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AN OPTIMAL CONTROL PROBLEM WITH TERMINAL
STOCHASTIC LINEAR COMPLEMENTARITY CONSTRAINTS*

JIANFENG LUOT AND XIAOJUN CHEN?

Abstract. In this paper, we investigate an optimal control problem with a crucial ODE con-
straint involving a terminal stochastic linear complementarity problem (SLCP), and its discrete
approximation using the relaxation, the sample average approximation (SAA) and the implicit Euler
time-stepping scheme. We show the existence of feasible solutions and optimal solutions to the op-
timal control problem and its discrete approximation under the conditions that the expectation of
the stochastic matrix in the SLCP is a Z-matrix or an adequate matrix. Moreover, we prove that
the solution sequence generated by the discrete approximation converges to a solution of the original
optimal control problem with probability 1 by the repeated limits in the order of € | 0, v — oo and
h | 0, where € is the relaxation parameter, v is the sample size and h is the mesh size. We also
provide asymptotics of the SAA optimal value and error bounds of the time-stepping method. A
numerical example is used to illustrate the existence of optimal solutions, the discretization scheme
and error estimation.

Key words. ODE constrained optimal control problem, stochastic linear complementarity
problem, sample average approximation, implicit Euler time-stepping, convergence analysis.

MSC codes. 49M25, 49N10, 90C15, 90C33

1. Introduction. In this paper, we aim to find an optimal solution (z,u) €
HY(0,T)" x L*(0,T)™ of the following optimal control problem with terminal sto-
chastic linear complementarity constraints:

(1.1)

Here £ denotes a random variable defined in the probability space (2, F,P) with
support set = := £(2) CR?, A € R™** B € R™™ (O € R>*" D € R>X™ 2y € R,
and f € L%*(0,T),, 6 > 0 is a scalar, K C R” is a nonempty, closed and convex
set, zq € L?(0,T)" and ug € L?(0,T)™ are the given desired state and control,
respectively, F:R* xZ 5 R, g:R" xZE 5 RF, M : 2 - R"" and ¢ : E — R". We
assume that the expected values in (1.1) are well defined, and F and g are continuously
differentiable with respect to x(7T") over R™.

Let ||-|| denote the Euclidean norm of a vector and a matrix. We denote L2(0,T)"
the Banach space of all quadratically Lebesgue integrable functions mapping from
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2 J. LUO AND X. CHEN

(0,T) to R™, which is equipped with the norm

2

Izl z2 == (/0 ||:E(t)||2dt> , Yo eL*0,T)"

Denote H'(0,T)" the space whose components @1, - -, 2, : (0,7) — R possess weak
derivatives such that the function # € L?(0,7)". A suitable norm in H'(0,7)" is
defined by

1
g = (l2lZ + 12]Z2)* , V@€ H'(0,T)"

In [2], Benita and Mehlita studied an optimal control problem with terminal de-
terministic nonlinear complementarity constraints, which has many interesting prac-
tical applications in multi-agent control networks. They derived some stationarity
conditions and presented constraint qualifications which ensure that these conditions
hold at a local optimal solution of the optimal control problem under the assumption
that the feasible set is nonempty. However, sufficient conditions were not given for
the existence of z(T') such that the terminal deterministic nonlinear complementarity
constraints

(1.2) 0< A(w(T)) LG@(T) 20,  ga(T)) € K,

hold, where H : R” — R”, G : R — R”, and g : R* — R*. Motivated by the work
of [2], we consider problem (1.1) in uncertain environment, which replaces (1.2) by
stochastic terminal conditions

(1.3) 0<az(T) LEM(&)x(T)+q(€)] =0,  Elg(x(T),&)] € K.

Optimal control with differential equations and complementarity constraints pro-
vides a powerful modeling paradigm for many practical problems such as the optimal
control of electrical networks with diodes and /or MOS transistors [4] and dynamic op-
timization of chemical processes [21]. It can also be derived from the KKT conditions
of a bilevel optimal control if the lower level problem is convex and satisfies a con-
straint qualification [18]. A series of works [5, 7, 11, 14, 25] are devoted to the study of
optimal control problems with complementarity constraints. It should be noted that
these papers focus on deterministic problems, where the system coefficients includ-
ing system parameters and boundary/initial conditions are perfectly known. On the
other hand, optimal control problems with stochastic differential equation constraints
under uncertain environment have been extensively studied [17, 19, 20]. These papers
investigate theory and algorithms for optimal control when the parameters in the dif-
ferential equations have noise and uncertainties. However, there is very little research
on optimal control with terminal stochastic complementarity constraints.

It is worth noting that the ODE constraint with a terminal complementarity prob-
lem (1.2) or a terminal stochastic linear complementarity condition (1.3) is different
from the linear complementarity systems (LCS) (see for example [6]),

i(t) = Az(t) + Bu(t),
(1.4) 0 <wu(t) L Ca(t)+ Du(t) >0, tel0,T],
z(0) = xp,

where A € R™" B € R™™ (' € R™*" and D € R™*"™ are given matrices. In the
LCS (1.4), the complementarity constraint involves state and control variables and

This manuscript is for review purposes only.
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AN OPTIMAL CONTROL PROBLEM WITH COMPLEMENTARITY CONSTRAINTS 3

holds for the whole time interval, while in (1.1), the complementarity constraint holds
for the state variable at terminal time.

The main contributions of this paper are summarized as follows. We show the
existence of feasible solutions to the optimal control problem (1.1) under the conditions
that E[M(£)] is a Z-matrix or an adequate matrix, which gives reasonable conditions
for the existence of x(T') such that (1.3) hold. Moreover, we prove the existence
of feasible solutions and optimal solutions to the discrete approximation using the
relaxation, the sample average approximation (SAA) and the implicit Euler time-
stepping scheme under the same conditions. In the convergence analysis, we prove
that the solution sequence generated by the discrete approximation converges to a
solution of the original optimal control problem with probability 1 (w.p.1) by the
repeated limits in the order of € | 0, v — oo and h | 0, where € is the relaxation
parameter, v is the sample size and & is the mesh size. We also provide asymptotics of
the SAA optimal value and error bounds of the time-stepping method. These results
extend the approximation error of the Euler time-stepping method of an optimal
control problem with convex terminal constraints to nonconvex terminal stochastic
complementarity constraints.

The paper is organised as follows: Section 2 deals with the existence of feasible
solutions of problem (1.1). Section 3 studies the existence of feasible solutions of the
relaxation and the SAA of (1.1) and the convergence to the original problem (1.1)
as the relaxation parameter goes to zero and the sample size approaches to infinity.
In Section 4, we study the convergence of the time-stepping scheme and show the
convergence properties of the discrete method using the SAA and the implicit Euler
time-stepping scheme. A numerical example is given in Section 5 to illustrate the
theoretical results obtained in this paper. Final conclusion remarks are presented in
Section 6.

1.1. Notation and assumptions. Throughout this paper we use the following
notation. For a matrix A € RmX"n AT denotes its transpose matrix, and At s its
pseudoinverse matrix. If A possesses full row rank m, we have AT = AT(AAT)"!,
Let I denote the identity matrix with a certain dimension. For a vector z € R"”,
2l = 350, || and ||2]lo = S50, 2:]%, and we set 0° = 0. For a matrix A € R"*™,
1Al = maxi<j<m >y laisl.

For sets 51,5, C R", we denote the distance from v € R™ to S; and the devia-
tion of the set Sp from the set Sy by dist(v,S1) = infeg, |Jv — ¢||, and D(Sy,52) =
sup,¢g, dist(v, S2), respectively. For sets 51,52 C HY0, 7)™ x L?(0,T)™, we de-
note the distance from (vy,vs) € HY(0,T)™ x L?(0,T)™ to S; by dist((vy,v2),S1) =
inf(yr wryes, ([vr — villar + [[va — vh|L2), and the deviation of the set Sy from the set
Sz by D(S1, S2) = SUp(y, v,)es, dist((v1,v2), S2). Let B(v,e) = {w : |w —v|| < e} be
the closed ball centered at v with the radius of . Let int.S denote the interior of a set
S. Let [N] ={1,2,...,N}.

Assumption 1.1. There exist four nonnegative measurable functions «;(§) with
Elx:(€)] < oo (i =1,2,3,4) such that for any 21, 2o € R",

[F'(21,€) = F(22, ) < m(&)llz1r = z2fl, [lg(z1, O < ra()lzall; ace. € € E,

and

IM(E)]| < r3(€) and [lg(&)]| < ka(E), V& € E.

Assumption 1.2. The matrix D € R™™ is full row rank with I < m and the
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4 J. LUO AND X. CHEN

matrix
R:=[BY (A-BD'C)BY (A-BD'C)’BY --- (A-BD'C)""'BY] € R™*™m=D

is also full row rank, where Y € R™*(m=1 is a matrix with full column rank m — I
such that DY = 0.

2. Existence of optimal solutions of problem (1.1). In this section, we first
investigate the feasibility of problem (1.1). We call (z,u) € H*(0,T)" x L*(0,T)™ a
feasible solution of (1.1) if it satisfies the constraints in (1.1).

For an index set J C [n], let |J| denote its cardinality and J¢ denote its comple-
mentarity set. We denote by ¢; € RI’I the subvector formed from a vector ¢ € R™
by picking the entries indexed by J and denote by My, j, € RI711%1721 the submatrix
formed from a matrix M € R™ "™ by picking the rows indexed by J; and columns
indexed by Jy. Let J = {J : E[M, ;(§)] is nonsingular} and

(1) o= { max{|[(E[Ms ()M | J €T} otherwise.

A square matrix is said to be a P-matrix if all its principal minors are positive.
A square matrix is said to be a Z-matrix if its off-diagonal entries are non-positive. A
matrix E[M (£)] € R™*" is called column adequate if for each z € R™, z;(E[M (£)]z); <
0 for all i € [n] implies E[M (¢)]z = 0. The matrix E[M (£)] is row adequate if E[M (£)] T
is column adequate and it is adequate if it is both column and row adequate [12]. It
is known that a P-matrix is adequate and a symmetric positive semi-definite matrix
is also adequate [12, Theorem 3.1.7, Theorem 3.4.4]. However, an adequate matrix
may neither be a P-matrix nor a positive semi-definite matrix [12].

For a given matrix M € R™ " and a given vector ¢ € R", let LCP(q, M) denote
the LCP 0 < 2z 1L Mz+q¢ > 0 and SOL(q, ]\7[) denote the solution set. A vector
Z € SOL(g, M) is called a sparse solution of the LCP(g, M) if 2 is a solution of the
following optimization problem:

min [|z]|o
s.t. 2z € SOL(q, M).

A vector Z € SOL(G, M) is called a least-element solution of the LCP(q, M) if z < z
for all z € SOL(q, M). If M is a Z-matrix and SOL(g, M) # (), then SOL(g, M) has a
unique least-element solution which is the unique sparse solution of the LCP (g, M)[10].

Let Rpop(M) denote the set of all vectors g such that SOL(q, M) # . For any
y(g) € SOL(q, M), we define an index set J = {i : y;(g) > 0} and a diagonal matrix
D whose diagonal elements are (D);; =1 fori € J and (D);; =0 fori ¢ J .

LEMMA 2.1. ([9, Theorem 2.2]) Let M € R™ " be a Z-matriz, § € Rpcp(M),
and let y(q) be the least-element solution of LCP(q, ]\7[) With the indez set J and
diagonal matriz D, the following statements hold.

(i) Mj j is nonsingular for J # 0;

(it) y(q) = —(I — D + DM)~*Dg;

(iii) ||(I-D+DM)~'D| < L := max{||Mozi|\ : My« is nonsingular for o C [n]};
0

(iv) For any neighborhood Ny of q, there is a p € Ny such that SOL(p, M) # (.
Moreover, we have —(I — D + DM)™*D € 9y(q).

LEMMA 2.2. ([10, Theorem 3.1]) Let M be column adequate, ¢ € Rpop(M) and

let Z be a sparse solution of the LCP(q, M). With the index set J and diagonal matriz
D, the following statements hold.

This manuscript is for review purposes only.
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AN OPTIMAL CONTROL PROBLEM WITH COMPLEMENTARITY CONSTRAINTS 5

(i) My ; is nonsingular for J # 0;
(ii) z=—( — D+ DM)~'Dg; B )
(ii) ||z|l1 < L|\qllx, where L = max{||M;}|l1 : Moo is nonsingular for a C [n]};

(iv) There is no another solution z € SOL(g, M) with a = {i : z; > 0} such that
aCJ.

THEOREM 2.3. Let Assumptions 1.1 and 1.2 hold. Suppose the following three
conditions hold:
(i) B0, BElra(€)]|Elg()]]1) € K, where § is defined in (2.1),
(i) the set V :={v € R"|E[M(&)v + q(&)] > 0, v > 0} is nonempty,
(iii) E[M(£)] is an adequate matriz or a Z-matriz.
Then problem (1.1) has a feasible solution (z,u) € H'(0,T)" x L?>(0,T)™. Moreover,
problem (1.1) admits an optimal solution if E[F(-,£)] is bounded from below.

Proof. According to Theorem 4.1.6 of [24], for arbitrary p € L2(0,T)!, the follow-
ing non-homogeneous differential equation

{ i(t) = (A— BD'C)x(t) + BD'p(t), ae. t € (0,T).

z(0) = xo,

admits a unique solution € H(0,7)". The matrix R in Assumption 1.2 possesses
full row rank n and is the controllability matrix of the differential equation

(2.2) i(t) = (A— BD'C)x(t) + BYv(t),

where v € L2(0,7)™~! is an input control variable. Hence system (2.2) is a control-
lable system [24, Corollary 1.4.10], which implies that for any b € R", the following
non-homogeneous differential equation

{ #(t) = (4= BD'C)a(t) + BYv(t), |\ o

2(0) = 0, (T) = b— z(T),

admits a solution pair (%,%) € H'(0,T)" x L*(0,T)™ .
It is easy to verify that (Z + Z,?) is a solution of the following system:

i(t) = (A — BD'C)x(t) + BYw(t) + BD'p(t),
x(0) = zg, z(T) =0,
Let @(t) = Yo(t) + DT (p(t) — C(& + z)(t)), then we have Di(t) = p(t) — C
Following Lemma 7.2 in [2], Assumption 1.2 implies that (Z + Z,a) € H
L2(0,T)™ is a solution of the following system:
&(t) = Ax(t) + Bu(t),
(2.3) Cz(t) + Du(t) = p(t), a.e.t € (0,T).
x(0) = zg, z(T)="b,
If we set p(t) = f(t) + p(t) in (2.3) for arbitrary p € L%(0,T)" with p(t) < 0 and f(t)
n (1.1), then the following problem
&(t) = Ax(t) + Bu(t),
(2.4) Cz(t) + Du(t) — f(t) <0, a.e. te(0,T),
z(0) =z, x(T) =0,

This manuscript is for review purposes only.
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6 J. LUO AND X. CHEN

has a solution (x,u) € HY(0,T)" x L?(0,T)™ for any b € R™.
Now we show the solution set of the following stochastic constrained LCP is
nonempty,

(25) Elg(x(T), )] € K.

{ min{z(T), E[M(§)=(T) + q()]} = 0,

Following Corollary 3.5.6 and Theorem 3.11.6 in [12], the LCP in (2.5) has a
solution from the assumption that the set V is nonempty and E[M (£)] is adequate or
a Z-matrix. Let 2*(T') be a sparse solution of the LCP in (2.5). If there is no J such
that E[M ;(¢)] is nonsingular, that is, J = ), then by Lemma 2.1 and Lemma 2.2,
[l*(T)|lo = ||l=*(T")|]» = 0. Hence, we have

(2.6) [ (D) < BIEg(E)]]l-

If there is J such that z*(T"); > 0 and 2*(T) jo = 0, where J€ is the complementarity
set of an index set J, from Lemmas 2.1 and 2.2, we know that E[M ;(£)] is nonsingular
and 2*(T) = —(I — A + AE[M(€)])"'AE[q(¢)], where A is a diagonal matrix with
Ay =1,ifi € Jand A;; =0, if i € J¢. Moreover, from ||(I — A + AE[M (£)]) A <
max{||(E[M; ;&))" 1| J € T}, we obtain (2.6) for J # 0.

Therefore, from Assumption 1.1 and assumption (i) of this theorem, we have

[Elg(z*(T), Ol < Elra(O]ll"(T)| < Elra()]ll2"(T)]11 < SE[r2()I[Elg(E)]]1,

which implies that E[g(z*(T),&)] € K. Hence the solution set of (2.5) is nonempty.
Similar to the proof of Theorem 5.1 in [2], we can derive the existence of optimal
solutions to problem (1.1) if E[F'(+,&)] is bounded from below. 0

Remark 2.4. The constrained LCP (2.5) may have multiple solutions or may not
have a solution. If E[M ()] is a P-matrix, then for any E[g(£)], the LCP in (2.5) has
a unique solution x(7T'). In such case, if E[g(z(T),&)] € K, then (2.5) has a unique
solution, otherwise (2.5) does not have a solution. If E[M({)] is a Z-matrix or an
adequate matrix, the LCP in (2.5) may have multiple solutions, while some solutions
can be bounded by S||E[¢(£)]|l1.- When B(0, BE[k2(£)]|IE[g(£)]]l1) € K, some solutions
of the LCP satisfy E[g(z(T),¢)] € K and thus the constrained LCP (2.5) is solvable.
See the example in Section 5.

Remark 2.5. Assumption 1.2 is also used in [2] for the case | < m, which allows
more freedom for the system controls. If [ = m and D is invertible, we can write
Cx(t) + Du(t) — f(t) = —v(t) with v(t) > 0 for a.e. t € [0,T], where v € L?(0,T)".
Then the solvability of (2.4) becomes to find a solution pair (z,v) € H(0,7)" x
L%(0,T)! with v(t) > 0 satisfying

ae. t € (0,7).

27) i(t) = (A— BD*C)x(t) + BD™'f(t) — BD 'u(t),
' x(0) = xg, z(T) =0,

It then requires the concept of positive controllability [3, 26]. Therefore, the solution
set of (2.7) is nonempty for any b € R™ under the following conditions:
(i) the block matrix

[BD™' (A-BD7'C)BD™! ... (A—BD 'C)" 'BD™ ! e R™* (™)

with n submatrices in R™*™ possesses full row rank,

This manuscript is for review purposes only.
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AN OPTIMAL CONTROL PROBLEM WITH COMPLEMENTARITY CONSTRAINTS 7

(ii) there is no real eigenvector w € R" of (A—BD~1C) T such that w' BD~1v >
0 for any v € R’
Then there is a finite time T such that the solution set of (2.4) is nonempty for any
b€ R™ and T > Ty. Hence we can replace Assumption 1.2 in Theorem 2.3 by these
two conditions for the case that [ = m and D is invertible.

3. Relaxation and sample average approximation (SAA). In this section,
we apply the relaxation and the SAA approach to solve (1.1). We consider an inde-
pendent identically distributed (i.i.d) sample of £(w), which is denoted by {&;,---, &, },
and use the following relaxation and SAA problem to approximate problem (1.1):

. 1 6
min — 3" P@(T), &) + 5z - allda + S llu — wall2:

x(t) = Ax(t) + Bu(t),

Cxz(t) + Du(t) — f(t) <0, } a.e. t €(0,T),

(3.1) ,
s.t. | min {x(T), % Z[M(&):E(T) + ‘I(&)}} <
=1
) = o, Zg T),&) € K€ := {z]|dist(z, K) < €},

where € > 0 is a sufficiently small number.

By saying a property holds w.p.1 for sufficiently large v, we mean that there is
a set Qp C Q of P-measure zero such that for all w € Q\Qy there exists a positive
integer v*(w) such that the property holds for all v > v*(w).

3.1. Convergence of the relaxation and SAA. In this subsection, we show
the existence of a solution of problem (3.1), and its convergence as € | 0 and v — oo.

THEOREM 3.1. Suppose that the conditions of Theorem 2.3 hold. Then for any
e > 0, the SAA problem (3.1) has an optimal solution (x*V,u®*) € H(0,T)"
L2(0,T)™ w.p.1 for sufficiently large v.

Proof. Since the solution set of the linear control system (2.4) is nonempty for
any b € R™, for the existence of a feasible solution to the SAA problem (3.1), it suffices
to show that for any given € > 0 the solution set of the following system

<e
/=1

fZg ),&) € K°

is nonempty w.p.1 for sufficiently large v.

Let 2*(T) be a sparse solution of the LCP in (2.5). From Theorem 2.3, we know
that «*(7T) satisfies (2.5). By the strong Law of Large Number, for sufficiently large
v, 2*(T) is a solution of (3.2). It concludes with any given ¢ > 0 that the solution set
of the system (3.2) is nonempty w.p.1 for sufficiently large v.

Since E[F (-, £)] is bounded from below, we can also obtain that 2 >, | F(-,&) is
bounded from below with sufficiently large v. The existence of optimal solutions to
problem (3.1) is similar to the proof of Theorem 2.3. d

min {a:(T), % Z[M(fé)g«"(T) =+ Q(fé)]}

(3.2)

This manuscript is for review purposes only.
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8 J. LUO AND X. CHEN

We define the objective functions of problems (1.1) and (3.1), respectively as the
following

1 )
®(,u) = EIF(@(T),6)] + 5llo - zallda + 5 Jlu — wall22,

and
v

, 1 1 5
(z,u) =~ Y F@(T), &) + sz = wallZe + Sl — wallze,
=1
where (z,u) € H'(0,T)" x L*(0,T)™, and v > 0.

Let Z C R™ be an open set, R = [—0c0,00] and N ={1,2,3,---}.

DEFINITION 3.2. ([22]) A sequence of functions {g* : Z — R, k € N} epicon-
verges to g : Z — R if for all z € Z,

(i) liminf;_, o g% (2%) > g(2) for all 2 — 2, and

(ii) limsupy,_, . g%(2%) < g(2) for some 2* — 2.

DEFINITION 3.3. ([16]) A function g : = x Z — R is a random lower semicon-
tinuous (Isc) function if g is jointly measurable in (&,z) and g(&,-) is lsc for every
e

DEFINITION 3.4. ([16]) A sequence of random lsc function {g* : 2 x Z — R,k €
[K]} epiconverges to g : Zx Z — R almost surely, if for a.e. § € =, {g*(&,): Z —
R,k € N} epiconverges to g : Z — R.

Since F(+,€) is a smoothing function for a.e. £ € Z, following the proof of Lemma
3.5 in [8], we can have the following lemma.

LEMMA 3.5. Let C; x Cy denote a compact subset of H*(0,T)" x L*(0,T)™. It
holds that ®" epiconverges to ® w.p.1 over C; X Co as v — 0.

Let 29" and Z denote the solution sets of (3.2) and (2.5), respectively. Let S
and S be the feasible solution sets, and S and S be optimal solution sets of (3.1)
and (1.1), respectively.

THEOREM 3.6. Suppose that the conditions of Theorem 2.3 and K is bounded.
Assume that there are € > 0, v > 0 and n > 0 such that for z € R"_ := {z € R™:
Zi 2 7€7 i€ [TL]},

(3.3) 7+ [Elg(z Ol = nll=]l-

Then it holds that lim¢ o lim,_,oc D(Z¢Y, Z) = 0 w.p.1, lim}o lim, _, o D(S”,S) =0
w.p.1. and limejo lim, o0 D(SE*”,S) =0 w.p.1.

Proof. From Theorem 2.3, we know that Z is nonempty. And by Theorem 3.1,
for any given € > 0, Z" is nonempty w.p.1 for sufficiently large v. Denote Z€ the
solution set of the following problem for any given € > 0

(3.4) [ min{z(T), E[M (§)z(T) + q(OI}H < e,
' Elg(z(T),&)] € K*.

It is obvious that Z C Z€ and then Z€ is nonempty for any given € > 0. Since K is
compact, K€ is a compact set, which means that there is p; > 0 such that |y|| < pe
for any y € K€. Obviously, Z¢ C Z¢ C R"_ for any ¢ < €. By condition (3.3), for any
z € Z€ with e <€,

izl < Elg(z, O + v < pe + -
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Hence we have, for any z(T') € Z¢ with € <€,

pe + 7
o)) < 225

Similarly, by (3.3) and the strong Law of Large Number, we have that for any z € R™.

%Zg(zagf)

w.p.1 for sufficiently large v. Since 1 31 9(x(T),&) € K€ and Z¥ C R™, for any
e < €, we obtain that for any z(T) € Z6  with € <€,

e+ 2
()] < 2 : il

w.p.1 for sufficiently large v. Therefore, for any € < €, there is a compact set X’ such
that Z C X and Z” C X w.p.1 for sufficiently large v.
Let

¢(z(T)) := min{z(T), E[M(§)=(T) + q(§)]} and ¢ (x(T)) := Elg(z(T),¢)].

For z(T) € Z, ¢(x(T)) = 0 and ¢(x(T)) € K. From (3.2), for z(T) € Z%¥, there are
v € R™ w” € R* with |[v”| < e and ||w”|| < e w.p.1 for sufficiently large v such that

2y + > 7|zl

¢ (2(T)) = min {xm, S IM(e)n(T) + q@m} +o¥ =0,

{=1

Ve (z ZQ T),&)+w” € K.

Since ¢ and v are continuous, and M(-),q(-) and g(z(T),-) satisfy Assumption 1.1,
we have ¢¥ and ¢¥ converge to ¢ and ¢ uniformly w.p.1, respectively on the compact
set X as € | 0 and v — oo, that is,

lim li T)) — )| =0, wp.l

i lim | max [|¢¢(@(T)) = =TI w-p
and

1551)?;%{1;%(”1& ((T)) = ¥(z(T))|| =0, wp.l.

Therefore, following Theorem 5.12 in [23], lim, o lim, oo D(Z°7, Z) = 0 w.p.1.

Now we show lim, o lim, o, D(S%¥,S) = 0 holds w.p.1. Note that S©” and S are
two nonempty closed sets. Obviously, two nonempty closed sets S and S¢" are the
solution sets of problem (2.4) with terminal sets Z and Z<", respectively. For any
p € L%(0,7)!, the pair (||2] g1, ||ullz2), where (x,u) is a solution of problem (2.3), is
uniquely defined by the terminal point (7). In addition, it is clear that a solution
(x,u) of problem (2.3) is continuous with respect to the terminal point 2:(T"). Hence,
for any (z®¥,u%") € 84 and ( u) € 8, we have (%", u%") — (z,u) w.p.1 in the
norm || - ||gr X || - |2 when z© (T) — z(T) w.p.lase ] 0 and v — oo. It then
concludes lim, g lim, _, o D(S”,S) = 0 w.p.1.

It is clear that from S C S, $* C 8% and lim, g lim, o D(S“*,S) = 0 w.p.1,
we have, for any (257, 19") € SV, there is (i, 1) € S such that (257, 49") — (&, 1)

w.p.1 in the norm | - ||H1 X | -llzz as € | 0 and v — oo. In addition, according to
Theorem 2.5 in [1], we obtain (,4) € S by the epiconvergence of ®” to ® w.p.1,
which implies lim, o lim, o D(S",S) = 0 w.p.1. ]

This manuscript is for review purposes only.
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10 J. LUO AND X. CHEN

3.2. Asymptotics of the SAA optimal value. We introduce the relaxation
of problem (1.1) with a parameter ¢ > 0 as follows

min ®(z,u)

z(t) = Ax(t) + Bu(t),

[ min{z(T), E[M (§)z(T) + q(OI}H < e,
2(0) = mo, E[g(z(T),8)] € K*.

Recall that Z€ is the solution set of the terminal constraints of (3.5). Denote
by 8¢ and S¢ the feasible solution set and optimal solution set of (3.5), respectively.
Recall that Z is the solution set of (2.5), and S and S are the feasible solution set
and optimal solution set of (1.1), respectively. It is clear that Z C Z¢ and S C S°,
which mean that ®(i¢,4) < ®(2,4) for any (&€, 4°) € S¢ and (2, 1) € S. Therefore,
Z¢, 8¢ and S¢ are nonempty since Z and S are nonempty.

According to Theorem 3.6, we also conclude that Z¢ and S¢ are compact. It can
also be derived that lim. o D(Z2¢, Z) = 0, lim.jo D(S¢,S) = 0 and lim, o D(S’G,S) =0.
It is clear that (3.1) is the corresponding SAA problem of (3.5). By Theorem 3.6,
we conclude that lim, o, D(Z%Y, Z¢) = 0 w.p.1, lim, o, D(§",S8¢) = 0 w.p.1 and
lim, 00 D(S,8¢) = 0 w.p.1.

In the rest of this section, we study the asymptotics of optimal value of the SAA
problem (3.1) for a fixed € > 0.

Since min{z(T), E[M (§)x(T)+q(£)]} = 0 and E[g(«(T),&)] € K for any z(T) € Z,
we have Z C intZ¢, which means that intZ¢ # ). Let

Z=A{x(T): (z,u) €S} and Z°={z(T): (z,u) € S}
Obviously, we have Z C intZ° and lim,}o D(Ze,ﬁ) = 0. We give the following
assumptions.
Assumption 3.7. The set Zisa singleton.
Assumption 3.8. (i) There exists a nonnegative measurable function x1(§)

with E[x3(£)] < oo such that for any 21, 2z € R and £ € Z,

[F(21,8) = F(22,8)] < r1(§)llz1 — 22|,

and E[F?(z,£)] < oo for any z € R™.
(ii) The function E[F(-,£)] is a strongly convex function, that is, there is a con-
stant > 0 such that, for any 27, 20 € R™ and 7 € (0, 1),

EIF (L~ )21 + 722,6)] < (1~ DE[F(z2,€)] + 7E{F (22, )] — L0y — )2

THEOREM 3.9. Suppose that the conditions of Theorem 3.6, Assumption 3.7 and
Assumption 3.8 hold. Let (z€,4¢) and (27, u%") be optimal solutions of (3.5) and
(3.1), respectively. Then for sufficiently small €, we have

D

Vo(®F (257, 48Y) — ®(2€,0)) = N(0,02(25(T))),

where “ 2> 7 denotes convergence in distribution and N'(0,02(2¢(T))) denotes the
normal distribution with mean 0 and variance o%(2¢(T)) := Var[F(2¢(T), £)].

This manuscript is for review purposes only.
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AN OPTIMAL CONTROL PROBLEM WITH COMPLEMENTARITY CONSTRAINTS 11

Proof. Since Z is a singleton, Z C intZ¢ and lim,}o D(Z¢,Z) = 0, we have
Ze C int Z€ for sufficiently small €, which means that there is a convex set Zy such that
Z€C Zy C Z€ for sufficiently small e. We can also obtain that Z¢is a singleton for
sufficiently small ¢ under Assumption 3.8(ii). We argue it by contradiction. Suppose
(z€,4°) and (Z€¢,0°) are two optimal solutions of (3.5) with Z¢(T) # z°(T). Then
(xS, us) = (1 —7)2c + 72 (1 — 7)ac + 7a°) with 7 € (0,1) is also a feasible solution

T T

of (3.5), since z5(T) € Zx C Z¢. Moreover,

B(afut) < (1 - )@, i) + 7o) — L () - a (),

which means ®(z<,us) < (¢, 4€) since (¢, 4°) = ®(z¢,0°) and (T) # (7). It
contradicts the assumption that (¢, 4°) is an optimal solution of (3.5), and then we
know that Z¢ is a singleton for sufficiently small e.

In the following argument, € > 0 is a fixed number such that Z€ is singleton
and Z¢ C intZ¢. Denote Z° = = {2(T) : (z,u) € S”}. We then obtain that
lim, o0 ID)(Z6 i Zf) =0 w.p.1 and Z° CintZ w. p.1 for sufficiently large v accord-
ing to lim, o ]D)(ZE v Z¢) = 0 w.p.1. Therefore, there is a (&7,a") € S such
that 2(T) € intZ%" for sufficiently large v, which implies that, there is a compact
set X such that Z¢ C X C Z¢ and 25¥(T) € X C 2" w.p.1 for sufficiently large v.

The solution (z, u) of ODE in (2.4) is continuous with respect to the state terminal
value z(7') and the pair (||x g1, [|u[[z2) is uniquely defined by x(T"). Therefore, there
is a compact set X such that S¢C X C8°and X C S with Se”ﬁf#@ w.p.1 for
sufficiently large v. To derive the error of approximation for optimal value of (3.1)
to that of (3.5), it suffices to investigate the error approximation for optimal value of
the following problem

3.6 ®
(3.6) i (e u)

and its SAA problem

(3.7) (m%32x<1> (x,u),

where ® and ®” are defined in (3.5) and (3.1), respectively. Clearly, X C S¢ with
SNX # 0 and X C 8% with S N X # 0 w.p.1 for sufficiently large v mean that
an optimal solution of (3.6) is an optimal solution of (3.5), and an optimal solution
of (3.7) is also an optimal solution of (3.1). Therefore, according to Theorem 5.7 in
[23], we can obtain that, under Assumption 3.8,

B ) ~ 866
AEl/ SEV 5 ~NEV
= Vil ZF T),60) + 318 — walls + 310 — wall3s

Ly inf Yz, u),
(z,u)eSe
where Y(z,u) has a normal distribution with mean 0 and variance Var[F(x(T),£)]
with (z,u) € 8. Since Z¢ = {2¢(T)} is a singleton, Y(z, ) for any (z,u) € S¢ has
the same normal distribution with mean 0 and variance Var[F(2¢(T'),&)]. It then
concludes our desired result. d

This manuscript is for review purposes only.
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4. The time-stepping method. We now adopt the time-stepping method for
solving problem (3.1) with a fixed sample {1, ...,&,}, which uses a finite-difference
formula to approximate the time derivative &. It begins with the division of the time
interval [0, 7] into N subintervals for a fixed step size h = T/N = t;11 — t; where
1 =0,---,N—1. Starting from x§ = x9, we compute two finite sets of vectors
{x77,x5", - x¥'} CR™ and {uy”,u5”, -, uy’} C R™ in the following manner:

v N
. 1 h
min, 5 2 FC0n €+ 53 (b -zl + Ol — waal?)

{xivui}ﬁvzl i=1

Xi+1 — X = hAXH_l + hBui_H,

i=01, - N—1,
Cxip1+ Dujpq — fiy1 <0,

s.t. <e

— )

min {XN, % Z[M(fz)XN + CI(&)}}

{=1

1 v
o > 9(xn, &) € K,
=1

where € > 0 is a sufficiently small number, zq; = z4(t;), ua; = ua(t;) and f; = f(t;)
for i € [N].
THEOREM 4.1. Suppose that the conditions of Theorem 2.3 hold, then for any e >

0, problem (4.1) has an optimal solution w.p.1 for sufficiently large v and sufficiently
small h.

Proof. Theorem 3.1 has shown that the solution set of (3.2) with any € > 0 is
nonempty w.p.1 for sufficiently large v. About the existence of feasible solution to
problem (4.1), it suffices to show that the following problem has a solution for any
beR",

i+1 = X + hAx; 41 + hBugi,
Xl =X il R I TR
(42) CXZ‘+1 + Dui+1 — f,'+1 < 07
Xo = Xg, xy = b.
Firstly, denote A, = I — h(A — BD'C). It is obvious that all eigenvalues of A
are 1 — h\; with i € [n], where )\; with i € [n] are the eigenvalues of A — BD'C.
We then obtain that all eigenvalues of Aj are nonzero for sufficiently small h and

Ay, is nonsingular. Similar to the proof of Theorem 2.3, from x;41 = x; + h(A —
BDTC)x; 11 +hBDTp; 1, the following iteration with x¢ = o,

Xi+1 = A, (x; + hBD'p;41), i=0,1,--- N —1
generates a solution {X;}, of the system with xq = zo,
X;11 = X; + hAx; 41 + hBuy1, Cxiy1 4+ Dujyy = piy1, i=0,1,--- N —1,
for any given p; e R!, i =1,...,N.
From Assumption 1.2 and the nonsingularity of Aj, we know that the matrix

Ra = [BY A,BY - -- Az_lBY] has full row rank n. Hence the matrix Ry :=
(WA, ' BY h(A;")?BY --- h(A;")"BY] has full row rank n. According to Theorem

This manuscript is for review purposes only.
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AN OPTIMAL CONTROL PROBLEM WITH COMPLEMENTARITY CONSTRAINTS 13

3.1.1 in [15], the system with xq = 0,

Xi+1 = A;l(xi + hBYUH_l), 1= O, 1, c ',N - 1,
XN = b— XN)
admits a solution {X;,9;}¥, for any b € R™. Therefore, {X; + X;,7;})¥; is a solution
of the following equation
Xi+1 = A;l(Xi + hBYUi+1 + hBDTpi+1)7 1= 07 ]., s ',N - 1,
Xp = X, XN = b.
Let @i; = Y©; + D (p; — C(X; + %;)). Then it is easy to verify that {x; + %;, ;} Y is
a solution of (4.2) by setting p; = f; + p; for any p; < 0.
Since E[F (-, £)] is bounded from below, we can also obtain that 2 Y, | F(-,&) is
also bounded from below with sufficiently large v. Similar to Theorem 5.1 in [2], we
can prove a minimizing sequence tends to an optimal solution of (4.1), which shows

the existence of optimal solutions to (4.1) with any e > 0 for sufficiently large v and
sufficiently small h. O

Let {x{"",uy”}Y¥, be a solution of (4 1). We define a piecewise linear function
€,V
z,” and a pleceW1se constant function uj” on [0, 7] as below:

t—1;

(43) w0 =x" +

(i —x77), w0 =iy, Ve (B tiga].

Denote S¢” the set of (23", a5") € H'(0,T)" x L*(0, T)m, where (2}",4") are
defined in (4 3) based on an optimal solution {X§"”, a5}, of (4.1). Define, for any
(z,u) € HY0,T7)" x L*(0,T)™, v > 0 and h > 0,

v N
u) = %me,@) + % > (lets) = zall® + 8llu(ti) — ual®) -
(=1 i=1

THEOREM 4.2. Suppose that the conditions of Theorem 3.6 hold, then we have

lgfgylirgolé%D(Sh ,§)=0, w.p.l

Proof. Firstly, we show ®} epiconverges to ®” as h | 0 over a bounded subset
C of HY(0,T)™ x L?(0,T)™. 1t is sufficient to prove that for any given sequences
{hi 322, 1 0 and {(a*,u*)}22, C C with (2%, u*) — (z*,u*) as k — oo by the norm
[l % || - |22, we have limg o0 |®F (2%, u¥) — & (2%, u*)| = 0, where &} = &} .

By Assumption 1.1 and z*(T) — 2*(T'), we can easily get limy,_, o |®Y(z* u"”‘)
@Y (z*,u*)| = 0. Moreover, since x4, uq € L?(0,T)!, there is h > 0 such that |zq(t) —

xq(t )H < hand |lug(t)—uq(t;)|| < hfor any h € (0,h] and a.e. t € (t;_1, } Following

frorn the boundedness of (xk, uk), we can also get |®¥ (2, uk) — &V (2%, uk)| = O(hy).
Therefore, we obtain our result about epiconvergence by |®¥(z*, u*) — ®¥(z*,u*)| <
|®Y (zF, uF) — ¥ (2* ,uk)\ + |V (2P, uF) — O (z*, u¥)|.

Let {x5", 05"} | be an optimal solution of (4.1), which means the boundedness
of {a,’}e, € L2(0 T)™. Since L?(0,T)™ is reflexive, there is a subsequence of

ay, }, which we may assume without loss of generality to be {a; "} itself, having a

weak limit 4" € L?(0,T)™. Tt is easy to see that ()", ;") satisfies the differential

This manuscript is for review purposes only.
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14 J. LUO AND X. CHEN

equation @, (t) = Axy\ +Buy” (t) for a.e. t € (t;,t;41) with some i € [N]. Therefore,
there is 20" € H'(0,T)" such that 2" — 2" in H'(0,T)" by 43" — 49" in
L2(0,7)™. By [1, Theorem 2.5], we can obtain limy o D(S;",S) = 0 with some
e > 0 and sufficiently large v and then lim, g lim, o limy, o ID)(S’;’V, S)=0wpl 0O

4.1. Error estimates of optimal values of problem (4.1) to problem (3.1).
In this subsection, we investigate the Euler approximation of problem (3.1). Our
results are related to the Euler approximation of the optimal control problem with
two-point differential system [13, Theorem 5], which requires the convexity of the
terminal set. However, the terminal constraint set Z* in (3.1) is generally nonconvex
due to the existence of the complementarity constraints.

We have the following theorem as our main result about the Euler approximation
of problem (3.1) in this subsection.

THEOREM 4.3. Suppose that the conditions of Theorem 2.3 hold. Let (%Y, 4%")
be an optimal solution of (3.1), and let (£}, 4},") be defined in (4.3) associated with
an optimal solution {X;", 0" }N | of (4.1). Then, for sufficiently small h,

(44) (5" ) — @ (@, 0| = O(h).

To prove Theorem 4.3, we need three lemmas (Lemmas 4.4, 4.5 and 4.6).

LEMMA 4.4. Suppose that the conditions of Theorem 2.8 hold. Let (z}",u}") be
defined in (4.3) by a feasible solution {x;"" , uy” N, of (4.1). Then, for sufficiently
small h, there is a feasible solution (z©¥,u®") of problem (3.1) such that

[z = 23" (|2 = O(h), [ = 2,"[[ar = O(h), [[u™” —uy"||12 = O(h).

Proof. We denote two positive constants 6, and 6, such that max;cn) [|x5"| < 6,
and max;en [|[u”’|| < 6.. According to Theorem 4.1, there are v; € R™~! and p; < 0
such that u” = Yuv; + DI(f; + p; — Cx") for i € [N]. Let 25 (t) be the solution of
the following system, for t € (¢;,t;11],

i“"(t) = (A — BD'C)a“" (t) + BY (vit1 + ait1(t — ;) + BD'(Big1 + f (1)),
Y (0) = mo, z°¥(T) = x5,

where {a;}Y, c R™~! fulfills

N-1
ev _ _(A-BD'O)T
Xn —e( ) xo + E {

tit1
/ A=BDIONT=1) g By, 1 + Dipiyy)
=0

ti
ti

tit1 +
[ o e [

ti t'i

e(A_BDTC)(T—T)BYaHﬂT—ti)dT :

In addition, we know that x}" solves the differential equation, for any ¢ € (¢;,ti41],

iV (t) = (A — BD'O)xy" (t) + BY (vit1 + air1(t — i) + BDT(Biy1 + f(£) + y(2),
2y, (0) = 20, x,"(T) = x5,

where y(t) = (A— BD'C)(x{, — 3" (t)) = BY aj1(t — t;) — BDT(f(t) — fi41). Since
f € L*0,T)!, there is a hg > 0 such that ||f(t) — fiy1]| < h for any h € (0, ho] and
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a.e. t € (t;,tip1]. Let f(t) = fizq for t € (i, tiga], we then have || f — f|l 2 = O(h). Tt
means that ||y||L2 = O(h) for any h € (0, ho]. Therefore, we have, for any ¢ € (¢;,ti41],

T t T t
s — 2572 < / / |6 (7) — &5 (7) |2drdt = / / ly(r)[2drdt < ||y|2.T.

Hence, according to the definition of || - || g1, we obtain that

[z =2 i < VI+ Tyl = O(h).

Let us”(t) = Y (viy1+ a1 (t—t;))+DT Py 1+ f(£)—Ca&¥ (t)) for any t € (t;,t;11].
It is clear that uy” (t) = ujy; = Y1 4+ DV (fig1 + piy1 — Cx5)) for any ¢ € (t;, ti41].
Then we have [|[u®” — uy”| 2 = O(h).
Clearly, according to the definition of w”(t), we can obtain that for any ¢ €
(tirtiva],
Cz"(t) + Du"(t) — f(t) = Pi+1 <0,

which shows that (z¢¥,u%") is a feasible solution of problem (3.1). d

LEMMA 4.5. Suppose that the conditions of Theorem 2.3 hold. Let (z€",u®") be
a feasible solution of problem (3.1) with ||x=¥(t)|| < 6, and ||[u”(t)|| < 6., for a.e.
t € [0,T], where 0, and 0., are two positive constants. Then, for sufficiently small h,
there is (z3" ,uy”) defined in (4.3) by a feasible solution {x{" , uy"}N | of (4.1), such
that

[ = 2”2 = O(h), |29 = 2" || g2 = O(h), [u®" —uy"[|L2 = O(h).
Proof. Let (z%",u*") € H*(0,T)" x L?(0,T)™ be a feasible solution of problem

(3.1), then there are v € L2(0, 7)™~ and p € L?(0,T)" with (t) < 0 for a.e. t € [0, 7]
such that uS" (t) = Yu(t) + D (p(t) + f( ) — Cz® ”( )). In addition, there are h; > 0

and a piecewise constant function ¢, (t) = 5 f o, u(T)dT = iy for any ¢ € (L, tita]
such that ||v(t) — ¢, ()] < h for a.e. t € (tl,tH_l] Wlth h € (0,hq]. There are also
hy > 0 and a piecewise constant function p,(t) = 3 ft‘“ p(T)dT = Qi1 for any

t € (ti,ti+1] such that [|p(t) — @p(t)]| < h w1th h € (0, hs] and wp(t) < 0 for ae.
t € (i tis)-
Recall A;, = I —h(A — BD'C). For i =0,1,---,N — 1, let x;"" = xo and

x5y = Ay (x5 + hBY (i1 + aiv1h) + hBD (@i1 + fiv1)),

where {a;}Y, c R™~! fulfills

N-—1
2 (T) = A Nag +h )y A, U VIBY (9141 + aiah) + hBDY(Givy + figa))-
1=0

Let u$” = Y(p; + a;h) + DI(@; + fi — Cx") for i € [N]. Since ||z (t)| < 6.,
and ||u®”(t)|| < 0, for ae. t € [O,T] there is a partition to [0,7] such that the
sequences {Y;, DT@;}N | and {x{"",u{”}}¥,| are also bounded for any given N. We
denote that 6, and 6, are two positive constants such that max;cpny [|x;"]] < 0, and

max;e(ni |[uy” . It is clear that x}" satisfies,

@3, (t) = (A= BD'O)ayy” (t) + BY w(t) + BD(B(t) + f(1)) +§(t), t € (ti,tis1],
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where §(t) = (A — BDTC)(x) — xy, () + BY (pit1 + aipih — (1) + BD (@1 +
fiia — pO) — 11(1)). () Tor any B € (0, min{ho, by, ha)]
Hence ||29" — 23" |12 < VT ||§|l2 = O(h) and ||z9¥ — 25" || z1 = O(h). Moreover, we
have [[u®” — uj} ||L2 = O(h).

Obviously, from the definition of uj"”, we get Cx"”+Du" — f; = ¢; < 0 (i € [N]),

which means that {x{"”,u{"”}¥ , is a feasible solution of (4.1). O

It should be noted that Lemma 4.4 implies that for any given optimal solution of
(4.1) there is a feasible solution of problem (3.1) such that their distances are O(h).
Conversely, Lemma 4.5 means that for any given optimal solution of (3.1) there is
a feasible solution of problem (4.1) such that their distances are O(h). These two
results will help us to prove Theorem 4.3.

LEMMA 4.6. Suppose that the conditions of Theorem 2.3 hold. Let {x}" uf.’” N
be a feasible solution of (4.1) with max;eny [|x{"”|| < b5 and max;eqy [[uf”|| < bu,
where 0, and 0, are two positive constants and let (x”,uy”) be defined in (4.3).
Then, for sufficiently small h,

@7 (2, uy”) = Py, u”)| = O(h).
Proof. Since {x{"”,u{"”}¥ | is a bounded feasible solution of (4.1), ®Y (x}", u;”) is

bounded, which means that there is a 6, > 0 such that max;c(n{||x;" —za,l], [[uy” —
uq; ||} < 6,. Therefore, we have ®” (z3", uy”) — @ (x7”, uy”) = Wi + Wa, where

Z/Hl _xd(t)” ||Xz+1 d(ti+1)H2) dt
Z L 0 o - s~ te )

Note that z4 € L2(0, T)™ implies that there is h, > 0 such that ||z4(t;r1) —zq(t)]| < h
for a.e. t € (t;,t;41] with h € (0, h;]. Then we have

Wyl < 2 Z/ — x|

Hlza(tive) —za®l) (13" (€) = x40+ lzaltivn) — za(@®)] + 2[x3 — zaltiva)]) dt
N-1
(1AN0z + 1B + 1)((1All6z + || Bl|fu + 1)k + 20,)h* = O(h).

l\DM—l

=0

Moreover, ug € L(0,T)™ implies that there is h, > 0 such that ||ug(tis1)—uq(t)]| < h
for a.e. t € (t;,t;11] with h € (0, h,]. Then we also have |Ws| = O(h) and derives our
result for h € (0, min{hy, hy}]. O

Proof of Theorem 4.3. Since {x5", 45"} | is an optimal solution of (4.1), there
is 9o such that max{||Z})" —zql| L2, |6} —uqllz2} < 1o, where (23,7, 4}") is defined in
(4.3) associated with the sequence {x7”, 45"} . Similarly, (257 uE ¥} is an optimal
solution of (1.1), — x4z, |05 —

udlz2} < 1. - -
Following Lemma 4.4, there is h > 0 such that for any h € (0,h] there is
(z¥,u""), which is a feasible solution of (3.1) satisfying [lz~* — 23|/ > = O(h) and

lu®” — 43" ||z = O(h). Moreover, according to Lemma 4.5, for any h € (0, h] there is
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a {x{"",ul"}¥ |, which is a feasible solution of (4.1), such that ||#%" —27"| 12 = O(h)
and [|a%” —uy”| L2 = O(h), where (2", uy") is defined in (4.3) based on the sequence
{Xe,u ue,u i\]l
Then we have oy (&, uy”) < ®F (23", uy”), which means
q)V(A;V?’&;V) (I)V(Ae v Ae IJ) < (I)V(.’L';’V,’U/;’V) _ q)ll(AQV ,&E,V)
<@ (2" uy”) — ¥ (2" up )| + (@7 (2,7, uy ") — V(2,40
Clearly,
@ (2", uy") — V(2 4%)| < *||$ =292 (=" = 27|z + 229" — 24l|z2)
+§||UZ’" — a2 (Jlup” — a2 + 2[4 — uallz2) = O(h).
Hence, according to Lemma 4.6, we get ®¥ (2", ay,") — (257, a%") = O(h).
From @Y (25", 4%") < ®¥(z%”,u®"), we have
B3 1) — D) < B, ) - ()
<OV (, ) — V(" @) + |97 (2,7, 0y) — R(E,7, @)
and |®¥ (x>, u") — @ (2", uy")| = O(h). It holds ®” (&%, a"") — (2", 4,") =
O(h) and then (4.4) holds.

5. Numerical experiments. We use the following numerical example to illus-
trate the theoretical results obtained in this paper.

1
min (B[ + &] + D]« + 5 (l=l72 + [lull72)

#1(1) = u (1),
a(t) = w2(t) — ua(t),
z3(t) = us(t
(5.1) ngt; _ xzit;,— (), ae. t € (0,T),
S84 21 (t) + us(t) <0,
w4(t) +us(t) <0,
z(0) = (1,1,1,1)", 0<a(T) LE[M(E)x(T) +q(€)] 20,
(21(T) + 23(T), (Elé1] + 1)(z2(T) + z4(T))) " € B(0,V6) C R?,
where
3+ & -2-& 0 =& &
W= | S, | amd o= 5 2
&+1 & —1 0 0 &

We set T = 1, and & ~ N(1,0.01) and & ~ U(—1,1). Tt is easy to verify that
E[M(€)] is a Z-matrix and the controllability matrix in Assumption 1.2

0o 1.0 0 0 0 0 O

R — 0 0 0 1 0 1 0 1
0o 0o 1.0 1 0 1 0"
-1 0 -1 0 -1 0 -1 0
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is full row rank. We can derive that the solution set of the LCP in (5.1) is
{(0,0,0,0)",(1,0,0,0)",(0,1,1,0)",(1,1,1,0) "}

and the solution set of the terminal constraints in (5.1) is

(5.2) {(0,0,0,0)",(1,0,0,0)",(0,1,1,0) " }.

With z(T) = (0,1,1,0)", we obtain an optimal solution of problem (5.1) by
Maple as the following

i (t) =(—40.3067 sin(at) + 0.3685 cos(at))e™“ + (1.3063 sin(at) + 0.6315 cos(at) )
x5 (t) =(17.379sin(at) + 2.4445 cos(at))e™ " + (3.0042sin(at) — 1.4445 cos(at))e!
23 (t) =2.0488e 1015 1.8734¢!018" — 0.2901¢%-0180%" — 263217001805
2} (t) =3.315e 1018 4 0.46938¢! 018" — 1.1578¢"01805" — 1.6266¢ 01805
wi(t) =(51.113sin(at) — 14.198 cos(at) e~ + (1.4471sin(at) + 1.2488 cos(at))e
uh(t) =(40.3067 sin(at) — 0.3685 cos(at))e™ " — (1.3063 sin(at) + 0.6315 cos(at))e
uj(t) = — 3.315e 10188 — 0.46938¢! 618 + 11578001805 11,6266 01807
wj(t) =8.6789e 1018 — 0.2901e! 018" — 0.4423¢0-61805% — 2 6321 0-61805

where a = 0.34066 and ¢ = 1.2712. Then we get the optimal value of problem (5.1)
is 25.17501124.

It is easy to verify that Assumption 1.1, Assumption 3.7 and Assumption 3.8
hold for the functions g(x(T),&) = (21(T) + z3(T), (& + 1)(z2(T) + 24(T)))" and
F(x(T),&) = (€2 + &+ 1)||z(T)|?, and random matrix M (€) and vector ¢(£). More-
over, the conditions of Theorem 3.6 hold, since 0 € V, E[M(&)] is a Z-matrix,
K = B(0,v/6) C R?, and (3.3) can be fulfilled for € = = 1 and v > 10.

We apply the relaxation, the SAA scheme and the time-stepping method to prob-
lem (5.1). We use Matlab built solver fmincon to solve the discrete approximation
problems of problem (5.1). Setting e = 0.00001, for each pair (v, h) with

v € {500, 1000, 2000, 3000, 4000}, A € {0.008,0.005,0.004, 0.002,0.001},

we generate i.i.d. samples =% = {¢F ... ¢}k =1,...,10000. We solve the discrete
problem to find a solution (mhyk, u;';) using each of the samples 2%, k =1, ...,10000.
Then we compute the optimal value of the discrete problem for each k

1< 1
ko€ , , , ,
" (s uy ) = » E F(ay (T), &) + §(le2,2lliz + [luy i lZz2)-
=1

The errors between ®(z*, u*) = 25.17501124 and the optimal value ®Y (z}", uy") are
estimated by
| 10000

By = 10000 > (B u) - e o uy ).

The numerical results are shown in FIG. 1 and Table 1, which verify the conver-
gence results in Sections 3-4.
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o . . . . . . . . . . . .
500 1000 1500 2000 2500 3000 3500 4000 1 2 3 4 5 6 7 8
v h «10%

(a) (b)

FIG. 1. Numerical errors between optimal values of (5.1) and its discrete problems with e = 107°

TABLE 1
Numerical errors E;’V between optimal values of (5.1) and its discrete problems with v = 4000

p €l 102 10-3 104 10-5 10-6

0.008 | 0.20462 | 0.10333 | 0.08904 | 0.08354 | 0.08174
0.005 | 0.12368 | 0.05318 | 0.04715 | 0.03992 | 0.03478
0.004 | 0.10163 | 0.04149 | 0.03516 | 0.02942 | 0.02852

6. Conclusions. In this paper, we study the optimal control problem with ter-
minal stochastic linear complementarity constraints (1.1), and its relaxation-SAA
problem (3.1) and the relaxation-SAA-time stepping approximation problem (4.1).
We prove the existence of feasible solutions and optimal solutions to problem (1.1)
in Theorem 2.3 under the assumption E[M(£)] is a Z-matrix or an adequate matrix.
Under the same assumptions of Theorem 2.3, we prove the existence of feasible solu-
tions and optimal solutions to (3.1) and (4.1). We also show the convergent properties
of these two discrete problems (3.1) and (4.1) by the repeated limits in the order of
the relaxation parameter € | 0, the sample size v — oo and mesh size h | 0. More-
over, we provide asymptotics of the SAA optimal value and the error bound of the
time-stepping method. Problem (1.1) extends optimal control problem with termi-
nal deterministic linear complementarity constraints in [2] to stochastic problems. In
[2], Benita and Mehlita derived some stationary points and constraint qualifications
under the assumption that the constrained LCP (1.2) is solvable. Theorem 2.3 gives
sufficient conditions for the extension of solutions of (1.3).
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