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A NON-MONOTONE ALTERNATING UPDATING METHOD FOR A
CLASS OF MATRIX FACTORIZATION PROBLEMS

LEI YANG*, TING KEI PONG*, AND XIAOJUN CHEN*

Abstract. In this paper we consider a general matrix factorization model which covers a large
class of existing models with many applications in areas such as machine learning and imaging
sciences. To solve this possibly nonconvex, nonsmooth and non-Lipschitz problem, we develop a
non-monotone alternating updating method based on a potential function. Our method essentially
updates two blocks of variables in turn by inexactly minimizing this potential function, and updates
another auxiliary block of variables using an explicit formula. The special structure of our potential
function allows us to take advantage of efficient computational strategies for non-negative matrix
factorization to perform the alternating minimization over the two blocks of variables. A suitable
line search criterion is also incorporated to improve the numerical performance. Under some mild
conditions, we show that the line search criterion is well defined, and establish that the sequence
generated is bounded and any cluster point of the sequence is a stationary point. Finally, we conduct
some numerical experiments using real datasets to compare our method with some existing efficient
methods for non-negative matrix factorization and matrix completion. The numerical results show
that our method can outperform these methods for these specific applications.

Key words. Matrix factorization; non-monotone line search; stationary point; alternating
updating.

AMS subject classifications. 90C26, 90C30, 90C90, 65K05

1. Introduction. In this paper we consider a class of matrix factorization pro-
blems, which can be modeled as

(1.1) min F(X,Y) = (X) + (V) + % JAXYT) - b,
where X € R™*" and Y € R™*" are decision variables with » < min{m, n}, the
functions ¥ : R™*" — R U {oo} and ® : R"*" — R U {oco} are proper closed but
possibly nonconver, nonsmooth and non-Lipschitz, b € R? is a given vector and
A R™*™ — RY is a linear map with ¢ < mn and AA* = Z, (Z, denotes the identity
map from R? to R?). Model (1.1) covers many existing widely-studied models in
many application areas such as machine learning [35] and imaging sciences [44]. In
particular, ¥(X) and ®(Y") can be various regularizers for inducing desired structures,
and A can be suitably chosen to model different scenarios. For example, when ¥(X)
and ®(Y) are chosen as the indicator functions (see the next section for notation and
definitions) for X = {X e R™*" : X > 0} and Y = {Y € R™*" : Y > 0}, respectively,
and A is the identity map, (1.1) reduces to the non-negative matrix factorization
(NMF) problem, which has been widely used in data mining applications to provide
interpretable decompositions of data. NMF was first introduced by Paatero and
Tapper [25], and then popularized by Lee and Seung [17]. The basic task of NMF is
to find two nonnegative matrices X € R7*" and Y € R’*" such that M ~ XY T for
a given nonnegative data matrix M € RTX". We refer readers to [2, 9, 10, 18, 37]
for more information on NMF and its variants. Another example of (1.1) arises in
recent models of the matrix completion (MC) problem (see [30, 31, 32]), where ¥(X)
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2 LEI YANG, TING KEI PONG, AND XIAOJUN CHEN

and ®(Y) are chosen as the Schatten-p; quasi-norm and the Schatten-py quasi-norm
for suitable pi,ps > 0, respectively, and A is the sampling map. The MC problem
aims to recover an unknown low rank matrix from a sample of its entries and arises in
various applications (see, for example, [3, 22, 27, 33]). Many widely-studied models for
MC are based on nuclear-norm minimization [5, 6, 26], or, more generally, Schatten-p
(0 < p < 1) (quasi—)norm minimization [16, 23, 42]. Recently, models based on
low-rank matrix factorization such as (1.1) have become popular because singular
value decompositions or eigenvalue decompositions of huge (m x n) matrices are not
required for solving these models (see, for example, [15, 30, 31, 32, 34, 38]). More
examples of (1.1) can be found in recent surveys [35, 44].

Problem (1.1) is in general nonconvex (even when ¥, ® are convex) and NP-hard'.
Therefore, in this paper, we focus on finding a stationary point of the objective F in
(1.1). Note that F involves two blocks of variables. This kind of structure has been
widely studied in the literature; see, for example, [1, 4, 13, 14, 40, 41, 43]. One popular
class of methods for tackling this kind of problems is the alternating direction method
of multipliers (ADMM) (see, for example, [41, 43]), in which each iteration consists of
an alternating minimization of an augmented Lagrangian function that involves X, Y
and some auxiliary variables, followed by updates of the associated multipliers. Ho-
wever, the conditions presented in [41, 43] that guarantee convergence of the ADMM
are too restrictive. Moreover, updating the auxiliary variables and the multipliers
can be expensive for large-scale problems. Another class of methods for (1.1) is
the alternating-minimization-based (or block-coordinate-descent-type) methods (see
[1, 4, 8, 11, 20, 21, 40]), which alternately (exactly or inexactly) minimizes F(X,Y)
over each block of variables and converges under some mild conditions. When A is not
the identity map, the majorization technique can be used to simplify the subproblems.
Some representative algorithms of this class are proximal alternating linearized mini-
mization (PALM) [4], hierarchical alternating least squares (HALS) (for NMF only;
see [8, 11, 20, 21]) and block coordinate descent (BCD) [40]. Comparing with ADMM,
it was reported in [40] that BCD outperforms ADMM in both CPU time and solution
quality for NMF.

PALM, HALS and BCD are currently the state-of-the-art algorithms for solving
problems of the form (1.1). In this paper, we develop a new iterative method for (1.1),
which, according to our numerical experiments in Section 6, outperforms HALS and
BCD for NMF, and PALM for MC. Our method is based on the following potential
function (specifically constructed for F in (1.1)):

(1) Ous(X.Y,Z) = W(X) + B(¥) + 21XV T~ 2%+ 2 4(2) 0],

where v and 3 are real numbers. Instead of alternately (exactly or inexactly) minimi-
zing F(X,Y) or the augmented Lagrangian function, our method alternately updates
X and Y by inexactly minimizing ©, 3(X,Y, Z) over X and Y, and then updates Z
by an explicit formula. Note that the coupled variables XY T is now separated from
A in our potential function. Thus, one can readily take advantage of efficient compu-
tational strategies for NMF, such as those used in HALS (see the “hierarchical-prox”
updating strategy in Section 4), for inexactly minimizing ©, g(X,Y, Z) over X or Y.
Furthermore, our method can be implemented for NMF and MC without explicitly
forming the huge (m X n) matrix Z (see (6.3) and (6.5)) in each iteration. This signifi-

IProblem (1.1) is NP-hard because it contains NMF as a special case, which is NP-hard in general
[36].
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NAUM FOR A CLASS OF MATRIX FACTORIZATION PROBLEMS 3

cantly reduces the computational cost per iteration. Finally, a suitable non-monotone
line search criterion, which is motivated by recent studies on non-monotone algo-
rithms (see, for example, [7, 12, 39]), is also incorporated to improve the numerical
performance.

In the rest of this paper, we first present notation and preliminaries in Section 2.
We then study the properties of our potential function ©,_ s in Section 3. Specifically,
if AA* =7, and «, § are chosen such that aZ + SA*A > 0 and é + % =1, then the

problem )gn)i/nz {04,8(X,Y, Z)} is equivalent to (1.1) (see Theorem 3.2). Furthermore,

under the weaker conditions that AA* = 7, and % + % = 1, we can show that (i) a
stationary point of ©, g gives a stationary point of F; (ii) a stationary point of F can
be used to construct a stationary point of ©, g (see Theorem 3.3). Thus, one can find
a stationary point of F by finding a stationary point of ©, g. In Section 4, we develop
a non-monotone alternating updating method to find a stationary point of 0, 3, and
hence of F. The convergence analysis of our method is presented in Section 5. We
show that our non-monotone line search criterion is well defined and any cluster point
of the sequence generated by our method is a stationary point of F under some mild
conditions. Section 6 gives numerical experiments to evaluate the performance of our
method for NMF and MC on real datasets. Our computational results illustrate the
efficiency of our method. Finally, some concluding remarks are given in Section 7.

2. Notation and preliminaries. In this paper, for a vector x € R™, x; de-
notes its i-th entry, ||| denotes the Euclidean norm of @ and Diag(x) denotes the
diagonal matrix whose i-th diagonal element is x;. For a matrix X € R™*", z;;
denotes the ij-th entry of X, x; denotes the j-th column of X and tr(X) deno-
tes the trace of X. The Schatten-p (quasi-)norm (0 < p < o0) of X is defined as

1

1X]s, = (Z;n:irll(m’") gf(X))E, where ¢;(X) is the i-th singular value of X. For
p = 2, the Schatten-2 norm reduces to the Frobenius norm ||X||r, and for p = 1,
the Schatten-1 norm reduces to the nuclear norm | X||.. Moreover, the spectral
norm is denoted by || X]|, which is the largest singular value of X; and the ¢;-norm
and £,-quasi-norm (0 < p < 1) of X are given by || X|[; := 37", 377, [;;] and

1

X\, = (Z:’;l > |xij\p) ” | respectively. For two matrices X and Y of the same

size, we denote their trace inner product by (X, V) := 3710, 370 @455 We also
use X <Y (resp., X >Y) to denote z;; < y;; (resp., x;; > yi;;) for all (4, 7). Furt-
hermore, for a linear map A : R™*" — RY, A* denotes the adjoint linear map and
|lA|l denotes the induced operator norm of A, i.e., ||A|| = sup{||[A(X)| : [|X]|r < 1}.
A linear self-map 7 is said to be symmetric if 7 = 7*. For a symmetric linear self-
map T : R™*™ — R™*"™ we say that T is positive definite, denoted by T > 0, if
(X, T(X)) >0 for all X # 0. The identity map from R™*" to R™*™ is denoted by Z
and the identity map from R? to R? is denoted by Z,. Finally, for a nonempty closed
set C C R™*™_its indicator function ¢ is defined by

0 if X ecC,
de(X) = { 400 otherwise.

For an extended-real-valued function f : R™*"™ — [—o0, 00|, we say that it is
proper if f(X) > —oo for all X € R™*" and its domain domf := {X € R™*" :
f(X) < oo} is nonempty. A function f : R™*" — [—o0, 0] is level-bounded [28,
Definition 1.8] if for every a € R, the set {X € R™*" : f(X) < a} is bounded
(possibly empty). For a proper function f : R™*"™ — (—o0, 00|, we use the notation
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4 LEI YANG, TING KEI PONG, AND XIAOJUN CHEN

Y L5 X to denote Y — X (i, [V — X|p — 0) and f(Y) — f(X). The (limiting)
subdifferential [28, Definition 8.3] of f at X € domf used in this paper, denoted by
Of(X), is defined as

Af(X) = {D e R™" :3x* L, X and D¥ — D with D € df(X*) for all k}

where 9 f ()7) denotes the Fréchet subdifferential of f at Y € dom f, which is the set
of all D € R™*" satisfying

g {0 (D, Y - )

= > 0.
Y#YY Y Y —Y|r

From the above definition, we can easily observe (see, for example, [28, Proposi-
tion 8.7]) that

(2.1) {D er™ . 3xk L x Dk D, Dk e 8f(Xk)} C af(X).

When f is continuously differentiable or convex, the above subdifferential coincides
with the classical concept of derivative or convex subdifferential of f; see, for example,
[28, Exercise 8.8] and [28, Proposition 8.12]. In this paper, we say that X* is stationary
point of fif 0 € Of(X™).
For a proper closed function g : R — (—o0, 00, the proximal mapping Prox, :
R™ — R™ of g is defined by Proxy(z) := Argﬂrglin {g(x) + L|lx — z||*}. For any v > 0,
xeR™

the matrix shrinkage operator S, : R™*™ — R™*™ is defined by

si — v, ifs;—v >0,

e TDino(3V VT with 5 —
S,(X) :=UDiag(s)V ' with 5; = { 0, otherwise,

where U € R™*!, s € R, and V € R"*" are given by the singular value decomposition
of X, i.e, X = UDiag(s)V' .

We now present two propositions, which will be useful for developing our method
in Section 4.

PROPOSITION 2.1. Suppose that AA* =7, and a(a+ ) # 0. Then, aZ+ SA*A

is invertible and its inverse is given by éI — ﬁA*A.
Proof. It is easy to check that éIf a((ﬁmA*.A is well defined since a(a+ ) # 0,
and that (aI + BA*A) (iI - ﬁA*A) = 7. This completes the proof. 0

PROPOSITION 2.2. Let b : R™ — (—o00,00] and ¢ : R® — (—o0,00] be proper
closed functions. Given P,Q € R™*™ and a € R™, b € R™ with ||a| # 0, ||b]| # 0,
the following statements hold.

(i) The problem mnel];lg}” {¢(z) + |lwa™ — P||%} is equivalent to

\

(ii) The problem m%Rn {o(y) + 3|by " — Q||%} is equivalent to
yeER™

)

Pa
lall?

la]?

min {z/)(a:) + 5

xeR™

Qb
y—

: 1b]|*

yeR” 2
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Proof. Statement (i) can be easily proved by noticing that
lza™ — Pl = lza’ |} — 2(za’, P) + | P} = |la|?||2|? - 2(z, Pa) + ||P|%
= |al? ||z — Pa/llal?|]* - |Pa|?/|al* + | P|3-

Then, statement (ii) can be easily proved by using statement (i) and [|by" — Q||% =
lyd" — Q7%

Before ending this section, we discuss the first-order necessary conditions for (1.1).
First, from [28, Exercise 8.8] and [28, Proposition 10.5], we see that

OV(X)+ A (AXYT)-b)Y
dD(Y) + (A" (AXYT)—b))' X >

Then, it follows from the generalized Fermat’s rule [28, Theorem 10.1] that any local
minimizer (X,Y) of (1.1) satisfies 0 € 9F(X,Y), i.e

0€0¥(X)+ A (AXY ") - b)Y,
0€dd(Y)+ (A (AXY ") —b) X,

O

OF(X,Y) = <

(2.2)

which implies that (X,Y) is a stationary point of 7. In this paper, we focus on finding
a stationary point (X*,Y*) of F, i.e., (X*,Y*) satisfies (2.2) in place of (X,Y).

3. The potential function for F. In this section, we analyze the relation
between F and its potential function O, g defined in (1.2). Intuitively, ©, g originates
from F by separating the coupled variables XY T from the linear mapping A via
introducing an auxiliary variable Z and penalizing XY T = Z. We will see later that
the stationary point of F can be characterized by the stationary point of ©,, 3. Before
proceeding, we prove the following technical lemma.

LEMMA 3.1. Suppose that AA* = I, and L + % = 1. Then, for any (X,Y,Z)
satisfying

(3.1) 7= (T- Z5AnA) (XYT) + 254%(0),
we have F(X,Y) = 0,3(X,Y, Z).
Proof. First, from (3.1), we have
(3.2) XY -7 =LA (AXYT) - b)
AZ)—b=A (XYT — BLAAXYT) ¢ LA (b )) —b

= AXYT) = L AAAXYT) + Lo AL (B) — b= 25 (AXYT) —b),
where the last equality follows from AA* = Z,. Then, we see that
SIXYT = Z|% + 5 I14(Z) - b|®

—a MBA*(A(XYT H 2o (AXYT) — H
* 2
= atpe 2 [ATAXYT) - b) ||F w3 [AGYT) b
2
=% f S AXYT) bl + - 4 Ay T) - b

= 5 3 AGYT) —blf

This manuscript is for review purposes only.
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where the first equality follows from (3.2) and (3.3); and the third equality follows
1

from AA* = Z,. This, together with é + % = 1 and the definitions of 7 and 0O,
completes the proof. ]
Based on the above lemma, we now establish the following property of ©, g.

THEOREM 3.2. Suppose that AA* = I,. If a and B are chosen such that aZ +
BA* A0 and éJr%:l, then the problem )gn}i/nz{@a,g(X, Y, Z)} is equivalent to (1.1).

Proof. First, it is easy to see from oZ + SA*A > 0 that the function Z ——
O.,3(X,Y, Z) is strongly convex. Thus, for any fixed X and Y, the optimal solution
Z* to the problem mZin {Bap(X,Y,Z)} exists and is unique, and can be obtained

explicitly. Indeed, from the optimality condition, we have
a(Z* — XYT) + BA*(A(Z*) — b) = 0.
Then, since oZ + SA* A is invertible (as aZ + fA*A > 0), we see that
Z* = (aZ + BA*A) 7 [aXY T + BA*(b)]
T ol AA] [aXY T + A" ()]
B * T B pg* 82 * *
T A A)(XYT) 4[24 (6) = o Zy A AN ()]

a+8 «@

— B * T B 8> *

_ (z_ -y A)(XY )+ [f - W}A (b)
(T- A A) (XY T) + 25 A4%0),

where the second equality follows from Proposition 2.1 and the fourth equality fol-

lows from AA* = Z,. This, together with Lemma 3.1, implies that F(X,Y) =
©,,3(X,Y, Z*). Then, we have that

min {0a,5(X,Y, 2)} = min {min (00 5(X. Y, 2)} } = min {Oa,5(X, Y, 2))
=min {F(X,Y)}.

This completes the proof. ]

REMARK 3.1. From the proof of Lemma 3.1, we see that if ® and ¥ are the indi-
cator functions of some nonempty closed sets, then F(X,Y) = (l + %) 0,8(X,Y, Z)

holds with the special choice of Z in (3.1) whenever AA* =1, and éJr% > 0. Thus,
the result in Theorem 3.2 remains valid whenever AA* = I, and o, B are chosen
such that o + SA*A = 0 and é + % > 0.

We see from Theorem 3.2 that (1.1) is equivalent to minimizing ©, s with some
suitable choices of @ and 5. On the other hand, we can also characterize the relation
between the stationary points of 7 and O, g under weaker conditions on o and 3.

THEOREM 3.3. Suppose that AA* =TI, and o, 5 are chosen such that é—k% =1.

Then, the following statements hold.

(i) If (X*, Y™, Z*) is a stationary point of Oq. g, then (X*,Y™*) is a stationary point
of F;

(i) If (X*,Y™*) is a stationary point of F, then (X*,Y™*, Z*) is a stationary point of
Oq,g, where Z* is given by

(3.4) 7 = (I - O%,A*A) (X*(V)T) 4 L5 A% (b).

This manuscript is for review purposes only.
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Proof. First, if (X*,Y™*,Z*) is a stationary point of ©, g, then we have 0 €
00,8(X*,Y*, Z%), i.e

(3.5a) 0€ V(X" +a(X*(Y*)" - Z2%)Y™,
(3.5b) 0€dD(Y*) +a(X*(Y")T —Z)" X~
(3.5¢) 0=a(Z" - X*(Y*)") + BA*(A(Z*) — b).

Since é—i—% = 1, we have a(a+ ) # 0 and hence aZ+ 3.A4*A is invertible from Lemma
2.1. Then, using the same arguments in the proof of Theorem 3.2, we see from (3.5¢)
that (X*, Y™, Z*) satisfies (3.4). Moreover, using (3.4) and the same arguments in
(3.2) and (3.3), we have

(3.6) XY =2 = Jg A (AKX (Y)T) —b),
(3.7) A(Z*)—b——ﬁ( (X*(Y*)")-b).
Thus, substituting (3.6) into (3.5a) and (3.5b), we see that

0 € OW(X") + ;“fﬁA*(A( BRI

(38) * * *\ T T *

0€0d(Y*)+ aw (A*(AX*(Y")") —b)) X

This together with éJr% = 1 implies (X*,Y™*) is a stationary point of F. This proves
statement (i).

We now prove statement (ii). First, if (X*,Y™) is a stationary point of F, then
invoking é+% =1 and (2.2), we have (3.8). Next, we consider (X*,Y™, Z*) with Z*
given by (3.4). Then, (X*,Y™*, Z*) satisfies (3.6) and (3.7). Thus, substituting (3.6)
into (3.8), we obtain (3.5a) and (3.5b). Moreover, we have from (3.6) and (3.7) that

a(Z" = X*(Y)T) + BA*(A(Z") - b)

3.9
( ) A* ((A( (Y*)T) o b) +BA* (aaT,g (A(X*(Y*)T) _ b)) —0.

a+5

This together with (3.5a) and (3.5b) implies that (X*,Y™*, Z*) is a stationary point
of O, g. This proves statement (ii). d
REMARK 3.2. From the proof of Theorem 3.3, one can see that if OV and 0P are
cones, Theorem 3.3 remains valid under the weaker conditions that AA* = I, and
11
o + 3 > 0.
From Theorem 3.3, we see that a stationary point of F can be obtained from a
stationary point of O, s with a suitable choice of a and 8, i.e., + + % = 1. Since the

linear map A is no longer associated with the coupled variables XY T in ©,, 8, finding
a stationary point of O, g is conceivably easier. Thus, one can consider finding a
stationary point of ©4 3 in order to find a stationary point of F. Note that some
existing alternating-minimization-based methods (see, for example, [1, 40]) can be
used to find a stationary point of O, g, and hence of F, under the conditions that
AA* =7, and «, f are chosen so that oZ + SA*A > 0 and é + % = 1. These
conditions further imply that a > 1 and 8 = %5 > 1. However, as we will see from
our numerical results in Section 6, finding a stationary point of ©, g with a > 1
can be slow. In view of this, in the next section, we develop a new non-monotone
alternating updating method for finding a stationary of ©, g (and hence of F) under
the weaker conditions that AA* = Z, and 1 + 4 = 1. This allows more flexibilities
in choosing a and f.

This manuscript is for review purposes only.
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4. Non-monotone alternating updating method. In this section, we con-
sider a non-monotone alternating updating method (NAUM) for finding a stationary
point of B, 3 with é + % = 1. Compared to existing alternating-minimization-based
methods [1, 40] applied to ©, g, which update X, Y, Z by alternately solving sub-
problems related to O, 5, NAUM updates Z by an ezplicit formula (see (4.5)) and
updates X, Y by solving subproblems related to ©, g in a Gauss-Seidel manner. Be-
fore presenting the complete algorithm, we first comment on the updates of X and
Y.

Let (X*,Y*) denote the value of (X,Y) after the (k—1)'! iteration, and let (U, V)
denote the candidate for (X**1 Y*+1) at the k-th iteration (we will set (X*+1 YF+1)
to be (U, V) if a line search criterion is satisfied; more details can be found in Algorithm
1). For notational simplicity, we also define

a
Ha(Xv Yv Z) = §||‘Xva—r - Z”%‘
for any (X,Y, Z). Then, at the k-th iteration, we first compute Z* by (4.5) and, in

the line search loop, we compute U in one of the following 3 ways for a given p; > 0:
e Proximal

(4.1a) U € Argmin W(X) + Ha(X, Y, 2%) + 2| X - X*|3.
X

e Prox-linear

(4.1b) U € Argmin U(X) + (VxHo(X*, Y* Z5), X — X*) + %HX — XR2.
X

e Hierarchical-prox If ¥ is column-wise separable, i.e., U(X) = > I_, 9;(x;) for

X = [x1, -+ ,2,] € R™*", we can update U column-by-column. Specifically, for
t=1,2,--- ,r, compute
. k
(4.1c) u; € Argmin ¥;(x;) + Hao ()<, T, :C?M, Yk ZF) + %sz —xzF|?,
x;
where w;<; denotes (u1,---,u;_1) and x%; denotes (xf,,, - , ).

After computing U, we compute V' in one of the following 3 ways for a given o} > 0:
e Proximal

(4.2a) V € Argmin ®(Y) + Ho (U, Y, Z%) + %HY — V|2
Y

e Prox-linear

(4.2b) V€ Argmin ®(Y) + (VyHo(U,Y*, Z%), v — V) + %HY — Y2
Y

e Hierarchical-prox If ¢ is column-wise separable, i.e., ®(Y) = > I_, ¢;(y;) for

Y = [y1, - ,yr] € R"*", we can update V' column-by-column. Specifically, for
t=1,2,--- ,r, compute
. Ok
(42C) v; € Argmln @(Zh) + Ha(Ua vj<ia yi?y;§>iﬂ Zk) + 7”2/2 - ’!thza
Yi
where v;«; denotes (v, -+ ,v,-1) and '!/}C>i denotes (ny, S yk).
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NAUM FOR A CLASS OF MATRIX FACTORIZATION PROBLEMS 9
For notational simplicity, we further let

(4.3) p = HI - (%_BA*AW

and let v > 0 be a nonnegative number satisfying
(4.4) (a+7)I+pA"A=O.

REMARK 4.1 (Comments on “hierarchical-prox”). The hierarchical-prox up-
dating scheme requires the column-wise separability of W or ®. This is satisfied for
many common regularizers, for example, |- [|%, || - v, |- |5 (0 < p < 1), and the
indicator function of the nonnegativity (or box) constraint.

REMARK 4.2 (Comments on p and 7). Since AA* = I, we see that the ei-
genvalues of A* A are either 0 or 1. Then, the eigenvalues of T — QLEFBA*A must
be either 1 or =25, and hence p = max {1, a*/(a+ B)?}. Similarly, the eigenva-

a+pB7?
lues of —(aZ + BA*A) are either —a or —(a+ (). Then, (4.4) is satisfied whenever

v > max{0, —a, —(a+ 8)}.
Now, we are ready to present NAUM as Algorithm 1.

Algorithm 1 NAUM for finding a stationary point of F
Input: (X% Y?), o and $8 such that 1 + % =1, p as in (4.3), v > 0 satisfying (4.4),
T>1,¢>0, g™ >0, o™ > g™ > (0 and an integer N > 0. Set k = 0.

while a termination criterion is not met, do
Step 1. Compute Z* by

k * k(v T *
(4.5) 7k — (zf LA A) (XFOE)T) 4+ 2 A% (b).
Step 2. Choose p > p™® and o0 € [o™®, o™a] arbitrarily. Set jix = u?,
op = oy and pp™ = (a + 29p)[[Y*]]* +c.
(2a) Set py < min{fy, p***}. Compute U by either (4.1a), (4.1b) or

(4.1c).
(2b) Compute V by either (4.2a), (4.2b) or (4.2¢c).
(2¢) If
i i ¢ k|2 k|2
_ < _Z _ _
(4.6) FOV) = max  FXOY) < =g (WU =X+ 1V = YPIlE)

then go to Step 3.

(2d) If pg = p™, set o = (a+2vp)|U||*+¢, o < min {70y, o®*}
and then, go to step (2b); otherwise, set iy « Tur and oy < Tog
and then, go to step (2a).

Step 3. Set Xkt « U, Y « V| fi, < pp, 61 < ox, k < k+ 1 and go to

Step 1.

end while

Output: (X*,YF)

In Algorithm 1, the update for Z* is given explicitly. This is motivated by the
condition on Z at a stationary point of O, g; see (3.5¢). In fact, following the
same arguments in (3.9), we see that (3.5¢) always holds at (X%, Y* ZF) with Zk
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given in (4.5) when AA* = Z, and § + § = 1. If, in addition, oZ + SA*A >
0 holds, one can show that Z* is actually the optimal solution to the problem
miny {O4,5(X*,Y*, Z)}. In this case, our NAUM with N = 0 in (4.6) can be viewed
as an alternating-minimization-based method (see, for example, [1, 40]) applied to
the problem minx y,z {©4,5(X,Y, Z)}. However, if aZ + BA* A # 0, then the corre-
sponding infy {(904’5(X’“,Y’“7 Z)} = —oo0 for all k, and Z* is only a stationary point
of Z @ayg(Xk, Y* Z). In this case, the function value of O, may increase after
updating Z by (4.5). Fortunately, as we shall see later in (5.8) and (5.9), as long as
AA* = T, and é+% = 1, we still have O, g(X* T Yk ZF) < ©, 5(X*, Yk, ZF)
by updating X**1 and Y**! with properly chosen parameters p; and oj. Thus, if
the possible increase in ©, 3 induced by the Z-update is not too large, one can still
ensure O, g( Xk Yk 71y < 0, 5(X* Yk, ZF). Moreover, it can be seen from
Lemma 3.1 and (4.5) that F(X*,Y*) = ©,,5(X*,Y* ZF*) and hence the decrease of
O, g translates to that of F (see Lemma 5.1 below). In view of this, O, 3 is a valid
potential function for minimizing F as long as AA* =Z, and é + % =1, even when
B < 0or a< 0. Allowing negative « or 8 makes our NAUM (even with N = 0 in
(4.6)) different from the classical alternating minimization schemes.

Our NAUM also allows U and V to be updated in three different ways respectively,
and hence there are 9 possible combinations. Thus, one can choose suitable updating
schemes to fit different applications. In particular, if ¥ or ® are column-wise separable,
taking advantage of the structure of ©, g and the fact that X YT can be written as
M miy] with X = [z1, -+, 2] € R™" and Y = [y, ,y,] € R"*", one can
update X or Y column-wise even when A # Z. The motivation for updating X
(or Y) column-wise rather than updating the whole X (or Y)) is that the resulting
subproblems (4.1c) (or (4.2¢)) can be reduced to the computation of the proximal
mapping of ¥; (or ¢;), which is easy for many commonly used v; (or ¢;). Indeed,
from (4.1c) and (4.2¢), u; and v; are given by

. « 2 HE
u; € Argmin {%(wi) t3 @i (yi)" = Pl + - Ml = mfl\Q} ;
(4.7) " a : o
. k
o € Argmin {g1(y) + 5 [luiy! — Q415 + Zlly: - vF12}
Yi

where PF and Q¥ are defined by
1—1 T

VARE VAR Zj:luj(y;'c)—r - Zj=i+1$?(y§c)—ra
i—1 r

Qf = ZF - Zj:ﬂ‘jvg—'r - Zj:i-s-l“j(yf)—r'

Then, from Proposition 2.2, we can reformulate the subproblems in (4.7) and obtain
the corresponding solutions by computing the proximal mappings of v; and ¢;, which
can be computed efficiently when v; and ¢; are some common regularizers used in
the literature. In particular, when 1;(-) and ¢;(-) are || - ||1, || - ||3 or the indicator
function of the box constraint, these subproblems have closed-form solutions. This
updating strategy has also been used for NMF; see, for example, [8, 20, 21]. However,
the methods used in [8, 20, 21] can only be applied for some specific problems with
A =T, while NAUM can be applied for more general problems with AA* =Z,.

Our NAUM adapts a non-monotone line search criterion (see Step 2 in Algorithm
1) to improve the numerical performance. This is motivated by recent studies on

(4.8)

2This may happen when 0 < o < 1 so that 8 = a(a—1)"! < 0, or 0 < 8 < 1 so that
a=B(B-1)"t<o.
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non-monotone algorithms with promising performances; see, for example, [7, 12, 39].
However, different from the non-monotone line search criteria used there, NAUM only
includes (U, V) in the line search loop and checks the stopping criterion (4.6) after
updating a pair of (U, V), rather than checking (4.6) immediately once U or V is
updated. Thus, we do not need to compute the function value after updating each
block of variable. This may reduce the cost of the line search and make NAUM more
practical, especially when computing the function value is relatively expensive.
Before moving to the convergence analysis of NAUM, we would like to point out
an interesting connection between NAUM and the low-rank matrix fitting algorithm,
LMaFit [38], for solving the following matrix completion model without regularizers:

o1 2
win 5 [[Pa(XY" = M),

where  is the index set of the known entries of M, and Pq(Z) keeps the entries of
Z in ) and sets the remaining ones to zero. If we apply our NAUM with (4.1a) and
(4.2a), then at the k-th iteration, the iterates Z*¥, X**1 and Y**! are given by

78 = (T - Z5Pa) XFYH)T + Z£5Pa(M),
Xk (ﬂka +aZkyk) (il + a(yk)Tylc)*17
YA = (5,5 4 a(Z%)T X9 (6] + a(XFH) T XRH) T
One can verify that the sequence { (Z’i, X+ yk+1)}1 above can be equivalently ge-
nerated by the following scheme with Z0 = Pq(M) + Poe (X°(Y?)T):

k_ B 7k 8 kv k\T
zF = 2.7 +<1—a—+5)X(Y),

X = (i X* + aZPYF) (e + a(YF)TYR)
YHH = (3,Y" + a(Z9)T XM (00 + (XM TXF) T
Zh+l _ ’PQ(M) + Pae (Xk+1<Yk+1)T) ’

where Q€ is the complement set of 2. Surprisingly, when iy = 6 = 0, this scheme
is exactly the SOR(successive over-relaxation)-like scheme used in LMaFit (see [38,
Eq.(2.11)]) with w := aLj_ﬂ being an over-relaxation weight. With this connection,
our NAUM, in some sense, can be viewed as an SOR-based algorithm. Moreover, just
like the classical SOR for solving a system of linear equations, LMaFit with w > 1
also appears to be more efficient from the extensive numerical experiments reported
in [38]. Then, it is natural to consider % > 1 and hence X > 1 (since é—k% =1)in
NAUM. This also gives some insights for the necessity of allowing more flexibilities in
choosing o and 3, and the promising performance of NAUM with a relatively small

a € (0,1) as we shall see in Section 6.

5. Convergence analysis of NAUM. In this section, we discuss the conver-
gence properties of Algorithm 1. First, we present the first-order optimality conditions
for the three different updating schemes in (2a) of Algorithm 1 as follows:

e Proximal

(5.1a) 0€dW(U)+a(UYM)T - ZF) Y* + (U — XF).
o Prox-linear

(5.1b) 0€0V(U) +a (XHY*)T - ZF) Y* + (U — XF).
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e Hierarchical-prox Fori=1,2,--- r,

(5.1c) 0 € Oi(u;) + (Z;:luj(y;’c)—r +3 e () - Zk) Yy + e (u; — ).

Similarly, the first-order optimality conditions for the three different updating schemes
in (2b) of Algorithm 1 are
e Proximal

(5.2a) 0€0d(V)+a UV = 28) U+ 0p(V - Y*).
e Prox-linear

(5.2b) 0€0B(V) +a (UYH)T = 25) U+ an(V —YF).
e Hierarchical-prox Fori:=1,2,--- 7,

, T
(5.2¢) 0 € 9¢;(v;) + « (Z;zlujv; + Z;ziﬂuj(yf)T — Zk> u; + op(v; — yf)
We also need to make the following assumptions.

ASSUMPTION 5.1.
(al) ¥, ® are proper, closed, level-bounded functions and continuous on their dom-
ains respectively;
(a2) AA* =1,;
(a3) ;+5=1
REMARK 5.1. (i) From (al), one can see from [28, Theorem 1.9] that inf ¥ and
inf @ are finite, i.e., ¥ and ® are bounded from below. In particular, the iterates
(4.1a), (4.1b), (4.1c), (4.2a), (4.2b) and (4.2¢) are well defined; (ii) The continuity
assumption in (al) holds for many common regularizers, for example, £1-norm, nu-
clear norm and the indicator function of a nonempty closed set; (iii) (a2) is satisfied
for some common linear maps, for example, the identity map and the sampling map.

We start our convergence analysis by proving the following auxiliary lemma.

LEMMA 5.1 (Sufficient descent of F). Suppose that Assumption 5.1 holds.
Let (X®,Y") be generated by Algorithm 1 at the k-th iteration, and (U,V) be the
candidate for (X1, Y*+1) generated by steps (2a) and (2b). Then, for any integer
k >0, we have

FU,V) - F(Xk YF)
63) _ i — (a4 29p) [V k= (a+ 29p)||U|?
- 2 2
Proof. First, from Lemma 3.1 and (4.5), we see that F(X*,Y*) = 0, 5(X*, Y*
Z¥). For any (U, V), let

ag
U — X*|I% ~ IV = Y*.

(5.4) W= (T 4547 A) (UVT) + 254°(b).
Then, from Lemma 3.1, we have F(U,V) = ©,.3(U, V,W). Thus, to establish (5.3),
we only need to consider the difference O, 5(U, V,W) — 0, (X*, Yk ZF).

We start by noting that

A*AW) = (A*A — B A (AL A) (UVT) + 25 A" (AA") (b)

= G ATAUVT) + E5 A% (b),

(5.5)
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where the last equality follows from (a2) in Assumption 5.1. Then, we obtain that
V2O0u5U,V,W) = a(W ~UVT) + BA*A(W) — BA*(b)
o[- A AUV T4 s A ()] 45 25 A A UV T) 1 A (B)] A" (b) =

where the second equality follows from (5.4) and (5.5). Moreover, since « is chosen
such that (o 4+ v)Z + SA*A = 0 (see (4.4)), we see that, for any k& > 0, the function
Z+— Oap5(U,V,Z) + 1| Z — Z*||% is convex and hence

O (U V, 2¥) + 211 2° = 2|}

| —
=0

> 00,5 (U VW) + W = 28 + (V200 s(U V. W) +5(W = 2%), 2 W),

=0

which implies that

(5.6) O, (U V. W) = Oas(U, V. 2%) < Z|W — 2"}

Then, substituting (4.5) and (5.4) into (5.6), we obtain

Ous(U,V,W) — Ou 4(U,V, Z) < 2 H( - A A) (VT - XY H2

<3|z- a+ﬂA*A” [ovT = x*m T
= LUV -Y*")T + (U - X" Y’”HF

o <2 (o 4T+ @ - x0T, )
)
< 2 (ONV ~ Y*e + Y5~ X))

(ii)
< (IUIRIV = Y + IR0 - X5)%),

where the equality follows from the definition of p in (4.3); (i) follows from the relation
|AB||F < ||A|||| B||7; and (ii) follows from the relation [la + b||* < 2||a||? + 2/|b]|>.
Next, we claim that

IV —Y*|%,

2 _
(5.8) Oa (U, V, Z¥) — 04 5(U,Y*, 2%) < W

Bh o — Xx%)3.

kE kY k vk ok 04||Yk||2—
(59) @a,ﬁ(U7Y Z ) @a,ﬁ(X Y5, Z )S 9

Below, we will only prove (5.8). The proof for (5.9) can be done in a similar way.
To prove (5.8), we consider the following three cases.
e Proximal: In this case, we have

Ous(U,V,ZF) =0, (U, Y*, ZF) = ®(V)+Ho (U, V, ZF) = 0(Y*) U (U, Y, ZF)
<I>(V)+’HQ(U7WZ’“H%HV—Y’“II%] — [@(Y*)+Ho (U, YF, Z7)] - %IIV—Y’WI%

IN

Ok
~Z v -y,

where the inequality follows from the definition of V' as a minimizer of (4.2a).
This implies (5.8).
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Prox-linear: In this case, we have

Ous(U,V,ZF) =04 s (U, Y*, ZF) = &(V)+Ho (U, V, ZF) = 0(Y*) U (U, Y, ZF)

U 2
<O(V) + Ha(U,YF, ZF) + (VyHo (U Y, ZF), V = YF) + %nv -Y*|%
—®(Y") - Ho (U, YF, ZF)
al|lU|*—
= V)V Ha (U1, 2, VYR 4 T vy ety Ty
al|U|]? - o
< W=k oy

where the first inequality follows from the fact that Y — VyH,(X,Y, Z) is Lip-
schitz with modulus o X||? and the last inequality follows from the definition
of V' as a minimizer of (4.2b).

Hierarchical-prox: In this case, for any 1 < i < r, we have

Oa,8(U,vj<i, 05, Yjsir Z%) — Oap (U, vyl ylsir Z°)
= ¢i(vi) + Ha(U,vj<i,v5,Y}si, Z%) — 0i(yF) — Ha (U, vjci yf Yl Z5)
= {@(Uz‘) + Mo (U, vj<i, vi,Y)si, Z5) + %Hvi -y l?| - %Hvi -y |?
- [@(yf) + Ha(U, vj<i»yzka y;'c>z'» Zk)}
< =T flos -yl
where the inequality follows from the definition of v; as a minimizer of (4.2c).

Then, summing the above relation from ¢ = r to ¢ = 1 and simplifying the
resulting inequality, we obtain (5.8).

The inequality (5.9) can be obtained via a similar argument.
Now, summing (5.7), (5.8) and (5.9), and using F(U,V) = B4 g(U,V,W) and
F(Xk YF)=0,3(X", Y* ZF), we obtain (5.3). This completes the proof. d

From Lemma 5.1, we see that the sufficient descent of F(X,Y") can be guaranteed
as long as ug and oy are sufficiently large. Thus, based on this lemma, we can show

in the

following proposition that our non-monotone line search criterion in Algorithm

1 is well defined.

PROPOSITION 5.2 (Well-definedness of the non-monotone line search cri-
terion).  Suppose that Assumption 5.1 holds and Algorithm 1 is applied. Then,
for each k > 0, the line search criterion (4.6) is satisfied after finitely many inner
iterations.

Proof. We prove this proposition by contradiction. Assume that there exists
a k > 0 such that the line search criterion (4.6) cannot be satisfied after finitely

many

inner iterations. Note from (2a) and (2d) in Step 2 of Algorithm 1 that

max __

e < e = (a+2yp)||Y*||? + ¢ and hence pj, = p*** must be satisfied after finitely

many inner iterations. Let n; denote the number of inner iterations when pj, = pj,

max

is satisfied for the first time. If pQ > pa*, then nj = 1; otherwise, we have

min,_ng—2 0, nip—2 max
N A N

which implies that

(5.10)

np < {log(uk ) — log(p )+2J_
log T
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Then, from (2d) in Step 2 of Algorithm 1, we have U = Upmax and o™ = (o +
2yp)||Upmax||* 4 ¢ after at most ny, + 1 inner iterations, where Umax is computed by
(4.1a), (4.1b) or (4.1c) with p = pp®*. Moreover, we see that o, = o® must be
satisfied after finitely many inner iterations. Similarly, let 7y denote the number of
inner iterations when o}, = o*®* is satisfied for the first time. If 60 > o®*, then
Ny = ng; if 02 = o®*, then ny, = 0; otherwise, we have

O_mln,rnkfl S 02Tnk71 < U?ax’

which implies that

o < |ToB(oE™) —log(e™™) |
log T

Thus, after at most max{ng, 7y} + 1 inner iterations, we must have V = V,max, where
Vomax is computed by (4.2a), (4.2b) or (4.2¢) with oy = o}'**. Therefore, after at
most max{ng, 7} + 1 inner iterations, we have

F(Upgpes, Vomax) = F(XF, )
= (et 2yp) YR
- 2

&
= =2 (U = X[ + | Voos = Y|3)

o — (a+2p) | Upma ||?
2

U = X |17~ [V =Y ¥|[3

where the inequality follows from (5.3) and the equality follows from p*** = (a +
27p)IY*||? 4 ¢ and o = (a + 27yp)||U,mex||? + c. This together with

k

FXPvH) < max  F(XLYY
[k—N]4 <i<k
implies that (4.6) must be satisfied after at most max{ny, 7y} + 1 inner iterations,
which leads to a contradiction. |

Now, we are ready to prove our main convergence result, which characterizes a
cluster point of the sequence generated by Algorithm 1. Our proof of statement (ii)
in the following theorem is similar to that of [39, Lemma 4]. However, the arguments
involved are more intricate since we have two blocks of variables in our line search
loop.

THEOREM 5.3. Suppose that Assumption 5.1 holds. Let {(X*,Y*)} be the se-
quence generated by Algorithm 1. Then,
(i) (boundedness of sequence) {(X* Y*)}, {fin} and {5} are bounded;
(ii) (diminishing successive changes) kli_)nolo | XEFL— XF| o+ || Y —YF|| = 0;
(iii) (global subsequential convergence) any cluster point (X*,Y*) of {(X*,Y*)}
is a stationary point of F.

Proof. Statement (i). We first show that
(5.11) F(X* YR < F(x°,Y%

for all £k > 1. We will prove it by induction. Indeed, for k = 1, it follows from
Proposition 5.2 that

FXLYH) - FXOYY) <=0 (IXT = X0+ YT = YP) <0

€
2
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is satisfied after finitely many inner iterations. Hence, (5.11) holds for k = 1. We now
suppose that (5.11) holds for all ¥ < K for some integer K > 1. Then, we only need
to show that (5.11) also holds for k = K + 1. For k = K + 1, we have

FXELYyESD) _ (X0 v0) < A(XEFLYEFY) — max F(XF,YH)
[K—N]; <i<K

< =5 (X = X B+ Y S =Y ER) <o,

c
2
where the first inequality follows from the induction hypothesis and the second ine-

quality follows from (4.6). Hence, (5.11) holds for ¥ = K + 1. This completes the
induction. Then, from (5.11), we have that for any k£ > 0,

FX0,Y%) > F(X*,YF) = 0(XF) + ®(YF) + % JAX*Y*)T) — b,

which, together with (al) in Assumption 5.1, implies that the sequences {X*}, {Y*}
and {|JA(X*(Y*)T) — b||} are bounded. Moreover, from Step 2 and Step 3 in Algo-
rithm 1, it is easy to see i, < pi® = (a + 2vp)||Y*||? + ¢ for all k. Since {Y*} is
bounded, the sequences {p**} and {fix,} are bounded. Next, we prove the bounded-
ness of {71 }. Indeed, at the k-th iteration, there are three possibilities:
e jix < pu": In this case, we have o < o7 < g™M¥*77%  where i), denotes
the number of inner iterations for the line search at the k-th iteration and n; <

max {1, Llog(“?ax)fbg(“mm) + 2J } (see (5.10) and the discussions preceding it).

log T

o [ip = pp® and o > op'®*: In this case, we have o;, < 0277““ < g™axrfk where

,";’Lk S max{17 \‘log(uzlaji;i—og(umin) + QJ }

e Otherwise, we have 7), < 0@ = (a + 2yp)[| X% + c.
Note that {n;} is bounded as {y"**} is bounded. Thus, {G;} is bounded as the
sequences {X*} and {7} are bounded. This proves statement (i).
Statement (ii). We first claim that any cluster point of {(X*,Y*)} is in dom.F.
Since {(X*,Y*)} is bounded from statement (i), there exists at least one cluster
point. Suppose that (X*,Y ™) is a cluster point of {(X*,Y*)} and let {(X*:,Y*#)} be

a convergent subsequence such that lim (X%, Y*) = (X* Y*). Then, from the lower
11— 00

semicontinuity of F (since ¥, ® are closed by (al) in Assumption 5.1) and (5.11), we
have

F(X*,Y*) < lim F(XF yk) < F(X°,Y9),

1—00
which implies that F(X*,Y™) is finite and hence (X*,Y™) € domF.
For notational simplicity, from now on, we let Ay, = XF — XF Ay =

YR Yk Ay = 2P — ZF and

(5.12) ((k) = argmax{ F(X"Y") : i =[k — N]y,--- ,k}.
K

Then, the line search criterion (4.6) can be rewritten as

(5.13)  F(XML YR — F(XHR vy < = (| Axk %+ |Ayx]3) < 0.

¢
2
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Observe that

f(Xf(k+1),YZ(k+1))

= max .7-'(Xi7Yi):max{}'(XkH,Yk*l), max f(Xi,Yi)}
[k+1-N];4<i<k+1 [k+1-N]4<i<k

()

< max {f(Xé(k),Ye(k)), max .F(Xi,Yi)}
[k4+1—N]; <i<k

gmax{f(X“’“),Yf(k)), max f(Xi,Yi)}
[F—N]4<i<k

D max { F (X0, Y10, F 00,y )k = F(XU0, y ),

where (i) follows from (5.13) and (ii) follows from (5.12). Therefore, the sequence
{F(XR) 'y tH))} is non-increasing. Since F(X“*)| YR} is also bounded from below
(due to (al) in Assumption 5.1), we conclude that there exists a number F such that

(5.14) lim F(X'® | yt®)y = F

k— o0

We next prove by induction that for all j > 1,

(515&) hm AXZ(k)—j = hm Ayé(k)—j = O7
k—o0 k— o0

(5.15b) klim ]-'(Xe(k)—j’yf(k)—j) -7
—00

We first prove (5.15a) and (5.15b) for j = 1. Applying (5.13) with k replaced by
¢(k) — 1, we obtain

F(XU0, Y 09) — FXAWD, y 01 < =2 (|| Ao [+ [ Ayaooi]3)

which, together with (5.14), implies that

(5.16) klggo Axe(k)—l = kh—{go Aye(k)—l =0.
Then, from (5.14) and (5.16), we have

F = lim F(XR) vtk = Jlim FXO=E LA oy, YOI L A iay)
—00

k—o0
= lim F(XW1 vy
k—o0
where the last equality follows because {(X*,Y*)} is bounded, any cluster point of
{(X*,Y¥)} is in domF and F is uniformly continuous on any compact subset of
domF under (al) in Assumption 5.1. Thus, (5.15a) and (5.15b) hold for j = 1.

We next suppose that (5.15a) and (5.15b) hold for j = J for some J > 1. It
remains to show that they also hold for j = J + 1. Indeed, from (5.13) with k
replaced by ¢(k) — J — 1 (here, without loss of generality, we assume that k is large
enough such that ¢(k) — J — 1 is nonnegative), we have

]:(Xe(k%‘], Yz(k)ij) —]:(Xe(e(k)ﬁjfl), Yé(e(k)f‘jil)) < —% (”AXZ(k)—J—l H%"- ||AY£(I¢)—J—1 H%) s
which implies that
|| Axl((k)—J—l ||% + || Ayl{(k)—J—l ||% < % (f(XZ(K(kF‘Fl), Yaz(k)f‘lfl) ) 7.7:(Xz(k)7‘], Yz(k%‘])) .
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555 This together with (5.14) and the induction hypothesis implies that
1im AXl(k)—(J+1) == hm Ayl(}c)—(]+1) =0.
k—o00 k—o0

557 Thus, (5.15a) holds for j = J 4+ 1. From this, we further have

lim ]:(Xz(k)f(‘prl), Yz(k)f(*]+1)) = lim ./—"(Xe(k)ilijX{,(k)—(J-f-l) , Yf(k)iijye(k)—(J+l))

k— o0 k—o0

= lim F(X!®0~I yt® =Ty = F

)
k—o0

559  where the second equality follows because {(X*,Y*)} is bounded, any cluster point
560 of {(X*,Y*)} is in domF and F is uniformly continuous on any compact subset of
561 domJ under (al) in Assumption 5.1. Hence, (5.15b) also holds for j = J 4 1. This
562 completes the induction.

563 We are now ready to prove the main result in this statement. Indeed, from (5.12),
564 we can see k — N < £(k) < k (without loss of generality, we assume that k is large
565 enough such that & > N). Thus, for any k, we must have k — N — 1 = £(k) — jj, for
566 1 < jr < N + 1. Then, we have

Axenarlle = 1A llr < | max [Axas e,

[Ayk-n-1]lF = [Ayem-s.|lF < | Jmax Ay || -

568 This together with (5.15a) implies that

lim Axk = lim Axk—N—l = 0,
. k—o00 k—o0
569 . .
lim Ayx = lim Ayr-~n-1 =0.
k—oo

k—o0
570 This proves the statement (ii).
571 Statement (iii). Again, let (X*,Y*) be a cluster point of {(X* Y*)} and let
572 {(X*iY*)} be a convergent subsequence such that lim (X%, Y*) = (X* Y*). Recall
71— 00

573 that (X*,Y*) € domF. On the other hand, it is easy to see from (4.5) that lim Z% =
71— 00
574 Z*, where Z* is given by (3.4). Thus, it can be shown as in (3.9) that

575 (5.17) a(Z* = X*(Y*)") + BA*(A(Z*) — b) = 0.

We next show that

(5.18a) { 0€ V(X" +a(X*(Y*)" —Z9)Y™,

(5.18b) 0€dD(Y*) +a(X*(Y*)T — 29T X~
576 We start by showing (5.18a) in the following cases:
577 e Proximal&Prox-linear: In these two cases, passing to the limit along {(X*:,
578 Y*)} in (5.1a) or (5.1b) with X*+! in place of U and i, in place of u, and
579 invoking (al) in Assumption 5.1, statements (i), (ii), (X*,Y™*) € domF and (2.1),
580 we obtain (5.18a).
581 e Hierarchical-prox: In this case, passing to the limit along {(X*:, Y*:)} in (5.1c)
582 with X%+ in place of U and [ix, in place of j, and invoking (al) in Assumption
583 5.1, statements (i), (ii), (X*,Y™*) € domF and (2.1), we have
584 0 € Oi(x}) + (X (YT — Z%)y!
585 for any ¢ =1,2,--- ,7. Then, stacking them up, we obtain (5.18a).
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Similarly, we can obtain (5.18b). Thus, combining (5.17), (5.18a) and (5.18b), we see
that (X*,Y™, Z*) is a stationary point of O, g, which further implies (X*,Y*) is a
stationary point of F from Theorem 3.3. This proves statement (iii). ]

REMARK 5.2 (Comment on (a3) in Assumption 5.1). If ® and ¥ are the
indicator functions of some nonempty closed sets, Theorem 5.5 can remain valid under
the weaker condition on o and 3 that é + % > 0 with a slight modification in (4.6)
of Algorithm 1. Indeed, when ® and ¥ are the indicator functions, one can see from
Remark 3.1 and the proofs of Lemma 5.1 and Proposition 5.2 that if é —I—% > 0, then

FU,V) — F(X*, Y = (i + %) (O s (U, V,W) — O (X*, Y, ZH))

[

—(a k2 or—(a 2
< (L4 3) (Bt k4 et By e,

e

and the line search criterion is well defined with ¢ replaced by (é + %) c. Moreover,
recalling [28, Exercise 8.14], we see that OV and 0P are normal cones. Thus, following
Remark 3.2 and the similar augments in Theorem 5.3, we can obtain the same results

when é + % > 0 with ¢ replaced by <% + l) c in (4.6) of Algorithm 1.

B
max max

REMARK 5.3 (Comments on updating pjp'®* and o). In Algorithm 1,
we need to evaluate ™ = (a4 2yp)||[Y*||2 + ¢ and o = (a + 2yp)||U||? + ¢ in
each iteration. However, computing the spectral norms of Y* and U might be costly,
especially when v is large. Hence, in our experiments, instead of computing ||Y*|?
and ||U||?, we compute |Y*||% and |U||%, and update p® and o by pbex =
(a+29p)|Y*|IZ + ¢ and o™ = (a + 27p)|U||% + ¢ instead. Since |Y*|| < ||[V*||p
and ||U|| < ||U||F, it follows from (5.3) that

—(« k)12 or—(a 2
.F((LV)—.F(Xk,Yk)S—Hk ( +2;P)HY I HU_XkH%_ k= +22’YP)HUHF ||V—Yk||%‘.

Then, one can show that Proposition 5.2 and Theorem 5.3 remain valid. In addition,
we compute the quantities ||U||% and |[Y*||% by tr(UTU) and tr((Y*)TY*), respecti-
vely. For some cases, the matrices UTU and (Y*)TY* can be used repeatedly in
updating the variables and evaluating the objective value and successive changes to
reduce the cost of line search; see a concrete example in Section 6.1.

6. Numerical experiments. In this section, we conduct numerical experiments
to test our algorithm for NMF and MC on real datasets. All experiments are run in
MATLAB R2015b on a 64-bit PC with an Intel Core i7-4790 CPU (3.60 GHz) and
32 GB of RAM equipped with Windows 10 OS.

6.1. Non-negative matrix factorization. We first consider NMF
.1 T 2
(6.1) min 5 [XYT — M|, st. X>0, V>0,

where X € R™*" and Y € R™*" are decision variables. Note that the feasible set of
(6.1) is unbounded. We hence focus on the following model:

3 1 2 max max
(6.2) win S IXYT =ML st 0<X <X 0<Y <y

where X™®* > (0 and Y™ > 0 are upper bound matrices. One can show that, when
Xpand Y7 are sufficiently large®, solving (6.2) gives a solution of (6.1). In our

3The estimations of X ir;-'ax and Yi‘;“ax have been discussed in [9, Page 67].
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experiments, for simplicity, we set X2 = 10'® and Y1 = 10'° for all (i, 7). Now,
we see that (6.2) corresponds to (1.1) with U(X) = 0 (X), ®(Y) =y(Y)and A =T,
where ¥ = {X e R™*" : 0 < X < X™*} and Y ={Y e R"*" : 0 <Y < Ymax},
We apply NAUM to solving (6.2), and use (4.1c) and (4.2¢) to update U and V. The
specific updates of Z*, u; and v; are

kE_ « kv kNT B

Pyt 4 1k
ui:max{O, min{az?ax, Cm}} i=1,2--- 1,
(]

kT, k
ool e S
7

where P} and QF are defined in (4.8). Note that here it is not necessary to update

ZF explicitly. Indeed, we can directly compute PFy¥ and (QF)"w; by substituting
ZF as below:

a i—1 r
63) Plyf = 295 XN (V9) Tyf + 2 My = s (y) Tul =302 (u)) )
(QF) Tws = 595V (XM) Twi+ 225 M Tuy = 3057

T, T k,, T,
atp VU U Y U Ui

When computing X*(Y*) Ty* and Y*(X*)Tu; in the above, we first compute (Y*) Ty
and (X*)Tu; to avoid forming the huge (m x n) matrix X*(Y*)T. Moreover, the
matrices (X¥)TU, UTU, (Y¥)TY* and MU that have been computed in (6.3) can
be used again to evaluate the successive changes and the objective value as follows:

|0~ XH|3 = 2(@TU) - 26(X*)T0) + (X4 TXH),
IV = Y¥3 = (v TV) = 2e((Y*) V) + t((VH) TYH),
JUVT = M3 = (UTU)VTV)) = 26e(MTOWT) + | M]3

In the above relations, (X*)T X* and (Y*)TY* can be obtained from U U and V'V
in the previous iteration, respectively, and ||M||% can be computed in advance. Ad-
ditionally, as we discussed in Remark 5.3, tr((Y*)"Y*) and tr(U'TU) can also be
used in computing p;'** and o'**, respectively. These techniques were also used in
many popular algorithms for NMF to reduce the computational cost (see, for example,
[2, 9, 10, 18, 37)).

The experiments are conducted on the face datasets (dense matrices) and the
text datasets (sparse matrices). For face datasets, we use CBCL?*, ORL® [29] and the
extended Yale Face Database B (e-YaleB)® [19] for our test. CBCL contains 2429
images of faces with 19 x 19 pixels, ORL contains 400 images of faces with 112 x 92
pixels, and e-YaleB contains 2414 images of faces with 168 x 192 pixels. In our
experiments, for each face dataset, each image is vectorized and stacked as a column
of a data matrix M of size m x n. For text datasets, we use three datasets from the
CLUTO toolkit”. The specific values of m and n for each dataset and the values of 7
used for our tests are summarized in Table 1.

The parameters in NAUM are set as follows: p™i" = =1, o™ =5 | =
1, o™ = 10% 7 =4, ¢ = 107%, N = 3, p} = max {0.14—1, p™"} and o}

min

4 Available in http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html.
5Available in http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.
6 Available in http://vision.ucsd.edu/~iskwak/ExtYaleDatabase/ExtYaleB.html.

7 Available in http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download.
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TABLE 1
Real data sets

Face Datasets (dense matrices) Text Datasets (sparse matrices)
Data Pixels m n r Data  Sparsity m n r
CBCL 19 x 19 361 2429 30, 60 | classic  99.92% 7094 41681 10, 20
ORL 112 x 92 10304 400 30, 60 | sports 99.14% 8580 14870 10, 20
e-YaleB 168 x 192 32256 2414 30, 60 | ohscal 99.47% 11162 11465 10, 20

min{max {O.l&k_l, Umin} , amax} for any k > 0. Moreover, we set 8 = —%5, v =

max{0, —a, —(a+ )} and p = max {1, a?/(a+ 6)2} for some given a.

We then compare the performances of NAUM with different o. In our compari-
sons, we initialize NAUM with different o at the same random initialization (X°, V)%
and terminate them if one of the following stopping criteria is satisfied:

Fk k-1 B .. .
° % < 10~* holds for 3 consecutive iterations;

nmf
IXE X e | YR YR s
XA A TY R T < 107 holds,

where 7 = 1| X*(YF)T - MH? denotes the objective value at (X*,Y*). Table 2
presents the results of NAUM with different « for two face datasets (CBCL and ORL)
and r = 30,60. In the table, “iter” denotes the number of iterations; “relerr” denotes
Ix* ) =Mlp
1M+

each NUAM in a trial; “time” denotes the computational time (in seconds). All the
results presented are the average of 10 independent trials. From Table 2, we can see
that NAUM with a relatively small a (e.g., 0.6 and 0.8) has better numerical perfor-
mance. However, o cannot be too small. Observe that NAUM with o = 0.5,0.4,0.2
are not competitive and, surprisingly, a = 0.5 leads to the worst performance. In
view of this, we do not choose o < 0.6 in our following experiments for NMF.

the relative error , where (X*, Y*) is a terminating point obtained by

TABLE 2
Comparisons of NAUM with different o

oY iter relerr time [eY iter relerr time
CBCL, r = 30 CBCL, r = 60
2.0 488 1.0519e-01 1.72 2.0 626  7.4388e-02 4.94
1.1 381 1.0448e-01 1.35 1.1 555  7.3477e-02 4.38
0.8 315 1.0426e-01 1.09 | 0.8 511 7.2986e-02 4.09
0.6 268 1.0406e-01 0.94 | 0.6 419  7.2998e-02 3.32
0.5 833 1.0593e-01 4.74 | 0.5 1372 7.5864e-02 19.49
0.4 440 1.0489e-01 3.05 | 04 599  7.4568e-02 10.02
0.2 556 1.0674e-01 4.18 | 0.2 782  7.7654e-02 14.30
ORL, r = 30 ORL, r = 60
2.0 232 1.6673e-01 3.45 2.0 277 1.4078e-01 7.92
1.1 188 1.6619e-01 2.78 1.1 210 1.4042e-01 6.04
0.8 158 1.6603e-01 2.33 | 0.8 182 1.4017e-01 5.20
0.6 132 1.6578e-01 2.01 0.6 156 1.3996e-01 4.44
0.5 652 1.7216e-01 15.79 | 0.5 695 1.4583e-01 32.91
0.4 280 1.6615e-01 7.55 | 0.4 353 1.4061e-01 19.17
0.2 307 1.6753e-01 8.71 0.2 358 1.4272e-01 20.77

We next compare NAUM with two existing efficient algorithms® for NMF: the

8We use the Matlab commands: X0 = max(0, randn(m, r)); YO = max(0, randn(n, r)); X0
= X0/norm(X0, ’fro’)*sqrt(norm(M, ’fro’)); YO = YO/norm(YO,’fro’)*sqrt(norm(M, ’fro’));

9Most existing algorithms are directly developed for (6.1). However, they need the assumption
that the sequence generated is bounded in their convergence analysis. Although this assumption is
uncheckable and may fail, these algorithms always work well in practice. Thus, we directly use these
algorithms in our comparisons, rather than modifying them for (6.2).
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hierarchical alternating least squares (HALS) method!" (see, for example, [8, 9, 10,
11, 20, 21]) and the block coordinate descent method for NMF (BCD-NMF'!) (see
Algorithm 2 in Section 3.2 in [40]).

To better evaluate the performances of different algorithms, we follow [11] to use
an evolution of the objective function value. To define this evolution, we first define

k
e(k) = %
— Y min
where F* denotes the objective function value obtained by an algorithm at (X%, Y'*)
and Fni, denotes the minimum of the objective function values obtained among all
algorithms across all initializations. We also use T (k) to denote the total computa-
tional time after completing the k-th iteration of an algorithm. Thus, 7(0) = 0 and
T (k) is non-decreasing with respect to k. Then, the evolution of the function value
obtained from a particular algorithm with respect to time ¢ is defined as

E(t) :=min{e(k) : ke {i: T() <t}}.

One can see that 0 < E(t) < 1 (since 0 < e(k) < 1 for all k) and E(t) is non-increasing
with respect to t. E(t) can be considered as a normalized measure of the reduction of
the function value with respect to time. For a given matrix M and a positive integer
r, one can take the average of F(t) over several independent trials with different
initializations, and plot the average E(t) within time ¢ for a given algorithm.

In our experiments, we initialize all the algorithms at the same random initial
point (XY, Y°) and terminate them only by the maximum running time T™*. The
specific values of T™?* are given in Fig. 1 and Fig. 2. Additionally, we use the default
settings for BCD-NMF. For NAUM, we choose o« = 0.6,0.8,1.1,2. We then plot the
average F(t) for each algorithm within time T™&*,

Fig. 1 and Fig. 2 show the average E(t) of 30 independent trials for NMF on face
datasets and text datasets, respectively. From the results, we can see that NAUM
with @ = 0.6 performs best in most cases, and NAUM with @ = 0.6 or 0.8 always
performs better than NAUM with o > 1. This shows that choosing o and 8 under the
weaker condition 1 + % =1 (hence « can be small than 1) can improve the numerical
performance of NAUM.

6.2. Matrix completion. We next consider a recent model for MC:
.o n 1 T 2
(6.4) win 21X+ 2Vl + 5 [Palxy™ =2,

where 1 > 0 is a penalty parameter, {2 is the index set of the known entries of M,

and Pqo(Z) keeps the entries of Z in Q and sets the remaining ones to zero. This
model was first considered in [30, 31] and was shown to be equivalent to Schatten—%

quasi-norm minimization. Encouraging numerical performance of this model has also

10HALS for (6.1) is given by

Myl — SiZlghtl (g Tyl s 2k (y?)Tyk
k41 i j=1 =it+1 )
xht :max{O, ’ J J JHy?“HZ? i=i+1%5\Y; L G T
k2
T k41 i—1, k41, k+1\T _ k+1 koo k1T k+1
R 0 M el =3y () e =y (=) x ST
y; = max{0, TEaaIE L=l
i

11 Available at http://www.math.ucla.edu/~wotaoyin/papers/bcu/nmf/index.html.
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CBCL,r=30 CBCL, r=60
10° 10°
—a=06 —a=06
—a=0.38 —a=0.8
10—1 ----- a=11 10'1 ----- a=11

10° - 105 .
o 1 2 3 4 5 6 7 8 9 10 0 6 8 10 12 14 16 18 20
time (s.) time (s.)
(a) Tmax =10 (b) Tmax = 20
ORL,r=30 ORL, r =60
10° T T T 10° T T T T T T
—a=06
——a=08

6 8 10 12 14 16 18 20

time (s.) time (s.)
(¢) Tmax = 10 (d) Tmax = 20
YaleB, r = 30 100 YaleB, r = 60

0 10 20 30 40 50 60

time (s.)
(e) Tmax = 60

40 60 80 100 120
time (s.)

(f) Tmax = 120

Fi1G. 1. Average E(t) of 30 independent trials for NMF on face datasets.

708 been reported in [30, 31]. Note that (6.4) corresponds to (1.1) with ¥(X) = 2| X[,
709 ®(Y) = 2||Y]|. and A = Pq. Thus, we can apply NAUM with (4.1b) and (4.2b) to
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classic, r =10 classic, r =20
10° 10°
—a=06
—a=08
..... a=11
g =2
—HALS
——BCD-NMF
= =
i fin]
CN—— —
10—3 L L L L L 10'3 L L L L L
0 05 1 15 2 25 3 0 1 2 3 4 5 6
time (s.) time (s.)
(a) Tmax =3 (b) Tmax =6
sports, r =10 sports, r =20
10° T . T 10° : ; :
e e
i i
10%
0 0.5 1 15 2 25 3
time (s.) time (s.)
(c) Tmax =3 (d) T™x =6
) ohscal, r =10 ) ohscal, r =20
10 - : - - 10 - : -
—a=06 —a=06
—a=08 —a=08
----- a=11 g =11
3 g =2 A g =2
10t R —HALS —HALS
: ——BCD-NMF ——BCD-NMF
g
102
10° - . T : T 10° . .
0 0.5 1 15 2 25 3 0 1 2 3 4 5 6
time (s.) time (s.)
(e) T™ax =3 (f) T™ax =6

FI1G. 2. Average E(t) of 30 independent trials for NMF on text datasets.

710 solving (6.4). The updates of Z*, U and V are

78 = XFYR)T 4+ E5Po (M - XH(YH)T),
711 U=3S,/¢um) (Xk — (xR - Zk)Yk) ;

V =Sy (V= 2" - 29T0).
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Substituting Z* into U and V and using  + 4 = 1 gives

65) U = Sy/am (X = [Pa(XP (") =) Y*) |
: T
V= Syjam (Vi 2V MU= XM)TU- L [Po(x* (") -M)] ).

Thus, similar to NAUM for NMF, we do not need to update Z* explicitly for MC.

We compare NAUM with proximal alternating linearized minimization (PALM),
which was proposed in [4] and was used to solve (6.4) in [30, 31]. For ease of future
reference, we recall that the PALM for solving (6.4) is given by

Bl k k(v kT k
XH =5y (XK= ki [Pa(XM YT - M) Y,

YkJrl =8

i}
2f xk+1)2

(ch o W [PQ(XkJrl (ch)T o ]\4)]—r chJrl) )

For NAUM, we use the same parameter settings as in Section 6.1, but choose o =
0.4,0.6,1.1. All the algorithms are initialized at the same random initialization
(X° Y9)!2 and terminated if one of the following stopping criteria is satisfied:

I]_-k 7;)671 ‘ _4 . . .
e < 107* holds for 3 consecutive iterations;

k k—1 k k—1

e - < 107 holds;
e the running time is more than 300 seconds,

where FF . = 2| XF||, + Z[|Y*|l + 3 [|Pa(X*(Y*)T - M)Hi, denotes the objective

function value obtained by each algorithm at (X*,Y*).

Table 3 presents the numerical results of different algorithms for different pro-
blems, where two face datasets (CBCL and ORL) are used as our test matrices M
and a subset €2 of entries is sampled uniformly at random. In the table, sr denotes
the sampling ratio, i.e., a subset Q of (rounded) mn * sr entries is sampled; r denotes
the rank used for test; “iter” denotes the number of iterations; “Normalized fval”
denotes the normalized function value %, where (X*, Y*) is obtained
by each algorithm, F(X*, Y*) is the function value at (X*, Y*) for each algorithm
and Frax (resp. Fmin) denotes the maximum (resp. minimum) of the terminating
function values obtained from all algorithms in a trial (one random initialization and
Q); “RecErr” denotes the recovery error W All the results presented are
the average of 10 independent trials.

From Table 3, we can see that NAUM with o = 0.4 gives the smallest function
values and the smallest recovery error within least CPU time in most cases. Moreover,
NAUM with a = 0.6 also performs better than NAUM with o = 1.1 and PALM with
respect to the function value and the recovery error in most cases. This again shows
that a flexible choice of o and 8 can lead to better numerical performances and the
choice of o = 0.4 performs best for MC from our experiments.

7. Concluding remarks. In this paper, we consider a class of matrix facto-
rization problems involving two blocks of variables. To solve this kind of possibly
nonconvex, nonsmooth and non-Lipschitz problems, we introduce a specially con-
structed potential function O, g defined in (1.2) which contains one auxiliary block
of variables. We then develop a non-monotone alternating updating method with a
suitable line search criterion based on this potential function. Unlike other existing

12We use the Matlab commands: X0 = randn(m, r); YO = randn(n, r);
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TABLE 3
Numerical results for MC on face datasets

[n data sr r[a=04 a=06 a=11 PALM[ =04 a=06 oa=11 PALM

iter Normalized fval

0.5 30 780 1189 3320 3306 1.13e-01 7.50e-02 4.52e¢-01 1

CBCL 0.5 60 921 1218 3850 4654 | 3.24e-02 5.10e-02 3.85e-01 1
0.2 30 1174 2366 4767 3573 | 8.01e-03 2.21e-01 6.87e-01 9.60e-01
5 0.2 60 1577 1919 5360 5037 |1.03e-02 8.95e-02 8.08e-01 8.86e-01

0.5 30 1218 1243 1241 1468 0 2.94e-01 5.06e-01 1
ORL 0.5 60 1049 1051 1051 1327 0 1 4.00e-01 7.73e-01
0.2 30 2074 325 385 2691 |2.59e-03 7.01e-01 1 1.31e-01
0.2 60 1551 1551 356 2222 0 3.82e-01 1 2.12e-01
0.5 30 457 654 1793 1935 |2.20e-02 1.29e-01 3.60e-01 9.81e-01
CBCL 0.5 60 514 594 1950 2559 2.65e-01 1.15e-01 3.79e-01 8.71le-01
0.2 30 627 1313 2513 2116 1.91e-02 3.75e-02 8.35e-01 7.79e-01
10 0.2 60 866 1095 2713 2889 |2.07e-02 2.89¢-02 9.22e-01 4.86e-01

0.5 30 1003 1186 1192 1402 | 3.30e-02 1.47e-01 4.30e-01 1
ORL 0.5 60 975 1009 1012 1276 0 8.58e-01 6.11e-01 9.99e-01
0.2 30 1409 364 411 2646 0 7.16e-01 1 8.10e-02
0.2 60 1241 1504 376 2185 |4.05e-06 3.97e-02 1 2.21e-01

CPU time RecErr

0.5 30| 35.56 54.14 151.23 119.05 | 1.05e-01 1.05e-01 1.06e-01 1.08e-01
CBCL 0.5 60| 57.66 76.09 240.19 206.47 | 8.81e-02 9.02e-02 9.04e-02 8.99e-02
0.2 30| 34.04 68.57 137.97 75.56 | 1.37e-01 1.37e-01 1.38e-01 1.43e-01
5 0.2 60| 72.01 87.82 245.21 147.08 | 1.34e-01 1.35e-01 1.35e-01 1.36e-01
0.5 30| 294.20 300 300 300 1.72e-01 1.84e-01 2.01e-01 2.12e-01
ORL 0.5 60 300 300 300 300 1.66e-01 2.11e-01 2.05e-01 2.11e-01
0.2 30 300 47.35 55.86 300 2.08e-01 3.04e-01 3.81e-01 2.24e-01
0.2 60 300 300 69.21 300 2.16e-01 2.35e-01 3.49e-01 2.61e-01
0.5 30| 21.01 30.12 82.45 70.32 |1.16e-01 1.19e-01 1.18e-01 1.17e-01
CBCL 0.5 60| 32.40 37.38 122.51 113.80 | 1.09e-01 1.11e-01 1.14e-01 1.11e-01
0.2 30| 18.15 38.01 72.84 44.62 |1.60e-01 1.61e-01 1.62e-01 1.60e-01
10 0.2 60| 39.13 49.37 123.74 83.52 1.57e-01 1.57e-01 1.58e-01 1.56e-01
0.5 30| 252.15 300 300 300 1.71e-01 1.77e-01 1.95e-01 2.08e-01
ORL 0.5 60| 289.57 300 300 300 1.53e-01 2.01e-01 2.03e-01 2.09e-01
0.2 30| 207.22 53.08 60.54 300 1.95e-01 3.06e-01 3.83e-01 2.14e-01
0.2 60| 243.45 295.60 74.09 300 1.87e-01 1.95e-01 3.60e-01 2.36e-01

methods such as those based on alternating minimization, our method essentially up-
dates the two blocks of variables alternately by solving subproblems related to © g
and then updates the auxiliary block of variables by an explicit formula (see (4.5)).
Using the special structure of ©, g, we demonstrate how some efficient computational
strategies for NMF can be used to solve the associated subproblems in our method.
Moreover, under some mild conditions, we establish that the sequence generated by
our method is bounded and any cluster point of the sequence gives a stationary point
of our problem. Finally, we conduct some numerical experiments for NMF and MC
on real datasets to illustrate the efficiency of our method.

Note that the parameter o (and f = a/(a — 1)) plays a significant role in our
NAUM. Although it has been observed in our experiments that a relatively small «
(e.g., 0.6, 0.8) can improve the numerical performance of NAUM, how to choose an
optimal « is still unknown. In view of the recent work [24] on adaptively choosing the
extrapolation parameter in FISTA for solving a class of possibly nonconvex problems,
it may be possible to derive a strategy to adaptively update o in our NAUM. This is
a possible future research topic.
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