||V ||2 ≤ ||X||2 + τ ||∇f(X)||2 ≤ 1 + τ(ρ+ θ).

Substituting inequality (3.4) into (3.1) in Lemma 3.1 with Y = X̄GR, we arrive at

f(X)− f(X̄GR) ≥ 4

(τ−1 + ρ+ θ)2
· τ
−1 − ρ

2
· ||(In −XX>)∇f(X)||2F

=
2(τ−1 − ρ)

(τ−1 + ρ+ θ)2
· ||(In −XX>)∇f(X)||2F,(3.6)

which completes the proof.

3.1.2. Gradient Projection. Another possible choice of a feasible trial point is to directly take the projection of
Xk − τ∇f(Xk) onto the Stiefel manifold, which can be calculated by,

GP :

{
V = Xk − τ∇f(Xk), for a fixed chosen τ ∈ (0, ρ−1);

X̄GP = PSn,p(V ).
(3.7)

We call Algorithm 1 using (3.7) to get X̄ := X̄GP in Step 3 the Gradient Projection (GP). We can similarly prove the
feasibility of X̄GP and show sufficient function value reduction can be achieved.

LEMMA 3.3. Let Xk ∈ Sn,p and X̄GP be defined by (3.7). Then it holds that X̄GP ∈ Sn,p and

f(Xk)− f(X̄GP) ≥ τ−1 − ρ
2(τ−1 + ρ+ θ)2

· ||(In −XkXk>)∇f(Xk)||2F,(3.8)

where τ ∈ (0, ρ−1), ρ and θ are defined in Assumption 1.1 and equality (2.11), respectively.
10



Proof. The first part of the argument can be derived in the same manner as Lemma 3.2. Here, we just focus on the
proof of (3.8).

By using the singular value decomposition V = RSQ> and the first two equalities of (3.4), we arrive at

||X̄GP −Xk||2F −
1

4
||X̄GR −X||2F = ||RQ> −Xk||2F − ||(In −RR>)Xk||2F

= tr(Ip)− 2tr(QR>Xk) + tr(Ip)− tr(Ip) + 2tr(Xk>RR>Xk)− ||R>Xk||2F
= p− 2tr(QR>Xk) + ||R>Xk||2F = ||Q> −R>Xk||2F ≥ 0,

which implies

||X̄GP −Xk||F ≥
1

2
||X̄GR −Xk||F ≥

1

τ−1 + ρ+ θ
||c(X)||F.

Then, we can obtain (3.8) along the lines of the proof of inequality (3.6), and then complete the proof.

3.2. Column-wise Block Coordinate Descent Method. Another popular first-order method is block coordinate
descent. For optimization problems with orthogonality constraints, a natural way to build up blocks is to partition
the variables by the columns. On the other hand, the convergence of block coordinate descent with blocks coupled in
nonconvex constraints cannot be guaranteed by existing results. Therefore, it is worthwhile studying the column-wise
block coordinate descent (CBCD) for optimization problems with orthogonality constraints. In this subsection, we
consider Algorithm 1 using CBCD in Step 3, discuss the way to solve the subproblem efficiently, and prove that such
approach belongs to Algorithm 1.

Once we fix the values of p−1 columns ofX and only leave the i-th column as variable, we arrive at the following
subproblem,

min
x∈Rn

fi,X(x)

s. t. ||x||2 = 1,

X>
ī
x = 0,

(3.9)

where fi,X(x) := f(Xi,x), Xi,x and Xī are defined in Subsection 1.4.
Suppose we can obtain the solution of the above subproblem or find a feasible point x+ with sufficient function

value reduction comparing with fi,X(Xi). Then we can use this feasible point to update our iterate column-wisely in a
Gauss-Seidel manner. More specifically, ifX is the current iterate, the trial point X̄ can be calculated by the following
CBCD scheme.

REMARK 3.4. Algorithm 2 actually provides a cyclic column-wise block coordinate descent scheme, i.e. the

columns are updated in a cyclic order. We can similarly implement the greedy order, stochastic order (sampling with

replacement), or randomly permuted order (sampling without replacement) which often appear in classical block

coordinate descent algorithms. However, as we will show in Section 5, these strategies will not help to improve the

performance of the cyclic CBCD. Therefore, we omit the detailed descriptions and analysis of these strategies.

Before claiming that Algorithm 2 can find X̄ in Step 3 of Algorithm 1, we need to answer two questions: can
we cheaply calculate a solution or feasible point achieving sufficient function value reduction and asymptotic small
stepsize safe guard (3.10)-(3.11)? Does Algorithm 2 provide a feasible point of problem (1.1) satisfying (2.6)? We
answer these two questions in the following two subsections.

3.2.1. Solving the CBCD Subproblem. In this subsection, we discuss how to obtain a feasible trial point of
subproblem (3.9) efficiently. We notice that the second constraint of (3.9) restricts the variable x lying in the null

11



Algorithm 2: Column-wise Block Coordinate Descent

1 Set W 0 = X , i := 1;
2 while i ≤ p do
3 Solve the subproblem (3.9) with X replaced by W i−1, and obtain feaible point x+ satisfying the following

sufficient function value reduction and asymptotic small stepsize safe guard

fi,W i−1(Xi)− fi,W i−1(x+) ≥ k1||Xi − x+||22,(3.10)

||Xi − x+||2 ≥ k2||(In −W i−1W i−1>)∇fi,W i−1(Xi)||2;(3.11)

Set W i = W i−1
i,x+ , i := i+ 1;

4 Return X̄ = W p.

space of Xī. Hence, we can use the variable change x = (In −XīX
>
ī

)x to reduce this constraint.

Firstly, the fact X>
ī
x = 0 holds if and only if x = (In −XīX

>
ī

)x. Hence, subproblem (3.9) is equivalent to the
following problem

min
x∈Rn

fi,X((In −XīX
>
ī

)x)

s. t.
∥∥(In −XīX

>
ī

)x
∥∥

2
= 1.

(3.12)

Furthermore, problem (3.12) is equivalent to a well-posed problem if it is restricted to the null space of Xī. More
specifically, we have the following proposition.

PROPOSITION 3.5. The equivalence between problem (3.9) restricted to a subspace D and the following sphere

constrained problem

min
x∈Rn

qi(x) := fi,X((In −XīX
>
ī

)x)

s. t. ||x||2 = 1,

x ∈ D
(3.13)

holds, if X>
ī
x = 0 holds for any x ∈ D.

Proof. For any x ∈ D, it holds that x = (In − XīX
>
ī

)x which implies the equivalence of problems (3.13) and
(3.12) restricted to the subspace D. By using the equivalence between problems (3.12) and (3.9), we complete the
proof.

Proposition 3.5 tells us that we can calculate a feasible point of subproblem (3.9) with sufficient function value
reduction through solving problem (3.13) if we can find a suitable subspace D.

We notice that both Xi and∇qi(Xi) = (In−XīX
>
ī

)∇fi,X((In−XīX
>
ī

)Xi) lie in the null space of Xī. There-
fore, any point in the subspace span {Xi,∇qi(Xi)} satisfies the orthogonality. On the other word, span {Xi,∇qi(Xi)}
is a qualified choice of orthogonal subspace D in Proposition 3.5. Considering that subproblem (3.13) with D =

span {Xi,∇qi(Xi)} is a special case of the original optimization problem with orthogonality constraints (1.1) with
n = 2 and p = 1, we recommend to use the GR step (3.2) or the GP step (3.7) introduced in Subsection 3.1 to calculate
x+.

It can be verified that the GR as well as the GP step satisfy sufficient function value reduction (3.10) and asymp-
totic small stepsize safe guard (3.11).

LEMMA 3.6. Let x+ = (−1+2v(v>v)−1v>)Xi or x+ = (v>v)−
1
2 v, where v = Xi−τ ·∇qi(Xi), τ ∈ (0, ρ−1).

Then x+ satisfies the constraints of (3.9) and conditions (3.10) and (3.11).
12



The proof of Lemma 3.6 directly follows from Lemmas 3.1, 3.2, 3.3 and the fact that In − XX> = (In −
XiX

>
i )(In −XīX

>
ī

), and hence it is omitted here.

REMARK 3.7. If fi,X is quadratic, subproblem (3.13) restricted to the subspace span {Xi,∇qi(Xi)} is equiv-

alent to finding the roots of a quartic equation, which can be calculated in a closed form. In this case, the global

minimizer of subproblem (3.13) restricted to the subspace span {Xi,∇qi(Xi)} can be an alternative option of x+.

3.2.2. Sufficient Function Value Reduction. In this subsection, we show that X̄ calculated by Algorithm 2 is a
feasible point of problem (1.1) and satisfies sufficient function value reduction (2.6).

LEMMA 3.8. Let X ∈ Sn,p and X̄ be calculated by Algorithm 2. Then it holds that X̄ ∈ Sn,p and

f(X)− f(X̄) ≥ k1k
2
2(

1 + (p− 1)k2

(
(1 +

√
2)ρ+

√
2θ
))2 · ||(In −XX>)∇f(X)||2F.(3.14)

Proof. The feasibility of X̄ directly follows from the cyclic Gauss-Seidel type update and the constraints of
subproblem (3.9).

Now, we prove the second part. First, we have

f(X)− f(X̄) = f(W 0)− f(W p) =

p∑
i=1

(
f(W i−1)− f(W i)

)
=

p∑
i=1

(
fi,W i−1(W i−1

i )− fi,W i−1(W i
i )
)

(3.15)

and

fi,W i−1(W i−1
i )− fi,W i−1(W i

i ) ≥ k1k
2
2||(In −W i−1W i−1>)∇fi,W i−1(W i−1

i )||22.(3.16)

By using the Lipschitz continuity and the boundedness of gradient (3.5), we have

||(In −W i−1W i−1>)∇fi,W i−1(W i−1
i )||2

≥ ||(In −W 0W 0>)∇fi,W i−1(W i−1
i )||2 − ||(W i−1W i−1> −W 0W 0>)∇fi,W i−1(W i−1

i )||2

≥ ||(In −XX>)∇fi,W i−1(Xi)||2 −
i−1∑
j=1

||W jW j> −W j−1W j−1>||F · ||∇fi,W i−1(W i−1
i )||2

≥ ||(In −XX>)∇fi,W 0(Xi)||2 − ||(In −XX>)(∇fi,W 0(Xi)−∇fi,W i−1(Xi))||2

−(ρ+ θ)

i−1∑
j=1

(√
2− 2

(
W j
j

>
W j−1
j

)2
)

≥ ||(In −XX>)∇fi,X(Xi)||2 − ||∇fi,W 0(Xi)−∇fi,W i−1(Xi)||2

−
√

2(ρ+ θ) ·
i−1∑
j=1

(√
2− 2

(
W j
j

>
W j−1
j

))

≥ ||(In −XX>)∇fi,X(Xi)||2 − ρ · ||W 0 −W i−1||2 −
√

2(ρ+ θ)

i−1∑
j=1

||W j
j −W j−1

j ||2(3.17)

≥ ||(In −XX>)∇fi,X(Xi)||2 − ((1 +
√

2)ρ+
√

2θ)
√
k1

−1
i−1∑
j=1

√
fj,W j−1(W j−1

j )− fj,W j−1(W j
j ),

where the third last inequality uses the facts
∣∣∣W i−1

i

>
W i
i

∣∣∣ ≤ 1 and
√

2− 2δ2 ≤ 2
√

1− δ (∀|δ| ≤ 1). Together with
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(3.16), we have√
fi,W i−1(W i−1

i )− fi,W i−1(W i
i ) ≥

√
k1k2||(In −W i−1W i−1>)∇fi,W i−1(W i−1

i )||2(3.18)

≥
√
k1k2||(In −XX>)∇fi,X(Xi)||2 − k2((1 +

√
2)ρ+

√
2θ)

i−1∑
j=1

√
fj,W j−1(W j−1

j )− fj,W j−1(W j
j ).

Let δj :=
√
fj,W j−1(W j−1

j )− fj,W j−1(W j
j ), c := k2((1 +

√
2)ρ +

√
2θ), substituting relationship (3.18) into the

fact that δi + c

i−1∑
j=1

δj

2

≤ (1 + (i− 1)c) δ2
i +

i−1∑
j=1

c (1 + (i− 1)c) δ2
j ,

we obtain

(1 + (i− 1)c) δ2
i +

i−1∑
j=1

c (1 + (i− 1)c) δ2
j ≥ k1k

2
2||(In −XX>)∇fi,X(Xi)||22.(3.19)

Summing up inequality (3.19) from i = 1 to p, and recalling (3.15), we arrive at

(
1 + (p− 1)k2((1 +

√
2)ρ+

√
2θ)
)2

p∑
i=1

(√
fi,W i−1(W i−1

i )− fi,W i−1(W i
i )

)2

≥
p∑
i=1

k1k
2
2 · ||(In −XX>)∇fi,X(Xi)||22 = k1k

2
2 · ||(In −XX>)∇f(X)||2F,(3.20)

which implies

f(X)− f(X̄) ≥ k1k
2
2(

1 + (p− 1)k2

(
(1 +

√
2)ρ+

√
2θ
))2 · ||(In −XX>)∇f(X)||2F.

This completes the proof.
A byproduct of the proof of Lemma 3.8 is the following asymptotic small stepsize safe guard property of CBCD.
COROLLARY 3.9. Let X ∈ Sn,p and X̄ be calculated by Algorithm 2. Then it holds that

||X − X̄||F ≥
k2

1 + (p− 1)k2((1 +
√

2)ρ+
√

2θ)
· ||(In −XX>)∇f(X)||F.(3.21)

Proof. Using condition (3.11), the second last inequality of (3.17), and following along the same lines of inequal-
ities (3.18) and (3.20), we can immediately obtain the desired result.

3.3. Computational Cost. In this subsection, we compare the computational cost per iteration among the exist-
ing algorithms and our GR, GP and CBCD. First of all, we clarify the computational cost of the basic linear algebra
operations as the following. Given A ∈ Rn×n, B1, B2 ∈ Rn×p, S1, S2 ∈ Rp×p and x ∈ Rn, calculating matrix-
matrix products B>1 B2, B>1 B1, B1S1, and S1S2 need 2np2, np2 + np, 2np2 and 2p3 flops, respectively. Computing
A−1 and S−1 need 8n3/3 and 8p3/3 flops, respectively, and computing Ax needs 2n2 flops. Calculating the full
singular value decomposition of S ∈ Rp×p to a fixed precision costs O(p3) flops [40]. We assume ∇f(X) is already
assembled and hence the computation of ∇f(X) is not counted in the computational cost per iteration. The other
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settings are similar to Table 1 of [18]. We illustrate the comparison result as follows.

Update schemes Computational cost
first τ subsequent τ

geodesic-like algorithms

Ygeoc(τ ;X) [1] O(n3) O(n3)
Yqgeo(τ ;X) [29] O(n3) O(n3)
Ygeoe(τ ;X) [10] 10np2 + 2np+O(p3) 4np2 + O(p3)
Ywy(τ ;X) [43] 7np2 + 2np+O(p3) 4np2 + np+O(p3)

projection-like algorithms

Yqr(τ ;X) [3] 6np2 + 3np+O(p3) 2np2 + 2np
Ypd(τ ;X) [3] 7np2 + 4np+O(p3) 2np2 + 2np+O(p3)
Ypj(τ ;X) [27] 7np2 + 4np+O(p3) 3np2 + 3np+O(p3)
Yjd(τ ;X) [18] 7np2 + 3np+O(p3) 2np2 + 3np+O(p3)

our algorithms

GR 9np2 + 4np+O(p3)
GP 7np2 + 3np+O(p3)

CBCD-GR 4np2 + 8np+O(p3)
CBCD-GP 4np2 + 5np+O(p3)

TABLE 3.1
Comparison on computational cost

In Table 3.1, the two columns “first τ” and “subsequent τ” refer to the computational cost for the first trial point,
and for subsequent trial points, respectively. However, the additional function evaluations have not been counted yet.
For our GP, GR and CBCD, line search is waived, as GR and GP converge with a fixed stepsize and the subproblem of
CBCD only needs to be solved inexactly by one iteration. Hence, our computational cost per iteration is much cheaper
than the retraction based algorithms in general. Nevertheless, we have to point out that the computation time does not
only depend on the flops count, but also an efficient use of the BLAS.

Moreover, CBCD-GR or CBCD-GP refer to the CBCD (using Algorithm 2 in the Step 3 of Algorithm 1) with
GR or GP updating formula used once in Step 3 of Algorithm 2. We notice that the calculation of ∇fi,X((In −
W i−1
ī

W i−1
ī

>
)Xi) is waived because it is equal to ∇fi,X(Xi) which is implied by W i−1

ī

>
Xi = 0. If fi,X(Xi)

(i = 1, ..., p) are quadratic, and we solve the subproblem (3.13) restricted to the subspace span {Xi,∇qi(Xi)} to
global optimality in Algorithm 2, the corresponding computational cost is 12np2 + 3np+O(p3).

4. Convergence Analysis. In this section, we establish the global convergence of our new algorithmic frame-
work, Algorithm 1. First, the function value convergence is shown.

LEMMA 4.1. Let {Xk} be the iterate sequence generated by Algorithm 1 initiated from a point X0 ∈ Sn,p, then{
f(Xk)

}
converges.

Proof. According to the construction of X̄ in Step 3 of Algorithm 1 and Lemma 2.4, we obtain

f(Xk)− f(Xk+1) = f(Xk)− f(X̄) + f(X̄)− f(Xk+1)

≥ C1 ·
∥∥∥∇f(Xk)−XkXk>∇f(Xk)

∥∥∥2

F
+

1

8θ + 1
· ||X̄>∇f(X̄)−∇f(X̄)>X̄||2F(4.1)

≥ C1 ·
∥∥∇f(Xk)−Xk∇f(Xk)>Xk

∥∥2

F
.

Hence, {f(Xk)} is monotonically decreasing. Since Sn,p is a compact set, {f(Xk)} is bounded below so that we can
conclude that {f(Xk)} converges.

Next, we show the iterate subsequence convergence.

THEOREM 4.2. Let {Xk} be the sequence generated by Algorithm 1 initiated from a pointX0 ∈ Sn,p. Then there
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exists a convergent subsequence of {Xk}. Moreover, each accumulation point X∗ of {Xk} satisfies the first-order

optimality condition of (1.1) defined by Definition 2.1.

Proof. Notice that {Xk} is bounded due to the feasibility of each iterate Xk, hence it has a convergent subse-
quence. Let X∗ be an accumulation point of {Xk}. Due to the feasibility of Xk, X∗ satisfies the feasibility equality
of condition (1.2).

Recalling inequality (4.1) in the proof of Lemma 4.1 and the boundedness of {f(Xk)}, we can conclude that

lim
k→+∞

∥∥∇f(Xk)−Xk∇f(Xk)>Xk
∥∥

F
= 0,

which implies
∥∥∇f(X∗)−X∗∇f(X∗)>X∗

∥∥
F

= 0. Hence, the first two equalities of condition (1.2) are satisfied at
X∗ as well. Combining with Lemma 2.2, we complete the proof.

Lemma 4.1 and Theorem 4.2 guarantee that f(X) is a constant on the accumulation point set of {Xk}. We denote
this constant as f∗, and

Ωf
∗

FON = ΩFON ∩ {X | f(X) = f∗},(4.2)

where ΩFON is defined in Definition 2.1.

Next, we show that the distance between Xk and Ωf
∗

FON goes to zero.

COROLLARY 4.3. Let {Xk} be the sequence generated by Algorithm 1 initiated from a point X0 ∈ Sn,p, then it

holds that

f(Xk) ≥ f∗, ∀ k = 1, · · ·(4.3)

and

lim
k→∞

dist(Xk,Ωf
∗

FON ) = 0.(4.4)

Proof. Since {f(Xk)} is non-increasing, relationship (4.3) holds. Now, we assume statement (4.4) is not true.
Then there exist δ > 0 and a subsequence of {Xk}, denoted as {Xkj} such that

dist(Xkj ,Ωf
∗

FON ) ≥ δ.(4.5)

Since {Xkj} is bounded, there exists a convergent subsequence of {Xkj} and any accumulation point shall also satisfy
the first-order optimality condition, which contradicts (4.5).

5. Numerical Experiment. In this section, we report the numerical performance of the algorithms based on
Algorithm 1. Two types of testing problems are chosen based on Examples 1.1 and 1.2. All experiments are performed
in MATLAB R2016a under a Windows 10 operating system on a Dell Optiplex 9020 personal computer with an Intel R©
CoreTM i7-4790 CPU at 3.6GHz×2 and 8GB of RAM.

5.1. Implementation Details. In Lemmas 3.2 and 3.3, we show that GR and GP satisfy sufficient function value
reduction (3.1) if the fixed stepsize τ is smaller than ρ−1. However, to obtain a good estimation of ρ is often intractable,
and ρ−1 can be very small, which leads to slow convergence. In practice, we can use an alternating Barzilai-Borwein
stepsize (BB stepsize) introduced in [7], which has been already adopted in the retraction based algorithm in [43].
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More specifically, the updating rule for τ can be described as follows

τ :=

{
τBB1, for odd k,
τBB2, for even k.

(5.1)

where

τBB1 :=

〈
Jk−1, Jk−1

〉
|〈Jk−1,Kk−1〉| , τBB2 :=

∣∣〈Jk−1,Kk−1
〉∣∣

〈Kk−1,Kk−1〉 ,

Jk−1 = Xk −Xk−1, Kk−1 = c(Xk)− c(Xk−1).

We call GR and GP with stepsize τ defined by (5.1) as GR-BB and GP-BB, respectively. In contrast, GR and GP with
a fixed stepsize are called GR-F and GP-F, respectively.

CBCD will only be tested in solving quadratic problem (1.1). Therefore, in each inner iteration, the subproblem
(3.13) restricted to the 2-dimensional subspace span {Xi,∇qi(Xi)} can be solved to the global optimality. However,
in each outer iteration, the column updating order {j1, j2, ..., jp} determines the way to classify different types of
algorithms. Usually, there are four orders:

a) cyclic type: ji = i, for i = 1, 2, ..., p;
b) random 1: ji = dp · rand(1, 1)e, for i = 1, 2, ..., p (sampling with replacement);
c) random 2: {j1, j2, ..., jp} is a random permutation of {1, 2, · · · , p} (sampling without replacement);
d) greedy type: for i = 1, 2, ..., p,

ji := arg max
j=1,··· ,p

∥∥∥(In −W i−1W i−1>)∇fj(Xj)
∥∥∥

2
.

The corresponding CBCD are denoted as CBCD-C, CBCD-R1, CBCD-R2 and CBCD-G, respectively.

We have already shown that any iterate generated by any algorithm based on our new framework satisfies the
symmetry and feasibility in (1.2). Hence, for the stopping criterion, we only need to check the projected gradient,
||(In −XX>)∇f(X)||F. More specifically, the stopping criterion can be described as follows

(5.2)
∥∥(In −XX>)∇f(X)

∥∥
F
< ε

∥∥∇f(X0)−X0∇f(X0)>X0
∥∥

F
,

where ε > 0 is a small number. The right-hand side of (5.2) is to match the scale of the initial projected gradient. On
the other hand, convergence of first-order methods may slow down as the iterates approach a stationary point, so it is
critical to detect the slowdown and stop properly. It is usually beneficial to have flexible stopping rules for identifying
the situation that the algorithm gets trapped in a certain region. As suggested in [43], we use the following rule based
on the relative error in addition.

tolxk :=

∥∥Xk −Xk+1
∥∥

F√
n

< εx and tolfk :=

∣∣f(Xk)− f(Xk+1)
∣∣

|f(Xk)|+ 1
< εf ,(5.3)

mean([tolxk−min{k,T}+1, . . . , tolxk]) < 10εx and mean([tolfk−min{k,T}+1, . . . , tolfk ]) < 10εf .(5.4)

We terminate the algorithm when one of the above three criteria (5.2)-(5.4) or a maximum iteration number
MaxIter is reached. Unless otherwise specified, the default tolerance parameters are chosen as ε = 10−5, εx = 10−6,
εf = 10−10, T = 5 and MaxIter = 3000.

5.2. Testing Problems. In this subsection, we introduce two types of testing problems.
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The first type of testing problems is based on Example 1.1. We consider the following quadratic minimization
problems with orthogonality constraints,

min
X∈Rn×p

1
2 tr(X>AX) + tr(G>X)

s.t. X>X = Ip,
(5.5)

where the matrices A ∈ Rn×n and G ∈ Rn×p are randomly generated by

A := PΛP>,(5.6)

G := α ·QD,(5.7)

where the matrices P = qr (rand(n, n)) ∈ Rn×n, Q̃ = rand(n, p) ∈ Rn×p, Q ∈ Rn×p and Qi = Q̃i/||Q̃i||2
(i = 1, 2, ..., p), and matrices Λ ∈ Rn×n and D ∈ Rp×p are diagonal matrices with

Λii :=

{
β1−i, ifωi < ξ,

−β1−i, otherwise,
for all i = 1, 2, . . . , n,(5.8)

Djj := ζj−1, for all j = 1, 2, . . . , p,(5.9)

where ωi ∈ [0, 1] (i = 1, 2, ..., n) are randomly generated numbers. Here, n × p is the variable size; β ≥ 1 is a
parameter determining the decay of eigenvalues of A; ζ ≥ 1 is a parameter referring to the growth rate of column’s
norm ofG. The parameter α > 0 represents the scale difference between the quadratic term and the linear term. When
α is large, the linear term dominates the objective. The parameter ξ ∈ [0, 1] is to determine the definiteness ofA. Once
ξ = 1, matrix A is positive definite, while ξ = 0 means the negative definiteness of A. In contrast, unless specifically
mentioned, the default setting of these parameters are n = 3000, p = 60, α = 1, β = 1.01, ζ = 1.2, ξ = 1. The initial
point is chosen as X0 = qr (rand(n, p)) ∈ Rn×p.

The second type of testing problems is a special case of Example 1.2. It is called Kohn-Sham total energy
minimization which comes from electronic structure calculation [19]. The original Kohn-Sham equations are the
Euler-Lagrange equations for the continuous total energy minimization problem. Under the planewave discretization
scheme, the Kohn-Sham total energy can be transformed into a finite-dimensional approximation as follows,

(5.10) Etotal(X) = tr[X>(
1

2
L+ Vion)X] +

1

2
%(X)>L†%(X) + %(X)>εxc(%(X)),

where %(X) := diag(XX>) denotes the charge density, and L is a finite-dimensional representation of the Laplacian
operator in the planewave basis. The discretized local ionic potential can be represented by a diagonal matrix Vion.
And the matrix L† which is the discrete form of the Hartree potential corresponds to the pseudo-inverse of L. The
exchange correlation function εxc is used to model the non-classical and quantum interaction between electrons. We
aim to solve the following total energy minimization problem,

min
X>X=Ip

Etotal(X).(5.11)

It is not difficult to verify that the gradient of the energy function is H(X)X , where H(X) = L/2 + Vion +

Diag(L†%(X)) + Diag(µxc(%(X))) is the Kohn-Sham Hamiltonian and µxc(%(X)) = dεxc/d%(X).

5.3. Default Settings of Our Algorithms. In this subsection, we determine the default settings for our GR, GP
and CBCD by numerical experiments.
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We first compare the performance of GR-F and GP-F with different fixed stepsizes for choosing a proper value of
the stepsize. The parameter p in the test is chosen as 0.1n, the parameter ζ is 1.01, and the other parameters taking their
default values. We will compare four measurements: CPU time in seconds, total number of iterations, KKT violation
and function value variance, which is defined in the following. Suppose fmin is the smallest absolute function value of
those obtained by all solvers in the comparison, then for fs the function value returned by solver s, the function value
variance is defined as

|fs − fmin|
1 + |fmin|

+ eps,(5.12)

where eps = 2.2204e-16 is the machine precision in Matlab. Here, we add eps to the relative variance of function
value, which is the first part of (5.12), in order to plot the variance of function value with logarithmic scale for the
y-axis. Since both retraction based approaches and our new framework are feasible methods, we do not report the
feasibility violation ||I − X>X||F. The results with respect to the above four measurements are demonstrated in
subfigures (a)-(d) of Figure 5.1, respectively. We choose different τ ranging from 0.1ρ−1 to ρ−1.
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FIG. 5.1. Performance of GR-F and GP-F with different stepsizes

From Figure 5.1, we observe that τ = 1/3ρ and 1/ρ are the best choices for GR-F and GP-F, respectively, in this
testing problem. Hence, we choose them as stepsizes in the comparison with GR-BB and GP-BB.

Next, we perform on a set of testing problems with ten randomly generated matrices with size n ranging from 500

to 5000, and the width of variable p is still 10%n. The parameter ζ is 1.01, and the other parameters take their default
values. Numerical results of this test are illustrated in Figure 5.2.
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FIG. 5.2. Performance of gradient based algorithms

From Figure 5.2, we notice that GR-BB and GP-BB require much fewer number of iterations and less CPU time
than GR-F and GP-F, and also achieve the same first-order stationary point with comparable KKT violation. Moreover,
GR-BB outperforms GP-BB in terms of CPU time and iteration number in the most cases. Thus, we choose GR-BB
to represent the gradient based class of algorithms in the following comparison.
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We next compare the performance among CBCD variations corresponding to different updating orders. In this
comparison, we run CBCD-C, CBCD-R1, CBCD-R2 and CBCD-RG to solve the testing problems with n ranging
from 1000 to 6000, p = 2%n, and other parameters taking their default values. The numerical results are presented in
Figure 5.3.
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FIG. 5.3. Performance of CBCD with different types of choosing working index

From Figure 5.3, we can see that CBCD-C, CBCD-G, and CBCD-R2 have a similar performance with respect to
CPU time and iteration number, and are better than CBCD-R1. Among CBCD-C, CBCD-G, and CBCD-R2, CBCD-C
performs slightly better and it is easy to implement. Therefore, we will use CBCD-C to represent the CBCD class of
algorithms in the following tests.

5.4. Performance Comparison on Random Problems. In this subsection, we compare the performance of our
algorithms GR-BB and CBCD-C with two state-of-the-art solvers in solving a large variety of problem (5.5). We first
choose the solver OptM7 based on the algorithm in [43]. For the other existing solver for comparison, we intend to
choose one from MOptQR-LS (manifold QR method with line search8 [3]), MOptQR-BB (for fair comparison, we
implement the same alternating BB stepsize strategy as GR-BB to manifold QR method), and MOptTR (manifold
trust-region method8 [3]). We compare MOptQR-LS, MOptQR-BB and MOptTR to solve the problem (5.5) with
default settings. The result is illustrated in Figure 5.4.
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FIG. 5.4. Performance of MOptQR with different type stepsize

We can learn from Figure 5.4 that MOptQR-BB outperforms the other two methods in the testing problems, and
hence we will choose MOptQR-BB to be the other solver to compare with our algorithms. By abuse of notation, we
use MOptQR to denote MOptQR-BB hereinafter.

In the following experiments, we only compare the performance among GR-BB, CBCD-C, OptM and MOptQR.
We will set the same stopping criteria as introduced in Subsection 5.1, and the tolerance takes its default value. We

7Available from http://optman.blogs.rice.edu
8Available from http://www.manopt.org
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design six groups of testing problems, in each of which there is only one parameter varying with all the others fixed.
More specifically, we describe the varying parameters of each group as follows

• Number of rows of the variable, n = 1000j, for j = 1,2,3,4,5,6;
• Number of columns of the variable, p = 20j, for j = 1,2,3,4,5,6;
• Decay of the eigenvalues of A, β = 1.01 + 0.03j, for j = 0,1, 2, 3,4, 5, 6,7, 8;
• Difference between column norms of G, ζ = 1.01 + 0.03j, for j = 0,1, 2, 3,4, 5, 6,7, 8;
• The dominance of the linear term, α = 10−2,10−1,1,10, 102;
• The definiteness of A, ξ = 0.2(j − 1), for j = 1, 2,3, 4,5, 6.

The meanings of these parameters refer to equalities (5.6)-(5.9). The linear eigenvalue problem, i.e. problem (5.5)
with α = 0, is not in our testing problems. The stepsizes in our new proposed GR and GP need to be tuned for
different problems, and hence the algorithms become not practically useful. On the other hand, there are a bunch of
efficient solvers particularly designed for the linear eigenvalue problem which can hardly be beaten by general solvers
for optimization problems with orthogonality constraints. The numerical results of the above six groups of testing
problems are given in Figures 5.5 to 5.10, respectively.
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FIG. 5.5. Comparison with varying matrix dimension n

20 40 60 80 100 120
Width of variable

10-1

100

101

102

103

C
P

U
 t

im
e

(s
)

CBCD-C
GR-BB
OptM
MOptQR

(a) CPU time

20 40 60 80 100 120
Width of variable

100

101

102

103

104

It
e

ra
ti
o

n
 n

u
m

b
e

r

CBCD-C
GR-BB
OptM
MOptQR

(b) Iteration number

20 40 60 80 100 120
Width of variable

10-7

10-6

10-5

10-4

K
K

T
 v

io
la

ti
o

n

CBCD-C
GR-BB
OptM
MOptQR

(c) KKT violation

20 40 60 80 100 120

Width of variable

10-20

10-15

10-10

10-5

F
u

n
ct

io
n

 v
a

lu
e

 v
a

ri
a

n
ce

CBCD-C
GR-BB
OptM
MOptQR

(d) Function value variance

FIG. 5.6. Comparison with varying width of variable p

From the above figures, we have the following observations. All solvers reach the same function value from the
same initial point. They achieve comparable KKT violation with magnitude around 10−5. Moreover, GR-BB and
CBCD-C usually have lower KKT violation than the other two in most experiments. Among the four algorithms,
CBCD-C has the lowest iteration number in all the tests, while GR-BB has the least CPU time. Except for very
extreme cases, CBCD-C performs the second best in terms of CPU-time.

Finally, we select all the testing problems with options in bold in the above description, and put them into a
performance profile experiment [9]. There are altogether 6× 6× 3× 3× 3× 3 = 2916 randomly generated problems.
The performance profile can eliminate the influence of a small number of difficult problems and the sensitivity of
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FIG. 5.7. Comparison with varying decay parameter β
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FIG. 5.8. Comparison with varying G parameter ζ

results associated with the different criteria, and also provide a way to visualize the expected performance difference
among many solvers. We describe the key parameters of such test as the following. For problem m and solver s, we
denote tm,s to represent the CPU time or iteration number. Performance ratio is defined as rm,s := tm,s/mins{tm,s}.
If solver s fails to solve problem m, the ratio rm,s will be set to infinity or some sufficiently large number. Finally, the
overall performance of solver s is defined by

πs(ω) :=
number of problems where rm,s ≤ ω

total number of problems
.

It means the percentage of testing problems that can be solved in ωmins tm,s seconds (or iterations). Of course, the
closer πs is to 1, the better performance solver s has. The performance profile results with respect to CPU time and
iteration number are given in Figure 5.11.

We observe that GR-BB performs best and CBCD-C performs the second best among all four algorithms in
solving these 2916 testing problems in CPU time, and meanwhile CBCD-C requires the least iteration number. In
addition, we also provide the average KKT violation and feasibility over these 2916 random problems in Table 5.1.

CBCD-C OptM GR-BB MOptQR

KKT violation 1.6075e-05 2.1730e-05 1.9501e-05 2.5072e-05

Function value variance 6.5780e-06 8.1754e-06 3.0417e-06 7.9584e-06
TABLE 5.1

Average KKT, feasibility violation and function value

Table 5.1 shows all solvers achieve a comparable average KKT violation, feasibility and function value variance.
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FIG. 5.9. Comparison with varying dominance of linear term, α
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FIG. 5.10. Comparison with varying nonnegtivity of A, ξ

Here, the function value variance of solver s in solving problem m is in the same manner as (5.12). More specifically,

zm,s :=
|fm,s −mins{fm,s}|

1 + |mins{fm,s}|
.

5.5. Global Property of CBCD. An interesting observation of all the experiments introduced above is that all
solvers reach the same function value when they converge from a randomly generated initial guess, although our
problem (1.1) is nonconvex. Therefore we design a new experiment as the following. We construct the following
problem

min
X∈R3×2

1

2
tr
(
(X −X∗)>A(X −X∗)

)
s. t. X>X = I2,

where A =

 13/2 2 0

2 1 0

0 0 1

. For this special problem, we can verify that X∗ =

 3/5 0

4/5 0

0 1

 is the unique global

minimizer, while

X I =

 1 0

0 0

0 1

 , X II =

 3/5 0

4/5 0

0 −1

 , X III =

 1 0

0 0

0 −1


are the first-order stationary points. X I is a local minimizer, while the other two are saddle points. Then we set the
initial guess from the neighborhoods of the three stationary points, and run GR-BB, CBCD-C, OptM and MOptQR to
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FIG. 5.11. Performance profile

see the different performance. More specifically,

X0 := PSn,p
(Xi + µ · randn(3, 2)), for i = I, II, III

X0 := PSn,p
(randn(3, 2)),

where µ > 0 controls the distance between X0 and Xi for i = I, II, III. We set µ = 10−4 and compare all solvers
with these four types of initial points. With repeating each test 1000 times, we record the number of each solution for
every solver, and the success rates are presented in Tables 5.2, 5.3, 5.4 and 5.5.

Testing Methods X∗ X I X II X III Success rate

CBCD-C 1000 0 0 0 100%

GR-BB 0 1000 0 0 0%

OptM 0 1000 0 0 0%

MOptQR 0 1000 0 0 0%

TABLE 5.2
Test results with initial points near X I

Testing Methods X∗ X I X II X III Success rate

CBCD-C 1000 0 0 0 100%

GR-BB 0 1000 0 0 0%

OptM 729 0 271 0 72.9%

MOptQR 78 0 922 0 7.8%

TABLE 5.3
Test results with initial points near X II

Testing Methods X∗ X I X II X III Success rate

CBCD-C 1000 0 0 0 100%

GR-BB 1000 0 0 0 100%

OptM 338 28 634 0 33.8%

MOptQR 5 5 990 0 0.5%

TABLE 5.4
Test results with initial points near X III

Testing Methods X∗ X I X II X III Success rate

CBCD-C 1000 0 0 0 100%

GR-BB 656 344 0 0 65.6%

OptM 864 136 0 0 86.4%

MOptQR 774 226 0 0 77.4%

TABLE 5.5
Test results with random initial guesses

It can be observed from the above tables that the four algorithms are not necessarily convergent to same stationary
points. In our tests, CBCD-C can always find the global minimizer. We are not sure whether it is a coincidence or
CBCD-C has the nice property of converging to a global minimizer with great probability. The random initialization
does increase chance to find a global minimizer for the other three algorithms.

5.6. Kohn-Sham Total Energy Minimization. In the end of this section, we compare GR-BB with the state-
of-the-art solvers in solving Kohn-Sham total energy minimization. Our test is based on the best MATLAB platform,
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to the best of our knowledge, for electronic structure calculation, KSSOLV [44]. KSSOLV has a friendly interface
and allows researchers to investigate their own algorithms easily for different steps in electronic structure calculation.
Currently, the most widely used algorithm for (5.11) is the self-consistent field (SCF) iteration, which is provided in
KSSOLV. This is an iterative method for solving the nonlinear eigenvalue problem (KKT system of (5.11) briefly).
Other methods focusing on discretized Kohn-Sham total energy minimization including direct constrained minimiza-
tion [45] and its improved version, trust-region direct constrained minimization (TRDCM) [46] are also integrated in
KSSOLV. TRDCM combines the trust-region and the subspace strategies to this special optimization problem with
orthogonality constraints, and its trust-region subproblems restricted to a subspace are solved by SCF. GR-BB and
MOptQR are selected in this comparison as general solvers for optimization problems with orthogonality constraints.

We select 18 testing problems with respect to different molecules, which are assembled in KSSOLV. We run
methods SCF and TRDCM with ε = 10−5,MaxIter = 200, and other parameters taking their default values, while
GR-BB and MOptQR improve their stopping criteria with ε = 10−5, εx = 10−9, εf = 10−13,MaxIter = 1000

to get a comparable solution with other methods. It is worth mentioning that here the symmetry of (1.2) is already
achieved, since the total energy function is homogeneous and hence without a linear term. The stopping rule is set
as
∥∥(In −XX>)H(X)X

∥∥
F
< ε. For all of the testing algorithms, we set the same initial guess X0 by using the

function ‘getX0’, which is provided by KSSOLV. The numerical results are illustrated in Tables 5.6 and 5.7.

Here, “Etot”, “KKT violation”, “Iteration” and “CPU time(s)” represent the total energy function value, the
value of

∥∥(In −XX>)H(X)X
∥∥

F
, the number of iteration and the total running time in second, respectively. From

the tables, we observe that GR-BB outperforms the other algorithms, even the heuristic ones, in most cases, and it
obtains a comparable total energy function value and a lower KKT violation. In particular, in the large size problem
“ctube661”, GR-BB achieves the same total energy function value and same magnitude KKT violation, but requires
much less CPU time than the others.

6. Conclusion. In this paper, we propose a new first-order algorithmic framework, Algorithm 1, for optimization
problems with orthogonality constraints (1.1). This algorithmic framework consists of two steps. In the first step, we
choose a function value reduction approach to reduce the function value and keep the feasibility at the same time, and
hence the calculation related to the tangent space of the Stiefel manifold can be waived. Secondly, a correction step
is employed to guarantee that any accumulation point of the iterates is a first-order stationary point. Moreover, for
some special cases, the correction step can be waived. We introduce two classes of approaches. The difference of
them is in the first step. We first put forward a gradient based scheme, whose global convergence can be guaranteed
by a fixed stepsize and hence line search is no longer needed. We recommend two particular algorithms, GR and GP,
from this class. The second class of algorithms is called CBCD, in which the column-wise block coordinate update
is conducted in a Gauss-Seidel manner. We also propose novel ideas to solve the column-wise subproblem efficiently
and guarantee the global convergence. Preliminary experiments on two large classes of testing problems including
Kohn-Sham total energy minimization arising from electronic structure calculation illustrate that our new algorithms
have great potential.

However, how to design second-order methods to further enhance the performance and obtain local minimizers is
still under investigation. Global optimality under some random assumptions is an attractive topic for future work. How
to design Jacobian type column-wise block coordinate descent methods is very important for the parallelization, as
low scalability is an inevitable bottleneck of existing approaches for solving optimization problems with orthogonality
constraints.

Acknowledgements. The authors would like to thank Zhaosong Lu, Ting Kei Pong, Zaiwen Wen and Zaikun
Zhang for the insightful discussions.
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Solver Etot KKT violation Iteration CPU time(s)

al, n = 16879, p = 12

SCF -1.5799906179e+01 8.68e-03 200 2509.48
TRDCM -1.5803817595e+01 8.15e-06 184 1595.83
MOptQR -1.5802118775e+01 8.42e-03 1000 2017.61
GR-BB -1.5802922328e+01 2.05e-03 1000 2070.80

alanine, n = 12671, p = 18

SCF -6.1161921213e+01 9.70e-07 15 204.20
TRDCM -6.1161921213e+01 5.91e-06 16 147.84
MOptQR -6.1161921213e+01 8.14e-06 65 142.70
GR-BB -6.1161921212e+01 9.78e-06 63 142.36

benzene, n = 8407, p = 15

SCF -3.7225751363e+01 7.85e-07 12 85.52
TRDCM -3.7225751363e+01 7.33e-06 14 71.13
MOptQR -3.7225751363e+01 8.38e-06 127 154.06
GR-BB -3.7225751362e+01 9.69e-06 50 60.38

c2h6, n = 2103, p = 7

SCF -1.4420491322e+01 1.12e-06 11 10.09
TRDCM -1.4420491322e+01 5.00e-06 12 7.61
MOptQR -1.4420491322e+01 5.56e-06 49 8.53
GR-BB -1.4420491321e+01 9.84e-06 43 7.58

c12h26, n = 5709, p = 37

SCF -8.1536091936e+01 1.52e-06 16 288.09
TRDCM -8.1536091937e+01 9.48e-06 15 171.38
MOptQR -8.1536091935e+01 9.51e-06 442 1296.05
GR-BB -8.1536091936e+01 8.85e-06 50 157.02

co2, n = 2103, p = 8

SCF -3.5124395801e+01 1.50e-06 11 11.92
TRDCM -3.5124395801e+01 7.63e-06 13 8.72
MOptQR -3.5124395800e+01 9.03e-06 39 7.53
GR-BB -3.5124395801e+01 6.94e-06 39 7.52

ctube661, n = 12599, p = 48

SCF -1.3463843176e+02 2.80e-06 13 532.25
TRDCM -1.3463843176e+02 5.77e-06 22 787.58
MOptQR -1.3463843177e+02 5.06e-06 533 3817.95
GR-BB -1.3463843176e+02 9.27e-06 68 493.53

glutamine, n = 16517, p = 29

SCF -9.1839425243e+01 2.88e-06 17 616.73
TRDCM -9.1839425244e+01 8.49e-06 15 479.34
MOptQR -9.1839425243e+01 7.26e-06 87 570.86
GR-BB -9.1839425243e+01 9.76e-06 75 499.92

graphene16, n = 3071, p = 37

SCF -9.3873673630e+01 5.28e-03 200 2008.61
TRDCM -9.4046217545e+01 6.12e-06 43 313.88
MOptQR -9.4046217540e+01 9.56e-06 693 1110.39
GR-BB -9.4046217543e+01 8.35e-06 321 513.45

TABLE 5.6
The results in total energy minimization26



Solver Etot KKT violation Iteration CPU time(s)

graphene30, n = 12279, p = 67

SCF -1.7358503892e+02 3.18e-03 200 15344.80
TRDCM -1.7359510505e+02 9.77e-06 62 3768.22
MOptQR -1.6908746446e+02 3.87e+00 1000 11930.80
GR-BB -1.7359510453e+02 1.97e-04 1000 12027.63

h2o, n = 2103, p = 4

SCF -1.6440507246e+01 7.78e-07 9 5.48
TRDCM -1.6440507246e+01 8.22e-06 11 4.55
MOptQR -1.6440507245e+01 8.43e-06 44 5.13
GR-BB -1.6440507245e+01 9.89e-06 42 4.53

hnco, n = 2103, p = 8

SCF -1.6440507246e+01 7.08e-07 9 5.52
TRDCM -1.6440507246e+01 9.64e-06 11 4.27
MOptQR -1.6440507245e+01 9.20e-06 82 10.41
GR-BB -1.6440507246e+01 8.64e-06 40 5.11

nic, n = 251, p = 7

SCF -2.3543529955e+01 1.10e-06 12 3.13
TRDCM -2.3543529955e+01 9.33e-06 49 5.50
MOptQR -2.3543529955e+01 8.26e-06 100 2.84
GR-BB -2.3543529955e+01 9.56e-06 39 0.88

pentacene, n = 44791, p = 51

SCF -1.3189029495e+02 9.83e-07 15 2448.72
TRDCM -1.3189029495e+02 9.67e-06 23 2706.14
MOptQR -1.3189029495e+02 7.02e-06 355 9145.66
GR-BB -1.3189029495e+02 9.54e-06 100 2606.81

ptnio, n = 4609, p = 43

SCF -2.2678884273e+02 8.25e-07 70 1079.14
TRDCM -2.2678882962e+02 2.93e-04 200 1957.89
MOptQR -2.2678884235e+02 2.33e-05 1000 2281.22
GR-BB -2.2678884272e+02 9.68e-06 512 1159.91

qdot, n = 2103, p = 8

SCF 2.7702342351e+01 3.91e-02 200 175.16
TRDCM 2.7699896368e+01 2.72e-03 200 104.80
MOptQR 3.1736592205e+01 3.96e+00 1000 135.88
GR-BB 2.7700280932e+01 7.90e-04 1000 138.98

si2h4, n = 2103, p = 6

SCF -6.3009750460e+00 4.98e-07 13 12.42
TRDCM -6.3009750459e+00 7.39e-06 16 9.09
MOptQR -6.3009750460e+00 3.83e-06 75 11.67
GR-BB -6.3009750457e+00 6.58e-06 58 8.97

sih4, n = 2103, p = 4

SCF -6.1769279851e+00 8.83e-07 10 5.80
TRDCM -6.1769279850e+00 9.59e-06 10 4.50
MOptQR -6.1769279851e+00 3.76e-06 42 5.14
GR-BB -6.1769279850e+00 9.03e-06 36 4.41

TABLE 5.7
The results in total energy minimization27
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