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Abstract. In this paper, we investigate an optimal control problem with a crucial ODE con-4
straint involving a terminal stochastic linear complementarity problem (SLCP), and its discrete5
approximation using the relaxation, the sample average approximation (SAA) and the implicit Euler6
time-stepping scheme. We show the existence of feasible solutions and optimal solutions to the op-7
timal control problem and its discrete approximation under the conditions that the expectation of8
the stochastic matrix in the SLCP is a Z-matrix or an adequate matrix. Moreover, we prove that9
the solution sequence generated by the discrete approximation converges to a solution of the original10
optimal control problem with probability 1 by the repeated limits in the order of ε ↓ 0, ν → ∞ and11
h ↓ 0, where ε is the relaxation parameter, ν is the sample size and h is the mesh size. We also12
provide asymptotics of the SAA optimal value and error bounds of the time-stepping method. A13
numerical example is used to illustrate the existence of optimal solutions, the discretization scheme14
and error estimation.15
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1. Introduction. In this paper, we aim to find an optimal solution (x, u) ∈19

H1(0, T )n × L2(0, T )m of the following optimal control problem with terminal sto-20

chastic linear complementarity constraints:21

(1.1)

min
x,u

E[F (x(T ), ξ)] +
1

2
‖x− xd‖2L2 +

δ

2
‖u− ud‖2L2

s.t.


ẋ(t) = Ax(t) +Bu(t),

Cx(t) +Du(t)− f(t) ≤ 0,

}
a.e. t ∈ (0, T ),

0 ≤ x(T ) ⊥ E[M(ξ)x(T ) + q(ξ)] ≥ 0,

x(0) = x0, E[g(x(T ), ξ)] ∈ K.

22

Here ξ denotes a random variable defined in the probability space (Ω,F ,P) with23

support set Ξ := ξ(Ω) ⊆ Rb, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n, D ∈ Rl×m, x0 ∈ Rn,24

and f ∈ L2(0, T )l, δ > 0 is a scalar, K ⊆ Rk is a nonempty, closed and convex25

set, xd ∈ L2(0, T )n and ud ∈ L2(0, T )m are the given desired state and control,26

respectively, F : Rn × Ξ→ R, g : Rn × Ξ→ Rk, M : Ξ→ Rn×n and q : Ξ→ Rn. We27

assume that the expected values in (1.1) are well defined, and F and g are continuously28

differentiable with respect to x(T ) over Rn.29

Let ‖·‖ denote the Euclidean norm of a vector and a matrix. We denote L2(0, T )n30

the Banach space of all quadratically Lebesgue integrable functions mapping from31
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2 J. LUO AND X. CHEN

(0, T ) to Rn, which is equipped with the norm32

‖x‖L2 :=

(∫ T

0

‖x(t)‖2dt

) 1
2

, ∀ x ∈ L2(0, T )n.33

Denote H1(0, T )n the space whose components x1, · · ·, xn : (0, T ) → R possess weak34

derivatives such that the function ẋ ∈ L2(0, T )n. A suitable norm in H1(0, T )n is35

defined by36

‖x‖H1 :=
(
‖x‖2L2 + ‖ẋ‖2L2

) 1
2 , ∀ x ∈ H1(0, T )n.37

In [2], Benita and Mehlita studied an optimal control problem with terminal de-38

terministic nonlinear complementarity constraints, which has many interesting prac-39

tical applications in multi-agent control networks. They derived some stationarity40

conditions and presented constraint qualifications which ensure that these conditions41

hold at a local optimal solution of the optimal control problem under the assumption42

that the feasible set is nonempty. However, sufficient conditions were not given for43

the existence of x(T ) such that the terminal deterministic nonlinear complementarity44

constraints45

0 ≤ H̄(x(T )) ⊥ Ḡ(x(T )) ≥ 0, ḡ(x(T )) ∈ K,(1.2)46

hold, where H̄ : Rn → Rn, Ḡ : Rn → Rn, and ḡ : Rn → Rk. Motivated by the work47

of [2], we consider problem (1.1) in uncertain environment, which replaces (1.2) by48

stochastic terminal conditions49

(1.3) 0 ≤ x(T ) ⊥ E[M(ξ)x(T ) + q(ξ)] ≥ 0, E[g(x(T ), ξ)] ∈ K.50

Optimal control with differential equations and complementarity constraints pro-51

vides a powerful modeling paradigm for many practical problems such as the optimal52

control of electrical networks with diodes and/or MOS transistors [4] and dynamic op-53

timization of chemical processes [21]. It can also be derived from the KKT conditions54

of a bilevel optimal control if the lower level problem is convex and satisfies a con-55

straint qualification [18]. A series of works [5, 7, 11, 14, 25] are devoted to the study of56

optimal control problems with complementarity constraints. It should be noted that57

these papers focus on deterministic problems, where the system coefficients includ-58

ing system parameters and boundary/initial conditions are perfectly known. On the59

other hand, optimal control problems with stochastic differential equation constraints60

under uncertain environment have been extensively studied [17, 19, 20]. These papers61

investigate theory and algorithms for optimal control when the parameters in the dif-62

ferential equations have noise and uncertainties. However, there is very little research63

on optimal control with terminal stochastic complementarity constraints.64

It is worth noting that the ODE constraint with a terminal complementarity prob-65

lem (1.2) or a terminal stochastic linear complementarity condition (1.3) is different66

from the linear complementarity systems (LCS) (see for example [6]),67

(1.4)


ẋ(t) = Ãx(t) + B̃u(t),

0 ≤ u(t) ⊥ C̃x(t) + D̃u(t) ≥ 0, t ∈ [0, T ],

x(0) = x0,

68

where Ã ∈ Rn×n, B̃ ∈ Rn×m, C̃ ∈ Rm×n and D̃ ∈ Rm×m are given matrices. In the69

LCS (1.4), the complementarity constraint involves state and control variables and70
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AN OPTIMAL CONTROL PROBLEM WITH COMPLEMENTARITY CONSTRAINTS 3

holds for the whole time interval, while in (1.1), the complementarity constraint holds71

for the state variable at terminal time.72

The main contributions of this paper are summarized as follows. We show the73

existence of feasible solutions to the optimal control problem (1.1) under the conditions74

that E[M(ξ)] is a Z-matrix or an adequate matrix, which gives reasonable conditions75

for the existence of x(T ) such that (1.3) hold. Moreover, we prove the existence76

of feasible solutions and optimal solutions to the discrete approximation using the77

relaxation, the sample average approximation (SAA) and the implicit Euler time-78

stepping scheme under the same conditions. In the convergence analysis, we prove79

that the solution sequence generated by the discrete approximation converges to a80

solution of the original optimal control problem with probability 1 (w.p.1) by the81

repeated limits in the order of ε ↓ 0, ν → ∞ and h ↓ 0, where ε is the relaxation82

parameter, ν is the sample size and h is the mesh size. We also provide asymptotics of83

the SAA optimal value and error bounds of the time-stepping method. These results84

extend the approximation error of the Euler time-stepping method of an optimal85

control problem with convex terminal constraints to nonconvex terminal stochastic86

complementarity constraints.87

The paper is organised as follows: Section 2 deals with the existence of feasible88

solutions of problem (1.1). Section 3 studies the existence of feasible solutions of the89

relaxation and the SAA of (1.1) and the convergence to the original problem (1.1)90

as the relaxation parameter goes to zero and the sample size approaches to infinity.91

In Section 4, we study the convergence of the time-stepping scheme and show the92

convergence properties of the discrete method using the SAA and the implicit Euler93

time-stepping scheme. A numerical example is given in Section 5 to illustrate the94

theoretical results obtained in this paper. Final conclusion remarks are presented in95

Section 6.96

1.1. Notation and assumptions. Throughout this paper we use the following97

notation. For a matrix Â ∈ Rm×n, Â> denotes its transpose matrix, and Â† is its98

pseudoinverse matrix. If Â possesses full row rank m, we have Â† = Â>(ÂÂ>)−1.99

Let I denote the identity matrix with a certain dimension. For a vector z ∈ Rn,100

‖z‖1 =
∑n
i=1 |zi| and ‖z‖0 =

∑n
i=1 |zi|0, and we set 00 = 0. For a matrix Â ∈ Rn×m,101

‖Â‖1 = max1≤j≤m
∑n
i=1 |aij |.102

For sets S1, S2 ⊆ Rn, we denote the distance from v ∈ Rn to S1 and the devia-103

tion of the set S1 from the set S2 by dist(v, S1) = infv′∈S1
‖v − v′‖, and D(S1, S2) =104

supv∈S1
dist(v, S2), respectively. For sets S1, S2 ⊆ H1(0, T )n × L2(0, T )m, we de-105

note the distance from (v1, v2) ∈ H1(0, T )n × L2(0, T )m to S1 by dist((v1, v2), S1) =106

inf(v′1,v
′
2)∈S1

(‖v1 − v′1‖H1 + ‖v2 − v′2‖L2), and the deviation of the set S1 from the set107

S2 by D(S1, S2) = sup(v1,v2)∈S1
dist((v1, v2), S2). Let B(v, ε) = {w : ‖w − v‖ ≤ ε} be108

the closed ball centered at v with the radius of ε. Let intS denote the interior of a set109

S. Let [N ] = {1, 2, . . . , N}.110

Assumption 1.1. There exist four nonnegative measurable functions κi(ξ) with111

E[κi(ξ)] <∞ (i = 1, 2, 3, 4) such that for any z1, z2 ∈ Rn,112

|F (z1, ξ)− F (z2, ξ)| ≤ κ1(ξ)‖z1 − z2‖, ‖g(z1, ξ)‖ ≤ κ2(ξ)‖z1‖, a.e. ξ ∈ Ξ,113

and114

‖M(ξ)‖ ≤ κ3(ξ) and ‖q(ξ)‖ ≤ κ4(ξ), ∀ ξ ∈ Ξ.115

Assumption 1.2. The matrix D ∈ Rl×m is full row rank with l < m and the116
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4 J. LUO AND X. CHEN

matrix117

R := [BY (A−BD†C)BY (A−BD†C)2BY · · · (A−BD†C)n−1BY ] ∈ Rn×n(m−l)
118

is also full row rank, where Y ∈ Rm×(m−l) is a matrix with full column rank m − l119

such that DY = 0.120

2. Existence of optimal solutions of problem (1.1). In this section, we first121

investigate the feasibility of problem (1.1). We call (x, u) ∈ H1(0, T )n × L2(0, T )m a122

feasible solution of (1.1) if it satisfies the constraints in (1.1).123

For an index set J ⊆ [n], let |J | denote its cardinality and Jc denote its comple-124

mentarity set. We denote by qJ ∈ R|J| the subvector formed from a vector q ∈ Rn125

by picking the entries indexed by J and denote by MJ1,J2 ∈ R|J1|×|J2| the submatrix126

formed from a matrix M ∈ Rn×n by picking the rows indexed by J1 and columns127

indexed by J2. Let J = {J : E[MJ,J(ξ)] is nonsingular} and128

(2.1) β =

{
1 if J = ∅,
max{‖(E[MJ,J(ξ)])−1‖1 | J ∈ J } otherwise.

129

A square matrix is said to be a P-matrix if all its principal minors are positive.130

A square matrix is said to be a Z-matrix if its off-diagonal entries are non-positive. A131

matrix E[M(ξ)] ∈ Rn×n is called column adequate if for each z ∈ Rn, zi(E[M(ξ)]z)i ≤132

0 for all i ∈ [n] implies E[M(ξ)]z = 0. The matrix E[M(ξ)] is row adequate if E[M(ξ)]>133

is column adequate and it is adequate if it is both column and row adequate [12]. It134

is known that a P-matrix is adequate and a symmetric positive semi-definite matrix135

is also adequate [12, Theorem 3.1.7, Theorem 3.4.4]. However, an adequate matrix136

may neither be a P-matrix nor a positive semi-definite matrix [12].137

For a given matrix M̄ ∈ Rn×n and a given vector q̄ ∈ Rn, let LCP(q̄, M̄) denote138

the LCP 0 ≤ z ⊥ M̄z + q̄ ≥ 0 and SOL(q̄, M̄) denote the solution set. A vector139

z̄ ∈ SOL(q̄, M̄) is called a sparse solution of the LCP(q̄, M̄) if z̄ is a solution of the140

following optimization problem:141

min ‖z‖0
s.t. z ∈ SOL(q̄, M̄).

142

A vector z̄ ∈ SOL(q̄, M̄) is called a least-element solution of the LCP(q̄, M̄) if z̄ ≤ z143

for all z ∈ SOL(q̄, M̄). If M̄ is a Z-matrix and SOL(q̄, M̄) 6= ∅, then SOL(q̄, M̄) has a144

unique least-element solution which is the unique sparse solution of the LCP(q̄, M̄)[10].145

Let RLCP (M̄) denote the set of all vectors q̄ such that SOL(q̄, M̄) 6= ∅. For any146

y(q̄) ∈ SOL(q̄, M̄), we define an index set J̄ = {i : yi(q̄) > 0} and a diagonal matrix147

D̄ whose diagonal elements are (D̄)ii = 1 for i ∈ J̄ and (D̄)ii = 0 for i /∈ J̄ .148

Lemma 2.1. ([9, Theorem 2.2]) Let M̄ ∈ Rn×n be a Z-matrix, q̄ ∈ RLCP (M̄),149

and let y(q̄) be the least-element solution of LCP(q̄, M̄). With the index set J̄ and150

diagonal matrix D̄, the following statements hold.151

(i) M̄J̄,J̄ is nonsingular for J̄ 6= ∅;152

(ii) y(q̄) = −(I − D̄ + D̄M̄)−1D̄q̄;153

(iii) ‖(I−D̄+D̄M̄)−1D̄‖ ≤ L := max{‖M̄−1
α,α‖ : Mα,α is nonsingular for α ⊆ [n]};154

(iv) For any neighborhood Nq̄ of q̄, there is a p ∈ Nq̄ such that SOL(p, M̄) 6= ∅.155

Moreover, we have −(I − D̄ + D̄M̄)−1D̄ ∈ ∂y(q̄).156

Lemma 2.2. ([10, Theorem 3.1]) Let M̄ be column adequate, q̄ ∈ RLCP (M̄) and157

let z̄ be a sparse solution of the LCP(q̄, M̄). With the index set J̄ and diagonal matrix158

D̄, the following statements hold.159
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(i) M̄J̄,J̄ is nonsingular for J̄ 6= ∅;160

(ii) z̄ = −(I − D̄ + D̄M̄)−1D̄q̄;161

(iii) ‖z̄‖1 ≤ L‖q̄‖1, where L = max{‖M̄−1
α,α‖1 : M̄α,α is nonsingular for α ⊆ [n]};162

(iv) There is no another solution z ∈ SOL(q̄, M̄) with α = {i : zi > 0} such that163

α ⊆ J̄ .164

Theorem 2.3. Let Assumptions 1.1 and 1.2 hold. Suppose the following three165

conditions hold:166

(i) B(0, βE[κ2(ξ)]‖E[q(ξ)]‖1) ⊆ K, where β is defined in (2.1),167

(ii) the set V := {v ∈ Rn |E[M(ξ)v + q(ξ)] ≥ 0, v ≥ 0} is nonempty,168

(iii) E[M(ξ)] is an adequate matrix or a Z-matrix.169

Then problem (1.1) has a feasible solution (x, u) ∈ H1(0, T )n×L2(0, T )m. Moreover,170

problem (1.1) admits an optimal solution if E[F (·, ξ)] is bounded from below.171

Proof. According to Theorem 4.1.6 of [24], for arbitrary p ∈ L2(0, T )l, the follow-172

ing non-homogeneous differential equation173 {
ẋ(t) = (A−BD†C)x(t) +BD†p(t),

x(0) = x0,
a.e. t ∈ (0, T ).174

admits a unique solution x̄ ∈ H1(0, T )n. The matrix R in Assumption 1.2 possesses175

full row rank n and is the controllability matrix of the differential equation176

(2.2) ẋ(t) = (A−BD†C)x(t) +BY v(t),177

where v ∈ L2(0, T )m−l is an input control variable. Hence system (2.2) is a control-178

lable system [24, Corollary 1.4.10], which implies that for any b ∈ Rn, the following179

non-homogeneous differential equation180 {
ẋ(t) = (A−BD†C)x(t) +BY v(t),

x(0) = 0, x(T ) = b− x̄(T ),
a.e. t ∈ (0, T )181

admits a solution pair (x̃, ṽ) ∈ H1(0, T )n × L2(0, T )m−l.182

It is easy to verify that (x̃+ x̄, ṽ) is a solution of the following system:183 {
ẋ(t) = (A−BD†C)x(t) +BY v(t) +BD†p(t),

x(0) = x0, x(T ) = b,
a.e. t ∈ (0, T ).184

Let ũ(t) = Y ṽ(t) +D†(p(t)−C(x̃+ x̄)(t)), then we have Dũ(t) = p(t)−C(x̃+ x̄)(t).185

Following Lemma 7.2 in [2], Assumption 1.2 implies that (x̃ + x̄, ũ) ∈ H1(0, T )n ×186

L2(0, T )m is a solution of the following system:187

(2.3)


ẋ(t) = Ax(t) +Bu(t),

Cx(t) +Du(t) = p(t),

x(0) = x0, x(T ) = b,

a.e. t ∈ (0, T ).188

If we set p(t) = f(t) + p̃(t) in (2.3) for arbitrary p̃ ∈ L2(0, T )l with p̃(t) ≤ 0 and f(t)189

in (1.1), then the following problem190

(2.4)


ẋ(t) = Ax(t) +Bu(t),

Cx(t) +Du(t)− f(t) ≤ 0,

x(0) = x0, x(T ) = b,

a.e. t ∈ (0, T ),191
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6 J. LUO AND X. CHEN

has a solution (x, u) ∈ H1(0, T )n × L2(0, T )m for any b ∈ Rn.192

Now we show the solution set of the following stochastic constrained LCP is193

nonempty,194

(2.5)

{
min{x(T ), E[M(ξ)x(T ) + q(ξ)]} = 0,

E[g(x(T ), ξ)] ∈ K.
195

Following Corollary 3.5.6 and Theorem 3.11.6 in [12], the LCP in (2.5) has a196

solution from the assumption that the set V is nonempty and E[M(ξ)] is adequate or197

a Z-matrix. Let x∗(T ) be a sparse solution of the LCP in (2.5). If there is no J such198

that E[MJ,J(ξ)] is nonsingular, that is, J = ∅, then by Lemma 2.1 and Lemma 2.2,199

‖x∗(T )‖0 = ‖x∗(T )‖1 = 0. Hence, we have200

(2.6) ‖x∗(T )‖ ≤ β‖E[q(ξ)]‖1.201

If there is J such that x∗(T )J > 0 and x∗(T )Jc = 0, where Jc is the complementarity202

set of an index set J , from Lemmas 2.1 and 2.2, we know that E[MJ,J(ξ)] is nonsingular203

and x∗(T ) = −(I − Λ + ΛE[M(ξ)])−1ΛE[q(ξ)], where Λ is a diagonal matrix with204

Λi,i = 1, if i ∈ J and Λi,i = 0, if i ∈ Jc. Moreover, from ‖(I −Λ + ΛE[M(ξ)])−1Λ‖ ≤205

max{‖(E[MJ,J(ξ)])−1‖1 | J ∈ J }, we obtain (2.6) for J 6= ∅.206

Therefore, from Assumption 1.1 and assumption (i) of this theorem, we have207

‖E[g(x∗(T ), ξ)]‖ ≤ E[κ2(ξ)]‖x∗(T )‖ ≤ E[κ2(ξ)]‖x∗(T )‖1 ≤ βE[κ2(ξ)]‖E[q(ξ)]‖1,208

which implies that E[g(x∗(T ), ξ)] ∈ K. Hence the solution set of (2.5) is nonempty.209

Similar to the proof of Theorem 5.1 in [2], we can derive the existence of optimal210

solutions to problem (1.1) if E[F (·, ξ)] is bounded from below.211

Remark 2.4. The constrained LCP (2.5) may have multiple solutions or may not212

have a solution. If E[M(ξ)] is a P-matrix, then for any E[q(ξ)], the LCP in (2.5) has213

a unique solution x(T ). In such case, if E[g(x(T ), ξ)] ∈ K, then (2.5) has a unique214

solution, otherwise (2.5) does not have a solution. If E[M(ξ)] is a Z-matrix or an215

adequate matrix, the LCP in (2.5) may have multiple solutions, while some solutions216

can be bounded by β‖E[q(ξ)]‖1. When B(0, βE[κ2(ξ)]‖E[q(ξ)]‖1) ⊆ K, some solutions217

of the LCP satisfy E[g(x(T ), ξ)] ∈ K and thus the constrained LCP (2.5) is solvable.218

See the example in Section 5.219

Remark 2.5. Assumption 1.2 is also used in [2] for the case l < m, which allows220

more freedom for the system controls. If l = m and D is invertible, we can write221

Cx(t) + Du(t) − f(t) = −v(t) with v(t) ≥ 0 for a.e. t ∈ [0, T ], where v ∈ L2(0, T )l.222

Then the solvability of (2.4) becomes to find a solution pair (x, v) ∈ H1(0, T )n ×223

L2(0, T )l with v(t) ≥ 0 satisfying224

(2.7)

{
ẋ(t) = (A−BD−1C)x(t) +BD−1f(t)−BD−1v(t),

x(0) = x0, x(T ) = b,
a.e. t ∈ (0, T ).225

It then requires the concept of positive controllability [3, 26]. Therefore, the solution226

set of (2.7) is nonempty for any b ∈ Rn under the following conditions:227

(i) the block matrix228

[BD−1 (A−BD−1C)BD−1 · · · (A−BD−1C)n−1BD−1] ∈ Rn×(nm)
229

with n submatrices in Rn×m possesses full row rank,230
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(ii) there is no real eigenvector w ∈ Rn of (A−BD−1C)> such that w>BD−1v ≥231

0 for any v ∈ Rm+ .232

Then there is a finite time T0 such that the solution set of (2.4) is nonempty for any233

b ∈ Rn and T ≥ T0. Hence we can replace Assumption 1.2 in Theorem 2.3 by these234

two conditions for the case that l = m and D is invertible.235

3. Relaxation and sample average approximation (SAA). In this section,236

we apply the relaxation and the SAA approach to solve (1.1). We consider an inde-237

pendent identically distributed (i.i.d) sample of ξ(ω), which is denoted by {ξ1, · · ·, ξν},238

and use the following relaxation and SAA problem to approximate problem (1.1):239

(3.1)

min
x,u

1

ν

ν∑
`=1

F (x(T ), ξ`) +
1

2
‖x− xd‖2L2 +

δ

2
‖u− ud‖2L2

s.t.



ẋ(t) = Ax(t) +Bu(t),

Cx(t) +Du(t)− f(t) ≤ 0,

}
a.e. t ∈ (0, T ),∥∥∥∥∥min

{
x(T ),

1

ν

ν∑
`=1

[M(ξ`)x(T ) + q(ξ`)]

}∥∥∥∥∥ ≤ ε,
x(0) = x0,

1

ν

ν∑
`=1

g(x(T ), ξ`) ∈ Kε := {z |dist(z,K) ≤ ε} ,

240

where ε > 0 is a sufficiently small number.241

By saying a property holds w.p.1 for sufficiently large ν, we mean that there is242

a set Ω0 ⊂ Ω of P-measure zero such that for all ω ∈ Ω\Ω0 there exists a positive243

integer ν∗(ω) such that the property holds for all ν ≥ ν∗(ω).244

3.1. Convergence of the relaxation and SAA. In this subsection, we show245

the existence of a solution of problem (3.1), and its convergence as ε ↓ 0 and ν →∞.246

Theorem 3.1. Suppose that the conditions of Theorem 2.3 hold. Then for any247

ε > 0, the SAA problem (3.1) has an optimal solution (xε,ν , uε,ν) ∈ H1(0, T )n ×248

L2(0, T )m w.p.1 for sufficiently large ν.249

Proof. Since the solution set of the linear control system (2.4) is nonempty for250

any b ∈ Rn, for the existence of a feasible solution to the SAA problem (3.1), it suffices251

to show that for any given ε > 0 the solution set of the following system252

(3.2)



∥∥∥∥∥min

{
x(T ),

1

ν

ν∑
`=1

[M(ξ`)x(T ) + q(ξ`)]

}∥∥∥∥∥ ≤ ε,
1

ν

ν∑
`=1

g(x(T ), ξ`) ∈ Kε

253

is nonempty w.p.1 for sufficiently large ν.254

Let x∗(T ) be a sparse solution of the LCP in (2.5). From Theorem 2.3, we know255

that x∗(T ) satisfies (2.5). By the strong Law of Large Number, for sufficiently large256

ν, x∗(T ) is a solution of (3.2). It concludes with any given ε > 0 that the solution set257

of the system (3.2) is nonempty w.p.1 for sufficiently large ν.258

Since E[F (·, ξ)] is bounded from below, we can also obtain that 1
ν

∑ν
`=1 F (·, ξ`) is259

bounded from below with sufficiently large ν. The existence of optimal solutions to260

problem (3.1) is similar to the proof of Theorem 2.3.261
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We define the objective functions of problems (1.1) and (3.1), respectively as the262

following263

Φ(x, u) = E[F (x(T ), ξ)] +
1

2
‖x− xd‖2L2 +

δ

2
‖u− ud‖2L2 ,264

and265

Φν(x, u) =
1

ν

ν∑
`=1

F (x(T ), ξ`) +
1

2
‖x− xd‖2L2 +

δ

2
‖u− ud‖2L2 ,266

where (x, u) ∈ H1(0, T )n × L2(0, T )m, and ν > 0.267

Let Z ⊆ Rn be an open set, R̄ = [−∞,∞] and N = {1, 2, 3, · · ·}.268

Definition 3.2. ([22]) A sequence of functions {gk : Z → R̄, k ∈ N} epicon-269

verges to g : Z → R̄ if for all z ∈ Z,270

(i) lim infk→∞ gk(zk) ≥ g(z) for all zk → z, and271

(ii) lim supk→∞ gk(zk) ≤ g(z) for some zk → z.272

Definition 3.3. ([16]) A function g : Ξ × Z → R̄ is a random lower semicon-273

tinuous (lsc) function if g is jointly measurable in (ξ, z) and g(ξ, ·) is lsc for every274

ξ ∈ Ξ.275

Definition 3.4. ([16]) A sequence of random lsc function {gk : Ξ× Z → R̄, k ∈276

[K]} epiconverges to g : Ξ × Z → R̄ almost surely, if for a.e. ξ ∈ Ξ, {gk(ξ, ·) : Z →277

R̄, k ∈ N} epiconverges to g : Z → R̄.278

Since F (·, ξ) is a smoothing function for a.e. ξ ∈ Ξ, following the proof of Lemma279

3.5 in [8], we can have the following lemma.280

Lemma 3.5. Let C1 × C2 denote a compact subset of H1(0, T )n × L2(0, T )m. It281

holds that Φν epiconverges to Φ w.p.1 over C1 × C2 as ν →∞.282

Let Zε,ν and Z denote the solution sets of (3.2) and (2.5), respectively. Let Sε,ν283

and S be the feasible solution sets, and Ŝε,ν and Ŝ be optimal solution sets of (3.1)284

and (1.1), respectively.285

Theorem 3.6. Suppose that the conditions of Theorem 2.3 and K is bounded.286

Assume that there are ε̄ > 0, γ > 0 and η > 0 such that for z ∈ Rn−ε̄ := {z ∈ Rn :287

zi ≥ −ε̄, i ∈ [n]},288

(3.3) γ + ‖E[g(z, ξ)]‖ ≥ η‖z‖.289

Then it holds that limε↓0 limν→∞D(Zε,ν ,Z) = 0 w.p.1, limε↓0 limν→∞ D(Sε,ν ,S) = 0290

w.p.1. and limε↓0 limν→∞D(Ŝε,ν , Ŝ) = 0 w.p.1.291

Proof. From Theorem 2.3, we know that Z is nonempty. And by Theorem 3.1,292

for any given ε > 0, Zε,ν is nonempty w.p.1 for sufficiently large ν. Denote Zε the293

solution set of the following problem for any given ε > 0294

(3.4)

{
‖min{x(T ),E[M(ξ)x(T ) + q(ξ)]}‖ ≤ ε,
E[g(x(T ), ξ)] ∈ Kε.

295

It is obvious that Z ⊆ Zε and then Zε is nonempty for any given ε > 0. Since K is296

compact, K ε̄ is a compact set, which means that there is ρε̄ > 0 such that ‖y‖ ≤ ρε̄297

for any y ∈ K ε̄. Obviously, Zε ⊂ Z ε̄ ⊂ Rn−ε̄ for any ε ≤ ε̄. By condition (3.3), for any298

z ∈ Zε with ε ≤ ε̄,299

η‖z‖ ≤ ‖E[g(z, ξ)]‖+ γ ≤ ρε̄ + γ.300
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Hence we have, for any x(T ) ∈ Zε with ε ≤ ε̄,301

‖x(T )‖ ≤ ρε̄ + γ

η
.302

Similarly, by (3.3) and the strong Law of Large Number, we have that for any z ∈ Rn−ε̄303

2γ +

∥∥∥∥∥1

ν

ν∑
`=1

g(z, ξ`)

∥∥∥∥∥ ≥ η‖z‖304

w.p.1 for sufficiently large ν. Since 1
ν

∑ν
`=1 g(x(T ), ξ`) ∈ K ε̄ and Zε,ν ⊂ Rn−ε̄ for any305

ε ≤ ε̄, we obtain that for any x(T ) ∈ Zε,ν with ε ≤ ε̄,306

‖x(T )‖ ≤ ρε̄ + 2γ

η
307

w.p.1 for sufficiently large ν. Therefore, for any ε ≤ ε̄, there is a compact set X such308

that Z ⊆ X and Zε,ν ⊆ X w.p.1 for sufficiently large ν.309

Let310

φ(x(T )) := min{x(T ),E[M(ξ)x(T ) + q(ξ)]} and ψ(x(T )) := E[g(x(T ), ξ)].311

For x(T ) ∈ Z, φ(x(T )) = 0 and ψ(x(T )) ∈ K. From (3.2), for x(T ) ∈ Zε,ν , there are312

vν ∈ Rn, wν ∈ Rk with ‖vν‖ ≤ ε and ‖wν‖ ≤ ε w.p.1 for sufficiently large ν such that313

φνε (x(T )) := min

{
x(T ),

1

ν

ν∑
`=1

[M(ξ`)x(T ) + q(ξ`)]

}
+ vν = 0,

ψνε (x(T )) :=
1

ν

ν∑
`=1

g(x(T ), ξ`) + wν ∈ K.
314

Since φ and ψ are continuous, and M(·), q(·) and g(x(T ), ·) satisfy Assumption 1.1,315

we have φνε and ψνε converge to φ and ψ uniformly w.p.1, respectively on the compact316

set X as ε ↓ 0 and ν →∞, that is,317

lim
ε↓0

lim
ν→∞

max
x(T )∈X

‖φνε (x(T ))− φ(x(T ))‖ = 0, w.p.1318

and319

lim
ε↓0

lim
ν→∞

max
x(T )∈X

‖ψνε (x(T ))− ψ(x(T ))‖ = 0, w.p.1.320

Therefore, following Theorem 5.12 in [23], limε↓0 limν→∞D(Zε,ν ,Z) = 0 w.p.1.321

Now we show limε↓0 limν→∞D(Sε,ν ,S) = 0 holds w.p.1. Note that Sε,ν and S are322

two nonempty closed sets. Obviously, two nonempty closed sets S and Sε,ν are the323

solution sets of problem (2.4) with terminal sets Z and Zε,ν , respectively. For any324

p ∈ L2(0, T )l, the pair (‖x‖H1 , ‖u‖L2), where (x, u) is a solution of problem (2.3), is325

uniquely defined by the terminal point x(T ). In addition, it is clear that a solution326

(x, u) of problem (2.3) is continuous with respect to the terminal point x(T ). Hence,327

for any (xε,ν , uε,ν) ∈ Sε,ν and (x, u) ∈ S, we have (xε,ν , uε,ν) → (x, u) w.p.1 in the328

norm ‖ · ‖H1 × ‖ · ‖L2 when xε,ν(T ) → x(T ) w.p.1 as ε ↓ 0 and ν → ∞. It then329

concludes limε↓0 limν→∞D(Sε,ν ,S) = 0 w.p.1.330

It is clear that from Ŝ ⊆ S, Ŝε,ν ⊆ Sε,ν and limε↓0 limν→∞ D(Sε,ν ,S) = 0 w.p.1,331

we have, for any (x̂ε,ν , ûε,ν) ∈ Ŝε,ν , there is (x̂, û) ∈ S such that (x̂ε,ν , ûε,ν) → (x̂, û)332

w.p.1 in the norm ‖ · ‖H1 × ‖ · ‖L2 as ε ↓ 0 and ν → ∞. In addition, according to333

Theorem 2.5 in [1], we obtain (x̂, û) ∈ Ŝ by the epiconvergence of Φν to Φ w.p.1,334

which implies limε↓0 limν→∞D(Ŝε,ν , Ŝ) = 0 w.p.1.335
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3.2. Asymptotics of the SAA optimal value. We introduce the relaxation336

of problem (1.1) with a parameter ε > 0 as follows337

(3.5)

min
x,u

Φ(x, u)

s.t.


ẋ(t) = Ax(t) +Bu(t),

Cx(t) +Du(t)− f(t) ≤ 0,

}
a.e. t ∈ (0, T ),

‖min{x(T ),E[M(ξ)x(T ) + q(ξ)]}‖ ≤ ε,
x(0) = x0, E[g(x(T ), ξ)] ∈ Kε.

338

Recall that Zε is the solution set of the terminal constraints of (3.5). Denote339

by Sε and Ŝε the feasible solution set and optimal solution set of (3.5), respectively.340

Recall that Z is the solution set of (2.5), and S and Ŝ are the feasible solution set341

and optimal solution set of (1.1), respectively. It is clear that Z ⊆ Zε and S ⊆ Sε,342

which mean that Φ(x̂ε, ûε) ≤ Φ(x̂, û) for any (x̂ε, ûε) ∈ Ŝε and (x̂, û) ∈ Ŝ. Therefore,343

Zε, Sε and Ŝε are nonempty since Z and S are nonempty.344

According to Theorem 3.6, we also conclude that Zε and Ŝε are compact. It can345

also be derived that limε↓0 D(Zε,Z) = 0, limε↓0 D(Sε,S) = 0 and limε↓0 D(Ŝε, Ŝ) = 0.346

It is clear that (3.1) is the corresponding SAA problem of (3.5). By Theorem 3.6,347

we conclude that limν→∞ D(Zε,ν ,Zε) = 0 w.p.1, limν→∞D(Sε,ν ,Sε) = 0 w.p.1 and348

limν→∞ D(Ŝε,ν , Ŝε) = 0 w.p.1.349

In the rest of this section, we study the asymptotics of optimal value of the SAA350

problem (3.1) for a fixed ε > 0.351

Since min{x(T ),E[M(ξ)x(T )+q(ξ)]} = 0 and E[g(x(T ), ξ)] ∈ K for any x(T ) ∈ Z,352

we have Z ⊆ intZε, which means that intZε 6= ∅. Let353

Ẑ = {x(T ) : (x, u) ∈ Ŝ} and Ẑε = {x(T ) : (x, u) ∈ Ŝε}.354

Obviously, we have Ẑ ⊆ intZε and limε↓0 D(Ẑε, Ẑ) = 0. We give the following355

assumptions.356

Assumption 3.7. The set Ẑ is a singleton.357

Assumption 3.8. (i) There exists a nonnegative measurable function κ1(ξ)358

with E[κ2
1(ξ)] <∞ such that for any z1, z2 ∈ Rn and ξ ∈ Ξ,359

|F (z1, ξ)− F (z2, ξ)| ≤ κ1(ξ)‖z1 − z2‖,360

and E[F 2(z, ξ)] <∞ for any z ∈ Rn.361

(ii) The function E[F (·, ξ)] is a strongly convex function, that is, there is a con-362

stant µ > 0 such that, for any z1, z2 ∈ Rn and τ ∈ (0, 1),363

E[F ((1− τ)z1 + τz2, ξ)] ≤ (1− τ)E[F (z1, ξ)] + τE[F (z2, ξ)]−
µτ(1− τ)

2
‖z1 − z2‖2.364

Theorem 3.9. Suppose that the conditions of Theorem 3.6, Assumption 3.7 and365

Assumption 3.8 hold. Let (x̂ε, ûε) and (x̂ε,ν , ûε,ν) be optimal solutions of (3.5) and366

(3.1), respectively. Then for sufficiently small ε, we have367

√
ν(Φν(x̂ε,ν , ûε,ν)− Φ(x̂ε, ûε))

D−→ N (0, σ2(x̂ε(T ))),368

where “
D−→ ” denotes convergence in distribution and N (0, σ2(x̂ε(T ))) denotes the369

normal distribution with mean 0 and variance σ2(x̂ε(T )) := Var[F (x̂ε(T ), ξ)].370
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Proof. Since Ẑ is a singleton, Ẑ ⊆ intZε and limε↓0 D(Ẑε, Ẑ) = 0, we have371

Ẑε ⊆ intZε for sufficiently small ε, which means that there is a convex set ZX such that372

Ẑε ⊆ ZX ⊆ Zε for sufficiently small ε. We can also obtain that Ẑε is a singleton for373

sufficiently small ε under Assumption 3.8(ii). We argue it by contradiction. Suppose374

(x̂ε, ûε) and (x̌ε, ǔε) are two optimal solutions of (3.5) with x̂ε(T ) 6= x̌ε(T ). Then375

(xετ , u
ε
τ ) := ((1− τ)x̂ε + τ x̌ε, (1− τ)ûε + τ ǔε) with τ ∈ (0, 1) is also a feasible solution376

of (3.5), since xετ (T ) ∈ ZX ⊆ Zε. Moreover,377

Φ(xετ , u
ε
τ ) ≤ (1− τ)Φ(x̂ε, ûε) + τΦ(x̌ε, ǔε)− µτ(1− τ)

2
‖x̂ε(T )− x̌ε(T )‖2,378

which means Φ(xετ , u
ε
τ ) < Φ(x̂ε, ûε) since Φ(x̂ε, ûε) = Φ(x̌ε, ǔε) and x̂ε(T ) 6= x̌ε(T ). It379

contradicts the assumption that (x̂ε, ûε) is an optimal solution of (3.5), and then we380

know that Ẑε is a singleton for sufficiently small ε.381

In the following argument, ε > 0 is a fixed number such that Ẑε is singleton382

and Ẑε ⊆ intZε. Denote Ẑε,ν = {x(T ) : (x, u) ∈ Ŝε,ν}. We then obtain that383

limν→∞ D(Ẑε,ν , Ẑε) = 0 w.p.1 and Ẑε ⊆ intZε,ν w.p.1 for sufficiently large ν accord-384

ing to limν→∞ D(Zε,ν ,Zε) = 0 w.p.1. Therefore, there is a (x̂ε,ν , ûε,ν) ∈ Ŝε,ν such385

that x̂ε,ν(T ) ∈ intZε,ν for sufficiently large ν, which implies that, there is a compact386

set X such that Ẑε ⊆ X ⊆ Zε and x̂ε,ν(T ) ∈ X ⊆ Zε,ν w.p.1 for sufficiently large ν.387

The solution (x, u) of ODE in (2.4) is continuous with respect to the state terminal388

value x(T ) and the pair (‖x‖H1 , ‖u‖L2) is uniquely defined by x(T ). Therefore, there389

is a compact set X such that Ŝε ⊆ X ⊆ Sε and X ⊆ Sε,ν with Ŝε,ν ∩ X 6= ∅ w.p.1 for390

sufficiently large ν. To derive the error of approximation for optimal value of (3.1)391

to that of (3.5), it suffices to investigate the error approximation for optimal value of392

the following problem393

min
(x,u)∈X

Φ(x, u)(3.6)394

and its SAA problem395

min
(x,u)∈X

Φν(x, u),(3.7)396

where Φ and Φν are defined in (3.5) and (3.1), respectively. Clearly, X ⊆ Sε with397

Ŝε ∩ X 6= ∅ and X ⊆ Sε,ν with Ŝε,ν ∩ X 6= ∅ w.p.1 for sufficiently large ν mean that398

an optimal solution of (3.6) is an optimal solution of (3.5), and an optimal solution399

of (3.7) is also an optimal solution of (3.1). Therefore, according to Theorem 5.7 in400

[23], we can obtain that, under Assumption 3.8,401

√
ν(Φν(x̂ε,ν , ûε,ν)− Φ(x̂ε, ûε))402

=
√
ν(

1

ν

ν∑
`=1

F (x̂ε,ν(T ), ξ`) +
1

2
‖x̂ε,ν − xd‖2L2 +

δ

2
‖ûε,ν − ud‖2L2403

−E[F (x̂ε(T ), ξ)]− 1

2
‖x̂ε − xd‖2L2 −

δ

2
‖ûε − ud‖2L2)404

D−→ inf
(x,u)∈Ŝε

Y(x, u),405

where Y(x, u) has a normal distribution with mean 0 and variance Var[F (x(T ), ξ)]406

with (x, u) ∈ Ŝε. Since Ẑε = {x̂ε(T )} is a singleton, Y(x, u) for any (x, u) ∈ Ŝε has407

the same normal distribution with mean 0 and variance Var[F (x̂ε(T ), ξ)]. It then408

concludes our desired result.409
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4. The time-stepping method. We now adopt the time-stepping method for410

solving problem (3.1) with a fixed sample {ξ1, . . . , ξν}, which uses a finite-difference411

formula to approximate the time derivative ẋ. It begins with the division of the time412

interval [0, T ] into N subintervals for a fixed step size h = T/N = ti+1 − ti where413

i = 0, · · ·, N − 1. Starting from xν0 = x0, we compute two finite sets of vectors414

{xε,ν1 ,xε,ν2 , · · ·,xε,νN } ⊂ Rn and {uε,ν1 ,uε,ν2 , · · ·,uε,νN } ⊂ Rm in the following manner:415

(4.1)

min
{xi,ui}Ni=1

1

ν

ν∑
`=1

F (xN , ξ`) +
h

2

N∑
i=1

(
‖xi − xd,i‖2 + δ‖ui − ud,i‖2

)

s.t.



xi+1 − xi = hAxi+1 + hBui+1,

Cxi+1 +Dui+1 − fi+1 ≤ 0,

}
i = 0, 1, · · ·, N − 1,∥∥∥∥∥min

{
xN ,

1

ν

ν∑
`=1

[M(ξ`)xN + q(ξ`)]

}∥∥∥∥∥ ≤ ε,
1

ν

ν∑
`=1

g(xN , ξ`) ∈ Kε,

416

where ε > 0 is a sufficiently small number, xd,i = xd(ti), ud,i = ud(ti) and fi = f(ti)417

for i ∈ [N ].418

Theorem 4.1. Suppose that the conditions of Theorem 2.3 hold, then for any ε >419

0, problem (4.1) has an optimal solution w.p.1 for sufficiently large ν and sufficiently420

small h.421

Proof. Theorem 3.1 has shown that the solution set of (3.2) with any ε > 0 is422

nonempty w.p.1 for sufficiently large ν. About the existence of feasible solution to423

problem (4.1), it suffices to show that the following problem has a solution for any424

b ∈ Rn,425

(4.2)


xi+1 = xi + hAxi+1 + hBui+1,

Cxi+1 +Dui+1 − fi+1 ≤ 0,

}
i = 0, 1, · · ·, N − 1,

x0 = x0, xN = b.

426

Firstly, denote Ah = I − h(A − BD†C). It is obvious that all eigenvalues of Ah427

are 1 − hλi with i ∈ [n], where λi with i ∈ [n] are the eigenvalues of A − BD†C.428

We then obtain that all eigenvalues of Ah are nonzero for sufficiently small h and429

Ah is nonsingular. Similar to the proof of Theorem 2.3, from xi+1 = xi + h(A −430

BD†C)xi+1 + hBD†pi+1, the following iteration with x0 = x0,431

xi+1 = A−1
h (xi + hBD†pi+1), i = 0, 1, · · ·, N − 1432

generates a solution {x̄i}Ni=1 of the system with x0 = x0,433

xi+1 = xi + hAxi+1 + hBui+1, Cxi+1 +Dui+1 = pi+1, i = 0, 1, · · ·, N − 1,434

for any given pi ∈ Rl, i = 1, . . . , N.435

From Assumption 1.2 and the nonsingularity of Ah, we know that the matrix436

R̃d := [BY AhBY · · · An−1
h BY ] has full row rank n. Hence the matrix Rd :=437

[hA−1
h BY h(A−1

h )2BY · · · h(A−1
h )nBY ] has full row rank n. According to Theorem438
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3.1.1 in [15], the system with x0 = 0,439 {
xi+1 = A−1

h (xi + hBY vi+1), i = 0, 1, · · ·, N − 1,

xN = b− x̄N ,
440

admits a solution {x̃i, ṽi}Ni=1 for any b ∈ Rn. Therefore, {x̃i + x̄i, ṽi}Ni=1 is a solution441

of the following equation442 {
xi+1 = A−1

h (xi + hBY vi+1 + hBD†pi+1), i = 0, 1, · · ·, N − 1,

x0 = x0, xN = b.
443

Let ũi = Y ṽi +D†(pi −C(x̃i + x̄i)). Then it is easy to verify that {x̃i + x̄i, ũi}Ni=1 is444

a solution of (4.2) by setting pi = fi + p̃i for any p̃i ≤ 0.445

Since E[F (·, ξ)] is bounded from below, we can also obtain that 1
ν

∑ν
`=1 F (·, ξ`) is446

also bounded from below with sufficiently large ν. Similar to Theorem 5.1 in [2], we447

can prove a minimizing sequence tends to an optimal solution of (4.1), which shows448

the existence of optimal solutions to (4.1) with any ε > 0 for sufficiently large ν and449

sufficiently small h.450

Let {xε,νi ,uε,νi }Ni=1 be a solution of (4.1). We define a piecewise linear function451

xε,νh and a piecewise constant function uε,νh on [0, T ] as below:452

xε,νh (t) = xε,νi +
t− ti
h

(xε,νi+1 − xε,νi ), uε,νh (t) = uε,νi+1, ∀ t ∈ (ti, ti+1].(4.3)453

Denote Ŝε,νh the set of (x̂ε,νh , ûε,νh ) ∈ H1(0, T )n × L2(0, T )m, where (x̂ε,νh , ûε,νh ) are454

defined in (4.3) based on an optimal solution {x̂ε,νi , ûε,νi }Ni=1 of (4.1). Define, for any455

(x, u) ∈ H1(0, T )n × L2(0, T )m, ν > 0 and h > 0,456

Φνh(x, u) =
1

ν

ν∑
`=1

F (x(T ), ξ`) +
h

2

N∑
i=1

(
‖x(ti)− xd,i‖2 + δ‖u(ti)− ud,i‖2

)
.457

458

Theorem 4.2. Suppose that the conditions of Theorem 3.6 hold, then we have459

lim
ε↓0

lim
ν→∞

lim
h↓0

D(Ŝε,νh , Ŝ) = 0, w.p.1.460

Proof. Firstly, we show Φνh epiconverges to Φν as h ↓ 0 over a bounded subset461

C of H1(0, T )n × L2(0, T )m. It is sufficient to prove that for any given sequences462

{hk}∞k=1 ↓ 0 and {(xk, uk)}∞k=1 ⊆ C with (xk, uk) → (x∗, u∗) as k → ∞ by the norm463

‖ · ‖H1 × ‖ · ‖L2 , we have limk→∞ |Φνk(xk, uk)− Φν(x∗, u∗)| = 0, where Φνk = Φνhk .464

By Assumption 1.1 and xk(T )→ x∗(T ), we can easily get limk→∞ |Φν(xk, uk)−465

Φν(x∗, u∗)| = 0. Moreover, since xd, ud ∈ L2(0, T )l, there is h̄ > 0 such that ‖xd(t)−466

xd(ti)‖ ≤ h and ‖ud(t)−ud(ti)‖ ≤ h for any h ∈ (0, h̄] and a.e. t ∈ (ti−1, ti]. Following467

from the boundedness of (xk, uk), we can also get |Φνk(xk, uk)−Φν(xk, uk)| = O(hk).468

Therefore, we obtain our result about epiconvergence by |Φνk(xk, uk)− Φν(x∗, u∗)| ≤469

|Φνk(xk, uk)− Φν(xk, uk)|+ |Φν(xk, uk)− Φν(x∗, u∗)|.470

Let {x̂ε,νi , ûε,νi }Ni=1 be an optimal solution of (4.1), which means the boundedness471

of {ûε,νhk }
∞
k=1 ⊆ L2(0, T )m. Since L2(0, T )m is reflexive, there is a subsequence of472

{ûε,νhk }, which we may assume without loss of generality to be {ûε,νhk } itself, having a473

weak limit ûε,ν∗ ∈ L2(0, T )m. It is easy to see that (x̂ε,νhk , û
ε,ν
hk

) satisfies the differential474
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14 J. LUO AND X. CHEN

equation ẋε,νhk (t) = Axε,νi+1+Buε,νhk (t) for a.e. t ∈ (ti, ti+1) with some i ∈ [N ]. Therefore,475

there is x̂ε,ν∗ ∈ H1(0, T )n such that x̂ε,νh → x̂ε,ν∗ in H1(0, T )n by ûε,νh → ûε,ν∗ in476

L2(0, T )m. By [1, Theorem 2.5], we can obtain limh↓0 D(Ŝε,νh , Ŝε,ν) = 0 with some477

ε > 0 and sufficiently large ν and then limε↓0 limν→∞ limh↓0 D(Ŝε,νh , Ŝ) = 0 w.p.1.478

4.1. Error estimates of optimal values of problem (4.1) to problem (3.1).479

In this subsection, we investigate the Euler approximation of problem (3.1). Our480

results are related to the Euler approximation of the optimal control problem with481

two-point differential system [13, Theorem 5], which requires the convexity of the482

terminal set. However, the terminal constraint set Zε,ν in (3.1) is generally nonconvex483

due to the existence of the complementarity constraints.484

We have the following theorem as our main result about the Euler approximation485

of problem (3.1) in this subsection.486

Theorem 4.3. Suppose that the conditions of Theorem 2.3 hold. Let (x̂ε,ν , ûε,ν)487

be an optimal solution of (3.1), and let (x̂ε,νh , ûε,νh ) be defined in (4.3) associated with488

an optimal solution {x̂ε,νi , ûε,νi }Ni=1 of (4.1). Then, for sufficiently small h,489

(4.4) |Φνh(x̂ε,νh , ûε,νh )− Φν(x̂ε,ν , ûε,ν)| = O(h).490

To prove Theorem 4.3, we need three lemmas (Lemmas 4.4, 4.5 and 4.6).491

Lemma 4.4. Suppose that the conditions of Theorem 2.3 hold. Let (xε,νh , uε,νh ) be492

defined in (4.3) by a feasible solution {xε,νi ,uε,νi }Ni=1 of (4.1). Then, for sufficiently493

small h, there is a feasible solution (xε,ν , uε,ν) of problem (3.1) such that494

‖xε,ν − xε,νh ‖L2 = O(h), ‖xε,ν − xε,νh ‖H1 = O(h), ‖uε,ν − uε,νh ‖L2 = O(h).495

Proof. We denote two positive constants θx and θu such that maxi∈[N ] ‖xε,νi ‖ ≤ θx496

and maxi∈[N ] ‖uε,νi ‖ ≤ θu. According to Theorem 4.1, there are vi ∈ Rm−l and p̃i ≤ 0497

such that uε,νi = Y vi +D†(fi + p̃i − Cxε,νi ) for i ∈ [N ]. Let xε,ν(t) be the solution of498

the following system, for t ∈ (ti, ti+1],499 {
ẋε,ν(t) = (A−BD†C)xε,ν(t) +BY (vi+1 + ai+1(t− ti)) +BD†(p̃i+1 + f(t)),

xε,ν(0) = x0, x
ε,ν(T ) = xε,νN ,

500

where {ai}Ni=1 ⊂ Rm−l fulfills501

xε,νN = e(A−BD†C)Tx0 +

N−1∑
i=0

[∫ ti+1

ti

e(A−BD†C)(T−τ)dτB(Y vi+1 +D†p̃i+1)502

+

∫ ti+1

ti

e(A−BD†C)(T−τ)BD†f(τ)dτ +

∫ ti+1

ti

e(A−BD†C)(T−τ)BY ai+1(τ − ti)dτ
]
.503

In addition, we know that xε,νh solves the differential equation, for any t ∈ (ti, ti+1],504 {
ẋε,νh (t) = (A−BD†C)xε,νh (t) +BY (vi+1 + ai+1(t− ti)) +BD†(p̃i+1 + f(t)) + y(t),

xε,νh (0) = x0, x
ε,ν
h (T ) = xε,νN ,

505

where y(t) = (A−BD†C)(xε,νi+1−x
ε,ν
h (t))−BY ai+1(t− ti)−BD†(f(t)− fi+1). Since506

f ∈ L2(0, T )l, there is a h0 > 0 such that ‖f(t) − fi+1‖ ≤ h for any h ∈ (0, h0] and507
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a.e. t ∈ (ti, ti+1]. Let f̃(t) = fi+1 for t ∈ (ti, ti+1], we then have ‖f − f̃‖L2 = O(h). It508

means that ‖y‖L2 = O(h) for any h ∈ (0, h0]. Therefore, we have, for any t ∈ (ti, ti+1],509

‖xε,ν − xε,νh ‖
2
L2 ≤

∫ T

0

∫ t

0

‖ẋε,ν(τ)− ẋε,νh (τ)‖2dτdt =

∫ T

0

∫ t

0

‖y(τ)‖2dτdt ≤ ‖y‖2L2T.510

Hence, according to the definition of ‖ · ‖H1 , we obtain that511

‖xε,ν − xε,νh ‖H1 ≤
√

1 + T‖y‖L2 = O(h).512

Let uε,ν(t) = Y (vi+1+ai+1(t−ti))+D†(p̃i+1+f(t)−Cxε,ν(t)) for any t ∈ (ti, ti+1].513

It is clear that uε,νh (t) = uε,νi+1 = Y vi+1 +D†(fi+1 + p̃i+1−Cxε,νi+1) for any t ∈ (ti, ti+1].514

Then we have ‖uε,ν − uε,νh ‖L2 = O(h).515

Clearly, according to the definition of uν(t), we can obtain that for any t ∈516

(ti, ti+1],517

Cxε,ν(t) +Duε,ν(t)− f(t) = p̃i+1 ≤ 0,518

which shows that (xε,ν , uε,ν) is a feasible solution of problem (3.1).519

Lemma 4.5. Suppose that the conditions of Theorem 2.3 hold. Let (xε,ν , uε,ν) be520

a feasible solution of problem (3.1) with ‖xε,ν(t)‖ ≤ θ′x and ‖uε,ν(t)‖ ≤ θ′u for a.e.521

t ∈ [0, T ], where θ′x and θ′u are two positive constants. Then, for sufficiently small h,522

there is (xε,νh , uε,νh ) defined in (4.3) by a feasible solution {xε,νi ,uε,νi }Ni=1 of (4.1), such523

that524

‖xε,ν − xε,νh ‖L2 = O(h), ‖xε,ν − xε,νh ‖H1 = O(h), ‖uε,ν − uε,νh ‖L2 = O(h).525

Proof. Let (xε,ν , uε,ν) ∈ H1(0, T )n × L2(0, T )m be a feasible solution of problem526

(3.1), then there are v ∈ L2(0, T )m−l and p̃ ∈ L2(0, T )l with p̃(t) ≤ 0 for a.e. t ∈ [0, T ]527

such that uε,ν(t) = Y v(t) +D†(p̃(t) + f(t)− Cxε,ν(t)). In addition, there are h1 > 0528

and a piecewise constant function ϕv(t) = 1
h

∫ ti+1

ti
v(τ)dτ := ϕi+1 for any t ∈ (ti, ti+1]529

such that ‖v(t) − ϕv(t)‖ ≤ h for a.e. t ∈ (ti, ti+1] with h ∈ (0, h1]. There are also530

h2 > 0 and a piecewise constant function ϕp(t) = 1
h

∫ ti+1

ti
p̃(τ)dτ := ϕ̃i+1 for any531

t ∈ (ti, ti+1] such that ‖p̃(t) − ϕp(t)‖ ≤ h with h ∈ (0, h2] and ϕp(t) ≤ 0 for a.e.532

t ∈ (ti, ti+1].533

Recall Ah = I − h(A−BD†C). For i = 0, 1, · · ·, N − 1, let xε,ν0 = x0 and534

xε,νi+1 = A−1
h (xε,νi + hBY (ϕi+1 + ai+1h) + hBD†(ϕ̃i+1 + fi+1)),535

where {ai}Ni=1 ⊂ Rm−l fulfills536

xε,ν(T ) = A−Nh x0 + h

N−1∑
i=0

A
−(i+1)
h [BY (ϕi+1 + ai+1h) + hBD†(ϕ̃i+1 + fi+1)].537

Let uε,νi = Y (ϕi + aih) + D†(ϕ̃i + fi − Cxε,νi ) for i ∈ [N ]. Since ‖xε,ν(t)‖ ≤ θ′x538

and ‖uε,ν(t)‖ ≤ θ′u for a.e. t ∈ [0, T ], there is a partition to [0, T ] such that the539

sequences {Y ϕi, D†ϕ̃i}Ni=1 and {xε,νi ,uε,νi }Ni=1 are also bounded for any given N . We540

denote that θ̃x and θ̃u are two positive constants such that maxi∈[N ] ‖xε,νi ‖ ≤ θ̃x and541

maxi∈[N ] ‖uε,νi ‖ ≤ θ̃u. It is clear that xε,νh satisfies,542

ẋε,νh (t) = (A−BD†C)xε,νh (t) +BY v(t) +BD†(p̃(t) + f(t)) + ỹ(t), t ∈ (ti, ti+1],543
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where ỹ(t) = (A−BD†C)(xε,νi+1 − x
ε,ν
h (t)) +BY (ϕi+1 + ai+1h− v(t)) +BD†(ϕ̃i+1 +544

fi+1 − p̃(t) − f(t)). It means that ‖ỹ‖L2 = O(h) for any h ∈ (0,min{h0, h1, h2}].545

Hence ‖xε,ν − xε,νh ‖L2 ≤
√
T‖ỹ‖L2 = O(h) and ‖xε,ν − xε,νh ‖H1 = O(h). Moreover, we546

have ‖uε,ν − uε,νh ‖L2 = O(h).547

Obviously, from the definition of uε,νi , we get Cxε,νi +Duε,νi −fi = ϕ̃i ≤ 0 (i ∈ [N ]),548

which means that {xε,νi ,uε,νi }Ni=1 is a feasible solution of (4.1).549

It should be noted that Lemma 4.4 implies that for any given optimal solution of550

(4.1) there is a feasible solution of problem (3.1) such that their distances are O(h).551

Conversely, Lemma 4.5 means that for any given optimal solution of (3.1) there is552

a feasible solution of problem (4.1) such that their distances are O(h). These two553

results will help us to prove Theorem 4.3.554

Lemma 4.6. Suppose that the conditions of Theorem 2.3 hold. Let {xε,νi ,uε,νi }Ni=1555

be a feasible solution of (4.1) with maxi∈[N ] ‖xε,νi ‖ ≤ θ̄x and maxi∈[N ] ‖uε,νi ‖ ≤ θ̄u,556

where θ̄x and θ̄u are two positive constants, and let (xε,νh , uε,νh ) be defined in (4.3).557

Then, for sufficiently small h,558

|Φν(xε,νh , uε,νh )− Φνh(xε,νh , uε,νh )| = O(h).559

Proof. Since {xε,νi ,uε,νi }Ni=1 is a bounded feasible solution of (4.1), Φνh(xε,νh , uε,νh ) is560

bounded, which means that there is a θo > 0 such that maxi∈[N ]{‖xε,νi −xd,i‖, ‖u
ε,ν
i −561

ud,i‖} ≤ θo. Therefore, we have Φν(xε,νh , uε,νh )− Φνh(xε,νh , uε,νh ) = W1 +W2, where562

W1 =
1

2

N−1∑
i=0

∫ ti+1

ti

(
‖xε,νh (t)− xd(t)‖2 − ‖xε,νi+1 − xd(ti+1)‖2

)
dt,

W2 =
δ

2

N−1∑
i=0

∫ ti+1

ti

(
‖uε,νh (t)− ud(t)‖2 − ‖uε,νi+1 − ud(ti+1)‖2

)
dt.

563

Note that xd ∈ L2(0, T )n implies that there is hx > 0 such that ‖xd(ti+1)−xd(t)‖ ≤ h564

for a.e. t ∈ (ti, ti+1] with h ∈ (0, hx]. Then we have565

|W1| ≤
1

2

N−1∑
i=0

∫ ti+1

ti

(‖xε,νh (t)− xε,νi+1‖566

+‖xd(ti+1)− xd(t)‖)
(
‖xε,νh (t)− xε,νi+1‖+ ‖xd(ti+1)− xd(t)‖+ 2‖xε,νi+1 − xd(ti+1)‖

)
dt567

≤ 1

2

N−1∑
i=0

(‖A‖θ̄x + ‖B‖θ̄u + 1)((‖A‖θ̄x + ‖B‖θ̄u + 1)h+ 2θo)h
2 = O(h).568

Moreover, ud ∈ L2(0, T )m implies that there is hu > 0 such that ‖ud(ti+1)−ud(t)‖ ≤ h569

for a.e. t ∈ (ti, ti+1] with h ∈ (0, hu]. Then we also have |W2| = O(h) and derives our570

result for h ∈ (0,min{hx, hu}].571

Proof of Theorem 4.3. Since {x̂ε,νi , ûε,νi }Ni=1 is an optimal solution of (4.1), there572

is ψ0 such that max{‖x̂ε,νh −xd‖L2 , ‖ûε,νh −ud‖L2} ≤ ψ0, where (x̂ε,νh , ûε,νh ) is defined in573

(4.3) associated with the sequence {x̂ε,νi , ûε,νi }Ni=1. Similarly, (x̂ε,ν , ûε,ν) is an optimal574

solution of (1.1), which means that there is ψ1 such that max{‖x̂ε,ν − xd‖L2 , ‖ûε,ν −575

ud‖L2} ≤ ψ1.576

Following Lemma 4.4, there is h̄ > 0 such that for any h ∈ (0, h̄] there is577

(xε,ν , uε,ν), which is a feasible solution of (3.1) satisfying ‖xε,ν − x̂ε,νh ‖L2 = O(h) and578

‖uε,ν − ûε,νh ‖L2 = O(h). Moreover, according to Lemma 4.5, for any h ∈ (0, h̄] there is579
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a {xε,νi ,uε,νi }Ni=1, which is a feasible solution of (4.1), such that ‖x̂ε,ν−xε,νh ‖L2 = O(h)580

and ‖ûε,ν−uε,νh ‖L2 = O(h), where (xε,νh , uε,νh ) is defined in (4.3) based on the sequence581

{xε,νi ,uε,νi }Ni=1.582

Then we have Φνh(x̂ε,νh , ûε,νh ) ≤ Φνh(xε,νh , uε,νh ), which means583

Φνh(x̂ε,νh , ûε,νh )− Φν(x̂ε,ν , ûε,ν) ≤ Φνh(xε,νh , uε,νh )− Φν(x̂ε,ν , ûε,ν)584

≤ |Φνh(xε,νh , uε,νh )− Φν(xε,νh , uε,νh )|+ |Φν(xε,νh , uε,νh )− Φν(x̂ε,ν , ûε,ν)|.585

Clearly,586

|Φν(xε,νh , uε,νh )− Φν(x̂ε,ν , ûε,ν)| ≤ 1

2
‖xε,νh − x̂

ε,ν‖L2(‖xε,νh − x̂
ε,ν‖L2 + 2‖x̂ε,ν − xd‖L2)587

+
δ

2
‖uε,νh − û

ε,ν‖L2(‖uε,νh − û
ε,ν‖L2 + 2‖ûε,ν − ud‖L2) = O(h).588

Hence, according to Lemma 4.6, we get Φνh(x̂ε,νh , ûε,νh )− Φν(x̂ε,ν , ûε,ν) = O(h).589

From Φν(x̂ε,ν , ûε,ν) ≤ Φν(xε,ν , uε,ν), we have590

Φν(x̂ε,ν , ûε,ν)− Φνh(x̂ε,νh , ûε,νh ) ≤ Φν(xε,ν , uε,ν)− Φνh(x̂ε,νh , ûε,νh )591

≤ |Φν(xε,ν , uε,ν)− Φν(x̂ε,νh , ûε,νh )|+ |Φν(x̂ε,νh , ûε,νh )− Φνh(x̂ε,νh , ûε,νh )|592

and |Φν(xε,ν , uε,ν)− Φν(x̂ε,νh , ûε,νh )| = O(h). It holds Φν(x̂ε,ν , ûε,ν)− Φνh(x̂ε,νh , ûε,νh ) =593

O(h) and then (4.4) holds.594

5. Numerical experiments. We use the following numerical example to illus-595

trate the theoretical results obtained in this paper.596

(5.1)

min
x,u

(E[ξ2
1 + ξ2] + 1)‖x(T )‖2 +

1

2

(
‖x‖2L2 + ‖u‖2L2

)

s.t.



ẋ1(t) = u1(t),

ẋ2(t) = x2(t)− u2(t),

ẋ3(t) = u3(t),

ẋ4(t) = x4(t)− u4(t),

x1(t) + u2(t) ≤ 0,

x4(t) + u3(t) ≤ 0,


a.e. t ∈ (0, T ),

x(0) = (1, 1, 1, 1)>, 0 ≤ x(T ) ⊥ E[M(ξ)x(T ) + q(ξ)] ≥ 0,

(x1(T ) + x3(T ), (E[ξ1] + 1)(x2(T ) + x4(T )))
> ∈ B(0,

√
6) ⊂ R2,

597

where598

q(ξ) =


3 + ξ2
ξ1

1− ξ2
ξ1 + 1

 and M(ξ) =


−2− ξ1 0 −ξ2 −ξ1

0 ξ2 −1 0
0 −ξ1 ξ2 0

ξ2 − 1 0 0 ξ1

 .599

We set T = 1, and ξ1 ∼ N (1, 0.01) and ξ2 ∼ U(−1, 1). It is easy to verify that600

E[M(ξ)] is a Z-matrix and the controllability matrix in Assumption 1.2601

R =


0 1 0 0 0 0 0 0
0 0 0 1 0 1 0 1
0 0 1 0 1 0 1 0
−1 0 −1 0 −1 0 −1 0

 ,602
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is full row rank. We can derive that the solution set of the LCP in (5.1) is603

{(0, 0, 0, 0)>, (1, 0, 0, 0)>, (0, 1, 1, 0)>, (1, 1, 1, 0)>}604

and the solution set of the terminal constraints in (5.1) is605

(5.2) {(0, 0, 0, 0)>, (1, 0, 0, 0)>, (0, 1, 1, 0)>}.606

With x(T ) = (0, 1, 1, 0)>, we obtain an optimal solution of problem (5.1) by607

Maple as the following608

x∗1(t) =(−40.3067 sin(at) + 0.3685 cos(at))e−ct + (1.3063 sin(at) + 0.6315 cos(at))ect,

x∗2(t) =(17.379 sin(at) + 2.4445 cos(at))e−ct + (3.0042 sin(at)− 1.4445 cos(at))ect,

x∗3(t) =2.0488e−1.618t + 1.8734e1.618t − 0.2901e0.61805t − 2.6321e−0.61805t,

x∗4(t) =3.315e−1.618t + 0.46938e1.618t − 1.1578e0.61805t − 1.6266e−0.61805t,

u∗1(t) =(51.113 sin(at)− 14.198 cos(at))e−ct + (1.4471 sin(at) + 1.2488 cos(at))ect,

u∗2(t) =(40.3067 sin(at)− 0.3685 cos(at))e−ct − (1.3063 sin(at) + 0.6315 cos(at))ect,

u∗3(t) =− 3.315e−1.618t − 0.46938e1.618t + 1.1578e0.61805t + 1.6266e−0.61805t,

u∗4(t) =8.6789e−1.618t − 0.2901e1.618t − 0.4423e0.61805t − 2.6321e−0.61805t,

609

where a = 0.34066 and c = 1.2712. Then we get the optimal value of problem (5.1)610

is 25.17501124.611

It is easy to verify that Assumption 1.1, Assumption 3.7 and Assumption 3.8612

hold for the functions g(x(T ), ξ) = (x1(T ) + x3(T ), (ξ1 + 1)(x2(T ) + x4(T )))> and613

F (x(T ), ξ) = (ξ2
1 + ξ2 + 1)‖x(T )‖2, and random matrix M(ξ) and vector q(ξ). More-614

over, the conditions of Theorem 3.6 hold, since 0 ∈ V, E[M(ξ)] is a Z-matrix,615

K = B(0,
√

6) ⊂ R2, and (3.3) can be fulfilled for ε̄ = η = 1 and γ ≥ 10.616

We apply the relaxation, the SAA scheme and the time-stepping method to prob-617

lem (5.1). We use Matlab built solver fmincon to solve the discrete approximation618

problems of problem (5.1). Setting ε = 0.00001, for each pair (ν, h) with619

ν ∈ {500, 1000, 2000, 3000, 4000}, h ∈ {0.008, 0.005, 0.004, 0.002, 0.001},620

we generate i.i.d. samples Ξν,k = {ξk1 , . . . , ξkν}, k = 1, . . . , 10000. We solve the discrete621

problem to find a solution (xε,νh,k, u
ε,ν
h,k) using each of the samples Ξν,k, k = 1, . . . , 10000.622

Then we compute the optimal value of the discrete problem for each k623

Φν,kh (xε,νh,k, u
ε,ν
h,k) =

1

ν

ν∑
i=1

F (xε,νh,k(T ), ξki ) +
1

2
(‖xε,νh,k‖

2
L2 + ‖uε,νh,k‖

2
L2).624

The errors between Φ(x∗, u∗) = 25.17501124 and the optimal value Φνh(xε,νh , uε,νh ) are625

estimated by626

Eε,νh =
1

10000

10000∑
k=1

(Φ(x∗, u∗)− Φν,kh (xε,νh,k, u
ε,ν
h,k))2.627

The numerical results are shown in FIG. 1 and Table 1, which verify the conver-628

gence results in Sections 3-4.629
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Fig. 1. Numerical errors between optimal values of (5.1) and its discrete problems with ε = 10−5

Table 1
Numerical errors Eε,νh between optimal values of (5.1) and its discrete problems with ν = 4000

h
ε

10−2 10−3 10−4 10−5 10−6

0.008 0.20462 0.10333 0.08904 0.08354 0.08174
0.005 0.12368 0.05318 0.04715 0.03992 0.03478
0.004 0.10163 0.04149 0.03516 0.02942 0.02852

6. Conclusions. In this paper, we study the optimal control problem with ter-630

minal stochastic linear complementarity constraints (1.1), and its relaxation-SAA631

problem (3.1) and the relaxation-SAA-time stepping approximation problem (4.1).632

We prove the existence of feasible solutions and optimal solutions to problem (1.1)633

in Theorem 2.3 under the assumption E[M(ξ)] is a Z-matrix or an adequate matrix.634

Under the same assumptions of Theorem 2.3, we prove the existence of feasible solu-635

tions and optimal solutions to (3.1) and (4.1). We also show the convergent properties636

of these two discrete problems (3.1) and (4.1) by the repeated limits in the order of637

the relaxation parameter ε ↓ 0, the sample size ν → ∞ and mesh size h ↓ 0. More-638

over, we provide asymptotics of the SAA optimal value and the error bound of the639

time-stepping method. Problem (1.1) extends optimal control problem with termi-640

nal deterministic linear complementarity constraints in [2] to stochastic problems. In641

[2], Benita and Mehlita derived some stationary points and constraint qualifications642

under the assumption that the constrained LCP (1.2) is solvable. Theorem 2.3 gives643

sufficient conditions for the extension of solutions of (1.3).644
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