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Abstract. In this paper we consider a general matrix factorization model which covers a large4
class of existing models with many applications in areas such as machine learning and imaging5
sciences. To solve this possibly nonconvex, nonsmooth and non-Lipschitz problem, we develop a6
non-monotone alternating updating method based on a potential function. Our method essentially7
updates two blocks of variables in turn by inexactly minimizing this potential function, and updates8
another auxiliary block of variables using an explicit formula. The special structure of our potential9
function allows us to take advantage of efficient computational strategies for non-negative matrix10
factorization to perform the alternating minimization over the two blocks of variables. A suitable11
line search criterion is also incorporated to improve the numerical performance. Under some mild12
conditions, we show that the line search criterion is well defined, and establish that the sequence13
generated is bounded and any cluster point of the sequence is a stationary point. Finally, we conduct14
some numerical experiments using real datasets to compare our method with some existing efficient15
methods for non-negative matrix factorization and matrix completion. The numerical results show16
that our method can outperform these methods for these specific applications.17
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1. Introduction. In this paper we consider a class of matrix factorization pro-21

blems, which can be modeled as22

min
X,Y

F(X,Y ) := Ψ(X) + Φ(Y ) +
1

2

∥∥A(XY >)− b
∥∥2
,(1.1)23

where X ∈ Rm×r and Y ∈ Rn×r are decision variables with r ≤ min{m, n}, the24

functions Ψ : Rm×r → R ∪ {∞} and Φ : Rn×r → R ∪ {∞} are proper closed but25

possibly nonconvex, nonsmooth and non-Lipschitz, b ∈ Rq is a given vector and26

A : Rm×n → Rq is a linear map with q ≤ mn and AA∗ = Iq (Iq denotes the identity27

map from Rq to Rq). Model (1.1) covers many existing widely-studied models in28

many application areas such as machine learning [35] and imaging sciences [44]. In29

particular, Ψ(X) and Φ(Y ) can be various regularizers for inducing desired structures,30

and A can be suitably chosen to model different scenarios. For example, when Ψ(X)31

and Φ(Y ) are chosen as the indicator functions (see the next section for notation and32

definitions) for X = {X ∈ Rm×r : X ≥ 0} and Y = {Y ∈ Rn×r : Y ≥ 0}, respectively,33

and A is the identity map, (1.1) reduces to the non-negative matrix factorization34

(NMF) problem, which has been widely used in data mining applications to provide35

interpretable decompositions of data. NMF was first introduced by Paatero and36

Tapper [25], and then popularized by Lee and Seung [17]. The basic task of NMF is37

to find two nonnegative matrices X ∈ Rm×r+ and Y ∈ Rn×r+ such that M ≈ XY > for38

a given nonnegative data matrix M ∈ Rm×n+ . We refer readers to [2, 9, 10, 18, 37]39

for more information on NMF and its variants. Another example of (1.1) arises in40

recent models of the matrix completion (MC) problem (see [30, 31, 32]), where Ψ(X)41
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and Φ(Y ) are chosen as the Schatten-p1 quasi-norm and the Schatten-p2 quasi-norm42

for suitable p1, p2 > 0, respectively, and A is the sampling map. The MC problem43

aims to recover an unknown low rank matrix from a sample of its entries and arises in44

various applications (see, for example, [3, 22, 27, 33]). Many widely-studied models for45

MC are based on nuclear-norm minimization [5, 6, 26], or, more generally, Schatten-p46

(0 < p ≤ 1) (quasi−)norm minimization [16, 23, 42]. Recently, models based on47

low-rank matrix factorization such as (1.1) have become popular because singular48

value decompositions or eigenvalue decompositions of huge (m× n) matrices are not49

required for solving these models (see, for example, [15, 30, 31, 32, 34, 38]). More50

examples of (1.1) can be found in recent surveys [35, 44].51

Problem (1.1) is in general nonconvex (even when Ψ, Φ are convex) and NP-hard1.52

Therefore, in this paper, we focus on finding a stationary point of the objective F in53

(1.1). Note that F involves two blocks of variables. This kind of structure has been54

widely studied in the literature; see, for example, [1, 4, 13, 14, 40, 41, 43]. One popular55

class of methods for tackling this kind of problems is the alternating direction method56

of multipliers (ADMM) (see, for example, [41, 43]), in which each iteration consists of57

an alternating minimization of an augmented Lagrangian function that involves X, Y58

and some auxiliary variables, followed by updates of the associated multipliers. Ho-59

wever, the conditions presented in [41, 43] that guarantee convergence of the ADMM60

are too restrictive. Moreover, updating the auxiliary variables and the multipliers61

can be expensive for large-scale problems. Another class of methods for (1.1) is62

the alternating-minimization-based (or block-coordinate-descent-type) methods (see63

[1, 4, 8, 11, 20, 21, 40]), which alternately (exactly or inexactly) minimizes F(X,Y )64

over each block of variables and converges under some mild conditions. When A is not65

the identity map, the majorization technique can be used to simplify the subproblems.66

Some representative algorithms of this class are proximal alternating linearized mini-67

mization (PALM) [4], hierarchical alternating least squares (HALS) (for NMF only;68

see [8, 11, 20, 21]) and block coordinate descent (BCD) [40]. Comparing with ADMM,69

it was reported in [40] that BCD outperforms ADMM in both CPU time and solution70

quality for NMF.71

PALM, HALS and BCD are currently the state-of-the-art algorithms for solving72

problems of the form (1.1). In this paper, we develop a new iterative method for (1.1),73

which, according to our numerical experiments in Section 6, outperforms HALS and74

BCD for NMF, and PALM for MC. Our method is based on the following potential75

function (specifically constructed for F in (1.1)):76

Θα,β(X,Y, Z) := Ψ(X) + Φ(Y ) +
α

2
‖XY > − Z‖2F +

β

2
‖A(Z)− b‖2 ,(1.2)77

where α and β are real numbers. Instead of alternately (exactly or inexactly) minimi-78

zing F(X,Y ) or the augmented Lagrangian function, our method alternately updates79

X and Y by inexactly minimizing Θα,β(X,Y, Z) over X and Y , and then updates Z80

by an explicit formula. Note that the coupled variables XY > is now separated from81

A in our potential function. Thus, one can readily take advantage of efficient compu-82

tational strategies for NMF, such as those used in HALS (see the “hierarchical-prox”83

updating strategy in Section 4), for inexactly minimizing Θα,β(X,Y, Z) over X or Y .84

Furthermore, our method can be implemented for NMF and MC without explicitly85

forming the huge (m×n) matrix Z (see (6.3) and (6.5)) in each iteration. This signifi-86

1Problem (1.1) is NP-hard because it contains NMF as a special case, which is NP-hard in general
[36].
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cantly reduces the computational cost per iteration. Finally, a suitable non-monotone87

line search criterion, which is motivated by recent studies on non-monotone algo-88

rithms (see, for example, [7, 12, 39]), is also incorporated to improve the numerical89

performance.90

In the rest of this paper, we first present notation and preliminaries in Section 2.91

We then study the properties of our potential function Θα,β in Section 3. Specifically,92

if AA∗ = Iq and α, β are chosen such that αI + βA∗A � 0 and 1
α + 1

β = 1, then the93

problem min
X,Y,Z

{Θα,β(X,Y, Z)} is equivalent to (1.1) (see Theorem 3.2). Furthermore,94

under the weaker conditions that AA∗ = Iq and 1
α + 1

β = 1, we can show that (i) a95

stationary point of Θα,β gives a stationary point of F ; (ii) a stationary point of F can96

be used to construct a stationary point of Θα,β (see Theorem 3.3). Thus, one can find97

a stationary point of F by finding a stationary point of Θα,β . In Section 4, we develop98

a non-monotone alternating updating method to find a stationary point of Θα,β , and99

hence of F . The convergence analysis of our method is presented in Section 5. We100

show that our non-monotone line search criterion is well defined and any cluster point101

of the sequence generated by our method is a stationary point of F under some mild102

conditions. Section 6 gives numerical experiments to evaluate the performance of our103

method for NMF and MC on real datasets. Our computational results illustrate the104

efficiency of our method. Finally, some concluding remarks are given in Section 7.105

2. Notation and preliminaries. In this paper, for a vector x ∈ Rm, xi de-106

notes its i-th entry, ‖x‖ denotes the Euclidean norm of x and Diag(x) denotes the107

diagonal matrix whose i-th diagonal element is xi. For a matrix X ∈ Rm×n, xij108

denotes the ij-th entry of X, xj denotes the j-th column of X and tr(X) deno-109

tes the trace of X. The Schatten-p (quasi-)norm (0 < p < ∞) of X is defined as110

‖X‖Sp =
(∑min(m,n)

i=1 ςpi (X)
) 1
p

, where ςi(X) is the i-th singular value of X. For111

p = 2, the Schatten-2 norm reduces to the Frobenius norm ‖X‖F , and for p = 1,112

the Schatten-1 norm reduces to the nuclear norm ‖X‖∗. Moreover, the spectral113

norm is denoted by ‖X‖, which is the largest singular value of X; and the `1-norm114

and `p-quasi-norm (0 < p < 1) of X are given by ‖X‖1 :=
∑m
i=1

∑n
j=1 |xij | and115

‖X‖p :=
(∑m

i=1

∑n
j=1 |xij |p

) 1
p

, respectively. For two matrices X and Y of the same116

size, we denote their trace inner product by 〈X, Y 〉 :=
∑m
i=1

∑n
j=1 xijyij . We also117

use X ≤ Y (resp., X ≥ Y ) to denote xij ≤ yij (resp., xij ≥ yij) for all (i, j). Furt-118

hermore, for a linear map A : Rm×n → Rq, A∗ denotes the adjoint linear map and119

‖A‖ denotes the induced operator norm of A, i.e., ‖A‖ = sup{‖A(X)‖ : ‖X‖F ≤ 1}.120

A linear self-map T is said to be symmetric if T = T ∗. For a symmetric linear self-121

map T : Rm×n → Rm×n, we say that T is positive definite, denoted by T � 0, if122

〈X, T (X)〉 > 0 for all X 6= 0. The identity map from Rm×n to Rm×n is denoted by I123

and the identity map from Rq to Rq is denoted by Iq. Finally, for a nonempty closed124

set C ⊆ Rm×n, its indicator function δC is defined by125

δC(X) =

{
0 if X ∈ C,
+∞ otherwise.

126

For an extended-real-valued function f : Rm×n → [−∞,∞], we say that it is127

proper if f(X) > −∞ for all X ∈ Rm×n and its domain domf := {X ∈ Rm×n :128

f(X) < ∞} is nonempty. A function f : Rm×n → [−∞,∞] is level-bounded [28,129

Definition 1.8] if for every α ∈ R, the set {X ∈ Rm×n : f(X) ≤ α} is bounded130

(possibly empty). For a proper function f : Rm×n → (−∞,∞], we use the notation131
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Y
f−→ X to denote Y → X (i.e., ‖Y −X‖F → 0) and f(Y ) → f(X). The (limiting)132

subdifferential [28, Definition 8.3] of f at X ∈ domf used in this paper, denoted by133

∂f(X), is defined as134

∂f(X) :=
{
D ∈ Rm×n : ∃Xk f−→ X and Dk → D with Dk ∈ ∂̂f(Xk) for all k

}
,135

where ∂̂f(Ỹ ) denotes the Fréchet subdifferential of f at Ỹ ∈ domf , which is the set136

of all D ∈ Rm×n satisfying137

lim inf
Y 6=Ỹ ,Y→Ỹ

f(Y )− f(Ỹ )− 〈D, Y − Ỹ 〉
‖Y − Ỹ ‖F

≥ 0.138

From the above definition, we can easily observe (see, for example, [28, Proposi-139

tion 8.7]) that140 {
D ∈ Rm×n : ∃Xk f−→ X, Dk → D, Dk ∈ ∂f(Xk)

}
⊆ ∂f(X).(2.1)141

When f is continuously differentiable or convex, the above subdifferential coincides142

with the classical concept of derivative or convex subdifferential of f ; see, for example,143

[28, Exercise 8.8] and [28, Proposition 8.12]. In this paper, we say thatX∗ is stationary144

point of f if 0 ∈ ∂f(X∗).145

For a proper closed function g : Rm → (−∞,∞], the proximal mapping Proxg :146

Rm → Rm of g is defined by Proxg(z) := Argmin
x∈Rm

{
g(x) + 1

2‖x− z‖2
}

. For any ν > 0,147

the matrix shrinkage operator Sν : Rm×n → Rm×n is defined by148

Sν(X) := UDiag(s̄)V > with s̄i =

{
si − ν, if si − ν > 0,
0, otherwise,

149

where U ∈ Rm×t, s ∈ Rt+ and V ∈ Rn×t are given by the singular value decomposition150

of X, i.e, X = UDiag(s)V >.151

We now present two propositions, which will be useful for developing our method152

in Section 4.153

Proposition 2.1. Suppose that AA∗ = Iq and α(α+β) 6= 0. Then, αI +βA∗A154

is invertible and its inverse is given by 1
αI −

β
α(α+β)A

∗A.155

Proof. It is easy to check that 1
αI−

β
α(α+β)A

∗A is well defined since α(α+β) 6= 0,156

and that
(
αI + βA∗A

) (
1
αI −

β
α(α+β)A

∗A
)

= I. This completes the proof.157

Proposition 2.2. Let ψ : Rm → (−∞,∞] and φ : Rn → (−∞,∞] be proper158

closed functions. Given P,Q ∈ Rm×n and a ∈ Rn, b ∈ Rm with ‖a‖ 6= 0, ‖b‖ 6= 0,159

the following statements hold.160

(i) The problem min
x∈Rm

{
ψ(x) + 1

2‖xa
> − P‖2F

}
is equivalent to

min
x∈Rm

{
ψ(x) +

‖a‖2

2

∥∥∥∥x− Pa

‖a‖2

∥∥∥∥2
}

;

(ii) The problem min
y∈Rn

{
φ(y) + 1

2‖by
> −Q‖2F

}
is equivalent to

min
y∈Rn

{
φ(y) +

‖b‖2

2

∥∥∥∥y − Q>b

‖b‖2

∥∥∥∥2
}
.

This manuscript is for review purposes only.



NAUM FOR A CLASS OF MATRIX FACTORIZATION PROBLEMS 5

Proof. Statement (i) can be easily proved by noticing that161

‖xa> − P‖2F = ‖xa>‖2F − 2〈xa>, P 〉+ ‖P‖2F = ‖a‖2‖x‖2 − 2〈x, Pa〉+ ‖P‖2F
= ‖a‖2

∥∥x− Pa/‖a‖2∥∥2 − ‖Pa‖2/‖a‖2 + ‖P‖2F .
162

Then, statement (ii) can be easily proved by using statement (i) and ‖by> −Q‖2F =163

‖yb> −Q>‖2F .164

Before ending this section, we discuss the first-order necessary conditions for (1.1).165

First, from [28, Exercise 8.8] and [28, Proposition 10.5], we see that166

∂F(X, Y ) =

(
∂Ψ(X) +A∗

(
A(XY >)− b

)
Y

∂Φ(Y ) +
(
A∗
(
A(XY >)− b

))>
X

)
.167

Then, it follows from the generalized Fermat’s rule [28, Theorem 10.1] that any local168

minimizer (X,Y ) of (1.1) satisfies 0 ∈ ∂F(X,Y ), i.e.,169 {
0 ∈ ∂Ψ(X) +A∗(A(XY >)− b)Y,

0 ∈ ∂Φ(Y ) + (A∗(A(XY >)− b))>X,
(2.2)170

which implies that (X,Y ) is a stationary point of F . In this paper, we focus on finding171

a stationary point (X∗, Y ∗) of F , i.e., (X∗, Y ∗) satisfies (2.2) in place of (X,Y ).172

3. The potential function for F . In this section, we analyze the relation173

between F and its potential function Θα,β defined in (1.2). Intuitively, Θα,β originates174

from F by separating the coupled variables XY > from the linear mapping A via175

introducing an auxiliary variable Z and penalizing XY > = Z. We will see later that176

the stationary point of F can be characterized by the stationary point of Θα,β . Before177

proceeding, we prove the following technical lemma.178

Lemma 3.1. Suppose that AA∗ = Iq and 1
α + 1

β = 1. Then, for any (X,Y, Z)179

satisfying180

Z =
(
I − β

α+βA
∗A
) (
XY >

)
+ β

α+βA
∗(b),(3.1)181

we have F(X,Y ) = Θα,β(X,Y, Z).182

Proof. First, from (3.1), we have183

XY > − Z = β
α+βA

∗(A(XY >)− b)(3.2)184

185

A(Z)− b = A
(
XY > − β

α+βA
∗A(XY >) + β

α+βA
∗(b)

)
− b

= A(XY >)− β
α+βAA

∗A(XY >) + β
α+βAA

∗(b)− b = α
α+β

(
A(XY >)− b

)
,

(3.3)186

where the last equality follows from AA∗ = Iq. Then, we see that187

α
2 ‖XY

> − Z‖2F + β
2 ‖A(Z)− b‖2

= α
2

∥∥∥ β
α+βA

∗(A(XY >)− b)
∥∥∥2

F
+ β

2

∥∥∥ α
α+β

(
A(XY >)− b

)∥∥∥2

= αβ2

(α+β)2 ·
1
2

∥∥A∗(A(XY >)− b)
∥∥2

F
+ α2β

(α+β)2 ·
1
2

∥∥A(XY >)− b
∥∥2

= αβ2

(α+β)2 ·
1
2

∥∥A(XY >)− b
∥∥2

+ α2β
(α+β)2 ·

1
2

∥∥A(XY >)− b
∥∥2

= αβ
α+β ·

1
2

∥∥A(XY >)− b
∥∥2
,

188
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where the first equality follows from (3.2) and (3.3); and the third equality follows189

from AA∗ = Iq. This, together with 1
α + 1

β = 1 and the definitions of F and Θα,β190

completes the proof.191

Based on the above lemma, we now establish the following property of Θα,β .192

Theorem 3.2. Suppose that AA∗ = Iq. If α and β are chosen such that αI +193

βA∗A�0 and 1
α + 1

β =1, then the problem min
X,Y,Z

{Θα,β(X,Y, Z)} is equivalent to (1.1).194

Proof. First, it is easy to see from αI + βA∗A � 0 that the function Z 7−→195

Θα,β(X,Y, Z) is strongly convex. Thus, for any fixed X and Y , the optimal solution196

Z∗ to the problem min
Z
{Θα,β(X,Y, Z)} exists and is unique, and can be obtained197

explicitly. Indeed, from the optimality condition, we have198

α(Z∗ −XY >) + βA∗(A(Z∗)− b) = 0.199

Then, since αI + βA∗A is invertible (as αI + βA∗A � 0), we see that200

Z∗ = (αI + βA∗A)
−1 [

αXY > + βA∗(b)
]

=
[

1
αI −

β
α(α+β)A

∗A
] [
αXY > + βA∗(b)

]
=
(
I − β

α+βA
∗A
)

(XY >) +
[
β
αA
∗(b)− β2

α(α+β)A
∗AA∗(b)

]
=
(
I − β

α+βA
∗A
)

(XY >) +
[
β
α −

β2

α(α+β)

]
A∗(b)

=
(
I − β

α+βA
∗A
)

(XY >) + β
α+βA

∗(b),

201

where the second equality follows from Proposition 2.1 and the fourth equality fol-202

lows from AA∗ = Iq. This, together with Lemma 3.1, implies that F(X,Y ) =203

Θα,β(X,Y, Z∗). Then, we have that204

min
X,Y,Z

{Θα,β(X,Y, Z)} = min
X,Y

{
min
Z
{Θα,β(X,Y, Z)}

}
= min

X,Y
{Θα,β(X,Y, Z∗)}

= min
X,Y
{F(X,Y )} .

205

This completes the proof.206

Remark 3.1. From the proof of Lemma 3.1, we see that if Φ and Ψ are the indi-207

cator functions of some nonempty closed sets, then F(X,Y ) =
(

1
α + 1

β

)
Θα,β(X,Y, Z)208

holds with the special choice of Z in (3.1) whenever AA∗ = Iq and 1
α + 1

β > 0. Thus,209

the result in Theorem 3.2 remains valid whenever AA∗ = Iq and α, β are chosen210

such that αI + βA∗A � 0 and 1
α + 1

β > 0.211

We see from Theorem 3.2 that (1.1) is equivalent to minimizing Θα,β with some212

suitable choices of α and β. On the other hand, we can also characterize the relation213

between the stationary points of F and Θα,β under weaker conditions on α and β.214

Theorem 3.3. Suppose that AA∗ = Iq and α, β are chosen such that 1
α + 1

β = 1.215

Then, the following statements hold.216

(i) If (X∗, Y ∗, Z∗) is a stationary point of Θα,β, then (X∗, Y ∗) is a stationary point217

of F ;218

(ii) If (X∗, Y ∗) is a stationary point of F , then (X∗, Y ∗, Z∗) is a stationary point of219

Θα,β, where Z∗ is given by220

Z∗ =
(
I − β

α+βA
∗A
) (
X∗(Y ∗)>

)
+ β

α+βA
∗(b).(3.4)221
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NAUM FOR A CLASS OF MATRIX FACTORIZATION PROBLEMS 7

Proof. First, if (X∗, Y ∗, Z∗) is a stationary point of Θα,β , then we have 0 ∈
∂Θα,β(X∗, Y ∗, Z∗), i.e.,

0 ∈ ∂Ψ(X∗) + α(X∗(Y ∗)> − Z∗)Y ∗,(3.5a)

0 ∈ ∂Φ(Y ∗) + α(X∗(Y ∗)> − Z∗)>X∗,(3.5b)

0 = α(Z∗ −X∗(Y ∗)>) + βA∗(A(Z∗)− b).(3.5c)

Since 1
α+ 1

β = 1, we have α(α+β) 6= 0 and hence αI+βA∗A is invertible from Lemma222

2.1. Then, using the same arguments in the proof of Theorem 3.2, we see from (3.5c)223

that (X∗, Y ∗, Z∗) satisfies (3.4). Moreover, using (3.4) and the same arguments in224

(3.2) and (3.3), we have225

X∗(Y ∗)> − Z∗ = β
α+βA

∗(A(X∗(Y ∗)>)− b),(3.6)226

A(Z∗)− b = α
α+β

(
A(X∗(Y ∗)>)− b

)
.(3.7)227

Thus, substituting (3.6) into (3.5a) and (3.5b), we see that228 0 ∈ ∂Ψ(X∗) + αβ
α+βA

∗(A(X∗(Y ∗)>)− b)Y ∗,

0 ∈ ∂Φ(Y ∗) + αβ
α+β

(
A∗(A(X∗(Y ∗)>)− b)

)>
X∗.

(3.8)229

This together with 1
α + 1

β = 1 implies (X∗, Y ∗) is a stationary point of F . This proves230

statement (i).231

We now prove statement (ii). First, if (X∗, Y ∗) is a stationary point of F , then232

invoking 1
α + 1

β = 1 and (2.2), we have (3.8). Next, we consider (X∗, Y ∗, Z∗) with Z∗233

given by (3.4). Then, (X∗, Y ∗, Z∗) satisfies (3.6) and (3.7). Thus, substituting (3.6)234

into (3.8), we obtain (3.5a) and (3.5b). Moreover, we have from (3.6) and (3.7) that235

α(Z∗ −X∗(Y ∗)>) + βA∗(A(Z∗)− b)

= − αβ
α+βA

∗ ((A(X∗(Y ∗)>)− b
)

+ βA∗
(

α
α+β

(
A(X∗(Y ∗)>)− b

))
= 0.

(3.9)236

This together with (3.5a) and (3.5b) implies that (X∗, Y ∗, Z∗) is a stationary point237

of Θα,β . This proves statement (ii).238

Remark 3.2. From the proof of Theorem 3.3, one can see that if ∂Ψ and ∂Φ are239

cones, Theorem 3.3 remains valid under the weaker conditions that AA∗ = Iq and240
1
α + 1

β > 0.241

From Theorem 3.3, we see that a stationary point of F can be obtained from a242

stationary point of Θα,β with a suitable choice of α and β, i.e., 1
α + 1

β = 1. Since the243

linear map A is no longer associated with the coupled variables XY > in Θα,β , finding244

a stationary point of Θα,β is conceivably easier. Thus, one can consider finding a245

stationary point of Θα,β in order to find a stationary point of F . Note that some246

existing alternating-minimization-based methods (see, for example, [1, 40]) can be247

used to find a stationary point of Θα,β , and hence of F , under the conditions that248

AA∗ = Iq and α, β are chosen so that αI + βA∗A � 0 and 1
α + 1

β = 1. These249

conditions further imply that α > 1 and β = α
α−1 > 1. However, as we will see from250

our numerical results in Section 6, finding a stationary point of Θα,β with α > 1251

can be slow. In view of this, in the next section, we develop a new non-monotone252

alternating updating method for finding a stationary of Θα,β (and hence of F) under253

the weaker conditions that AA∗ = Iq and 1
α + 1

β = 1. This allows more flexibilities254

in choosing α and β.255
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4. Non-monotone alternating updating method. In this section, we con-256

sider a non-monotone alternating updating method (NAUM) for finding a stationary257

point of Θα,β with 1
α + 1

β = 1. Compared to existing alternating-minimization-based258

methods [1, 40] applied to Θα,β , which update X, Y , Z by alternately solving sub-259

problems related to Θα,β , NAUM updates Z by an explicit formula (see (4.5)) and260

updates X, Y by solving subproblems related to Θα,β in a Gauss-Seidel manner. Be-261

fore presenting the complete algorithm, we first comment on the updates of X and262

Y .263

Let (Xk, Y k) denote the value of (X,Y ) after the (k−1)th iteration, and let (U, V )264

denote the candidate for (Xk+1, Y k+1) at the k-th iteration (we will set (Xk+1, Y k+1)265

to be (U, V ) if a line search criterion is satisfied; more details can be found in Algorithm266

1). For notational simplicity, we also define267

Hα(X,Y, Z) :=
α

2
‖XY > − Z‖2F268

for any (X,Y, Z). Then, at the k-th iteration, we first compute Zk by (4.5) and, in269

the line search loop, we compute U in one of the following 3 ways for a given µk > 0:270

• Proximal271

(4.1a) U ∈ Argmin
X

Ψ(X) +Hα(X,Y k, Zk) +
µk
2
‖X −Xk‖2F .272

• Prox-linear273

(4.1b) U ∈ Argmin
X

Ψ(X) + 〈∇XHα(Xk, Y k, Zk), X −Xk〉+
µk
2
‖X −Xk‖2F .274

• Hierarchical-prox If Ψ is column-wise separable, i.e., Ψ(X) =
∑r
i=1 ψi(xi) for

X = [x1, · · · ,xr] ∈ Rm×r, we can update U column-by-column. Specifically, for
i = 1, 2, · · · , r, compute

275

(4.1c) ui ∈ Argmin
xi

ψi(xi) +Hα(uj<i,xi,x
k
j>i, Y

k, Zk) +
µk
2
‖xi − xki ‖2,276

where uj<i denotes (u1, · · · ,ui−1) and xkj>i denotes (xki+1, · · · ,xkr ).277

After computing U , we compute V in one of the following 3 ways for a given σk > 0:278

• Proximal279

(4.2a) V ∈ Argmin
Y

Φ(Y ) +Hα(U, Y, Zk) +
σk
2
‖Y − Y k‖2F .280

• Prox-linear281

(4.2b) V ∈ Argmin
Y

Φ(Y ) + 〈∇YHα(U, Y k, Zk), Y − Y k〉+
σk
2
‖Y − Y k‖2F .282

• Hierarchical-prox If Φ is column-wise separable, i.e., Φ(Y ) =
∑r
i=1 φi(yi) for

Y = [y1, · · · ,yr] ∈ Rn×r, we can update V column-by-column. Specifically, for
i = 1, 2, · · · , r, compute

283

(4.2c) vi ∈ Argmin
yi

φi(yi) +Hα(U,vj<i,yi,y
k
j>i, Z

k) +
σk
2
‖yi − yki ‖2,284

where vj<i denotes (v1, · · · ,vi−1) and ykj>i denotes (yki+1, · · · ,ykr ).285
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For notational simplicity, we further let286

ρ :=
∥∥∥I − β

α+βA
∗A
∥∥∥2

(4.3)287

and let γ ≥ 0 be a nonnegative number satisfying288

(α+ γ) I + βA∗A � 0.(4.4)289

Remark 4.1 (Comments on “hierarchical-prox”). The hierarchical-prox up-290

dating scheme requires the column-wise separability of Ψ or Φ. This is satisfied for291

many common regularizers, for example, ‖ · ‖2F , ‖ · ‖1, ‖ · ‖pp (0 < p < 1), and the292

indicator function of the nonnegativity (or box) constraint.293

Remark 4.2 (Comments on ρ and γ). Since AA∗ = Iq, we see that the ei-294

genvalues of A∗A are either 0 or 1. Then, the eigenvalues of I − β
α+βA

∗A must295

be either 1 or α
α+β , and hence ρ = max

{
1, α2/(α+ β)2

}
. Similarly, the eigenva-296

lues of −(αI + βA∗A) are either −α or −(α+ β). Then, (4.4) is satisfied whenever297

γ ≥ max{0, −α, −(α+ β)}.298

Now, we are ready to present NAUM as Algorithm 1.299

Algorithm 1 NAUM for finding a stationary point of F
Input: (X0, Y 0), α and β such that 1

α + 1
β = 1, ρ as in (4.3), γ ≥ 0 satisfying (4.4),

τ > 1, c > 0, µmin > 0, σmax > σmin > 0, and an integer N ≥ 0. Set k = 0.

while a termination criterion is not met, do
Step 1. Compute Zk by

(4.5) Zk =
(
I − β

α+βA
∗A
) (
Xk(Y k)>

)
+ β

α+βA
∗(b).

Step 2. Choose µ0
k ≥ µmin and σ0

k ∈ [σmin, σmax] arbitrarily. Set µ̃k = µ0
k,

σk = σ0
k and µmax

k = (α+ 2γρ)‖Y k‖2 + c.
(2a) Set µk ← min {µ̃k, µmax

k }. Compute U by either (4.1a), (4.1b) or
(4.1c).

(2b) Compute V by either (4.2a), (4.2b) or (4.2c).
(2c) If

F(U, V )− max
[k−N ]+≤i≤k

F(Xi, Y i) ≤ − c
2

(
‖U −Xk‖2F + ‖V − Y k‖2F

)
,(4.6)

then go to Step 3.
(2d) If µk = µmax

k , set σmax
k = (α+2γρ)‖U‖2+c, σk ← min {τσk, σmax

k }
and then, go to step (2b); otherwise, set µ̃k ← τµk and σk ← τσk
and then, go to step (2a).

Step 3. Set Xk+1 ← U , Y k+1 ← V , µ̄k ← µk, σ̄k ← σk, k ← k + 1 and go to
Step 1.

end while

Output: (Xk, Y k)

In Algorithm 1, the update for Zk is given explicitly. This is motivated by the300

condition on Z at a stationary point of Θα,β ; see (3.5c). In fact, following the301

same arguments in (3.9), we see that (3.5c) always holds at (Xk, Y k, Zk) with Zk302
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given in (4.5) when AA∗ = Iq and 1
α + 1

β = 1. If, in addition, αI + βA∗A �303

0 holds, one can show that Zk is actually the optimal solution to the problem304

minZ
{

Θα,β(Xk, Y k, Z)
}

. In this case, our NAUM with N = 0 in (4.6) can be viewed305

as an alternating-minimization-based method (see, for example, [1, 40]) applied to306

the problem minX,Y,Z {Θα,β(X,Y, Z)}. However, if αI + βA∗A � 0,2 then the corre-307

sponding infZ
{

Θα,β(Xk, Y k, Z)
}

= −∞ for all k, and Zk is only a stationary point308

of Z 7→ Θα,β(Xk, Y k, Z). In this case, the function value of Θα,β may increase after309

updating Z by (4.5). Fortunately, as we shall see later in (5.8) and (5.9), as long as310

AA∗ = Iq and 1
α + 1

β = 1, we still have Θα,β(Xk+1, Y k+1, Zk) < Θα,β(Xk, Y k, Zk)311

by updating Xk+1 and Y k+1 with properly chosen parameters µk and σk. Thus, if312

the possible increase in Θα,β induced by the Z-update is not too large, one can still313

ensure Θα,β(Xk+1, Y k+1, Zk+1) < Θα,β(Xk, Y k, Zk). Moreover, it can be seen from314

Lemma 3.1 and (4.5) that F(Xk, Y k) = Θα,β(Xk, Y k, Zk) and hence the decrease of315

Θα,β translates to that of F (see Lemma 5.1 below). In view of this, Θα,β is a valid316

potential function for minimizing F as long as AA∗ = Iq and 1
α + 1

β = 1, even when317

β < 0 or α < 0. Allowing negative α or β makes our NAUM (even with N = 0 in318

(4.6)) different from the classical alternating minimization schemes.319

Our NAUM also allows U and V to be updated in three different ways respectively,320

and hence there are 9 possible combinations. Thus, one can choose suitable updating321

schemes to fit different applications. In particular, if Ψ or Φ are column-wise separable,322

taking advantage of the structure of Θα,β and the fact that XY > can be written as323 ∑r
i=1 xiy

>
i with X = [x1, · · · ,xr] ∈ Rm×r and Y = [y1, · · · ,yr] ∈ Rn×r, one can324

update X or Y column-wise even when A 6= I. The motivation for updating X325

(or Y ) column-wise rather than updating the whole X (or Y ) is that the resulting326

subproblems (4.1c) (or (4.2c)) can be reduced to the computation of the proximal327

mapping of ψi (or φi), which is easy for many commonly used ψi (or φi). Indeed,328

from (4.1c) and (4.2c), ui and vi are given by329 
ui ∈ Argmin

xi

{
ψi(xi) +

α

2

∥∥xi(yki )> − P ki
∥∥2

F
+
µk
2
‖xi − xki ‖2

}
,

vi ∈ Argmin
yi

{
φi(yi) +

α

2

∥∥uiy>i −Qki ∥∥2

F
+
σk
2
‖yi − yki ‖2

}
,

(4.7)330

where P ki and Qki are defined by331

P ki := Zk −
∑i−1
j=1uj(y

k
j )> −

∑r
j=i+1x

k
j (ykj )>,

Qki := Zk −
∑i−1
j=1ujv

>
j −

∑r
j=i+1uj(y

k
j )>.

(4.8)332

Then, from Proposition 2.2, we can reformulate the subproblems in (4.7) and obtain333

the corresponding solutions by computing the proximal mappings of ψi and φi, which334

can be computed efficiently when ψi and φi are some common regularizers used in335

the literature. In particular, when ψi(·) and φi(·) are ‖ · ‖1, ‖ · ‖22 or the indicator336

function of the box constraint, these subproblems have closed-form solutions. This337

updating strategy has also been used for NMF; see, for example, [8, 20, 21]. However,338

the methods used in [8, 20, 21] can only be applied for some specific problems with339

A = I, while NAUM can be applied for more general problems with AA∗ = Iq.340

Our NAUM adapts a non-monotone line search criterion (see Step 2 in Algorithm341

1) to improve the numerical performance. This is motivated by recent studies on342

2This may happen when 0 < α < 1 so that β = α(α − 1)−1 < 0, or 0 < β < 1 so that
α = β(β − 1)−1 < 0.
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non-monotone algorithms with promising performances; see, for example, [7, 12, 39].343

However, different from the non-monotone line search criteria used there, NAUM only344

includes (U, V ) in the line search loop and checks the stopping criterion (4.6) after345

updating a pair of (U, V ), rather than checking (4.6) immediately once U or V is346

updated. Thus, we do not need to compute the function value after updating each347

block of variable. This may reduce the cost of the line search and make NAUM more348

practical, especially when computing the function value is relatively expensive.349

Before moving to the convergence analysis of NAUM, we would like to point out350

an interesting connection between NAUM and the low-rank matrix fitting algorithm,351

LMaFit [38], for solving the following matrix completion model without regularizers:352

min
X,Y

1

2

∥∥PΩ(XY > −M)
∥∥2

F
,353

where Ω is the index set of the known entries of M , and PΩ(Z) keeps the entries of354

Z in Ω and sets the remaining ones to zero. If we apply our NAUM with (4.1a) and355

(4.2a), then at the k-th iteration, the iterates Zk, Xk+1 and Y k+1 are given by356

Zk =
(
I − β

α+βPΩ

)
Xk(Y k)> + β

α+βPΩ(M),

Xk+1 =
(
µ̄kX

k + αZkY k
) (
µ̄kI + α(Y k)>Y k

)−1
,

Y k+1 =
(
σ̄kY

k + α(Zk)>Xk+1
) (
σ̄kI + α(Xk+1)>Xk+1

)−1
.

357

One can verify that the sequence {(Zk, Xk+1, Y k+1)} above can be equivalently ge-358

nerated by the following scheme with Z̃0 = PΩ(M) + PΩc
(
X0(Y 0)>

)
:359

Zk = β
α+β Z̃

k +
(

1− β
α+β

)
Xk(Y k)>,

Xk+1 =
(
µ̄kX

k + αZkY k
) (
µ̄kI + α(Y k)>Y k

)−1
,

Y k+1 =
(
σ̄kY

k + α(Zk)>Xk+1
) (
σ̄kI + α(Xk+1)>Xk+1

)−1
,

Z̃k+1 = PΩ(M) + PΩc
(
Xk+1(Y k+1)>

)
,

360

where Ωc is the complement set of Ω. Surprisingly, when µ̄k = σ̄k = 0, this scheme361

is exactly the SOR(successive over-relaxation)-like scheme used in LMaFit (see [38,362

Eq.(2.11)]) with ω := β
α+β being an over-relaxation weight. With this connection,363

our NAUM, in some sense, can be viewed as an SOR-based algorithm. Moreover, just364

like the classical SOR for solving a system of linear equations, LMaFit with ω > 1365

also appears to be more efficient from the extensive numerical experiments reported366

in [38]. Then, it is natural to consider β
α+β > 1 and hence 1

α > 1 (since 1
α + 1

β = 1) in367

NAUM. This also gives some insights for the necessity of allowing more flexibilities in368

choosing α and β, and the promising performance of NAUM with a relatively small369

α ∈ (0, 1) as we shall see in Section 6.370

5. Convergence analysis of NAUM. In this section, we discuss the conver-371

gence properties of Algorithm 1. First, we present the first-order optimality conditions372

for the three different updating schemes in (2a) of Algorithm 1 as follows:373

• Proximal374

(5.1a) 0 ∈ ∂Ψ(U) + α
(
U(Y k)> − Zk

)
Y k + µk(U −Xk).375

• Prox-linear376

(5.1b) 0 ∈ ∂Ψ(U) + α
(
Xk(Y k)> − Zk

)
Y k + µk(U −Xk).377
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• Hierarchical-prox For i = 1, 2, · · · , r,378

(5.1c) 0 ∈ ∂ψi(ui) + α
(∑i

j=1uj(y
k
j )> +

∑r
j=i+1x

k
j (ykj )> − Zk

)
yki + µk(ui − xki ).379

Similarly, the first-order optimality conditions for the three different updating schemes380

in (2b) of Algorithm 1 are381

• Proximal382

(5.2a) 0 ∈ ∂Φ(V ) + α
(
UV > − Zk

)>
U + σk(V − Y k).383

• Prox-linear384

(5.2b) 0 ∈ ∂Φ(V ) + α
(
U(Y k)> − Zk

)>
U + σk(V − Y k).385

• Hierarchical-prox For i = 1, 2, · · · , r,386

(5.2c) 0 ∈ ∂φi(vi) + α
(∑i

j=1ujv
>
j +

∑r
j=i+1uj(y

k
j )> − Zk

)>
ui + σk(vi − yki ).387

We also need to make the following assumptions.388

Assumption 5.1.389

(a1) Ψ, Φ are proper, closed, level-bounded functions and continuous on their dom-390

ains respectively;391

(a2) AA∗ = Iq;392

(a3) 1
α + 1

β = 1.393

Remark 5.1. (i) From (a1), one can see from [28, Theorem 1.9] that inf Ψ and394

inf Φ are finite, i.e., Ψ and Φ are bounded from below. In particular, the iterates395

(4.1a), (4.1b), (4.1c), (4.2a), (4.2b) and (4.2c) are well defined; (ii) The continuity396

assumption in (a1) holds for many common regularizers, for example, `1-norm, nu-397

clear norm and the indicator function of a nonempty closed set; (iii) (a2) is satisfied398

for some common linear maps, for example, the identity map and the sampling map.399

We start our convergence analysis by proving the following auxiliary lemma.400

Lemma 5.1 (Sufficient descent of F). Suppose that Assumption 5.1 holds.401

Let (Xk, Y k) be generated by Algorithm 1 at the k-th iteration, and (U, V ) be the402

candidate for (Xk+1, Y k+1) generated by steps (2a) and (2b). Then, for any integer403

k ≥ 0, we have404

F(U, V )−F(Xk, Y k)

≤ −µk − (α+ 2γρ)‖Y k‖2

2
‖U −Xk‖2F −

σk − (α+ 2γρ)‖U‖2

2
‖V − Y k‖2F .

(5.3)405

Proof. First, from Lemma 3.1 and (4.5), we see that F(Xk, Y k) = Θα,β(Xk, Y k,406

Zk). For any (U, V ), let407

W =
(
I − β

α+βA
∗A
) (
UV >

)
+ β

α+βA
∗(b).(5.4)408

Then, from Lemma 3.1, we have F(U, V ) = Θα,β(U, V,W ). Thus, to establish (5.3),409

we only need to consider the difference Θα,β(U, V,W )−Θα,β(Xk, Y k, Zk).410

We start by noting that411

A∗A(W ) =
(
A∗A− β

α+βA
∗ (AA∗)A

) (
UV >

)
+ β

α+βA
∗ (AA∗) (b)

= α
α+βA

∗A
(
UV >

)
+ β

α+βA
∗(b),

(5.5)412
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where the last equality follows from (a2) in Assumption 5.1. Then, we obtain that413

∇ZΘα,β(U, V,W ) = α(W − UV >) + βA∗A(W )− βA∗(b)

=α
[
− β
α+βA

∗A(UV >)+ β
α+βA

∗(b)
]
+β
[

α
α+βA

∗A
(
UV >

)
+ β
α+βA

∗(b)
]
−βA∗(b) = 0,

414

where the second equality follows from (5.4) and (5.5). Moreover, since γ is chosen415

such that (α + γ)I + βA∗A � 0 (see (4.4)), we see that, for any k ≥ 0, the function416

Z 7−→ Θα,β(U, V, Z) + γ
2 ‖Z − Z

k‖2F is convex and hence417

Θα,β(U, V, Zk) +
γ

2
‖Zk − Zk‖2F︸ ︷︷ ︸

=0

≥ Θα,β(U, V,W ) +
γ

2
‖W − Zk‖2F + 〈∇ZΘα,β(U, V,W )︸ ︷︷ ︸

=0

+ γ(W − Zk), Zk −W 〉,
418

which implies that419

Θα,β(U, V,W )−Θα,β(U, V, Zk) ≤ γ

2
‖W − Zk‖2F .(5.6)420

Then, substituting (4.5) and (5.4) into (5.6), we obtain421

Θα,β(U, V,W )−Θα,β(U, V, Zk) ≤ γ
2

∥∥∥(I − β
α+βA

∗A
) (
UV > −Xk(Y k)>

)∥∥∥2

F

≤ γ
2

∥∥∥I − β
α+βA

∗A
∥∥∥2

·
∥∥UV > −Xk(Y k)>

∥∥2

F

= γρ
2

∥∥U(V − Y k)> + (U −Xk)(Y k)>
∥∥2

F

≤ γρ
2

(∥∥U(V − Y k)>
∥∥
F

+
∥∥(U −Xk)(Y k)>

∥∥
F

)2

(i)

≤ γρ
2

(
‖U‖‖V − Y k‖F + ‖Y k‖‖U −Xk‖F

)2

(ii)

≤ γρ
(
‖U‖2‖V − Y k‖2F + ‖Y k‖2‖U −Xk‖2F

)
,

(5.7)422

where the equality follows from the definition of ρ in (4.3); (i) follows from the relation423

‖AB‖F ≤ ‖A‖‖B‖F ; and (ii) follows from the relation ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2.424

Next, we claim that425

Θα,β(U, V, Zk)−Θα,β(U, Y k, Zk) ≤ α‖U‖2 − σk
2

‖V − Y k‖2F ,(5.8)426

Θα,β(U, Y k, Zk)−Θα,β(Xk, Y k, Zk) ≤ α‖Y k‖2 − µk
2

‖U −Xk‖2F .(5.9)427

Below, we will only prove (5.8). The proof for (5.9) can be done in a similar way.428

To prove (5.8), we consider the following three cases.429

• Proximal: In this case, we have430

Θα,β(U, V, Zk)−Θα,β(U, Y k, Zk) = Φ(V )+Hα(U, V, Zk)−Φ(Y k)−Hα(U, Y k, Zk)

=
[
Φ(V )+Hα(U, V, Zk)+

σk
2
‖V −Y k‖2F

]
−
[
Φ(Y k)+Hα(U, Y k, Zk)

]
− σk

2
‖V −Y k‖2F

≤ −σk
2
‖V − Y k‖2F ,

431

where the inequality follows from the definition of V as a minimizer of (4.2a).432

This implies (5.8).433
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• Prox-linear: In this case, we have434

Θα,β(U, V, Zk)−Θα,β(U, Y k, Zk) = Φ(V )+Hα(U, V, Zk)−Φ(Y k)−Hα(U, Y k, Zk)

≤ Φ(V ) +Hα(U, Y k, Zk) + 〈∇YHα(U, Y k, Zk), V − Y k〉+
α‖U‖2

2
‖V − Y k‖2F

− Φ(Y k)−Hα(U, Y k, Zk)

= Φ(V )+〈∇YHα(U, Y k, Zk), V −Y k〉+ σk
2
‖V −Y k‖2F−Φ(Y k)+

α‖U‖2−σk
2

‖V −Y k‖2F

≤ α‖U‖2 − σk
2

‖V − Y k‖2F ,

435

where the first inequality follows from the fact that Y 7→ ∇YHα(X,Y, Z) is Lip-436

schitz with modulus α‖X‖2 and the last inequality follows from the definition437

of V as a minimizer of (4.2b).438

• Hierarchical-prox: In this case, for any 1 ≤ i ≤ r, we have439

Θα,β(U,vj<i,vi,y
k
j>i, Z

k)−Θα,β(U,vj<i,y
k
i ,y

k
j>i, Z

k)

= φi(vi) +Hα(U,vj<i,vi,y
k
j>i, Z

k)− φi(yki )−Hα(U,vj<i,y
k
i ,y

k
j>i, Z

k)

=
[
φi(vi) +Hα(U,vj<i,vi,y

k
j>i, Z

k) +
σk
2
‖vi − yki ‖2

]
− σk

2
‖vi − yki ‖2

−
[
φi(y

k
i ) +Hα(U,vj<i,y

k
i ,y

k
j>i, Z

k)
]

≤ −σk
2
‖vi − yki ‖2,

440

where the inequality follows from the definition of vi as a minimizer of (4.2c).441

Then, summing the above relation from i = r to i = 1 and simplifying the442

resulting inequality, we obtain (5.8).443

The inequality (5.9) can be obtained via a similar argument.444

Now, summing (5.7), (5.8) and (5.9), and using F(U, V ) = Θα,β(U, V,W ) and445

F(Xk, Y k) = Θα,β(Xk, Y k, Zk), we obtain (5.3). This completes the proof.446

From Lemma 5.1, we see that the sufficient descent of F(X,Y ) can be guaranteed447

as long as µk and σk are sufficiently large. Thus, based on this lemma, we can show448

in the following proposition that our non-monotone line search criterion in Algorithm449

1 is well defined.450

Proposition 5.2 (Well-definedness of the non-monotone line search cri-451

terion). Suppose that Assumption 5.1 holds and Algorithm 1 is applied. Then,452

for each k ≥ 0, the line search criterion (4.6) is satisfied after finitely many inner453

iterations.454

Proof. We prove this proposition by contradiction. Assume that there exists455

a k ≥ 0 such that the line search criterion (4.6) cannot be satisfied after finitely456

many inner iterations. Note from (2a) and (2d) in Step 2 of Algorithm 1 that457

µk ≤ µmax
k = (α+ 2γρ)‖Y k‖2 + c and hence µk = µmax

k must be satisfied after finitely458

many inner iterations. Let nk denote the number of inner iterations when µk = µmax
k459

is satisfied for the first time. If µ0
k ≥ µmax

k , then nk = 1; otherwise, we have460

µminτnk−2 ≤ µ0
kτ
nk−2 < µmax

k ,461

which implies that462

nk ≤
⌊

log(µmax
k )− log(µmin)

log τ
+ 2

⌋
.(5.10)463
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Then, from (2d) in Step 2 of Algorithm 1, we have U ≡ Uµmax
k

and σmax
k = (α +464

2γρ)‖Uµmax
k
‖2 + c after at most nk + 1 inner iterations, where Uµmax

k
is computed by465

(4.1a), (4.1b) or (4.1c) with µk = µmax
k . Moreover, we see that σk = σmax

k must be466

satisfied after finitely many inner iterations. Similarly, let n̂k denote the number of467

inner iterations when σk = σmax
k is satisfied for the first time. If σ0

k > σmax
k , then468

n̂k = nk; if σ0
k = σmax

k , then n̂k = 0; otherwise, we have469

σminτ n̂k−1 ≤ σ0
kτ
n̂k−1 < σmax

k ,470

which implies that471

n̂k ≤
⌊

log(σmax
k )− log(σmin)

log τ
+ 1

⌋
.472

Thus, after at most max{nk, n̂k}+1 inner iterations, we must have V ≡ Vσmax
k

, where473

Vσmax
k

is computed by (4.2a), (4.2b) or (4.2c) with σk = σmax
k . Therefore, after at474

most max{nk, n̂k}+ 1 inner iterations, we have475

F(Uµmax
k

, Vσmax
k

)−F(Xk, Y k)

≤−µ
max
k −(α+2γρ)‖Y k‖2

2
‖Uµmax

k
−Xk‖2F−

σmax
k −(α+2γρ)‖Uµmax

k
‖2

2
‖Vσmax

k
−Y k‖2F

=− c
2

(
‖Uµmax

k
−Xk‖2F + ‖Vσmax

k
− Y k‖2F

)
,

476

where the inequality follows from (5.3) and the equality follows from µmax
k = (α +477

2γρ)‖Y k‖2 + c and σmax
k = (α+ 2γρ)‖Uµmax

k
‖2 + c. This together with478

F(Xk, Y k) ≤ max
[k−N ]+≤i≤k

F(Xi, Y i)479

implies that (4.6) must be satisfied after at most max{nk, n̂k} + 1 inner iterations,480

which leads to a contradiction.481

Now, we are ready to prove our main convergence result, which characterizes a482

cluster point of the sequence generated by Algorithm 1. Our proof of statement (ii)483

in the following theorem is similar to that of [39, Lemma 4]. However, the arguments484

involved are more intricate since we have two blocks of variables in our line search485

loop.486

Theorem 5.3. Suppose that Assumption 5.1 holds. Let {(Xk, Y k)} be the se-487

quence generated by Algorithm 1. Then,488

(i) (boundedness of sequence) {(Xk, Y k)}, {µ̄k} and {σ̄k} are bounded;489

(ii) (diminishing successive changes) lim
k→∞

‖Xk+1−Xk‖F +‖Y k+1−Y k‖F = 0;490

(iii) (global subsequential convergence) any cluster point (X∗, Y ∗) of {(Xk, Y k)}491

is a stationary point of F .492

Proof. Statement (i). We first show that493

F(Xk, Y k) ≤ F(X0, Y 0)(5.11)494

for all k ≥ 1. We will prove it by induction. Indeed, for k = 1, it follows from495

Proposition 5.2 that496

F(X1, Y 1)−F(X0, Y 0) ≤ − c
2

(
‖X1 −X0‖2F + ‖Y 1 − Y 0‖2F

)
≤ 0497
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is satisfied after finitely many inner iterations. Hence, (5.11) holds for k = 1. We now498

suppose that (5.11) holds for all k ≤ K for some integer K ≥ 1. Then, we only need499

to show that (5.11) also holds for k = K + 1. For k = K + 1, we have500

F(XK+1, Y K+1)−F(X0, Y 0) ≤ F(XK+1, Y K+1)− max
[K−N ]+≤i≤K

F(Xk, Y k)

≤ − c
2

(
‖XK+1 −XK‖2F + ‖Y K+1 − Y K‖2F

)
≤ 0,

501

where the first inequality follows from the induction hypothesis and the second ine-502

quality follows from (4.6). Hence, (5.11) holds for k = K + 1. This completes the503

induction. Then, from (5.11), we have that for any k ≥ 0,504

F(X0, Y 0) ≥ F(Xk, Y k) = Ψ(Xk) + Φ(Y k) +
1

2

∥∥A(Xk(Y k)>)− b
∥∥2
,505

which, together with (a1) in Assumption 5.1, implies that the sequences {Xk}, {Y k}506

and {‖A(Xk(Y k)>) − b‖} are bounded. Moreover, from Step 2 and Step 3 in Algo-507

rithm 1, it is easy to see µ̄k ≤ µmax
k = (α + 2γρ)‖Y k‖2 + c for all k. Since {Y k} is508

bounded, the sequences {µmax
k } and {µ̄k} are bounded. Next, we prove the bounded-509

ness of {σ̄k}. Indeed, at the k-th iteration, there are three possibilities:510

• µ̄k < µmax
k : In this case, we have σ̄k ≤ σ0

kτ
ñk ≤ σmaxτ ñk , where ñk denotes511

the number of inner iterations for the line search at the k-th iteration and ñk ≤512

max
{

1,
⌊

log(µmax
k )−log(µmin)

log τ + 2
⌋}

(see (5.10) and the discussions preceding it).513

• µ̄k = µmax
k and σ̄k > σmax

k : In this case, we have σ̄k ≤ σ0
kτ
ñk ≤ σmaxτ ñk , where514

ñk ≤ max
{

1,
⌊

log(µmax
k )−log(µmin)

log τ + 2
⌋}

.515

• Otherwise, we have σ̄k ≤ σmax
k = (α+ 2γρ)‖Xk+1‖2 + c.516

Note that {ñk} is bounded as {µmax
k } is bounded. Thus, {σ̄k} is bounded as the517

sequences {Xk} and {ñk} are bounded. This proves statement (i).518

Statement (ii). We first claim that any cluster point of {(Xk, Y k)} is in domF .519

Since {(Xk, Y k)} is bounded from statement (i), there exists at least one cluster520

point. Suppose that (X∗, Y ∗) is a cluster point of {(Xk, Y k)} and let {(Xki ,Y ki)} be521

a convergent subsequence such that lim
i→∞

(Xki , Y ki) = (X∗, Y ∗). Then, from the lower522

semicontinuity of F (since Ψ, Φ are closed by (a1) in Assumption 5.1) and (5.11), we523

have524

F(X∗, Y ∗) ≤ lim
i→∞
F(Xki , Y ki) ≤ F(X0, Y 0),525

which implies that F(X∗, Y ∗) is finite and hence (X∗, Y ∗) ∈ domF .526

For notational simplicity, from now on, we let ∆Xk := Xk+1 − Xk, ∆Y k :=527

Y k+1 − Y k, ∆Zk := Zk+1 − Zk and528

`(k) = arg max
i
{F(Xi, Y i) : i = [k −N ]+, · · · , k }.(5.12)529

Then, the line search criterion (4.6) can be rewritten as530

F(Xk+1, Y k+1)−F(X`(k), Y `(k)) ≤ − c
2

(
‖∆Xk‖2F + ‖∆Y k‖2F

)
≤ 0.(5.13)531
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Observe that532

F(X`(k+1), Y `(k+1))

= max
[k+1−N ]+≤i≤k+1

F(Xi, Y i) = max

{
F(Xk+1, Y k+1), max

[k+1−N ]+≤i≤k
F(Xi, Y i)

}
(i)

≤ max

{
F(X`(k), Y `(k)), max

[k+1−N ]+≤i≤k
F(Xi, Y i)

}
≤ max

{
F(X`(k), Y `(k)), max

[k−N ]+≤i≤k
F(Xi, Y i)

}
(ii)
= max

{
F(X`(k), Y `(k)),F(X`(k), Y `(k))

}
= F(X`(k), Y `(k)),

533

where (i) follows from (5.13) and (ii) follows from (5.12). Therefore, the sequence534

{F(X`(k), Y `(k))} is non-increasing. Since F(X`(k), Y `(k)) is also bounded from below535

(due to (a1) in Assumption 5.1), we conclude that there exists a number F̃ such that536

lim
k→∞

F(X`(k), Y `(k)) = F̃ .(5.14)537

We next prove by induction that for all j ≥ 1,
lim
k→∞

∆X`(k)−j = lim
k→∞

∆Y `(k)−j = 0,(5.15a)

lim
k→∞

F(X`(k)−j , Y `(k)−j) = F̃ .(5.15b)

We first prove (5.15a) and (5.15b) for j = 1. Applying (5.13) with k replaced by538

`(k)− 1, we obtain539

F(X`(k), Y `(k))−F(X`(`(k)−1), Y `(`(k)−1)) ≤ − c
2

(
‖∆X`(k)−1‖2F + ‖∆Y `(k)−1‖2F

)
,540

which, together with (5.14), implies that541

lim
k→∞

∆X`(k)−1 = lim
k→∞

∆Y `(k)−1 = 0.(5.16)542

Then, from (5.14) and (5.16), we have543

F̃ = lim
k→∞

F(X`(k), Y `(k)) = lim
k→∞

F(X`(k)−1 + ∆X`(k)−1 , Y `(k)−1 + ∆Y `(k)−1)

= lim
k→∞

F(X`(k)−1, Y `(k)−1),
544

where the last equality follows because {(Xk, Y k)} is bounded, any cluster point of545

{(Xk, Y k)} is in domF and F is uniformly continuous on any compact subset of546

domF under (a1) in Assumption 5.1. Thus, (5.15a) and (5.15b) hold for j = 1.547

We next suppose that (5.15a) and (5.15b) hold for j = J for some J ≥ 1. It548

remains to show that they also hold for j = J + 1. Indeed, from (5.13) with k549

replaced by `(k) − J − 1 (here, without loss of generality, we assume that k is large550

enough such that `(k)− J − 1 is nonnegative), we have551

F(X`(k)−J , Y `(k)−J)−F(X`(`(k)−J−1), Y `(`(k)−J−1))≤− c
2

(
‖∆X`(k)−J−1‖2F +‖∆Y `(k)−J−1‖2F

)
,552

which implies that553

‖∆X`(k)−J−1‖2F +‖∆Y `(k)−J−1‖2F ≤ 2
c

(
F(X`(`(k)−J−1), Y `(`(k)−J−1))−F(X`(k)−J , Y `(k)−J)

)
.554
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This together with (5.14) and the induction hypothesis implies that555

lim
k→∞

∆X`(k)−(J+1) = lim
k→∞

∆Y `(k)−(J+1) = 0.556

Thus, (5.15a) holds for j = J + 1. From this, we further have557

lim
k→∞

F(X`(k)−(J+1), Y `(k)−(J+1))= lim
k→∞

F(X`(k)−J−∆X`(k)−(J+1) , Y `(k)−J−∆Y `(k)−(J+1))

= lim
k→∞

F(X`(k)−J , Y `(k)−J) = F̃ ,
558

where the second equality follows because {(Xk, Y k)} is bounded, any cluster point559

of {(Xk, Y k)} is in domF and F is uniformly continuous on any compact subset of560

domF under (a1) in Assumption 5.1. Hence, (5.15b) also holds for j = J + 1. This561

completes the induction.562

We are now ready to prove the main result in this statement. Indeed, from (5.12),563

we can see k − N ≤ `(k) ≤ k (without loss of generality, we assume that k is large564

enough such that k ≥ N). Thus, for any k, we must have k −N − 1 = `(k) − jk for565

1 ≤ jk ≤ N + 1. Then, we have566

‖∆Xk−N−1‖F = ‖∆X`(k)−jk ‖F ≤ max
1≤j≤N+1

‖∆X`(k)−j‖F ,

‖∆Y k−N−1‖F = ‖∆Y `(k)−jk ‖F ≤ max
1≤j≤N+1

‖∆Y `(k)−j‖F .
567

This together with (5.15a) implies that568

lim
k→∞

∆Xk = lim
k→∞

∆Xk−N−1 = 0,

lim
k→∞

∆Y k = lim
k→∞

∆Y k−N−1 = 0.
569

This proves the statement (ii).570

Statement (iii). Again, let (X∗, Y ∗) be a cluster point of {(Xk, Y k)} and let571

{(Xki ,Y ki)} be a convergent subsequence such that lim
i→∞

(Xki , Y ki) = (X∗, Y ∗). Recall572

that (X∗, Y ∗) ∈ domF . On the other hand, it is easy to see from (4.5) that lim
i→∞

Zki =573

Z∗, where Z∗ is given by (3.4). Thus, it can be shown as in (3.9) that574

α(Z∗ −X∗(Y ∗)>) + βA∗(A(Z∗)− b) = 0.(5.17)575

We next show that {
0 ∈ ∂Ψ(X∗) + α(X∗(Y ∗)> − Z∗)Y ∗,(5.18a)

0 ∈ ∂Φ(Y ∗) + α(X∗(Y ∗)> − Z∗)>X∗.(5.18b)

We start by showing (5.18a) in the following cases:576

• Proximal&Prox-linear: In these two cases, passing to the limit along {(Xki ,577

Y ki)} in (5.1a) or (5.1b) with Xki+1 in place of U and µ̄ki in place of µk, and578

invoking (a1) in Assumption 5.1, statements (i), (ii), (X∗, Y ∗) ∈ domF and (2.1),579

we obtain (5.18a).580

• Hierarchical-prox: In this case, passing to the limit along {(Xki , Y ki)} in (5.1c)581

with Xki+1 in place of U and µ̄ki in place of µk, and invoking (a1) in Assumption582

5.1, statements (i), (ii), (X∗, Y ∗) ∈ domF and (2.1), we have583

0 ∈ ∂ψi(x∗i ) + α(X∗(Y ∗)> − Z∗)y∗i584

for any i = 1, 2, · · · , r. Then, stacking them up, we obtain (5.18a).585
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Similarly, we can obtain (5.18b). Thus, combining (5.17), (5.18a) and (5.18b), we see586

that (X∗, Y ∗, Z∗) is a stationary point of Θα,β , which further implies (X∗, Y ∗) is a587

stationary point of F from Theorem 3.3. This proves statement (iii).588

Remark 5.2 (Comment on (a3) in Assumption 5.1). If Φ and Ψ are the589

indicator functions of some nonempty closed sets, Theorem 5.3 can remain valid under590

the weaker condition on α and β that 1
α + 1

β > 0 with a slight modification in (4.6)591

of Algorithm 1. Indeed, when Φ and Ψ are the indicator functions, one can see from592

Remark 3.1 and the proofs of Lemma 5.1 and Proposition 5.2 that if 1
α + 1

β > 0, then593

F(U, V )−F(Xk, Y k) =
(

1
α + 1

β

) (
Θα,β(U, V,W )−Θα,β(Xk, Y k, Zk)

)
≤ −

(
1
α + 1

β

)(
µk−(α+2γρ)‖Y k‖2

2 · ‖U −Xk‖2F + σk−(α+2γρ)‖U‖2
2 · ‖V − Y k‖2F

)
,

594

and the line search criterion is well defined with c replaced by
(

1
α + 1

β

)
c. Moreover,595

recalling [28, Exercise 8.14], we see that ∂Ψ and ∂Φ are normal cones. Thus, following596

Remark 3.2 and the similar augments in Theorem 5.3, we can obtain the same results597

when 1
α + 1

β > 0 with c replaced by
(

1
α + 1

β

)
c in (4.6) of Algorithm 1.598

Remark 5.3 (Comments on updating µmax
k and σmax

k ). In Algorithm 1,599

we need to evaluate µmax
k = (α + 2γρ)‖Y k‖2 + c and σmax

k = (α + 2γρ)‖U‖2 + c in600

each iteration. However, computing the spectral norms of Y k and U might be costly,601

especially when r is large. Hence, in our experiments, instead of computing ‖Y k‖2602

and ‖U‖2, we compute ‖Y k‖2F and ‖U‖2F , and update µmax
k and σmax

k by µmax
k =603

(α + 2γρ)‖Y k‖2F + c and σmax
k = (α + 2γρ)‖U‖2F + c instead. Since ‖Y k‖ ≤ ‖Y k‖F604

and ‖U‖ ≤ ‖U‖F , it follows from (5.3) that605

F(U, V )−F(Xk, Y k)≤−µk−(α+2γρ)‖Y k‖2F
2 ‖U−Xk‖2F−

σk−(α+2γρ)‖U‖2F
2 ‖V −Y k‖2F .606

Then, one can show that Proposition 5.2 and Theorem 5.3 remain valid. In addition,607

we compute the quantities ‖U‖2F and ‖Y k‖2F by tr(U>U) and tr((Y k)>Y k), respecti-608

vely. For some cases, the matrices U>U and (Y k)>Y k can be used repeatedly in609

updating the variables and evaluating the objective value and successive changes to610

reduce the cost of line search; see a concrete example in Section 6.1.611

6. Numerical experiments. In this section, we conduct numerical experiments612

to test our algorithm for NMF and MC on real datasets. All experiments are run in613

MATLAB R2015b on a 64-bit PC with an Intel Core i7-4790 CPU (3.60 GHz) and614

32 GB of RAM equipped with Windows 10 OS.615

6.1. Non-negative matrix factorization. We first consider NMF616

min
X,Y

1

2

∥∥XY > −M∥∥2

F
s.t. X ≥ 0, Y ≥ 0,(6.1)617

where X ∈ Rm×r and Y ∈ Rn×r are decision variables. Note that the feasible set of618

(6.1) is unbounded. We hence focus on the following model:619

min
X,Y

1

2

∥∥XY > −M∥∥2

F
s.t. 0 ≤ X ≤ Xmax, 0 ≤ Y ≤ Y max,(6.2)620

where Xmax ≥ 0 and Y max ≥ 0 are upper bound matrices. One can show that, when621

Xmax
ij and Y max

ij are sufficiently large3, solving (6.2) gives a solution of (6.1). In our622

3The estimations of Xmax
ij and Y max

ij have been discussed in [9, Page 67].
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experiments, for simplicity, we set Xmax
ij = 1016 and Y max

ij = 1016 for all (i, j). Now,623

we see that (6.2) corresponds to (1.1) with Ψ(X) = δX (X), Φ(Y ) = δY(Y ) and A = I,624

where X = {X ∈ Rm×r : 0 ≤ X ≤ Xmax} and Y = {Y ∈ Rn×r : 0 ≤ Y ≤ Y max}.625

We apply NAUM to solving (6.2), and use (4.1c) and (4.2c) to update U and V . The626

specific updates of Zk, ui and vi are627

Zk = α
α+βX

k(Y k)> + β
α+βM,

ui = max

{
0, min

{
xmax
i ,

αP ki y
k
i + µkx

k
i

α‖yki ‖2 + µk

}}
, i = 1, 2 · · · , r,

vi = max

{
0, min

{
ymax
i ,

α(Qki )>ui + σky
k
i

α‖ui‖2 + σk

}}
, i = 1, 2 · · · , r,

628

where P ki and Qki are defined in (4.8). Note that here it is not necessary to update629

Zk explicitly. Indeed, we can directly compute P ki y
k
i and (Qki )>ui by substituting630

Zk as below:631

P ki y
k
i = α

α+βX
k(Y k)>yki + β

α+βMyki −
∑i−1
j=1uj(y

k
j )>yki −

∑r
j=i+1x

k
j (ykj )>yki ,

(Qki )>ui=
α

α+βY
k(Xk)>ui+

β
α+βM

>ui−
∑i−1
j=1vju

>
jui−

∑r
j=i+1y

k
ju
>
jui.

(6.3)632

When computing Xk(Y k)>yki and Y k(Xk)>ui in the above, we first compute (Y k)>yki633

and (Xk)>ui to avoid forming the huge (m × n) matrix Xk(Y k)>. Moreover, the634

matrices (Xk)>U , U>U , (Y k)>Y k and M>U that have been computed in (6.3) can635

be used again to evaluate the successive changes and the objective value as follows:636

‖U −Xk‖2F = tr(U>U)− 2tr((Xk)>U) + tr((Xk)>Xk),

‖V − Y k‖2F = tr(V >V )− 2tr((Y k)>V ) + tr((Y k)>Y k),

‖UV > −M‖2F = tr((U>U)(V >V ))− 2tr((M>U)V >) + ‖M‖2F .
637

In the above relations, (Xk)>Xk and (Y k)>Y k can be obtained from U>U and V >V638

in the previous iteration, respectively, and ‖M‖2F can be computed in advance. Ad-639

ditionally, as we discussed in Remark 5.3, tr((Y k)>Y k) and tr(U>U) can also be640

used in computing µmax
k and σmax

k , respectively. These techniques were also used in641

many popular algorithms for NMF to reduce the computational cost (see, for example,642

[2, 9, 10, 18, 37]).643

The experiments are conducted on the face datasets (dense matrices) and the644

text datasets (sparse matrices). For face datasets, we use CBCL4, ORL5 [29] and the645

extended Yale Face Database B (e-YaleB)6 [19] for our test. CBCL contains 2429646

images of faces with 19× 19 pixels, ORL contains 400 images of faces with 112× 92647

pixels, and e-YaleB contains 2414 images of faces with 168 × 192 pixels. In our648

experiments, for each face dataset, each image is vectorized and stacked as a column649

of a data matrix M of size m× n. For text datasets, we use three datasets from the650

CLUTO toolkit7. The specific values of m and n for each dataset and the values of r651

used for our tests are summarized in Table 1.652

The parameters in NAUM are set as follows: µmin = µ̄−1 = 1, σmin = σ̄−1 =653

1, σmax = 106, τ = 4, c = 10−4, N = 3, µ0
k = max

{
0.1µ̄k−1, µ

min
}

and σ0
k =654

4Available in http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html.
5Available in http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.
6Available in http://vision.ucsd.edu/∼iskwak/ExtYaleDatabase/ExtYaleB.html.
7Available in http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download.
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Table 1
Real data sets

Face Datasets (dense matrices) Text Datasets (sparse matrices)
Data Pixels m n r Data Sparsity m n r

CBCL 19× 19 361 2429 30, 60 classic 99.92% 7094 41681 10, 20
ORL 112× 92 10304 400 30, 60 sports 99.14% 8580 14870 10, 20
e-YaleB 168× 192 32256 2414 30, 60 ohscal 99.47% 11162 11465 10, 20

min
{

max
{

0.1σ̄k−1, σ
min
}
, σmax

}
for any k ≥ 0. Moreover, we set β = α

α−1 , γ =655

max{0, −α, −(α+ β)} and ρ = max
{

1, α2/(α+ β)2
}

for some given α.656

We then compare the performances of NAUM with different α. In our compari-657

sons, we initialize NAUM with different α at the same random initialization (X0, Y 0)8658

and terminate them if one of the following stopping criteria is satisfied:659

• |F
k
nmf−F

k−1
nmf |

Fknmf+1
≤ 10−4 holds for 3 consecutive iterations;660

• ‖X
k−Xk−1‖F+‖Y k−Y k−1‖F
‖Xk‖F+‖Y k‖F+1

≤ 10−4 holds,661

where Fknmf := 1
2

∥∥Xk(Y k)> −M
∥∥2

F
denotes the objective value at (Xk, Y k). Table 2662

presents the results of NAUM with different α for two face datasets (CBCL and ORL)663

and r = 30, 60. In the table, “iter” denotes the number of iterations; “relerr” denotes664

the relative error ‖X
∗(Y ∗)>−M‖F
‖M‖F , where (X∗, Y ∗) is a terminating point obtained by665

each NUAM in a trial; “time” denotes the computational time (in seconds). All the666

results presented are the average of 10 independent trials. From Table 2, we can see667

that NAUM with a relatively small α (e.g., 0.6 and 0.8) has better numerical perfor-668

mance. However, α cannot be too small. Observe that NAUM with α = 0.5, 0.4, 0.2669

are not competitive and, surprisingly, α = 0.5 leads to the worst performance. In670

view of this, we do not choose α < 0.6 in our following experiments for NMF.671

Table 2
Comparisons of NAUM with different α

α iter relerr time α iter relerr time
CBCL, r = 30 CBCL, r = 60

2.0 488 1.0519e-01 1.72 2.0 626 7.4388e-02 4.94
1.1 381 1.0448e-01 1.35 1.1 555 7.3477e-02 4.38
0.8 315 1.0426e-01 1.09 0.8 511 7.2986e-02 4.09
0.6 268 1.0406e-01 0.94 0.6 419 7.2998e-02 3.32
0.5 833 1.0593e-01 4.74 0.5 1372 7.5864e-02 19.49
0.4 440 1.0489e-01 3.05 0.4 599 7.4568e-02 10.02
0.2 556 1.0674e-01 4.18 0.2 782 7.7654e-02 14.30

ORL, r = 30 ORL, r = 60
2.0 232 1.6673e-01 3.45 2.0 277 1.4078e-01 7.92
1.1 188 1.6619e-01 2.78 1.1 210 1.4042e-01 6.04
0.8 158 1.6603e-01 2.33 0.8 182 1.4017e-01 5.20
0.6 132 1.6578e-01 2.01 0.6 156 1.3996e-01 4.44
0.5 652 1.7216e-01 15.79 0.5 695 1.4583e-01 32.91
0.4 280 1.6615e-01 7.55 0.4 353 1.4061e-01 19.17
0.2 307 1.6753e-01 8.71 0.2 358 1.4272e-01 20.77

We next compare NAUM with two existing efficient algorithms9 for NMF: the672

8We use the Matlab commands: X0 = max(0, randn(m, r)); Y0 = max(0, randn(n, r)); X0

= X0/norm(X0,’fro’)*sqrt(norm(M, ’fro’)); Y0 = Y0/norm(Y0,’fro’)*sqrt(norm(M, ’fro’));
9Most existing algorithms are directly developed for (6.1). However, they need the assumption

that the sequence generated is bounded in their convergence analysis. Although this assumption is
uncheckable and may fail, these algorithms always work well in practice. Thus, we directly use these
algorithms in our comparisons, rather than modifying them for (6.2).
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hierarchical alternating least squares (HALS) method10 (see, for example, [8, 9, 10,673

11, 20, 21]) and the block coordinate descent method for NMF (BCD-NMF11) (see674

Algorithm 2 in Section 3.2 in [40]).675

To better evaluate the performances of different algorithms, we follow [11] to use676

an evolution of the objective function value. To define this evolution, we first define677

e(k) :=
Fk −Fmin

F0 −Fmin
,678

where Fk denotes the objective function value obtained by an algorithm at (Xk, Y k)679

and Fmin denotes the minimum of the objective function values obtained among all680

algorithms across all initializations. We also use T (k) to denote the total computa-681

tional time after completing the k-th iteration of an algorithm. Thus, T (0) = 0 and682

T (k) is non-decreasing with respect to k. Then, the evolution of the function value683

obtained from a particular algorithm with respect to time t is defined as684

E(t) := min {e(k) : k ∈ {i : T (i) ≤ t}} .685

One can see that 0 ≤ E(t) ≤ 1 (since 0 ≤ e(k) ≤ 1 for all k) and E(t) is non-increasing686

with respect to t. E(t) can be considered as a normalized measure of the reduction of687

the function value with respect to time. For a given matrix M and a positive integer688

r, one can take the average of E(t) over several independent trials with different689

initializations, and plot the average E(t) within time t for a given algorithm.690

In our experiments, we initialize all the algorithms at the same random initial691

point (X0, Y 0) and terminate them only by the maximum running time Tmax. The692

specific values of Tmax are given in Fig. 1 and Fig. 2. Additionally, we use the default693

settings for BCD-NMF. For NAUM, we choose α = 0.6, 0.8, 1.1, 2. We then plot the694

average E(t) for each algorithm within time Tmax.695

Fig. 1 and Fig. 2 show the average E(t) of 30 independent trials for NMF on face696

datasets and text datasets, respectively. From the results, we can see that NAUM697

with α = 0.6 performs best in most cases, and NAUM with α = 0.6 or 0.8 always698

performs better than NAUM with α > 1. This shows that choosing α and β under the699

weaker condition 1
α + 1

β = 1 (hence α can be small than 1) can improve the numerical700

performance of NAUM.701

6.2. Matrix completion. We next consider a recent model for MC:702

min
X,Y

η

2
‖X‖∗ +

η

2
‖Y ‖∗ +

1

2

∥∥PΩ(XY > −M)
∥∥2

F
,(6.4)703

where η > 0 is a penalty parameter, Ω is the index set of the known entries of M ,704

and PΩ(Z) keeps the entries of Z in Ω and sets the remaining ones to zero. This705

model was first considered in [30, 31] and was shown to be equivalent to Schatten- 1
2706

quasi-norm minimization. Encouraging numerical performance of this model has also707

10HALS for (6.1) is given by

x
k+1
i = max

{
0,

Myki −
∑i−1
j=1x

k+1
j (ykj )>yki −

∑r
j=i+1x

k
j (ykj )>yki

‖yki ‖2

}
, i = 1, · · · , r,

y
k+1
i = max

{
0,

M>xk+1
i −

∑i−1
j=1y

k+1
j (xk+1

j )>xk+1
i −

∑r
j=i+1y

k
j (xk+1

j )>xk+1
i

‖xk+1
i ‖2

}
, i = 1, · · · , r.

11Available at http://www.math.ucla.edu/∼wotaoyin/papers/bcu/nmf/index.html.
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Fig. 1. Average E(t) of 30 independent trials for NMF on face datasets.

been reported in [30, 31]. Note that (6.4) corresponds to (1.1) with Ψ(X) = η
2‖X‖∗,708

Φ(Y ) = η
2‖Y ‖∗ and A = PΩ. Thus, we can apply NAUM with (4.1b) and (4.2b) to709
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Fig. 2. Average E(t) of 30 independent trials for NMF on text datasets.

solving (6.4). The updates of Zk, U and V are710

Zk = Xk(Y k)> + β
α+βPΩ

(
M −Xk(Y k)>

)
,

U = Sη/(2µk)

(
Xk − α

µk
(Xk(Y k)> − Zk)Y k

)
,

V = Sη/(2σk)

(
Y k − α

σk
(U(Y k)> − Zk)>U

)
.

711
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Substituting Zk into U and V and using 1
α + 1

β = 1 gives712

U = Sη/(2µk)

(
Xk− 1

µk

[
PΩ(Xk(Y k)>−M)

]
Y k
)
,

V = Sη/(2σk)

(
Y k− α

σk
Y k(U−Xk)>U− 1

σk

[
PΩ(Xk(Y k)>−M)

]>
U
)
.

(6.5)713

Thus, similar to NAUM for NMF, we do not need to update Zk explicitly for MC.714

We compare NAUM with proximal alternating linearized minimization (PALM),715

which was proposed in [4] and was used to solve (6.4) in [30, 31]. For ease of future716

reference, we recall that the PALM for solving (6.4) is given by717

Xk+1 = S η

2‖Y k‖2

(
Xk − 1

‖Y k‖2
[
PΩ(Xk(Y k)> −M)

]
Y k
)
,

Y k+1 = S η

2‖Xk+1‖2

(
Y k − 1

‖Xk+1‖2
[
PΩ(Xk+1(Y k)> −M)

]>
Xk+1

)
.

718

For NAUM, we use the same parameter settings as in Section 6.1, but choose α =719

0.4, 0.6, 1.1. All the algorithms are initialized at the same random initialization720

(X0, Y 0)12 and terminated if one of the following stopping criteria is satisfied:721

• |F
k
mc−F

k−1
mc |

Fkmc+1
≤ 10−4 holds for 3 consecutive iterations;722

• ‖X
k−Xk−1‖F+‖Y k−Y k−1‖F
‖Xk‖F+‖Y k‖F+1

≤ 10−4 holds;723

• the running time is more than 300 seconds,724

where Fkmc := η
2‖X

k‖∗ + η
2‖Y

k‖∗ + 1
2

∥∥PΩ(Xk(Y k)> −M)
∥∥2

F
denotes the objective725

function value obtained by each algorithm at (Xk, Y k).726

Table 3 presents the numerical results of different algorithms for different pro-727

blems, where two face datasets (CBCL and ORL) are used as our test matrices M728

and a subset Ω of entries is sampled uniformly at random. In the table, sr denotes729

the sampling ratio, i.e., a subset Ω of (rounded) mn ∗ sr entries is sampled; r denotes730

the rank used for test; “iter” denotes the number of iterations; “Normalized fval”731

denotes the normalized function value F(X∗, Y ∗)−Fmin

Fmax−Fmin
, where (X∗, Y ∗) is obtained732

by each algorithm, F(X∗, Y ∗) is the function value at (X∗, Y ∗) for each algorithm733

and Fmax (resp. Fmin) denotes the maximum (resp. minimum) of the terminating734

function values obtained from all algorithms in a trial (one random initialization and735

Ω); “RecErr” denotes the recovery error ‖X
∗(Y ∗)>−M‖F
‖M‖F . All the results presented are736

the average of 10 independent trials.737

From Table 3, we can see that NAUM with α = 0.4 gives the smallest function738

values and the smallest recovery error within least CPU time in most cases. Moreover,739

NAUM with α = 0.6 also performs better than NAUM with α = 1.1 and PALM with740

respect to the function value and the recovery error in most cases. This again shows741

that a flexible choice of α and β can lead to better numerical performances and the742

choice of α = 0.4 performs best for MC from our experiments.743

7. Concluding remarks. In this paper, we consider a class of matrix facto-744

rization problems involving two blocks of variables. To solve this kind of possibly745

nonconvex, nonsmooth and non-Lipschitz problems, we introduce a specially con-746

structed potential function Θα,β defined in (1.2) which contains one auxiliary block747

of variables. We then develop a non-monotone alternating updating method with a748

suitable line search criterion based on this potential function. Unlike other existing749

12We use the Matlab commands: X0 = randn(m, r); Y0 = randn(n, r);
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Table 3
Numerical results for MC on face datasets

η data sr r α = 0.4 α = 0.6 α = 1.1 PALM α = 0.4 α = 0.6 α = 1.1 PALM

iter Normalized fval

5

CBCL

0.5 30 780 1189 3320 3306 1.13e-01 7.50e-02 4.52e-01 1
0.5 60 921 1218 3850 4654 3.24e-02 5.10e-02 3.85e-01 1
0.2 30 1174 2366 4767 3573 8.01e-03 2.21e-01 6.87e-01 9.60e-01
0.2 60 1577 1919 5360 5037 1.03e-02 8.95e-02 8.08e-01 8.86e-01

ORL

0.5 30 1218 1243 1241 1468 0 2.94e-01 5.06e-01 1
0.5 60 1049 1051 1051 1327 0 1 4.00e-01 7.73e-01
0.2 30 2074 325 385 2691 2.59e-03 7.01e-01 1 1.31e-01
0.2 60 1551 1551 356 2222 0 3.82e-01 1 2.12e-01

10

CBCL

0.5 30 457 654 1793 1935 2.20e-02 1.29e-01 3.60e-01 9.81e-01
0.5 60 514 594 1950 2559 2.65e-01 1.15e-01 3.79e-01 8.71e-01
0.2 30 627 1313 2513 2116 1.91e-02 3.75e-02 8.35e-01 7.79e-01
0.2 60 866 1095 2713 2889 2.07e-02 2.89e-02 9.22e-01 4.86e-01

ORL

0.5 30 1003 1186 1192 1402 3.30e-02 1.47e-01 4.30e-01 1
0.5 60 975 1009 1012 1276 0 8.58e-01 6.11e-01 9.99e-01
0.2 30 1409 364 411 2646 0 7.16e-01 1 8.10e-02
0.2 60 1241 1504 376 2185 4.05e-06 3.97e-02 1 2.21e-01

CPU time RecErr

5

CBCL

0.5 30 35.56 54.14 151.23 119.05 1.05e-01 1.05e-01 1.06e-01 1.08e-01
0.5 60 57.66 76.09 240.19 206.47 8.81e-02 9.02e-02 9.04e-02 8.99e-02
0.2 30 34.04 68.57 137.97 75.56 1.37e-01 1.37e-01 1.38e-01 1.43e-01
0.2 60 72.01 87.82 245.21 147.08 1.34e-01 1.35e-01 1.35e-01 1.36e-01

ORL

0.5 30 294.20 300 300 300 1.72e-01 1.84e-01 2.01e-01 2.12e-01
0.5 60 300 300 300 300 1.66e-01 2.11e-01 2.05e-01 2.11e-01
0.2 30 300 47.35 55.86 300 2.08e-01 3.04e-01 3.81e-01 2.24e-01
0.2 60 300 300 69.21 300 2.16e-01 2.35e-01 3.49e-01 2.61e-01

10

CBCL

0.5 30 21.01 30.12 82.45 70.32 1.16e-01 1.19e-01 1.18e-01 1.17e-01
0.5 60 32.40 37.38 122.51 113.80 1.09e-01 1.11e-01 1.14e-01 1.11e-01
0.2 30 18.15 38.01 72.84 44.62 1.60e-01 1.61e-01 1.62e-01 1.60e-01
0.2 60 39.13 49.37 123.74 83.52 1.57e-01 1.57e-01 1.58e-01 1.56e-01

ORL

0.5 30 252.15 300 300 300 1.71e-01 1.77e-01 1.95e-01 2.08e-01
0.5 60 289.57 300 300 300 1.53e-01 2.01e-01 2.03e-01 2.09e-01
0.2 30 207.22 53.08 60.54 300 1.95e-01 3.06e-01 3.83e-01 2.14e-01
0.2 60 243.45 295.60 74.09 300 1.87e-01 1.95e-01 3.60e-01 2.36e-01

methods such as those based on alternating minimization, our method essentially up-750

dates the two blocks of variables alternately by solving subproblems related to Θα,β751

and then updates the auxiliary block of variables by an explicit formula (see (4.5)).752

Using the special structure of Θα,β , we demonstrate how some efficient computational753

strategies for NMF can be used to solve the associated subproblems in our method.754

Moreover, under some mild conditions, we establish that the sequence generated by755

our method is bounded and any cluster point of the sequence gives a stationary point756

of our problem. Finally, we conduct some numerical experiments for NMF and MC757

on real datasets to illustrate the efficiency of our method.758

Note that the parameter α (and β = α/(α − 1)) plays a significant role in our759

NAUM. Although it has been observed in our experiments that a relatively small α760

(e.g., 0.6, 0.8) can improve the numerical performance of NAUM, how to choose an761

optimal α is still unknown. In view of the recent work [24] on adaptively choosing the762

extrapolation parameter in FISTA for solving a class of possibly nonconvex problems,763

it may be possible to derive a strategy to adaptively update α in our NAUM. This is764

a possible future research topic.765
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