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Abstract In this paper, we consider the stochastic mathematical programs with linear
complementarity constraints, which include two kinds of models called here-and-now
and lower-level wait-and-see problems. We present a combined smoothing implicit
programming and penalty method for the problems with a finite sample space. Then, we
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1 Introduction

Mathematical program with equilibrium constraints (MPEC) is a constrained optimi-
zation problem in which the essential constraints are defined by a parametric variational
inequality. This problem can be regarded as a generalization of a bilevel programming
problem and it therefore plays an important role in many fields such as engineering
design, economic equilibrium, multilevel game, and mathematical programming itself.
For more details, see the monograph of Luo et al. [24] and the references therein.

Stochastic mathematical program with equilibrium constraints (SMPEC) was firstly
considered in [27] and subsequently, noting that the bilevel nature of MPECs allows
the uncertainty to enter at different levels, Lin et al. [18] describe two formulations
of SMPECs. In the first formulation, only the upper-level decision is made under an
uncertain circumstance, and the lower-level decision is made after the random event
ω is observed. This results in the following problem, which is called the lower-level
wait-and-see model:

minimize
x,y(·) Eω[ f (x, y(ω), ω)]

subject to x ∈ X, (1)

y(ω) solves VI(F(x, ·, ω),C(x, ω)), ω ∈ Ω a.e.,

where X ⊆ �n, f : �n+m ×Ω → �, F : �n+m ×Ω → �m , C : �n ×Ω → 2�m
,

Eω means expectation with respect to the random variable ω ∈ Ω , “a.e." is the abbre-
viation for “almost everywhere", and VI(F(x, ·, ω),C(x, ω)) denotes the variational
inequality defined by the pair (F(x, ·, ω),C(x, ω)). Note that the wait-and-see model
[32] in the classical stochastic programming study is not an optimization problem.
However, the lower-level wait-and-see model (1) is an optimization problem in which
essential variables consist of the upper-level decision x .

When C(x, ω) ≡ �m+ for any x ∈ X and almost every ω ∈ Ω in problem (1),
the variational inequality constraints reduce to the complementarity constraints and
problem (1) is equivalent to the following stochastic mathematical program with com-
plementarity constraints:

minimize
x,y(·) Eω[ f (x, y(ω), ω)]

subject to x ∈ X, (2)

y(ω) ≥ 0, F(x, y(ω), ω) ≥ 0,

y(ω)T F(x, y(ω), ω) = 0, ω ∈ Ω a.e.

On the other hand, if the set-valued function C in problem (1) is defined by C(x, ω) :=
{y ∈ �m | c(x, y, ω) ≤ 0}, where c(·, ·, ω) is continuously differentiable, then, under
some suitable conditions, VI(F(x, ·, ω),C(x, ω)) has an equivalent Karush-Kuhn-
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Tucker representation

F(x, y(ω), ω)+ ∇yc(x, y(ω), ω)λ(x, ω) = 0,

λ(x, ω) ≥ 0, c(x, y(ω), ω) ≤ 0, λ(x, ω)T c(x, y(ω), ω) = 0,

where λ(x, ω) is the Lagrange multiplier vector [9]. As a result, problem (1) can be
reformulated as a program like (2) under some conditions, see [24] for more details.
Hence, problem (2) constitutes an important subclass of SMPECs.

Another formulation that we are particularly interested in is the following problem
that requires us to make all decisions at once, before ω is observed:

minimize
x,y,z(·) Eω[ f (x, y, ω)+ dT z(ω)]

subject to x ∈ X,

y ≥ 0, F(x, y, ω)+ z(ω) ≥ 0, (3)

yT (F(x, y, ω)+ z(ω)) = 0,

z(ω) ≥ 0, ω ∈ Ω a.e.

Here, both the decisions x and y are independent of the random variable ω, z(ω) is
called a recourse variable, and d ∈ �m is a vector with positive elements. We call (3)
a here-and-now model. Compared with the lower-level wait-and-see model (2), the
here-and-now model (3) involves more variables and hence seems more difficult to deal
with. Moreover, a feasible vector y in (3) is required to satisfy the complementarity
condition for almost all ω ∈ Ω, which is different from the ordinary complemen-
tarity condition if Ω has more than one realization. Because of this restriction, some
results for MPECs cannot be applied to (3) directly. Special new treatment has to be
developed.

The here-and-now model and the lower-level wait-and-see model are two different
formulations of SMPECs. Which formulation is more appropriate is dependent on
situations.

In [18], the authors proposed a smoothing implicit programming approach for solv-
ing the SMPECs with a finite sample space. Subsequently, there have been a number
of attempts [3,19,23,30,31,33] to deal with various models of SMPECs. In particular,
Lin and Fukushima [19,23] suggested a smoothing penalty method and a regulari-
zation method, respectively, for a special class of here-and-now problems. Shapiro
and Xu [30,31,33] discussed the sample average approximation and implicit pro-
gramming approaches for the lower-level wait-and-see problems. In addition, Birbil
et al. [3] considered an SMPEC in which both the objective and constraints involve
expectations.

In this paper, we will mainly consider the here-and-now model (3) in which the
mapping F is affine. Especially, unlike our past work [18,19,23], we will also deal
with an SMPEC with continuous random variables. In Sect. 3, we describe the com-
bined smoothing implicit programming and penalty method proposed in [18] for the
discrete SMPECs and, in Sect. 4, we suggest a quasi-Monte Carlo method to discretize
the here-and-now problem with continuous random variables. Comprehensive conver-
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gence theory is established as well. In Sect. 5, we give some numerical experiments
with the so-called picnic-vender decision problem. This appears to be the first attempt
to report numerical results for SMPECs in the literature.

Notation used in the paper: Throughout, all vectors are thought as column vectors
and x[i] stands for the i th coordinate of x ∈ �n . For a matrix M and an index set
K, we let M[K] be the principal submatrix of M whose elements consist of those of
M indexed by K. For any vectors u and v of the same dimension, we denote u⊥v to
mean uT v = 0. For a given function F : �n → �m and a vector x ∈ �n, ∇F(x) is
the transposed Jacobian of F at x and IF (x) := {i | Fi (x) = 0} stands for the active
index set of F at x . In addition, I and O denote the identity matrix and the zero matrix
with suitable dimension, respectively.

2 Preliminaries

In this section, we recall some basic concepts and properties that will be used later on.
First we consider the standard smooth nonlinear programming problem:

minimize f (z)

subject to ci (z) ≤ 0, i = 1, . . . , t, (4)

ci (z) = 0, i = t + 1, . . . , ν.

We will use the standard definition of stationarity, i.e., a feasible point z is said to be
stationary to (4) if there exists a Lagrange multiplier vector λ ∈ �ν satisfying the
Karush-Kuhn-Tucker conditions

∇ f (z)+ ∇c(z)λ = 0,

λ[i] ≥ 0, λ[i]ci (z) = 0, i = 1, . . . , t.

We next consider the mathematical program with complementarity constraints:

minimize f (z)

subject to g(z) ≤ 0, h(z) = 0, (5)

G(z) ≥ 0, H(z) ≥ 0,

G(z)T H(z) = 0,

where f : �s → �, g : �s → �s1 , h : �s → �s2 , and G, H : �s → �s3 are all
continuously differentiable functions. Let Z denote the feasible region of the MPEC
(5).

It is well-known that the MPEC (5) fails to satisfy a standard constraint qualification
(CQ) at any feasible point [6], which causes a difficulty in dealing with MPECs by a
conventional nonlinear programming approach. The following special CQ turns out
to be useful in the study of MPECs.
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Definition 1 The MPEC- linear independence constraint qualification (MPEC-LICQ)
is said to hold at z̄ ∈ Z if the set of vectors

{
∇gl(z̄),∇hr (z̄),∇Gi (z̄),∇Hj (z̄)

∣∣∣ l ∈ Ig(z̄), 1 ≤ r ≤ s2, i ∈ IG(z̄), j ∈ IH (z̄)
}

is linearly independent.

Definition 2 [28] (1) z̄ ∈ Z is called a Clarke or C-stationary point of problem (5) if
there exist multiplier vectors λ̄ ∈ �s1 , µ̄ ∈ �s2 , and ū, v̄ ∈ �s3 such that λ̄ ≥ 0 and

∇ f (z̄)+
∑

i∈Ig(z̄)

λ̄[i]∇gi (z̄)+
s2∑

i=1

µ̄[i]∇hi (z̄)

−
∑

i∈IG (z̄)

ū[i]∇Gi (z̄)−
∑

i∈IH (z̄)

v̄[i]∇Hi (z̄) = 0, (6)

ū[i]v̄[i] ≥ 0, i ∈ IG(z̄) ∩ IH (z̄). (7)

(2) z̄ ∈ Z is called a strongly or S-stationary point of problem (5) if there exist
multiplier vectors λ̄, µ̄, ū, and v̄ such that (6) holds with

ū[i] ≥ 0, v̄[i] ≥ 0, i ∈ IG(z̄) ∩ IH (z̄).

It is easy to see that S-stationarity implies C-stationarity. Moreover, under the strict
complementarity condition (namely, IG(z̄) ∩ IH (z̄) = ∅), they are equivalent.

Definition 3 [7] Suppose that M is an m × m matrix.

(1) We call M a P-matrix if all the principal minors of M are positive, or equivalently,

max
1≤i≤m

y[i](My)[i] > 0, 0 �= ∀y ∈ �m,

and we call M a P0-matrix if all the principal minors of M are nonnegative, or
equivalently,

max
1≤i≤m
y[i]�=0

y[i](My)[i] ≥ 0, ∀y ∈ �m .

(2) We call M a nondegenerate matrix if all of its principal submatrices are nonsin-
gular.

(3) We call M an R0-matrix if

y ≥ 0, My ≥ 0, yT My = 0 �⇒ y = 0.

Obviously a P-matrix is a P0-matrix and a nondegenerate matrix. Moreover, it is
easy to see that a P-matrix is an R0-matrix. If M is a P0-matrix and µ is any positive
number, then the matrix M + µI is a P-matrix.
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For given N ∈ �m×n , M ∈ �m×m , q ∈ �m , and two positive scalars ε and µ, we
define

Φε,µ(x, y, w; N ,M, q) :=

⎛
⎜⎜⎜⎝

N x + (M + ε I )y + q − w

φµ(y[1], w[1])
...

φµ(y[m], w[m])

⎞
⎟⎟⎟⎠ , (8)

where φµ : �2 → � is the perturbed Fischer-Burmeister function defined by
φµ(a, b) := a + b − √

a2 + b2 + 2µ2. Then we have the following well-known
result [5].

Theorem 1 Suppose that M is a P0-matrix. Then, for given x ∈ �n, ε > 0, and
µ > 0, we have the following statements:

(1) The function Φε,µ defined by (8) is continuously differentiable with respect to
(y, w) and the Jacobian matrix ∇(y,w)Φε,µ(x, y, w; N ,M, q) is nonsingular
everywhere;

(2) The equation Φε,µ(x, y, w; N ,M, q) = 0 has a unique solution (y(x, ε, µ),
w(x, ε, µ)), which is continuously differentiable with respect to x and satisfies

y(x, ε, µ) > 0, w(x, ε, µ) > 0,

y(x, ε, µ)[i]w(x, ε, µ)[i] = µ2, i = 1, . . . ,m.

In the rest of the paper, to mitigate the notational complication, we assume ε = µ

and denoteΦε,µ, y(x, ε, µ), andw(x, ε, µ) byΦµ, y(x, µ), andw(x, µ), respectively.
Our analysis will remain valid, however, even though the two parameters are treated
independently.

Suppose that M is a P0-matrix and µ > 0. Theorem 1 indicates that the smooth
equation

Φµ(x, y, w; N ,M, q) = 0 (9)

gives two smooth functions y(·, µ) and w(·, µ). Note that

φµ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = µ2.

As a result, the equation (9) is equivalent to the system

y ≥ 0, N x + (M + µI )y + q ≥ 0, (10)

y[i]
(

N x + (M + µI )y + q
)
[i] = µ2, i = 1, . . . ,m

in the sense that y(x, µ) solves (10) if and only if

Φµ(x, y(x, µ),w(x, µ); N ,M, q) = 0,
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wherew(x, µ) := N x + (M +µI )y(x, µ)+ q. Since (10) with µ = 0 reduces to the
linear complementarity problem

y ≥ 0, N x + My + q ≥ 0, yT (N x + My + q) = 0, (11)

we see that y(x, µ) tends to a solution of (11) asµ → 0, provided that it is convergent.
In our analysis, we will assume that y(x, µ) is bounded as µ → 0. In particular, if

M is a P-matrix, then (11) has a unique solution for any x and it can be shown that
y(x, µ) actually converges to it as µ → 0, even without using the regularization term
µI in (10), see [5].

3 Combined smoothing implicit programming and penalty method for discrete
here-and-now problems

In this section, we consider the following here-and-now problem:

minimize
L∑
�=1

p�
(

f (x, y, ω�)+ dT z�
)

subject to g(x) ≤ 0, h(x) = 0,

y ≥ 0, N�x + M�y + q� + z� ≥ 0, (12)

yT (N�x + M�y + q� + z�) = 0,

z� ≥ 0, � = 1, . . . , L ,

which corresponds to the discrete case where Ω := {ω1, ω2, · · · , ωL}. The problem
with continuous random variables will be considered in the next section. In (12), p�
denotes the probability of the random event ω� ∈ Ω , the functions f : �n+m →
�, g : �n → �s1 , h : �n → �s2 are all continuously differentiable, N� ∈ �m×n ,
M� ∈ �m×m , q� ∈ �m are realizations of the random coefficients, d is a constant
vector with positive elements, and z� is the recourse variable corresponding to ω�.
Throughout we assume p� > 0 for all � = 1, . . . , L .

Obviously, problem (12) can be rewritten as follows:

minimize
L∑
�=1

p� f (x, y, ω�)+ dT z

subject to g(x) ≤ 0, h(x) = 0,

y − Dy = 0, z ≥ 0, (13)

y ≥ 0, Nx + My + q + z ≥ 0,

yT (Nx + My + q + z) = 0,
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where

y :=
⎛
⎜⎝

y1
...

yL

⎞
⎟⎠ , z :=

⎛
⎜⎝

z1
...

zL

⎞
⎟⎠ , d :=

⎛
⎜⎝

p1d
...

pLd

⎞
⎟⎠ , D :=

⎛
⎜⎝

I
...

I

⎞
⎟⎠ , (14)

and

N :=
⎛
⎜⎝

N1
...

NL

⎞
⎟⎠ , M :=

⎛
⎜⎝

M1 O
. . .

O ML

⎞
⎟⎠ , q :=

⎛
⎜⎝

q1
...

qL

⎞
⎟⎠ .

Moreover, it is not difficult to see that problem (12) is equivalent to

minimize
L∑
�=1

p�
(

f (x, y, ω�)+ dT z�
)

subject to g(x) ≤ 0, h(x) = 0, z� ≥ 0,

N�x + M�y + q� + z� ≥ 0, � = 1, . . . , L , (15)

y ≥ 0, N x + My + q + ∑L
l=1zl ≥ 0,

yT
(

N x + My + q + ∑L
l=1zl

)
= 0

with N :=
L∑

l=1
Nl ,M :=

L∑
l=1

Ml , and q :=
L∑

l=1
ql .

Note that both problems (15) and (13) are different from ordinary MPECs, because
they require y1 = y2 = · · · = yL . This restriction makes the problems harder to deal
with than ordinary MPECs. In particular, for any feasible point (x, y, z1, . . . , zL) of

problem (15),
(

N x + My + q + ∑L
l=1zl

)
[i] = 0 implies that (N�x + M�y + q� +

z�)[i] = 0 holds for every �. This indicates that the MPEC-LICQ does not hold for
problem (15) in general. On the other hand, since L is usually very large in practice,
problem (13) is a large-scale program with variables (x, y, y, z) ∈ �n+(1+2L)m so that
some methods for MPECs may cause more computational difficulties.

In this section, we describe a combined smoothing implicit programming and
penalty method for solving the ill-posed MPEC (15) directly. This method was origi-
nally presented in an unpublished paper [18]. For a complete analysis of the method,
we give a somewhat detailed presentation of the method in this paper. It is worth
mentioning that a similar smoothing method for ordinary MPECs with linear comple-
mentarity constraints has been considered in [5]. However, several differences should
be emphasized here: (a) In [5], the matrix M is assumed to be a P-matrix, whereas
in this paper, it is assumed to be a P0-matrix only; (b) In order to make the new
method applicable, in addition to smoothing, we employ a regularization technique
and a penalty technique.

As mentioned above, the MPEC-LICQ does not hold for problem (15) in general.
From now on, the MPEC-LICQ means the one for problem (13). On the other hand,
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Solving SMPECs via smoothing implicit programming with penalization 351

because the complementarity constraints in problem (15) are lower dimensional, we
use them to generate the subproblems.

3.1 SIPP method

Suppose that the matrix M in problem (15) is a P0-matrix. We denote byΛ the matrix
(I, . . . , I ) ∈ �m×mL . We next describe our idea by stages. At the first stage, for each
(x, z) and µk > 0, we let y(x,Λz, µk) and w(x,Λz, µk) solve

Φµk (x, y(x,Λz, µk), w(x,Λz, µk); N ,M, q +Λz) = 0. (16)

The existence and differentiability of the above implicit functions follow from Theo-
rem 1. Note that the implicit functions are denoted by y(x,Λz, µk) andw(x,Λz, µk),
rather than y(x, z, µk) and w(x, z, µk), respectively. Then, at the second stage, we
consider the following approximation of problem (15):

minimize
L∑
�=1

p�
(

f (x, y(x,Λz, µk), ω�)+ dT z�
)

subject to g(x) ≤ 0, h(x) = 0, (17)

N�x + M�y(x,Λz, µk)+ q� + z� ≥ 0,

z� ≥ 0, � = 1, . . . , L .

Since the feasible region of problem (17) is dependent on µk , (17) may not be easy to
solve. Therefore, we apply a penalty technique to this problem and have the following
approximation:

minimize θk(x, z) (18)

subject to g(x) ≤ 0, h(x) = 0, z ≥ 0,

where

θk(x, z) :=
L∑
�=1

p� f (x, y(x,Λz, µk), ω�)+ dT z

+ ρk

L∑
�=1
ψ (−(N�x + M�y(x,Λz, µk)+ q� + z�)) ,

ρk is a positive parameter, ψ : �m → [0,+∞) is a smooth penalty function, and
z� := (z[(�− 1)m + 1], . . . , z[�m])T for each �. Some specific penalty functions will
be given later. Note that, unlike problem (17), the feasible region of problem (18) is
common for all k.

Now we present our method, called the combined smoothing implicit programming
and penalty method (SIPP), for problem (15): Choose two sequences {µk} and {ρk}
of positive numbers satisfying
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lim
k→∞µk = 0, lim

k→∞ ρk = +∞, lim
k→∞µkρk = 0. (19)

We then solve the problems (18) to get a sequence
{
(x (k), z(k))

}
and let

y(k) := y
(

x (k), Λz(k), µk

)
.

Note that, by Theorem 1, problem (18) is a smooth mathematical program. More-
over, under some suitable conditions, (18) is a convex program, see [5] for details.
Therefore, we may expect that problem (18) may be relatively easy to deal with,
provided the evaluation of the implicit function y�(x,Λz, µk) is not very expensive.

In what follows, we denote by F and X the feasible regions of problems (15) and
(18), respectively. Moreover, particular sequences generated by the method will be
denoted by

{
x (k)

}
,
{

y(k)
}
, etc., while general sequences will be denoted by

{
xk

}
,
{

yk
}
,

etc. Also, we use (14) to generate some related vectors such as y(k), y∗, z(k), z∗, and
so on.

3.2 Convergence results

We investigate the limiting behavior of a sequence generated by SIPP in this subsec-
tion. The following lemma will be used later.

Lemma 1 [18] Suppose the matrix M in (15) is a P0-matrix and, for any bounded
sequence

{
(xk, zk)

}
in X ,

{
y
(
xk,Λzk, µk

)}
is bounded. If (x∗, y∗, z∗) ∈ F and the

submatrix M[K∗] is nondegenerate, whereK∗ := { i | (N x∗+My∗+q+Λz∗)[i] = 0},
then there exist a neighborhood U∗ of (x∗, y∗, z∗) and a positive constant π∗ such
that

‖y(x,Λz, µk)− y‖ ≤ µkπ
∗(‖y‖ + √

m) (20)

holds for any (x, y, z) ∈ U∗ ∩ F and any k.

Recall that, by Definition 3, every submatrix M[K] is nondegenerate provided that
M is a P-matrix. We next discuss the limiting behavior of local optimal solutions of
problems (18).

Theorem 2 Let the matrix M in (15) be a P0-matrix, ψ : �m → [0,+∞) be a
continuously differentiable function satisfying

ψ(0) = 0, ψ(u) ≤ ψ
(
u′) for any u ≤ u′ in �m, (21)

and, for each bounded sequence
{(

xk, zk
)}

in X ,
{

y
(
xk,Λzk, µk

)}
be bounded. Sup-

pose that the sequence
{(

x (k), y(k), z(k)
)}

generated by SIPP with
(
x (k), z(k)

)
being a

local optimal solution of problem (18) is convergent to (x∗, y∗, z∗) ∈ F . If there exists
a neighborhood V ∗ of (x∗, y∗, z∗) such that

(
x (k), z(k)

)
minimizes θk over V ∗|X :=

{(x, z) ∈ X | ∃ y s.t. (x, y, z) ∈ V ∗} for all k large enough and the submatrix M[K∗]
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Solving SMPECs via smoothing implicit programming with penalization 353

is nondegenerate with K∗ being the same as in Lemma 1, then (x∗, y∗, z∗) is a local
optimal solution of problem (15).

Proof By Lemma 1, there exist a closed ball B ⊆ V ∗ centered at the point (x∗, y∗, z∗)
with positive radius and a positive number π∗ such that (20) holds for any (x, y, z) ∈
F ∩ B and every k. Since F ∩ B is a nonempty compact set, the problem

minimize
L∑
�=1

p� f (x, y, ω�)+ dT z (22)

subject to (x, y, z) ∈ F ∩ B

has an optimal solution, say (x̄, ȳ, z̄).
Suppose (x, y, z) ∈ F ∩ B. We then have from the mean-value theorem that

θk(x, z) =
L∑
�=1

p�
(

f (x, y, ω�)

+ (y (x,Λz, µk)− y)T ∇y f (x, (1 − t�)y(x,Λz, µk)+ t�y, ω�)
)

+ dT z + ρk

L∑
�=1
ψ(−(N�x + M�y(x,Λz, µk)+ q� + z�)), (23)

where t� ∈ [0, 1] for each �. Note that, by (20), there holds

‖(1 − t)y(x,Λz, µk)+ t y‖ = ‖(1 − t)(y(x,Λz, µk)− y)+ y‖
≤ ‖y(x,Λz, µk)− y‖ + ‖y‖
≤ µkπ

∗(‖y‖ + √
m)+ ‖y‖

for any t ∈ [0, 1]. This indicates that the set

{
(x, (1 − t)y(x,Λz, µk)+ t y)

∣∣∣ (x, y, z) ∈ F ∩ B, t ∈ [0, 1], k = 1, 2, . . .
}

is bounded. Similarly, we see that

{
(x, t M�(y − y(x,Λz, µk)))

∣∣∣ (x, y, z)∈F ∩ B, 1≤� ≤ L , t ∈[0, 1], k = 1, 2, . . .
}

is also bounded. Then, by the continuous differentiability of both f andψ , there exists
a constant τ > 0 such that, for � = 1, . . . , L ,

‖∇y f (x, (1 − t)y(x,Λz, µk)+ t y, ω�)‖ ≤ τ, (24)

‖∇ψ(t M�(y − y(x,Λz, µk)))‖ ≤ τ (25)

hold for any (x, y, z) ∈ F ∩B, t ∈ [0, 1], and every k.Noticing that (x, y, z) ∈ F ∩B
implies N�x + M�y + q� + z� ≥ 0 for each �, we have from (21) and (25) that
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ψ(−(N�x + M�y(x,Λz, µk)+ q� + z�))

≤ ψ(M�(y − y (x,Λz, µk)))

= ψ(M�(y − y(x,Λz, µk)))− ψ(0)

= ∇ψ (
t ′�M�(y − y(x,Λz, µk))

)T
M�(y − y(x,Λz, µk))

≤ τ‖M�‖ ‖y − y(x,Λz, µk)‖,

where t ′� ∈ [0, 1] and the second equality follows from the mean-value theorem. This,
together with (23), (24) and (20), yields

∣∣∣θk(x, z)−
L∑
�=1

p� f (x, y, ω�)− dT z
∣∣∣

≤ τ‖y(x,Λz, µk)− y‖ +
(
τρk

L∑
�=1

‖M�‖
)
‖y(x,Λz, µk)− y‖

≤ π∗τ
(
µk + µkρk

L∑
�=1

‖M�‖
)
(‖y‖ + √

m)

for any (x, y, z) ∈ F ∩ B and k. In particular,

∣∣∣θk(x̄, z̄)−
L∑
�=1

p� f (x̄, ȳ, ω�)− dT z̄
∣∣∣

≤ π∗τ
(
µk + µkρk

L∑
�=1

‖M�‖
)
(‖ȳ‖ + √

m). (26)

Moreover, since ψ is always nonnegative, we have from the continuity of f that

lim
k→∞ θk

(
x (k), z(k)

)
≥ lim

k→∞

(
L∑
�=1

p� f (x (k), y(k), ω�)+ dT z(k)
)

=
L∑
�=1

p� f (x∗, y∗, ω�)+ dT z∗. (27)

Note that, by the fact that F ∩ B ⊆ V ∗,
(
x (k), z(k)

)
is an optimal solution of the

problem

minimize θk(x, z)

subject to (x, z) ∈ X1 := { (x, z) ∈ X | ∃ y s.t. (x, y, z) ∈ F ∩ B },

provided k is large enough, and (x̄, z̄) is a feasible point of this problem. We then have
from (26) that, for every k sufficiently large,
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θk(x
(k), z(k))

≤ θk(x̄, z̄)

≤
L∑
�=1

p� f (x̄, ȳ, ω�)+ dT z̄ + π∗τ
(
µk + µkρk

L∑
�=1

‖M�‖
)
(‖ȳ‖ + √

m). (28)

Therefore, taking into account the equality (27) and the assumption (19), we have by
letting k → ∞ in (28) that

L∑
�=1

p� f (x∗, y∗, ω�)+ dT z∗ ≤
L∑
�=1

p� f (x̄, ȳ, ω�)+ dT z̄,

while the converse inequality immediately follows from the fact that (x̄, ȳ, z̄) is an
optimal solution of problem (22). As a result, we have

L∑
�=1

p� f (x∗, y∗, ω�)+ dT z∗ =
L∑
�=1

p� f (x̄, ȳ, ω�)+ dT z̄,

namely, (x∗, y∗, z∗) is an optimal solution of problem (22) and hence it is a local
optimal solution of problem (15). This completes the proof.

It is not difficult to see that the function

ψ(u) :=
m∑

i=1
(max(u[i], 0))σ , (29)

where σ ≥ 2 is a positive integer, satisfies the conditions assumed in Theorem 2. This
function is often employed for solving constrained optimization problems. For more
details, see [2].

Note that, in practice, it may not be easy to obtain an optimal solution, whereas
computation of stationary points may be relatively easy. Therefore, it is necessary to
study the limiting behavior of stationary points of subproblems (18).

Theorem 3 Suppose the matrix M in (15) is a P0-matrix, the function ψ : �m →
[0,+∞) is given by (29) with σ = 2, and (x (k), z(k)) is a stationary point of (18) for
each k. Let (x∗, y∗, z∗) ∈ F be an accumulation point of the sequence
{(x (k), y(k), z(k))} generated by SIPP. If the MPEC-LICQ is satisfied at (x∗, y∗, y∗, z∗)
in the MPEC (13), then (x∗, y∗, z∗) is a C-stationary point of problem (15). Further-
more, if y∗ satisfies the strict complementarity condition, then (x∗, y∗, z∗) is S-sta-
tionary to (15).

Although the results established in this theorem are interesting and important, its
proof is somewhat lengthy and technical. To avoid disturbing the readability, we refer
the readers to [18] for a detailed proof of the theorem.

Remark 1 For the lower-level wait-and-see problems, we may consider a similar but
somewhat simpler approach. In particular, for the discrete model
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minimize
L∑
�=1

p� f (x, y�)

subject to g(x) ≤ 0, h(x) = 0, (30)

y� ≥ 0, N�x + M�y� + q� ≥ 0,

yT
� (N�x + M�y� + q�) = 0, � = 1, . . . , L

with p�, N�,M�, and q� being the same as in (12), the subproblem corresponding to
(18) becomes

minimize
L∑
�=1

p� f (x, y�(x, µk))

subject to g(x) ≤ 0, h(x) = 0,

where y�(x, µ) satisfies the equationΦµ(x, y�(x, µ),w�(x, µ); N�,M�, q�) = 0 with
w�(x, µ) = N�x + (M� + µI )y�(x, µ) + q� for each �. Therefore, we do not need
the penalty steps for problem (30). See [18] for more details.

Remark 2 We have rewritten the SMPEC (12) as an deterministic MPEC (15). There
have been proposed several approaches such as sequential quadratic programming
approach, penalty function approach, reformulation approach, etc., in the literature on
MPEC. See [1,8,11–16,20–22,24,26,29] and the references therein for more details.
In convergence analysis for these approaches, the MPEC-LICQ is often assumed.
However, as we have mentioned, since the MPEC-LICQ does not hold for problem
(15) in general, it is difficult to apply the existing methods for solving the MPEC
(15) directly. Based on this observation, we have proposed the combined smooth-
ing implicit programming and penalty method for solving the ill-posed MPEC (15)
directly. By applying some existing methods such as the regularization method [29]
or the relaxation methods [20,14] and penalizing the constraints except g(x) ≤ 0 and
h(x) = 0, we may develop some other approaches for solving SMPECs.

Remark 3 In Theorem 3, the strict complementarity condition is rather stringent. For a
deterministic MPEC, the strict complementarity condition has been relaxed by replac-
ing it with the MPEC-LICQ, the second-order necessary condition and some additional
conditions. For SMPECs, how to weaken the assumptions is still an open problem.

4 Discretization of here-and-now problems with continuous random variable

In this section, we consider the here-and-now problem

minimize Eω[ f (x, y, ω)+ dT z(ω)]
subject to g(x) ≤ 0, h(x) = 0,

0 ≤ y ⊥ (N (ω)x + M(ω)y + q(ω)+ z(ω)) ≥ 0, (31)

z(ω) ≥ 0, ∀ω ∈ Ω,
x ∈ �n, y ∈ �m, z(·) ∈ C(Ω),
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where Ω is a sample space, g, h, d are the same as in Sect. 3, the functions f :
�n+m × Ω → �, N : Ω → �m×n , M : Ω → �m×m , and q : Ω → �m are all
continuous. In addition, C(Ω) denotes the family of continuous functions fromΩ into
�m . IfΩ is unbounded, under some mild conditions, we can approximate the problem
by a sequence of programs with bounded sampling spaces. See [33] for more details.
In the rest of the paper, we suppose thatΩ is a bounded rectangle. In particular, with-
out loss of generality, we assume that Ω := [0, 1]ν . Let ζ : Ω → [0,+∞) be the
continuous probability density function of ω. Then we have

Eω[ f (x, y, ω)+ dT z(ω)] =
∫

Ω

(
f (x, y, ω)+ dT z(ω)

)
ζ(ω)dω.

We next employ a quasi-Monte Carlo method [25] for numerical integration to
discretize problem (31). Roughly speaking, given a function φ : Ω → �, the quasi-
Monte Carlo estimate for Eω[φ(ω)] is obtained by taking a uniformly distributed
sample set ΩL := {ω1, . . . , ωL} from Ω and letting Eω[φ(ω)] ≈ 1

L

∑
ω∈ΩL

φ(ω).
Therefore, the following problem is an appropriate discrete approximation of problem
(31):

minimize
1

L

∑
ω∈ΩL

ζ(ω)
(

f (x, y, ω)+ dT z(ω)
)

subject to g(x) ≤ 0, h(x) = 0, (32)

0 ≤ y ⊥ (N (ω)x + M(ω)y + q(ω)+ z(ω)) ≥ 0,

z(ω) ≥ 0, ω ∈ ΩL .

This problem has been discussed in the last section. Note that the sample set ΩL is
chosen to be asymptotically dense in Ω .

In order to prove our convergence result, we first give some lemmas.

Lemma 2 Suppose the function ξ : Ω → � is continuous. Then we have

lim
L→∞

1

L

∑
ω∈ΩL

ξ(ω)ζ(ω) =
∫

Ω

ξ(ω)ζ(ω)dω.

It is not difficult to prove this lemma by the results given in Chap. 2 of [25]. We
then have from Lemma 2 immediately that, for any z(·) ∈ C(Ω),

lim
L→∞

1

L

∑
ω∈ΩL

ζ(ω)
(

f (x, y, ω)+ dT z(ω)
)

=
∫

Ω

(
f (x, y, ω)+ dT z(ω)

)
ζ(ω)dω

(33)
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and particularly,

lim
L→∞

1

L

∑
ω∈ΩL

ζ(ω) =
∫

Ω

ζ(ω)dω = 1. (34)

Lemma 3 Let M̄ ∈ �m×m and {ML} ⊂ �m×m be convergent to M̄. Suppose M̄ is
an R0-matrix. Then, there exists an integer L0 > 0 such that ML is an R0-matrix for
every L ≥ L0.

Proof Suppose the conclusion is not true. Taking a subsequence if necessary, we may
assume that {ML} is not an R0-matrix for every L . From Definition 3, there exists a
vector yL ∈ �m such that

0 ≤ yL ⊥ ML yL ≥ 0, ‖yL‖ = 1. (35)

We may further assume that the sequence {yL} is convergent to a vector ȳ. Letting
L → +∞ in (35), we get

0 ≤ ȳ ⊥ M̄ ȳ ≥ 0, ‖ȳ‖ = 1.

This contradicts the fact that M̄ is an R0-matrix and hence the conclusion is valid.

Theorem 4 Let the set X := {x ∈ �n | g(x) ≤ 0, h(x) = 0} be nonempty and
bounded, and the function f be bounded and uniformly continuous with respect to
(x, y, ω). Let

M̄ :=
∫

Ω

M(ω)ζ(ω)dω

be an R0-matrix. Then, the following statements are true.

(i) Problem (32) has at least one optimal solution when L is large enough.
(ii) Let

(
x L , yL , zL(ω)

)
ω∈ΩL

be a solution of (32) for each L large enough. Then

the sequence
{(

x L , yL
)}

is bounded.
(iii) Let (x∗, y∗) be an accumulation point of the sequence

{(
x L , yL

)}
and z∗(·) be

defined by

z∗(ω) := max
{−(N (ω)x∗ + M(ω)y∗ + q(ω)), 0

}
, ω ∈ Ω. (36)

Then (x∗, y∗, z∗(·)) is an optimal solution of problem (31).

Proof (i) For each L , let ML := 1
L

∑
ω∈ΩL

ζ(ω)M(ω). It then follows from Lemma 2
that M̄ = limL→∞ ML . Since M̄ is an R0-matrix, by Lemma 3, there exists an integer
L0 > 0 such that ML is an R0-matrix for every L ≥ L0.

Let L ≥ L0 be fixed. We denote by FL the feasible region of problem (32). It is easy
to see that FL is a nonempty and closed set and the objective function of problem (32)
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is bounded below on FL . Then, there exists a sequence
{(

xk, yk, zk(ω)
)
ω∈ΩL

}
⊆ FL

such that

lim
k→∞

1

L

∑
ω∈ΩL

ζ(ω)
(

f (xk, yk, ω)+ dT zk(ω)
)

= inf
(x,y,z(ω))ω∈ΩL ∈FL

1

L

∑
ω∈ΩL

ζ(ω)
(

f (x, y, ω)+ dT z(ω)
)
. (37)

Since the function f is bounded, it follows that the sequence
{ 1

L

∑
ω∈ΩL

ζ(ω)dT zk(ω)
}

is bounded. Note that the elements of d are positive. Thus, the sequence{ 1
L

∑
ω∈ΩL

ζ(ω)zk(ω)
}

is also bounded. Moreover, we have from the boundedness of
X that the sequence

{
xk

}
is bounded.

On the other hand, noting that
(
xk, yk, zk(ω)

)
ω∈ΩL

∈ FL for each k, we have

0 ≤ yk ⊥
(

ML yk + 1

L

∑
ω∈ΩL

ζ(ω)(N (ω)xk + q(ω)+ zk(ω))
)

≥ 0. (38)

Suppose the sequence
{

yk
}

is unbounded. Taking a subsequence if necessary, we
assume that

lim
k→∞ ‖yk‖ = +∞, lim

k→∞
yk

‖yk‖ = ȳ, ‖ȳ‖ = 1. (39)

Then, dividing (38) by ‖yk‖ and letting k → +∞, we obtain 0 ≤ ȳ ⊥ ML ȳ ≥ 0.
Since ML is an R0-matrix, by Definition 2.3, we have ȳ = 0. This contradicts (39)
and hence

{
yk

}
is bounded.

The boundedness of
{ 1

L

∑
ω∈ΩL

ζ(ω)zk(ω)
}

implies that the sequence
{
zk(ω)

}
is

bounded for each ω ∈ ΩL with ζ(ω) > 0. For any ω ∈ ΩL with ζ(ω) = 0, we
re-define zk(ω) by

zk(ω) := max
{

− (N (ω)xk + M(ω)yk + q(ω)), 0
}
.

Therefore, the sequence
{(

xk, yk, zk(ω)
)
ω∈ΩL

}
is bounded and (37) remains valid.

Since FL is closed, any accumulation point of
{(

xk, yk, zk(ω)
)
ω∈ΩL

}
must be an

optimal solution of problem (32). This completes the proof of (i).
(ii) Let

(
x L , yL , zL(ω)

)
ω∈ΩL

be a solution of (32) for each sufficiently large L .

The boundedness of
{

x L
}

follows from the boundedness of the set X immediately.
We next prove that

{
yL

}
is also bounded. To this end, we let x̄ ∈ X and define

z̄(ω) := max
{ − (N (ω)x̄ + q(ω)) , 0

}
, ω ∈ Ω.
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Then, (x̄, 0, z̄(ω))ω∈ΩL is feasible to problem (32). Since
(
x L , yL , zL(ω)

)
ω∈ΩL

is an
optimal solution of (32), we have

1

L

∑
ω∈ΩL

ζ(ω)
(

f
(

x L , yL , ω
)

+ dT zL(ω)
)

≤ 1

L

∑
ω∈ΩL

ζ(ω)
(

f (x̄, 0, ω)+ dT z̄(ω)
)

(40)

and

0 ≤ yL ⊥ (N (ω)x L + M(ω)yL + q(ω)+ zL(ω)) ≥ 0, ω ∈ ΩL . (41)

It follows from (40) that

1

L

∑
ω∈ΩL

ζ(ω)dT zL(ω)

≤ 1

L

∑
ω∈ΩL

ζ(ω)
(

f (x̄, 0, ω)− f (x L , yL , ω)
)

+ 1

L

∑
ω∈ΩL

ζ(ω)dT z̄(ω).

Note that, from (34) and the boundedness of f , the sequence{ 1
L

∑
ω∈ΩL

ζ(ω)( f (x̄, 0, ω)− f (x L , yL , ω))
}

is bounded and, by Lemma 2,

lim
L→∞

1

L

∑
ω∈ΩL

ζ(ω)dT z̄(ω) =
∫

Ω

ζ(ω)dT z̄(ω)dω.

In consequence, the sequence
{ 1

L

∑
ω∈ΩL

ζ(ω)dT zL(ω)
}

is bounded. Since the ele-

ments of d are positive, the sequence
{ 1

L

∑
ω∈ΩL

ζ(ω)zL(ω)
}

is bounded. Moreover,
we have from (41) that

0 ≤ yL ⊥
( 1

L

∑
ω∈ΩL

ζ(ω)(N (ω)x L + M(ω)yL + q(ω)+ zL(ω))
)

≥ 0.

Note that both
{

x L
}

and
{ 1

L

∑
ω∈ΩL

ζ(ω)zL(ω)
}

are bounded and

lim
L→∞

1

L

∑
ω∈ΩL

ζ(ω)M(ω) = M̄,

lim
L→∞

1

L

∑
ω∈ΩL

ζ(ω)N (ω) =
∫

Ω

N (ω)ζ(ω)dω,

lim
L→∞

1

L

∑
ω∈ΩL

ζ(ω)q(ω) =
∫

Ω

q(ω)ζ(ω)dω.

In a similar way to (i), we can show that
{

yL
}

is bounded.
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(iii) By the assumptions, the sequence
{
(x L , yL)

}
contains a subsequence converg-

ing to (x∗, y∗). Without loss of generality, we suppose limL→∞
(
x L , yL

) = (x∗, y∗).
(iiia) We first prove that (x∗, y∗, z∗(·)) is feasible to problem (31). To this end, we

define

z̃L(ω) := max{−(N (ω)x L + M(ω)yL + q(ω)), 0}, ω ∈ ΩL . (42)

It is obvious that (x L , yL , z̃L(ω))ω∈ΩL is feasible in problem (32) for each L . Since
z∗(·) ∈ C(Ω) and N (ω)x∗ + M(ω)y∗ + q(ω) + z∗(ω) ≥ 0 by the definition (36), it
is sufficient to show that

(y∗)T (N (ω)x∗ + M(ω)y∗ + q(ω)+ z∗(ω)) = 0, ω ∈ Ω. (43)

Let ω̄ ∈ Ω be fixed. Since the sample set ΩL is chosen to be asymptotically dense
in Ω , there exists a sequence {ω̄L} of samples such that ω̄L ∈ ΩL for each L and
limL→∞ ω̄L = ω̄. We then have

(
yL

)T (
N (ω̄L)x

L + M(ω̄L)y
L + q(ω̄L)+ z̃L(ω̄L)

)
= 0, L = 1, 2, . . . .

Letting L → +∞ and taking the continuity of the functions N (·),M(·), q(·) on the
compact set Ω into account, we obtain

(y∗)T (N (ω̄)x∗ + M(ω̄)y∗ + q(ω̄)+ z∗(ω̄)) = 0. (44)

By the arbitrariness of ω̄ in Ω , we have (43) immediately. This completes the proof
of the feasibility of (x∗, y∗, z∗(·)) in (31).

(iiib) Let (x, y, z(·)) be an arbitrary feasible solution of (31). It is obvious that
(x, y, z(ω))ω∈ΩL is feasible to problem (32) for any L . Moreover, we have

1

L

∑
ω∈ΩL

ζ(ω)
( (

f (x L , yL , ω)+ dT zL(ω)
)

−
(

f
(

x L , yL , ω
)

+ dT z̃L(ω)
) )

= 1

L

∑
ω∈ΩL

ζ(ω)dT min
{

N (ω)x L + M(ω)yL + q(ω)+ zL(ω), zL(ω)
}

≥ 0,

where the equality follows from (42) and the inequality follows from the feasibility of(
x L , yL , zL(ω)

)
ω∈ΩL

in (32). Thus,
(
x L , yL , z̃L(ω)

)
ω∈ΩL

is also an optimal solution
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of problem (32). We then have

1

L

∑
ω∈ΩL

ζ(ω)
((

f (x∗, y∗, ω)+ dT z∗(ω)
)

−
(

f (x, y, ω)+ dT z(ω)
))

≤ 1

L

∑
ω∈ΩL

ζ(ω)
((

f (x∗, y∗, ω)+ dT z∗(ω)
)

−
(

f
(

x L , yL , ω
)

+ dT z̃L(ω)
))

≤ 1

L

∑
ω∈ΩL

ζ(ω)
( ∣∣∣ f (x∗, y∗, ω)− f

(
x L , yL , ω

)∣∣∣ +
∣∣∣dT

(
z∗(ω)− z̃L(ω)

)∣∣∣
)
. (45)

Note that f is uniformly continuous with respect to (x, y, ω) and, by (34), the sequence{ 1
L

∑
ω∈ΩL

ζ(ω)
}

is bounded. This yields

lim
L→∞

1

L

∑
ω∈ΩL

ζ(ω)

∣∣∣ f (x∗, y∗, ω)− f
(

x L , yL , ω
)∣∣∣ = 0. (46)

On the other hand, it is easy to see from the definitions (36) and (42) that

∣∣∣dT
(

z∗(ω)− z̃L(ω)
)∣∣∣ ≤

∣∣∣dT
(

N (ω)
(

x∗ − x L
)

+ M(ω)
(

y∗ − yL
))∣∣∣ , ω ∈ ΩL .

By the boundedness of the sequence
{ 1

L

∑
ω∈ΩL

ζ(ω)
}

and the functions N (·) and
M(·) on Ω , we have

lim
L→∞

1

L

∑
ω∈ΩL

ζ(ω)

∣∣∣dT
(

z∗(ω)− z̃L(ω)
)∣∣∣ = 0. (47)

Thus, by letting L → +∞ in (45) and taking (33) and (46), (47) into account, we
obtain
∫

Ω

(
f (x∗, y∗, ω)+ dT z∗(ω)

)
ζ(ω)dω ≤

∫

Ω

(
f (x, y, ω)+ dT z(ω)

)
ζ(ω)dω, (48)

which implies that (x∗, y∗) together with z∗(·) constitutes an optimal solution of prob-
lem (31).

5 Numerical examples

The following example illustrates the here-and-now and lower-level wait-and-see
models.

Example 1 [18] There are a food company who makes picnic lunches and several
venders who sell lunches to hikers on every Sunday at different spots. The company
and the venders have the following contract:

C1: The venders buy lunches from the company at the price x ∈ [a, b] determined
by the company, where a and b are two positive constants.
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C2: The i th vender decides the amount si of lunches that he buys from the company.
Every vender must buy no less than the minimum amount c > 0.

C3: Every vender pays the company for the whole lunches he buys, i.e., the i th
vender pays xsi to the company.

C4: The i th vender sells lunches to hikers at the price κi x and gets the proceeds for
the total number of lunches actually sold, where κi > 1 is a constant.

C5: Even if there are any unsold lunches, the venders cannot return them to the
company but they can dispose of the unsold lunches with no cost.

We suppose that the demands of lunches depend on the price and the weather on that
day. Since the weather is uncertain, we may treat it as a random variable. Suppose
there are m venders located at different spots. Assume the demand at the i th spot is
given by the function di (x, ω). Then, the actual amount of lunches sold at the i th spot
is given by min(si , di (x, ω)), which also depends on the weather on that day.

The decisions by the company and the i th vender are x and si , respectively. The
company’s objective is to maximize its total earnings

∑m
i=1 xsi ,while the i th vender’s

objective is to maximize its total earnings κi x min(si , di (x, ω))−xsi .We first consider
the latter problem:

minimize
si

κi x min(si , di (x, ω))− xsi

subject to si ≥ c.

It is not difficult to show that its solution is si = max{di (x, ω), c} for any κi > 1.
Therefore, by letting yi = si −c for each i , we may formulate the company’s problem
as the following stochastic MPEC:

minimize −
m∑

i=1
x(yi + c)

subject to a ≤ x ≤ b,
0 ≤ yi ⊥ (−di (x, ω)+ yi + c) ≥ 0,
i = 1, . . . ,m, a.e. ω ∈ Ω.

Now there are two cases.
Here-and-now model: Suppose that both the company and the venders have to make
decisions on Saturday, without knowing the weather of Sunday. In this case, there may
be no yi satisfying the complementarity constraints for almost all ω ∈ Ω in general.
So, by introducing the recourse variables, the company’s problem is represented as
the following model:

minimize
m∑

i=1
(−x(yi + c)+ τ Eω[ zi (ω) ])

subject to a ≤ x ≤ b, zi (ω) ≥ 0,
0 ≤ yi ⊥ (−di (x, ω)+ yi + c + zi (ω)) ≥ 0,
i = 1, . . . ,m, a.e. ω ∈ Ω,

where τ > 0 is a weight constant.
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Lower-level wait-and-see model: Suppose that the company makes a decision on
Saturday, but the venders can make their decisions on Sunday morning after knowing
the weather of that day. In this case, the decisions of the venders may depend on the
observation of ω, which are given by yi (ω), i = 1, . . . ,m, that satisfies

0 ≤ yi (ω) ⊥ (−di (x, ω)+ yi (ω)+ c) ≥ 0

for each ω ∈ Ω . Therefore the company’s problem is represented as the following
model:

minimize
m∑

i=1
Eω[ −x(yi (ω)+ c) ]

subject to a ≤ x ≤ b,
0 ≤ yi (ω) ⊥ (−di (x, ω)+ yi (ω)+ c) ≥ 0,
i = 1, . . . ,m, a.e. ω ∈ Ω.

Below we report our numerical experience with these two models. We consider the
case where m = 4 and assume that the weather parameter ω is normally distributed
with N (0, 1) and the demand function for the i th vender is given by

di (x, ω) := ui (ω)− vi (ω)x,

where ui (ω) and vi (ω) are random variables. Moreover, we assume that ui (ω) and
vi (ω) are linear functions of ω such that

ui (ω) := ui0 + ui1ω, vi (ω) := vi0 + vi1ω

with constants (ui0, ui1, vi0, vi1), i = 1, . . . , 4, given as in Table 1.
In our implementation, we used the classical constructions method in [25] to approx-

imate the continuous distributions by discrete ones.

• Generate ωk, k = 1, . . . , K , from the 99% confidence interval I := [−3, 3] with
sample size K = 106.

• Divide I into L subintervals with equal length, which represent different conditions
of weather such as bad, fair, good, and so on.

• For each subinterval I�, estimate the probability by the relative frequency p� =
k�/K , where k� is the number of samples contained in I�.

Table 1 Data for the demand
functions

i ui0 ui1 vi0 vi1

1 165 20 12 3

2 218 13.5 18 2

3 131 12 8 1.75

4 195 13 9 2
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Table 2 Data for testing problem with L = 3

bad (� = 1) fair (� = 2) good (� = 3)

P 0.1590 0.6821 0.1589

(u1, v1) (134.4962,7.4244) (165.0092,12.0014) (195.5213,16.5782)

(u2, v2) (197.4100,14.9496) (218.0062,18.0009) (238.6019,21.0521)

(u3, v3) (112.6977,5.3309) (131.0055,8.0008) (149.3128,10.6706)

(u4, v4) (175.1726,5.9496) (195.0060,9.0009) (214.8388,12.0521)

• For every subinterval I� and every vender i , calculate

ui� = 1

k�

∑
ωk∈I�

ui (ωk), vi� = 1

k�

∑
ωk∈I�

vi (ωk).

The data for the testing problem with L = 3 are listed in Table 2.
We set a = 1, b = 14, c = 15, τ = 1, and employed the MATLAB 6.5 built-in

solver fmincon to solve the approximation problems. When we solved (18), we used
the same penalty functionψ as in Theorem 3. Moreover, we setµ0 = 10−2, ρ0 = 102,
and updated the parameters by µk+1 = 10−2µk and ρk+1 = 10ρk, respectively. In
addition, the initial point is chosen to be (x, z) = (6, . . . , 6) in the here-and-now
problems and x = 6 in the lower-level wait-and-see problems, respectively, and the
computed solution at the kth iteration is used as the starting point in the next (k + 1)th
iteration. The computational results for the here-and-now and lower-level wait-and-see
cases with L = 3 are shown in Tables 3, 4, respectively.

In Tables 3, 4, Obj means the company’s earnings, Ite stands for the number of
iterations spent by fmincon to solve the approximation problems, and Res denotes the

Table 3 Computational results for here-and-now case with L = 3

(µk , ρk ) x(k)
(

y(k)1 , y(k)2 , y(k)3 , y(k)4

)
Obj Res Ite

(10−2, 102) 6.8603 (66.593,78.939,60.914,116.792) 2629.1 3.2324 20

(10−4, 103) 6.8502 (67.959,79.392,61.182,117.279) 2636.0 0.0397 17

(10−6, 104) 6.8497 (66.967,79.402,61.183,117.286) 2636.0 0.0062 17

(10−8, 105) 6.8499 (66.963,79.398,61.182,117.284) 2636.0 0.0006 20

Table 4 Computational results for lower-level wait-and-see case with L = 3

µk x(k)
(

ȳ(k)1 , ȳ(k)2 , ȳ(k)3 , ȳ(k)4

)
Obj Res Ite

10−2 7.5489 (58.824,66.455,55.058,110.950) 2651.8 8.7385 3

10−4 7.5426 (59.483,67.226,55.654,112.105) 2673.6 0.0883 2

10−6 7.5426 (59.489,67.234,55.660,112.117) 2673.8 0.0009 2
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Table 5 Values of price x L
L here-and-now wait-and-see

3 6.8499 7.5426

5 6.7500 7.5454

7 6.7500 7.5452

9 6.7500 7.5453

11 6.7500 7.5452

residual at the current point defined by

Res
(

x (k), y(k), z(k)
)

:=
m∑

i=1

L∑
�=1

∣∣∣min
(

y(k)i , −d(k)i� + y(k)i + c + z(k)i�

)∣∣∣

for the here-and-now case, or

Res
(

x (k), y(k)
)

:=
m∑

i=1

L∑
�=1

∣∣∣min
(

y(k)i� , −d(k)i� + y(k)i� + c
)∣∣∣

for the lower-level wait-and-see case, where d(k)i� := ui� − vi� x (k). Moreover, in

Table 4, we denote ȳ(k)i := ∑L
�=1 p� y(k)i� for each i .

We have also computed the solutions of the two models with various values of L .
Table 5 shows the values of the price x L for L = 3, 5, 7, 9, 11. As shown in Table 5,
the prices x L seem almost convergent at L = 11. Moreover, the prices of Sunday set
in the lower-level wait-and-see model are higher than the prices of Saturday set in
the here-and-now model. Such results indicate that both models are appropriate for
applications in real world. If the venders want to buy lunches with lower price, they
have to make their decisions earlier. In other words, the difference between the two
prices represents the value of information about the weather.

6 Concluding remarks

We have presented a combined smoothing implicit programming and penalty method
for an SMPEC with a finite sample space and suggested a quasi-Monte Carlo method to
discretize an SMPEC with continuous random variables. We may extend the
approaches to the lower-level wait-and-see problems. Recall that SMPECs contain
the ordinary MPECs as a special subclass. In consequence, the conclusions given in
Sect. 3 remain true for standard MPECs. Comparing with the results given in the
literature, the assumptions employed in Sect. 3 are relatively weak.

Acknowledgments The authors are grateful to the anonymous referees for their helpful suggestions and
comments.

123



Solving SMPECs via smoothing implicit programming with penalization 367

References

1. Anitescu, M.: On using the elastic mode in nonlinear programming approaches to mathematical pro-
grams with complementarity constraints. SIAM J. Optim. 15, 1203–1236 (2005)

2. Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Academic Press, New
York (1982)

3. Birbil, S.I., Gürkan, G., Listes, O.: Solving stochastic mathematical programs with complementarity
constraints using simulation. Math. Oper. Res. 31, 739–760 (2006)

4. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, New York (1997)
5. Chen, X., Fukushima, M.: A smoothing method for a mathematical program with P-matrix linear

complementarity constraints. Comput. Optim. Appl. 27, 223–246 (2004)
6. Chen, Y., Florian, M.: The nonlinear bilevel programming problem: formulations, regularity and opti-

mality conditions. Optimization 32, 193–209 (1995)
7. Cottle, R.W., Pang, J.S., Stone, R.E.: The Linear Complementarity Problem. Academic, New

York (1992)
8. Facchinei, F., Jiang, H., Qi, L.: A smoothing method for mathematical programs with equilibrium

constraints. Math. Program. 85, 107–134 (1999)
9. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems,

Part I. Springer, New York (2003)
10. Fischer, A.: A special Newton-type optimization method. Optimization 24, 269–284 (1992)
11. Fletcher, R., Leyffer, S., Ralph, D., Scholtes, S.: Local convergence of SQP methods for mathematical

programs with equilibrium constraints. SIAM J. Optim. 17, 259–286 (2006)
12. Fukushima, M., Lin, G.H.: Smoothing methods for mathematical programs with equilibrium con-

straints. In: Proceedings of the ICKS’04, pp. 206–213. IEEE Computer Society (2004)
13. Fukushima, M., Luo, Z.Q., Pang, J.S.: A globally convergent sequential quadratic programming algo-

rithm for mathematical programs with linear complementarity constraints. Comput. Optim. Appl. 10, 5–
34 (1998)

14. Fukushima, M., Pang, J.S.: Convergence of a smoothing continuation method for mathematical prob-
lems with complementarity constraints. Ill-posed Variational Problems and Regularization Techniques.
In: Théra, M., Tichatschke, R. (eds.) Lecture Notes in Economics and Mathematical Systems. vol. 477.
pp. 105–116. Springer, Heidelberg (1999)

15. Hu, X., Ralph, D.: Convergence of a penalty method for mathematical programming with equilibrium
constraints. J. Optim. Theory Appl. 123, 365–390 (2004)

16. Jiang, H., Ralph, D.: Smooth SQP methods for mathematical programs with nonlinear complementarity
constraints. SIAM J. Optim. 10, 779–808 (2000)

17. Kall, P., Wallace, S.W.: Stochastic Programming. Wiley, Chichester (1994)
18. Lin, G.H., Chen, X., Fukushima, M.: Smoothing implicit programming approaches for stochastic math-

ematical programs with linear complementarity constraints. Technical Report 2003-006. Department
of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Kyoto, Japan
(2003)

19. Lin, G.H., Fukushima, M.: A class of stochastic mathematical programs with complementarity con-
straints: Reformulations and algorithms. J. Ind. Manag. Optim. 1, 99–122 (2005)

20. Lin, G.H., Fukushima, M.: A modified relaxation scheme for mathematical programs with comple-
mentarity constraints. Ann. Oper. Res. 133, 63–84 (2005)

21. Lin, G.H., Fukushima, M.: Hybrid algorithms with active set identification for mathematical programs
with complementarity constraints. J. Optim. Theory Appl. 128, 1–28 (2006)

22. Lin, G.H., Fukushima, M.: New relaxation method for mathematical programs with complementarity
constraints. J. Optim. Theory Appl. 118, 81–116 (2003)

23. Lin, G.H., Fukushima, M.: Regularization method for stochastic mathematical programs with comple-
mentarity constraints. Eur. Ser. Appl. Ind. Math. Control Optim. Calculus Var. 11, 252–265 (2005)

24. Luo, Z.Q., Pang, J.S., Ralph, D.: Mathematical Programs with Equilibrium Constraints. Cambridge
University Press, Cambridge (1996)

25. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadel-
phia (1992)

26. Outrata, J.V., Kocvara, M., Zowe, J.: Nonsmooth Approach to Optimization Problems with Equilibrium
Constraints: Theory, Applications and Numerical Results. Kluwer, Boston (1998)

123



368 G.-H. Lin et al.

27. Patriksson, M., Wynter, L.: Stochastic mathematical programs with equilibrium constraints. Oper. Res.
Lett. 25, 159–167 (1999)

28. Scheel, H.S., Scholtes, S.: Mathematical programs with complementarity constraints: Stationarity,
optimality, and sensitivity. Math. Oper. Res. 25, 1–22 (2000)

29. Scholtes, S.: Convergence properties of a regularization scheme for mathematical programs with com-
plementarity constraints. SIAM J. Optim. 11, 918–936 (2001)

30. Shapiro, A.: Stochastic programming with equilibrium constraints. J. Optim. Theory Appl. 128, 221–
243 (2006)

31. Shapiro, A., Xu, H.: Stochastic mathematical programs with equilibrium constraints. modeling and
sample average approximation. School of Industrial and System Engineering, Georgia Institute of
Technology, Antalanta, Georgia, USA (2005)

32. Vajda, S.: Probabilistic Programming. Academic, New York (1972)
33. Xu, H.: An implicit programming approach for a class of stochastic mathematical programs with linear

complementarity constraints. SIAM J. Optim. 16, 670–696 (2006)

123


	Solving stochastic mathematical programswith equilibrium constraints via approximationand smoothing implicit programmingwith penalization
	Abstract
	1 Introduction
	2 Preliminaries
	3 Combined smoothing implicit programming and penalty method for discrete here-and-now problems
	3.1 SIPP method
	3.2 Convergence results

	4 Discretization of here-and-now problems with continuous random variable
	5 Numerical examples
	6 Concluding remarks
	Acknowledgments


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


