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In this paper, we study the generalized subdifferentials and the Riemannian gradient sub-consistency that
are basis for non-Lipschitz optimization on embedded submanifolds of Rn. We then propose a Riemannian
smoothing steepest descent method for non-Lipschitz optimization on complete embedded submanifolds of
Rn. We prove that any accumulation point of the sequence generated by the Riemannian smoothing steepest
descent method is a stationary point associated with the smoothing function employed in the method, which is
necessary for the local optimality of the original non-Lipschitz problem. We also prove that any accumulation
point of the sequence generated by our method that satisfies the Riemannian gradient sub-consistency is
a limiting stationary point of the original non-Lipschitz problem. Numerical experiments are conducted to
demonstrate the advantages of Riemannian ℓp (0< p< 1) optimization over Riemannian ℓ1 optimization for
finding sparse solutions and the effectiveness of the proposed method.
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1. Introduction We consider the Riemannian optimization problem

min f(x), x∈M, (1)

where M is a complete embedded submanifold of Rn and f :Rn →R is a proper lower semicontinuous
function and possibly non-Lipschitz. It is worth mentioning that the results developed in this paper
also work for matrix-variable problems, i.e., f : Rm×n → R. Such problems arise in a variety of
applications in signal processing, computer vision, and data mining [3, 6, 35, 50].

Many classical algorithms for unconstrained and smooth optimization have been extended from
Euclidean space to Riemannian manifolds, such as the gradient descent algorithm, the conjugate
gradient algorithm, the quasi-Newton algorithm and the trust region method [1, 2, 11, 33]. Recently,
Riemannian optimization with a nonsmooth but locally Lipschitz continuous objective function has
been considered in the literature. Here the smoothness and locally Lipschitz continuity are interpreted
when the function in question is considered in the ambient Euclidean space. The Riemannian
Clarke subdifferential of functions over manifolds has been defined and its properties have been
discussed in [31]. Several algorithms have been proposed based on the notion of Riemannian Clarke
subdifferential. For example, Hosseini and Uschmajew [32] proposed the Riemannian gradient
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sampling algorithm. This algorithm approximates the subdifferential using the convex hull of
transported gradients from tangent spaces of randomly generated nearby points to the tangent
space of the current space. The ϵ-subgradient algorithm [29] is a steepest descent method where the
descent directions are obtained by a computable approximation of the ϵ-subdifferential. The line
search algorithms [30] include the nonsmooth Riemannian BFGS algorithm as a special case. For
both the ϵ-subgradient algorithm and the line search algorithms, either the algorithms terminate
after a finite number of iterations with the ϵ-subgradient-oriented descent direction being 0, or
any accumulation point is a Riemannian Clarke stationary point. Other methods for nonsmooth
optimization over Riemannian manifolds include the Riemannian subgradient method [41], the
Riemannian ADMM [36, 37, 40], the manifold proximal gradient method [16, 17, 34, 52], manifold
proximal point method [15], manifold proximal linear method [53], manifold augmented Lagrangian
method [18, 60, 61] and zeroth-order algorithms over Riemannian manifold [39].

The Riemannian generalized subdifferentials have been studied in [4, 38] and are expected to be
useful for analyzing non-Lipschitz optimization. To the best of our of knowledge, however, there do
not exist optimization algorithms for solving Riemannain non-Lipschitz optimization problems with
rigorous convergence results. Consequently, the Riemannian generalized subdifferentials developed
in [4, 38] have not been used to show the convergence results for non-Lipschitz optimization yet.
Non-Lipschitz optimization in Euclidean space finds many important applications, including but
not limited to, finding sparse solutions in signal processing and data mining [21, 24, 42, 43, 48], and
neat edge in image restoration [9, 22, 57]. Smoothing methods with a proper updating scheme for
the smoothing parameter are efficient for solving large-scale nonsmooth optimization in Euclidean
space [19, 22, 23, 25, 58, 59]. With a fixed smoothing parameter, one solves the smoothed problem
to update the iterate. Certain strategy is then applied to decide whether and how the smoothing
parameter needs to be changed. Under the so-called gradient consistency property, it can be
shown that any accumulation point of the smoothing method is a limiting stationary point of
the original nonsmooth optimization problem; see for example the definition in [59, pp. 14]. The
gradient consistency naturally holds for smoothing functions arising in various real applications with
nonsmooth and locally Lipschitz objective functions [12, 13, 19, 55, 58]. Smoothing methods have
been widely used to solve unconstrained non-Lipschitz optimization problems [23], and constrained
non-Lipschitz optimization with convex feasible sets [59]. However, minimizing a non-Lipschitz
function on a nonconvex set has not been widely considered in the literature. In [21], an augmented
Lagrangian method for non-Lipschitz nonconvex programming was proposed where the constraint
set is nonconvex.

In [58], a smoothing projected gradient method for minimizing a nonsmooth but locally Lipschitz
function on a convex feasible set in Rn was proposed (Algorithm 3.1 of [58]). In [59], a smoothing
active set method for linearly constrained non-Lipschitz nonconvex optimization in Rn (Algorithm
3.1 of [59]) was proposed. As mentioned in Remark 3.2 of [59], a unified framework of smoothing
methods can be obtained by slightly modifying Algorithm 3.1 of [59] with the same convergence
result developed in [59], including the smoothing steepest descent method if the feasible set is Rn.
In this paper the objective function is not necessarily locally Lipschitz. The Riemannian smoothing
steepest descent (RSSD) method as well as the convergence analysis that will be developed in
this paper extend those from [59]. The RSSD method can be considered as an extension of the
smoothing steepest descent method on Rn from [59] to embedded submanifolds of Rn; see Remark
4 for details.

Main Contributions. Our contributions of this paper are as follows.
(i) We characterize the Riemannian generalized subdifferentials for proper lower semicontinuous

functions. We define the notion of limiting stationary point of (1) whose objective function
is allowed to be not locally Lipschitz. When the objective function of (1) is locally Lipschitz,
a limiting stationary point is a Clarke stationary point, but a Clarke stationary point is not
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necessarily a limiting stationary point of (1). Compared with the results in [38], Proposition 2
in this paper has not been considered, and Example 2 of this paper has not been given there.

(ii) We define the Riemannian subdifferential of f associated with a smoothing function f̃ . We define
a stationary point x∗ of (1) associated with f̃ , and show that x∗ being a stationary point of (1)
associated with f̃ is a necessary optimality condition for x∗ being a local minimizer of (1).

(iii) To build the relationship between the above two notions of stationary points of (1), associated
with or without f̃ , we define the Riemannian gradient sub-consistency of f̃ at x on M. Under
the Riemannian gradient sub-consistency of f̃ , any stationary point of (1) associated with f̃ is a
limiting stationary point of (1). These concepts and results in (ii) and (iii) are extensions of the
corresponding counterparts from [59] for optimization in Rn to Riemannian optimization on M.
We show that the Riemannian gradient sub-consistency holds if the gradient sub-consistency
of f̃ holds at x on Rn, provided that f is locally Lipschitz near x on Rn. We also show that
for a class of non-Lipschitz functions on Rn, the Riemannian gradient sub-consistency of their
smoothing functions holds on M. These two results have not been considered in the existing
literature before.

(iv) We design a Riemannian smoothing steepest descent method (RSSD) for solving (1). It is an
extension of the smoothing steepest descent method in Rn from [59] to embedded submanifolds
of Rn; see Remark 4 for details. The proposed RSSD method is easy to implement and converges
to a stationary point x∗ of (1) associated with f̃ where the objective function is nonsmooth,
possibly not even locally Lipschitz. Under Riemannian gradient sub-consistency of f̃ , x∗ is also
a limiting stationary point of (1).

(v) When the objective function is locally Lipschitz, the convergence result of our RSSD method
is stronger than that of the aforementioned existing methods for Riemannian nonsmooth
optimization with locally Lipschitz objective functions. This is because these existing methods
can only guarantee that any accumulation point of the sequence is a Clarke stationary point, but
our result guarantees that any accumulation point of the sequence is a limiting stationary point.
The rest of this paper is organized as follows. In Section 2, we give a brief review on some

basic concepts and properties related to Riemannian manifolds, the generalized subdifferentials
and smoothing functions. We define the generalized subdifferentials for non-Lipschitz functions on
embedded submanifolds of Rn that are motivated by [4, 38]. In Section 3, we discuss the properties
of the generalized subdifferentials for non-Lipschitz functions on embedded submanifolds of Rn. We
also define and discuss the Riemannian gradient sub-consistency that is essential to the convergence
analysis of our method. In Section 4, we propose our RSSD method and analyze its convergence
behavior. In Section 5, we conduct numerical experiments on two important applications: finding
the sparsest vectors in a subspace, and the sparsely-used orthogonal complete dictionary learning.
Finally, we draw some concluding remarks in Section 6.

2. Preliminaries We define some notation first. Throughout this paper, without specification,
M denotes a complete embedded submanifold of Rn. Let x∈M and TxM be the tangent space
of M at x. The cotangent space at x via the Riemannian metric is denoted as T∗

xM. We use
TM to denote the tangent bundle, i.e., the disjoint union of the tangent spaces of M: TM :=
{(x, v) | x ∈M and v ∈TxM}. We consider the Riemannian metric on M that is induced from
the Euclidean inner product; i.e., for any ξ, η ∈ TxM, we have ⟨ξ, η⟩x = ξ⊤η if ξ and η are two
column vectors of the same dimension, and ⟨ξ, η⟩x =Tr(ξ⊤η) if ξ and η are two matrices of the same
dimension, where Tr(Z) denotes the trace of matrix Z. We use ∥x∥ to denote the Euclidean norm
when x is a vector, and the Frobenius norm when x is a matrix. We use Bx,δ = {y | ∥y− x∥ ≤ δ}
to represent a neighborhood of x with radius δ > 0. For a subset D⊆Rn with nonempty interior,
a function h ∈ C1(D) means that h is smooth, i.e., continuously differentiable on D. For each
x ∈M, the Riemannian metric induces an isomorphism between TxM and T∗

xM through the
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mapping TxM∋ v 7→ v∗ = ⟨v, ·⟩x ∈T∗
xM. We define the norm on T∗

xM by ∥v∗∥2x = ∥v∥2x = ⟨v, v⟩x.
The subscript x in ⟨·, ·⟩x and ∥ · ∥x may be omitted when there is no ambiguity.

We now give the definition of the retraction operation.
Definition 1. (Retraction, see [2]). A retraction on a manifold M is a smooth mapping

R : TM→M with the following two properties, where Rx denotes the restriction of R to the
tangent space TxM.
(i) Rx(0x) = x, where 0x denotes the zero element of TxM.
(ii) It holds that

dRx(0x) = idTxM,

where dRx is the differential of Rx, and idTxM denotes the identity map on TxM.
By the inverse function theorem, we know that Rx is a local diffeomorphism (see, e.g., [30]).

Locally Lipschitz functions on M. We adopt the definition of locally Lipschitz functions on
M in [32]. Let r : [0,1]→M be a C1 curve. The length of r is defined as l(r) =

∫ 1

0
∥r′(s)∥ds. Let

x, y ∈M. Denote the collection of C1 curves joining x and y by C(x, y). Then the Riemannian
distance between x and y is defined by dist(x, y) := inf{l(r) : r ∈C(x, y)}.
Let M be an embedded submanifold of Rn with the Riemannian distance, and U be an open

subset of M. According to [32], f :M→R is said to satisfy a Lipschitz condition of constant J on
U if for any x, y ∈U it holds that

|f(x)− f(y)| ≤ Jdist(x, y).

A function f is said to be Lipschitz near x ∈ M if it satisfies the Lipschitz condition of some
constant on an open neighborhood of x. A function f is said to be locally Lipschitz on M if f is
Lipschitz near x for every x∈M.

Generalized subdifferentials on Rn.
In the case that f is nonsmooth but locally Lipschitz continuous near x, the Clarke subdifferential

∂◦f(x) of f at x∈Rn is often used. Let

Ωf := {x∈Rn | f is differentiable at x}.

According to [26, Theorem 2.5.1, pp. 63], for nonsmooth but locally Lipschitz continuous function
f , we have,

∂◦f(x) = co
{
lim
ν→∞

∇f(xν) | xν → x, xν ∈Ωf

}
, (2)

where “co” denotes the convex hull.
We now review some important concepts and properties related to generalized subdifferentials of

non-Lipschitz functions in Euclidean space Rn that are often used in nonsmooth analysis [10, 47].
Definition 2. (Subdifferentials). We consider a lower semicontinuous function f :Rn →R.

(i) The regular (or Fréchet) subdifferential of f at x∈Rn is defined as

∂̂f(x) := {v | f(y)≥ f(x)+ ⟨v, y−x⟩+ o(∥y−x∥)}.

(ii) The limiting subdifferential of f at x is defined as

∂f(x) := { lim
ν→∞

vν | ∃ (xν , f(xν))→ (x, f(x)), vν ∈ ∂̂f(xν)}.
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For a lower semicontinuous function f :Rn →R, according to [47, Definition 8.3, pp. 301], the
horizontal subdifferential of f at x is defined as

∂∞f(x) := { lim
ν→∞

tνvν | ∃ (xν , f(xν))→ (x, f(x)), tν ↓ 0, vν ∈ ∂̂f(xν)}, (3)

and according to [10, Definition 1], the Clarke subdifferential of a non-Lipschitz function f at x is
defined as

∂◦f(x) := c̄o{∂f(x)+ ∂∞f(x)}, (4)

where “c̄o” denotes the closure of convex hull.
It is known that

∂̂f(x̄)⊆ ∂f(x̄)⊆ ∂◦f(x̄). (5)

We have the equivalent characterization for the regular subdifferential in the following lemma from
[47, Proposition 8.5, pp. 302].

Lemma 1. A vector v ∈Rn belongs to ∂̂f(x̄) if and only if in some neighborhood of x̄, there is
a function h≤ f with h(x̄) = f(x̄) such that h is differentiable at x̄ with ∇h(x̄) = v. Moreover, h
can be smooth with h(x)< f(x) for all x ̸= x̄ near x̄.

Generalized subdifferentials on M. Let h∈C1(M). According to [11, Definition 3.34, pp. 35],
the differential of h at x, dh(x)∈T∗

xM, is a linear operator defined by

dh(x)[v] =
d

dt
h(c(t))

∣∣∣∣
t=0

, (6)

where c is a smooth curve on M passing through x at t= 0 with velocity v. By [11, Definition 3.58,
pp. 42], the Riemannian gradient of h is the vector field gradh on M uniquely defined by these
identities:

∀(x, v)∈TM, dh(x)[v] = ⟨v,gradh(x)⟩. (7)

In the case that f : M → R is a nonsmooth but locally Lipschitz continuous function, the
Riemannian Clarke subdifferential has been studied and used in analyzing the convergence of
algorithms [29, 30, 31, 32, 56]. Let

Ωf,R := {x∈M | f is differentiable at x}.

The Riemannian Clarke subdifferential, denoted as ∂◦
Rf(x), is defined as [32]

∂◦
Rf(x) := co

{
lim
ν→∞

gradf(xν) | xν → x, xν ∈Ωf,R

}
. (8)

Recall that limν→∞ gradf(xν) in (8) can be explained as follows (see [32]). Let {(xν , ξν)} ⊆TM
where ξν ∈ TxνM. We say ξν converges to ξ, denoted as limν→∞ ξν = ξ, if xν → x and if for any
smooth vector field ζ on M it holds that ⟨ξν , ζ(xν)⟩xν → ⟨ξ, ζ(x)⟩x. An equivalent definition of
∂◦
Rf(x) [32] relying on the definition of Clarke subdifferential on linear spaces is

∂◦
Rf(x) = ∂◦(f ◦Rx)(0x) (9)

for any retraction R.
The Riemannian regular (or Fréchet) subdifferential for lower semicontinuous functions on Rieman-

nian manifolds has been developed in [4]. Later on, the Riemannian regular, limiting and horizontal
subdifferentials have been well studied in [38]. The Riemannian generalized subdifferentials [4, 38]
can be considered as natural extensions of the generalized subdifferentials of lower semicontinuous
functions on Rn. We will use the following definition for Riemannian subdifferentials throughout
the paper.
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Definition 3. (Riemannian subdifferentials) Let f :Rn →R be a lower semicontinuous function.
(i) The Riemannian regular (or Fréchet) subdifferential of f at x∈M is defined as

∂̂Rf(x) := {gradh(x) | ∃ δ= δ(h)> 0 such that h∈C1(Bx,δ)
and f −h attains a local minimum at x on M}. (10)

(ii) The Riemannian limiting subdifferential of f at x∈M is defined as

∂Rf(x) := { lim
ν→∞

vν | ∃ (xν , f(xν))→ (x, f(x)), vν ∈ ∂̂Rf(xν)}. (11)

Remark 1. The Riemannian regular (or Fréchet) subdifferential of f at x∈M in Definition
3.1 of [38] is defined as

∂Ff(x) := {dh(x) | h∈C1(M) and f −h attains a local minimum at x}. (12)

The Riemannian regular subdifferential ∂̂Rf(x) in this paper is essentially only related to the
local property of h. By Whitney extension theorem [54], any smooth function on Bx,δ ∩M can be
extended to the whole Euclidean space Rn. Therefore,

∂̂Rf(x) = {gradh(x) | h∈C1(M) and f −h attains local minimum at x}
= {gradh(x) | dh(x)∈ ∂Ff(x)}. (13)

Hence ∂Ff(x) in (12) and ∂̂Rf(x) in (10) are essentially the same, through the one-to-one corre-
spondence between gradh(x) in tangent space and dh(x) in cotangent space.

In the next section, we will show that a vector in the Riemannian regular subdifferential ∂̂Rf(x)
can be computed via the projection of an arbitrary vector of the regular subdifferential ∂̂f(x) onto
TxM, if M is a Riemannian submanifold. We thus prefer to express the condition for h in (10), since
such h∈C1(Bx,δ) is also suitable for defining ∂̂f(x). When M=Rn and f :M→R is a nonsmooth
but locally Lipschitz continuous function, the Riemannian Clarke subdifferential coincides with the
Clarke subdifferential in Rn. When M=Rn, the Riemannian regular and limiting subdifferentials
coincide with the usual regular and limiting subdifferentials in Rn.
In this paper, we consider Riemannian optimization with non-Lipschitz objective function f .

We will explain later that f may not be locally Lipschitz at some points on M. For this purpose,
we give the characterizations of locally Lipschitz functions on M that are easily checkable in [38],
which need the concept of convexity on M. According to Definition 2.5 of [4], a subset U of M
is convex if for any given two points x, y ∈U , there exists a unique geodesic in U joining x and y
such that the length of the geodesic is dist(x, y). According to Theorem 2.6 in [4], we know that for
every x∈M there exists an open convex set U of M such that x∈U . Then according to Theorem
5.3 in [38] and the relations in (7) and (13), we have the following characterizations for a function
on M to be locally Lipschitz.

Lemma 2. Let M be an embedded submanifold of Rn with the Riemannian distance. Let f :
Rn →R be a lower semicontinuous function. Then the following statements are equivalent:
(i) f is locally Lipschitz near x on M;
(ii) ∂̂Rf is bounded in a neighborhood of x on M.

Smoothing function. We use the following definition of a smoothing function on Rn as in [59].
Definition 4. (Smoothing function). A function f̃(·, ·) :Rn ×R+ →R is called a smoothing

function of f :Rn →R, if f̃(·, µ) is continuously differentiable in Rn for any µ∈R++,

lim
z→x, µ↓0

f̃(z,µ) = f(x), (14)

and there exist a constant κ> 0 and a function ω :R++ →R++ such that

|f̃(x,µ)− f(x)| ≤ κω(µ) with lim
µ↓0

ω(µ) = 0. (15)
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In order to emphasize that µ is a smoothing parameter, we sometimes also write f̃(·, µ) as f̃µ(·) in
this paper.
Example 1. We use the absolute value function |t|, t ∈ R as an example to illustrate the

smoothing function. We can use the so-called uniform smoothing function

sµ(t) =

{
|t|, if |t| ≥ µ

2
t2

µ
+ µ

4
, if |t|< µ

2
,

(16)

with κ= 1
4
and ω(µ) = µ in (15).

We refer to [19] for more examples of smoothing functions. For the non-Lipschitz term |t|p where
0< p< 1, its smoothing function can be defined as (sµ(t))

p, with κ= (1
4
)p and ω(µ) = µp in (15).

3. Riemannian generalized subdifferentials and Riemannian gradient sub-consistency
In this section, we first discuss properties of several generalized subdifferentials. We then define and
discuss properties of Riemannian gradient sub-consistency of proper lower semicontinuous functions,
and related stationary points of (1). These concepts and properties play important roles in the
convergence analysis of our RSSD method in the next section. They also provide some basics for
minimizing a non-Lipschitz function on an embedded submanifold of Rn.

3.1. Riemannian generalized subdifferentials

Proposition 1. Let M be an embedded submanifold of Rn, x∈M, and f :Rn →R be a lower
semicontinuous function. Suppose R : TM→M is a retraction defined in Definition 1. Then
(i) ∂̂Rf(x) = ∂̂(f ◦Rx)(0x) and ∂Rf(x) = ∂(f ◦Rx)(0x).
(ii) v ∈ ∂̂Rf(x) if and only if v ∈TxM and the following holds

f ◦Rx(ηx)≥ f ◦Rx(0x)+ ⟨v, ηx⟩+ o(∥ηx∥), ∀ηx ∈TxM. (17)

Proof. Statement (i) for ∂̂Rf(x) holds, according to Theorem 4.3 of [4], Corollary 4.2 of [38],
Definition 1 for retraction R : TM→M, and Remark 1 that ∂̂Rf(x) in Definition 3 of this paper
and ∂F (x) given in Definition 3.1 of [38] are essentially the same. The equivalent characterization
of ∂̂Rf(x) in statement (ii) can be easily obtained from (i). □
Now we give the following proposition about Riemannian regular subdifferential that is useful

for computation and theoretical analysis; see the employment of Proposition 2 in equation (37) of
Example 4, in equation (39) of Remark 3, as well as in equations (34) and (52) in the proofs of
Theorem 2 and Theorem 3, respectively.

Proposition 2. Let M be an embedded submanifold of Rn, x∈M, and f :Rn →R be a lower
semicontinuous function. Then{

ProjTxM v | v ∈ ∂̂f(x)
}
⊆ ∂̂Rf(x). (18)

Proof. Using (10) in Definition 3, and the facts that M is a submanifold embedded in Rn and
h∈C1(Bx,δ), we have

gradh(x) = ProjTxM∇h(x),

where ProjTxM y denotes the projection of y ∈Rn onto TxM. Consequently,

∂̂Rf(x) = {ProjTxM∇h(x) | ∃ δ > 0 such that h∈C1(Bx,δ) and
f −h attains a local minimum at x on M}. (19)

Note that for any v ∈ ∂̂f(x), according to Lemma 1, there exists h ∈C1, such that f − h attains
a local minimum at x on Rn, which is sure to attain a local minimum at x on M⊆ Rn. This,
combining with (19), indicates that (18) holds. □
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Definition 5. A point x∈M is called a limiting stationary point of (1), if 0∈ ∂Rf(x).
According to Proposition 1 (ii), we know that if x̄ is a local minimizer of f on M, then 0∈ ∂̂Rf(x̄).

By Definition 3, we have ∂̂Rf(x̄)⊆ ∂Rf(x̄). Hence x̄ being a limiting stationary point of (1) is a
necessary condition of f achieving a local minimum at x̄ on M.
For a locally Lipschitz function f , x∈M is a Clarke stationary point of (1) if 0∈ ∂◦

Rf(x). The
Clarke stationary point of (1) is widely used in the nonsmooth but locally Lipschitz Riemannian
optimization literature [29, 30, 31, 32]. We show in the next proposition that a limiting stationary
point is a Clarke stationary point.

Proposition 3. Let M be an embedded submanifold of Rn, and let f : Rn → R be a locally
Lipschitz function near x∈M. Then ∂Rf(x)⊆ ∂◦

Rf(x).

Proof. The inclusion holds because

∂◦
Rf(x) = ∂◦(f ◦Rx)(0x)⊇ ∂(f ◦Rx)(0x) = ∂Rf(x).

The first equality is due to (9), which transforms the Riemannian Clarke subdifferential of f at x
to be the Clarke subdifferential of f ◦Rx at 0x on the Euclidean space TxM. The inclusion comes
from (5). The last equality is obtained from Proposition 1 (i). □
We use the following example to show that for f being a locally Lipschitz function on Rn and

M being an embedded submanifold of Rn, a Clarke stationary point is not necessarily a limiting
stationary point.
Example 2. Let us consider the Riemannian optimization problem

minf(x1, x2) :=
1

2
x2
1 −x1 − |x2|, x∈M (20)

where M= S1 := {x∈R2 | x⊤x= 1} is the unit circle, and f is locally Lipschitz in R2. Let x̄= (1,0)⊤,
and x̄ϵ = (

√
1− ϵ2, ϵ)⊤. It is clear that x̄ϵ → x̄ when ϵ→ 0, ∥x̄∥= ∥x̄ϵ∥= 1, and for any ϵ∈ (0,1),

f(x̄ϵ) =
1

2
(1− ϵ2)−

√
1− ϵ2 − ϵ

<
1

2
− (

√
1− ϵ2 + ϵ)

<
1

2
− 1 =−1

2
= f(x̄).

Hence x̄ is not a local minimizer of f on S1.
For M= S1, we know from [2] that

ProjTxM ξ = (I −xx⊤)ξ, TxM= {z | x⊤z = 0}, (21)

and for any xℓ ∈Ωf,R,

gradf(xℓ) = ProjTxℓ
M∇f(xℓ) = (I −xℓx

⊤
ℓ )∇f(xℓ).

By (8), we can calculate that

0∈ ∂◦
Rf(x̄) = {(0, t)⊤ | ∀t∈ [−1,1]},

which indicates that x̄ is a Clarke stationary point of (20).
Using Proposition 1 (ii), we know that ∂̂Rf(x̄) = ∅. Using Definition 3, and noting that there

exists a neighborhood Bx̄,δ for some δ > 0, such that f is continuously differentiable at any x̄ℓ ̸= x̄
in Bx̄,δ ∩S1, we have

0 ̸∈ ∂Rf(x̄) := {(0,1)⊤, (0,−1)⊤}.

Hence x̄ is not a limiting stationary point of (20).
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The algorithm proposed in this paper is related to the smoothing function f̃ that is employed. It
is natural that the convergence result also relates to f̃ . According to (3.7) of [59], given x∈Rn, the
subdifferential of f associated with f̃ at x on Rn is

Gf̃ (x) = {u∈Rn | ∇xf̃(zk, µk)→ u for some zk → x, µk ↓ 0}. (22)

We give the following definition for Riemannian subdifferential of f associated with f̃ at x on M.
Definition 6. Given x∈M, the Riemannian subdifferential of f associated with f̃ at x on M

is

Gf̃ ,R(x) = {v ∈TxM| grad f̃(zk, µk)→ v for some zk ∈M, zk → x, µk ↓ 0}. (23)

Remark 2. We require here u∈Gf̃ (x) and v ∈Gf̃ ,R(x) are vectors in the Euclidean space that
f is defined on, and their entries are finite, i.e., they are not ∞ or −∞. It is clear that if M is the
Euclidean space that f is defined on, then Gf̃ ,R(x) =Gf̃ (x).

Example 3. For the smoothing function f̃µ(t) = (sµ(t))
p of f(t) = |t|p with 0< p < 1, where

sµ(t) is the uniform smoothing function of |t| defined in (16), we have

s′µ(t) =

{
sign(t) if |t| ≥ µ

2
2t
µ

if |t|< µ
2

and [(sµ(t))
p]′ = p(sµ(t))

p−1s′µ(t).

Here sign(t) = 1 if t > 0, sign(t) = −1 if t < 0, and sign(t) = 0 otherwise. For an arbitrary real

number v ∈R, and an arbitrarily chosen sequence µk ↓ 0, let tk = aµk
2−p with a= 4p−1v

2p
. It is easy

to see that
lim
µk↓0

[(sµk
(tk))

p]′ = 2p41−pa= v.

Hence Gf̃ (0) = (−∞,∞). For any point t ̸= 0, we know that Gf̃ (t) = p|t|p−1sign(t).

Definition 7. A point x∈M is called a stationary point of (1) associated with f̃ , if 0∈Gf̃ ,R(x),
i.e.,

lim inf
z→x, z∈M, µ↓0

∥grad f̃(z,µ)∥= 0. (24)

The following result is an extension of Proposition 3.4 of [59] from Rn to an embedded submanifold
of Rn. The key ingredient for the generalization to Riemannian manifold is to show that the sequence
of the Riemannian gradients for the smoothing function has 0 as one of its accumulation points.

Theorem 1. Let M be an embedded submanifold of Rn. For any smoothing function f̃ of f as
defined in Definition 4, if x∗ ∈M is a local minimizer of f on M, then x∗ is a stationary point of
(1) associated with f̃ .

Proof. Since x∗ ∈M is a local minimizer of f on M, minima are preserved by composition with
diffeomorphisms (see, e.g., the proof of (2) ⇒ (1) in Proposition 2.2 of [5]), we then know that 0x∗
is a local minimizer of f̂ = f ◦Rx∗ on the tangent space Tx∗M. Hence there exists a neighborhood
B0x∗ ,δ of 0x∗ such that for any η ∈Tx∗M∩B0x∗ ,δ, it holds that f̂(0x∗)≤ f̂(η).

Let us denote f̂µ = f̃µ ◦Rx∗ for any fixed µ> 0. We have

f̂µ(0x∗) = f̃(x∗, µ) ≤ f(x∗)+κω(µ)
= f̂(0x∗)+κω(µ)
≤ f̂(η)+κω(µ) for any η ∈B0x∗ ,δ

= f(x)+κω(µ) for x=Rx∗(η)
≤ f̃(x,µ)+ 2κω(µ)
= f̂µ(η)+ 2κω(µ).
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Thus,

f̂µ(0x∗)≤ f̂µ(η)+ 2κω(µ), for any η ∈B0x∗ ,δ. (25)

For any ηz ∈Tx∗M∩B0x∗ ,δ, we define ηµ = 0x∗ +
√

ω(µ)ηz ∈Tx∗M∩B0x∗ ,δ for all µ sufficiently

small, and ηµ → 0x∗ as µ ↓ 0. Since f̂µ is continuously differentiable on Tx∗M, by Taylor’s expansion
we have

f̂µ(0x∗) = f̂µ(ηµ)+ ⟨grad f̂µ(ηµ),−
√

ω(µ)ηz⟩x∗ + o(
√
ω(µ)∥ηz∥). (26)

Substituting (26) into the left hand side of (25), and replacing η by ηµ with µ that is sufficiently
small, we get √

ω(µ)⟨grad f̂µ(ηµ),−ηz⟩x∗ + o(
√

ω(µ)∥ηz∥)≤ 2κω(µ).

Dividing both sides of the above inequality by
√

ω(µ), and taking the limit as µ ↓ 0, we get

limsup
µ↓0

⟨grad f̂µ(ηµ),−ηz⟩x∗ ≤ 0,

which implies that

lim inf
η→0x∗ , η∈Tx∗M, µ↓0

⟨grad f̂µ(η),−ηz⟩x∗ ≤ 0. (27)

Note that ηz ∈Tx∗M∩B0x∗ ,δ can be chosen arbitrarily. Let M be a d-dimensional embedded
submanifold of Rn. We can choose E :Rn →Tx∗M to be a linear bijection such that {E(ei)}di=1 is
an orthonormal basis of Tx∗M, where ei is the i-th unit vector (see, e.g., Section 2 of [56]). Then

grad f̂µ(η) =
d∑

i=1

λµ
i E(ei), (28)

for some λµ
i ∈R. Let us choose

η(i,1)
z = ϵiE(ei), η

(i,2)
z =−ϵiE(ei), for i= 1,2, . . . , d,

where ϵi > 0 is a sufficiently small constant such that η(i,1)
z , η(i,2)

z ∈B0x∗ ,δ. Substituting gradf̂µ(η) in
(27) by (28), and substituting ηz in (27) by η(i,1)

z and η(i,2)
z , respectively, we obtain

lim inf
µ↓0

−ϵiλ
µ
i ≥ 0, and lim inf

µ↓0
ϵiλ

µ
i ≥ 0.

The above two inequalities indicate
lim
µ↓0

λµ
i = 0.

Since i= 1,2, . . . , d can be chosen arbitrarily, the above equality holds for each i. Hence, we get

lim inf
η→0x∗ , η∈Tx∗M, µ↓0

∥grad f̂µ(η)∥= lim
µ↓0

∥
d∑

i=1

λµ
i E(ei)∥= 0. (29)

According to [2, Lemma 7.4.9, pp. 153], we know that for any constant τ > 1, there exist constants
δ̄ > 0 and d̄ > 0 such that for all ∥η∥ ≤ d̄ and x=Rx∗(η)∈Bx∗,δ̄ ∩M,

∥grad f̃(x,µ)∥= ∥grad f̃µ(Rx∗(η))∥ ≤ τ∥grad f̂µ(η)∥.

Here δ̄ and d̄ relate only to τ and the definitions of the retraction R and the Riemannian metric g of
M, which can be deduced from the proof of Lemma 7.4.9 of [2]. Taking the limit η→ 0x∗ , η ∈Tx∗M,
µ ↓ 0 to both sides of the above inequality and using (29), we get

lim inf
x→x∗, x∈M, µ↓0

∥grad f̃(x,µ)∥= 0,

and hence x∗ is a stationary point of (1) associated with f̃ as desired. □
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We will show in Section 4 that any accumulation point of the proposed RSSD method is a
stationary point of (1) associated with f̃ . We will also show in Section 4 that any accumulation
point of the proposed RSSD method is also a limiting stationary point of (1), provided f̃ satisfies
the Riemannian gradient sub-consistency (to be defined in the next subsection) at the accumulation
point.

3.2. Riemannian gradient sub-consistency Now we define the Riemannian gradient sub-
consistency of f̃ at x ∈M, which makes a connection between the Riemannian subdifferential
Gf̃ ,R(x) associated with f̃ and the Riemannian limiting subdifferential ∂Rf(x). The Riemannian
gradient sub-consistency is essential to show that any accumulation point of the RSSD method is a
limiting stationary point of (1). Hence when minimizing a nonsmooth but locally Lipschitz function
on M, the RSSD method has stronger convergence result than the existing methods that guarantee
any accumulation point is a Clarke stationary point of (1), e.g., ϵ-subgradient algorithm [29], line
search algorithms [30], Riemannian gradient sampling algorithm [32], and Riemannian proximal
gradient methods [34].
Definition 8. Given x ∈Rn, a smoothing function f̃ of the function f is said to satisfy the

gradient sub-consistency at x on Rn if

Gf̃ (x)⊆ ∂f(x). (30)

Given x∈M, f̃ is said to satisfy the Riemannian gradient sub-consistency at x on M if

Gf̃ ,R(x)⊆ ∂Rf(x). (31)

We say that f̃ satisfies the gradient sub-consistency on Rn if (30) holds for any x∈Rn, and that f̃
satisfies the Riemannian gradient sub-consistency on M if (31) holds for any x∈M.
Later we will show that if f is nonsmooth but locally Lipschitz near x on Rn, f̃ is a smoothing

function of f , and the gradient sub-consistency of the smoothing function f̃ at x on Rn holds, then
the Riemannian gradient sub-consistency of f̃ on M holds. Furthermore, we also provide in (35)
a Riemannian optimization problem that minimizing a non-Lipschitz function f on M. We show
that its smoothing function f̃ defined in (42) satisfies the Riemannian gradient sub-consistency on
M. It is worth mentioning that in numerical experiments of Section 5, both the problem (59) of
finding the sparsest vectors in a subspace, and the problem in (65) for sparsely-used orthogonal
complete dictionary learning using ℓp (0< p< 1) regularization are examples of the model (35).
If the inclusion is substituted by the equality in (30), then we say f̃ satisfies the gradient

consistency at x on Rn. If the inclusion is substituted by the equality in (31), then we say f̃ satisfies
the Riemannian gradient consistency at x on M. Clearly, the gradient consistency indicates the
gradient sub-consistency. The gradient consistency of f̃ on Rn has been well studied in smoothing
methods for nonsmooth optimization. For nonsmooth but locally Lipschitz function f , it has been
shown that the gradient consistency property on Rn holds for various smoothing functions in many
real applications [12, 13, 19, 55, 58].
The following theorem demonstrates that given an embedded submanifold M of Rn, x∈M, if

the gradient sub-consistency of f̃ at x on Rn holds, then the Riemannian gradient sub-consistency
of f̃ holds at x on M, provided that f is locally Lipschitz near x on Rn.

Theorem 2. Given an embedded submanifold M of Rn and a vector x∈M, let f be a locally
Lipschitz function near x on Rn, with f̃ being a smoothing function of f . If the gradient sub-
consistency of f̃ at x on Rn holds, then the Riemannian gradient sub-consistency of f̃ at x on M
holds.
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Proof. Let v ∈Gf̃ ,R(x). Note that Gf̃(x)⊆ ∂f(x) is bounded if f is a locally Lipschitz function
near x on Rn. Then there exist subsequences {xµk

} ⊂M, xµk
→ x, and {µk}, µk ↓ 0 as k→∞, and

a vector u∈Gf̃ (x) such that

u= lim
xµk→x, xµk∈M, µk↓0

∇xf̃(xµk
, µk), (32)

and

v = lim
xµk→x, xµk∈M, µk↓0

grad f̃(xµk
, µk)

= lim
xµk→x, xµk∈M, µk↓0

ProjTxµk
M∇xf̃(xµk

, µk),

= ProjTxM u. (33)

The last equality holds because

∥ProjTxµk
M∇xf̃(xµk

, µk)−ProjTxM u∥
≤ ∥ProjTxµk

M∇xf̃(xµk
, µk)−ProjTxµk

M u∥+ ∥ProjTxµk
M u−ProjTxM u∥

≤ ∥∇xf̃(xµk
, µk)−u∥+ ∥ProjTxµk

M u−ProjTxM u∥
→ 0,

as xµk
→ x, xµk

∈ M, µk ↓ 0. Here the second inequality comes from the fact that ProjTxµk
M

is nonexpansive. Moreover, ∥∇xf̃(xµk
, µk)−u∥→ 0 by (32), and ∥ProjTxµk

M u−ProjTxM u∥→ 0

because Proj : x→ProjTxM is continuously differentiable according to [11, Exercise 3.66, pp. 59].
Since the gradient sub-consistency at x on Rn holds, i.e., Gf̃ (x)⊆ ∂f(x), we know that u∈ ∂f(x).

By the definition of limiting subdifferential of f on Rn,

∃ uℓ ∈ ∂̂f(xℓ), (xℓ, f(xℓ)→ (x, f(x)) such that lim
ℓ→∞

uℓ = u.

By the characterization of Riemannian regular subdifferential in (18), we have

vℓ =ProjTxℓ
M uℓ ∈ ∂̂Rf(xℓ), (34)

and using the same arguments of proving (33), we have

lim
ℓ→∞

vℓ = lim
ℓ→∞

ProjTxℓ
M uℓ =ProjTxM u= v.

This implies v ∈ ∂Rf(x), and hence the smoothing function f̃ of f satisfies the Riemannian gradient
sub-consistency at x on M. □
Furthermore, we consider the following non-Lipschitz Riemannian minimization problem:

min
x∈M

f(x) := f̂(x)+λ
m∑
i=1

φ(|d⊤i x|), (35)

where f̂ is a continuously differentiable function, M is an embedded submanifold of Rn, 0 ̸= di ∈Rn,
i = 1, . . . ,m, are nonzero vectors, λ > 0 is a given constant, and φ : R+ → R+ is a nonsmooth
penalty function. The problem with M= Rn has been well investigated in [23], which includes
many widely used nonsmooth penalty functions φ in variable selection, image restoration, and
signal reconstruction.

If φ is nonsmooth but locally Lipschitz, it is easy to see that f is nonsmooth but locally Lipschitz.
In this case, its Riemannian gradient sub-consistency has been investigated in Theorem 2. Below
we only focus on φ that is not locally Lipschitz. Motivated by Assumption 1.1 in [23], we require φ
to satisfy the following assumption.
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Assumption 1. The function φ :R+ →R+ is continuous at 0 with φ(0) = 0, φ′(0+) =∞, and
φ is nonsmooth but locally Lipschitz in (0,∞).

For instance, the bridge penalty φ1 used in [20, 22, 23, 24], the log penalty φ2 [23], and the
penalty φ3 used in [44]

φ1(t) = tp, φ2(t) = log(αtp +1), φ3(t) =min{tp,1}, for some 0< p< 1, α > 0, (36)

are not locally Lipschitz functions on R+ := {t∈R | t≥ 0} that satisfy Assumption 1. If the objective
function f is not locally Lipschitz on Rn, it may also be not locally Lipschitz on M as well (see the
following example).
Example 4. Let us consider M= S1 which is the unit circle as in Example 2, x̄= (

√
2
2
,−

√
2
2
)⊤,

and
f(x) = |x1 −x2|

1
2 + |x1 +x2|

1
2 .

For each γ > 0, let us define

hγ(x) := |x1 −x2|
1
2 + γ(x1 +x2), and δγ :=

1

2γ2
> 0.

Then it is clear that f(x̄)−hγ(x̄) = 0, and we claim that

f(x)−hγ(x) = |x1 +x2|
1
2 − γ(x1 +x2)≥ 0, for any x∈Bx̄,δγ .

To see this, note that for any x∈Bx̄,δγ , if x1+x2 ≤ 0, then it is obvious that f(x)−hγ(x)≥ 0. We
then only need to consider x∈Bx̄,δγ and x1 +x2 > 0. In this case, f(x)−hγ(x)≥ 0 is equivalent to

(x1 +x2)
1
2 ≥ γ(x1 +x2),

that is, (x1 +x2)
1
2 ≤ 1

γ
. In view of x∈Bx̄,δγ , we know that

max{|x1 − x̄1|, |x2 − x̄2|} ≤
√

(x1 − x̄1)2 +(x2 − x̄2)2 ≤
1

2γ2
,

which indicates

x1 +x2 = (x1 − x̄1)+ (x2 − x̄2)≤
1

γ2
,

and consequently (x1 +x2)
1
2 ≤ 1

γ
. Thus f(x)−hγ(x)≥ 0 also holds in this case.

Therefore, f −hγ attains minimum at x̄ in a neighborhood Bx̄,δγ of x̄. According to Lemma 1,
we have for any γ > 0,

vγ =∇hγ(x̄) =
1

2 4
√
2

(
1
−1

)
+ γ

(
1
1

)
∈ ∂̂f(x̄).

Thus according to (21) and Proposition 2, we find for any γ > 0,

uγ = ProjTx̄M vγ = (I − x̄x̄⊤)vγ

=
1

2

(
1 1
1 1

)
vγ = γ

(
1
1

)
∈ ∂̂Rf(x̄). (37)

It is easy to see that ∥uγ∥ →∞ as γ →∞. In view of Lemma 2, we know that f is not locally
Lipschitz on S1.
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Remark 3. We consider a general embedded submanifold M of Rn. Let x̄∈M, and

Ix̄ = {i∈ {1, . . . ,m} | d⊤i x̄ ̸= 0} and Jx̄ = {i∈ {1, . . . ,m} | d⊤i x̄= 0}. (38)

Assume Jx̄ ̸= ∅. Now we consider the model (35) with φ=φ1. Using arguments similar to that in
the above simple example, we choose an arbitrary i0 ∈ Jx̄ and let

hγ(x) = f̂(x)+h1(x)+h2,γ(x),

where

h1(x) = λ
∑
i∈Ix̄

|d⊤i x|p, h2,γ(x) = λγd⊤i0x for any γ > 0.

It is easy to see that f −hγ attains local minimum in a neighborhood Bx̄,δγ for a positive constant

δγ , and f(x̄) = hγ(x̄). Hence by Lemma 1 we have ∇hγ(x̄)∈ ∂̂f(x̄), and consequently by Proposition
2, we find

uγ =ProjTx̄M∇hγ(x̄)∈ ∂̂Rf(x̄). (39)

As long as there exists a point x̄∈M such that ProjTx̄M∇h2,γ(x̄) ̸=0, since γ > 0 can be chosen
arbitrarily large, we can conclude that f is not locally Lipschitz on M according to Lemma 2.
For instance, if M is the unit sphere in Rn:

Sn−1 = {x∈Rn | ∥x∥= 1}, (40)

then as d⊤i0 x̄= 0, we have

ProjTx̄M∇h2,γ(x̄) = (I − x̄x̄⊤)λγdi0 = λγdi0 ̸= 0. (41)

Hence f is not locally Lipschitz on M.
Many applications can be formulated in the form of (35), such as finding the sparsest vectors in

a subspace, and the sparsely-used orthogonal complete dictionary learning that will be discussed
later in Section 5.
Let s̃µ(t) be a smoothing function of |t|, φ̃ be a smoothing function of φ satisfying Definition 4,

and the function

f̃(x,µ) = f̂(x)+λ
m∑
i=1

φ̃(s̃µ(d
⊤
i x), µ) (42)

be a smoothing function of f defined in (35). For instance, for φ=φ1 and φ=φ2 in (36), we can
choose

φ̃(t,µ) =φ(t),

and for φ3, we can use

φ̃3(t,µ) =

{
tp − (tp − 1)+ if |tp − 1| ≥ µ

2

tp −
(

(tp−1)2

2µ
+ tp−1

2
+ µ

8

)
if |tp − 1|< µ

2
.

Theorem 3. The smoothing function f̃ that is constructed in (42) for the non-Lipschitz objective
function f in (35) satisfies the Riemannian gradient sub-consistency on M.
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Proof. For an arbitrary x ∈ Rn, let the index sets Ix and Jx be defined in (38) with x̄ being
replaced by x. Let DJx be the matrix whose columns are di, i∈ Jx, i.e.,

DJx = (di)i∈Jx ∈Rn×|Jx|, (43)

with |Jx| being the cardinality of the index set Jx.
If Jx = ∅, then f is locally Lipschitz near x on Rn. It is clear that f̃ satisfies the gradient

sub-consistency at x on Rn. Thus f̃ satisfies the Riemannian gradient sub-consistency at x on M
as shown in Theorem 2.
Otherwise Jx ̸= ∅. Define

f1(z) := λ
∑
i∈Ix

φ(|d⊤i z|), and f2(z) := λ
∑
i∈Jx

φ(|d⊤i z|),

f̃1(z,µ) := λ
∑
i∈Ix

φ̃(s̃µ(d
⊤
i z), µ), and f̃2(z,µ) := λ

∑
i∈Jx

φ̃(s̃µ(d
⊤
i z), µ).

Clearly

λ
m∑
i=1

φ(|d⊤i z|) = f1(z)+ f2(z), and f̃(z,µ) = f̂(z)+ f̃1(z,µ)+ f̃2(z,µ).

It is clear that

∇xf̃(zk, µk) =∇f̂(zk)+∇xf̃1(zk, µk)+∇xf̃2(zk, µk), (44)

and

lim
k→∞

∇f̂(zk) =∇f̂(x) and lim
k→∞

∇xf̃1(zk, µk) =∇f1(x). (45)

By direct computation,

∇xf̃2(zk, µk) =
∑
i∈Jx

φ̃′(sµk
(d⊤i zk), µk)s

′
µk
(d⊤i zk)di =DJxuk, (46)

where

uk := uk(zk, µk) =
(
φ̃′(sµk

(d⊤i zk), µk)s
′
µk
(d⊤i zk)

)
i∈Jx

∈R|Jx|.

Let v ∈Gf̃ ,R(x). Then there exist infinite sequences {zk} ⊂M, zk → x, and {µk}, µk ↓ 0 as k→∞
such that

v = lim
zk→x, zk∈M, µk↓0

grad f̃(zk, µk)

= lim
zk→x, zk∈M, µk↓0

ProjTzk
M∇xf̃(zk, µk). (47)

For any g1k, g
2
k ∈Rn, it is easy to see that∥∥∥ProjTzk

M g2k

∥∥∥−∥∥∥ProjTzk
M(g1k + g2k)

∥∥∥
≤
∥∥∥ProjTzk

M(g1k + g2k)−ProjTzk
M g2k

∥∥∥≤
∥∥g1k∥∥ ,

which implies ∥∥∥ProjTzk
M g2k

∥∥∥≤
∥∥∥ProjTzk

M(g1k + g2k)
∥∥∥+∥∥g1k∥∥ . (48)
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By substituting g1k =∇f̂(zk)+∇xf̃1(zk, µk) and g2k =∇xf̃2(zk, µk) into (48), we have∥∥∥ProjTzk
M∇xf̃2(zk, µk)

∥∥∥≤
∥∥∥ProjTzk

M∇xf̃(zk, µk)
∥∥∥+∥∥∥∇f̂(zk)+∇xf̃1(zk, µk)

∥∥∥ .
The two terms on the right-hand side of the above inequality are bounded by noting (47) and (45).
Thus {∥∥∥ProjTzk

M∇xf̃2(zk, µk)
∥∥∥} is bounded. (49)

We can write

DJxuk = b1k + b2k, where b1k ∈TzkM, b2k ∈ (TzkM)⊥; (50)

∇f̂(zk)+∇xf̃1(zk, µk) = a1
k + a2

k, where a1
k ∈TzkM, a2

k ∈ (TzkM)⊥. (51)

Here (TzkM)⊥ is the orthogonal complement of TzkM. By (49) and (46), we know that {b1k} is
bounded.

Let r= rank(DJx) be the rank ofDJx and Range(DJx) be the range ofDJx . Let {j1, j2, . . . , jr} ⊆ Jx

such that {dji , i= 1,2 . . . , r} constitutes a basis for Range(DJx). We define ξi = dji , i= 1,2 . . . , r.
If r < n, we can find ξi ∈Rn, i= r+1, . . . , n, such that {ξ1, ξ2, . . . , ξn} constitutes a basis for Rn.
Let us define the matrix Ξ=

(
ξ1, ξ2, . . . , ξn

)
∈Rn×n that is invertible. Then the linear system with

unknown vector w

Ξw= b1k

is consistent, and has a unique solution wk =Ξ−1b1k. It is clear that {wk} is bounded.
Let K̄ ⊆K be an infinite sequence such that limk→∞, k∈K̄ wk = w̄. By using (50) and (51), we get

ProjTzk
M∇xf̃(zk, µk) = ProjTzk

M(∇f̂(zk)+∇xf̃1(zk, µk)+DJxuk)

= ProjTzk
M(a1

k + a2
k + b1k + b2k)

= ProjTzk
M(a1

k + b1k) = a1
k + b1k.

Consequently,

v = lim
zk→x, zk∈M, µk↓0

ProjTzk
M∇xf̃(zk, µk)

= lim
k→∞, k∈K̄

(a1
k + b1k)

= lim
zk→x, zk∈M, µk↓0, k∈K̄

ProjTzk
M

(
∇f̂(zk)+∇xf̃1(zk, µk)+Ξwk

)
= ProjTxM

(
∇f̂(x)+∇f1(x)+Ξw̄

)
,

where the last equality can be obtained using the arguments for (33).
We now define the function

h̄(z) = f̂(z)+ f1(z)+
r∑

i=1

w̄id
T
ji
z+

n∑
i=r+1

w̄iξ
T
i (z−x).

It is then easy to check that there exists a neighborhood Bx,δ for some δ > 0 such that h̄(z)≤ f(z)
with h̄(x) = f(x), and ∇h̄(x) =∇f̂(x)+∇f1(x)+Ξw̄. Then by Lemma 1, ∇h̄(x)∈ ∂̂f(x). Hence

v=ProjTxM

(
∇f̂(x)+∇f1(x)+Ξw̄

)
∈ ∂̂Rf(x)⊆ ∂Rf(x), (52)

which indicates that f̃ satisfies the Riemannian gradient sub-consistency at x on M in this case.
Since x∈M is arbitrary, we have that f̃ satisfies the Riemannian gradient sub-consistency on

M as desired. □
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At the end of this section, we make clear the relation between the set of limiting stationary points
defined in Definition 5

Sl = {x∗ ∈M | 0∈ ∂Rf(x
∗)},

and that of stationary points associated with f̃ defined in Definition 7

Sf̃ = {x∗ ∈M | 0∈Gf̃ ,R(x
∗)}.

Any local minimizer of the Riemannian optimization problem (1) lies in both sets. If the Riemannian
gradient sub-consistency holds on M, i.e., Gf̃ ,R(x

∗)⊆ ∂Rf(x
∗) for any x∗ ∈M, then Sf̃ ⊆ Sl.

4. Riemannian smoothing steepest descent method In this section, we present our RSSD
method for solving the Riemannian optimization problem (1), which is detailed in Algorithm 1.
The objective function in (1) is allowed to be non-Lipschitz on M. We always assume there exists
at least one global optimal solution of (1).

Algorithm 1 Riemannian smoothing steepest descent (RSSD) method for solving (1)

1: Input: x0 ∈M, δopt ≥ 0, δ0 > 0, µopt ≥ 0, µ0 > 0, σ ∈ (0,1), β ∈ (0,1), ᾱ > 0, θδ ∈ (0,1), θµ ∈ (0,1).

2: for ℓ= 0,1,2, . . . do
3: Compute ηℓ =−grad f̃(xℓ, µℓ).
4: if ∥ηℓ∥ ≤ δopt and µℓ ≤ µopt then
5: return
6: else if ∥ηℓ∥ ≤ δℓ then
7: µℓ+1 := θµµℓ, δℓ+1 := θδδℓ,
8: xℓ+1 := xℓ.
9: else

10: µℓ+1 = µℓ, δℓ+1 = δℓ.
11: Find tℓ := βmℓᾱ where mℓ is the smallest integer such that

f̃(Rxℓ(β
mℓᾱηℓ), µℓ)≤ f̃(xℓ, µℓ)−σβmℓᾱ∥grad f̃(xℓ, µℓ)∥2. (53)

12: Set xℓ+1 :=Rxℓ(tℓηℓ).
13: end if
14: end for

A few remarks for Algorithm 1 are in order. First, the line search (53) is well defined and tℓ can
be found in finite trials. To see this, note that for fixed µℓ, f̃(·, µℓ) is continuously differentiable.
Clearly, we have

lim
t↓0

f̃µℓ
◦Rxℓ(tηℓ)− f̃µℓ

◦Rxℓ(0xℓ)

t
= (f̃µℓ

◦Rxℓ)
′(0xℓ , ηℓ) = ⟨grad f̃(xℓ, µℓ), ηℓ⟩.

Note that ηℓ =−grad f̃(xℓ, µℓ). Thus there exists α> 0 such that for all t∈ (0, α),

f̃µℓ
◦Rxℓ(tηℓ)≤ f̃µℓ

◦Rxℓ(0xℓ)− tσ∥grad f̃(xℓ, µℓ)∥2.

This guarantees that the line search step (53) is well defined.
The following result is an extension of Theorem 3.5 together with Remark 3.2 of [59]. The key

ingredient for the extension is to show that the index set K related to the Riemannian gradient of
the smoothing function defined in Theorem 4 is an infinite set.
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Theorem 4. Let K = {ℓ | ∥ηℓ∥ ≤ δℓ} and {xℓ} be an infinite sequence generated by Algorithm 1
with δopt = µopt = 0. Then the following statements hold.
(i) Any accumulation point x∗ of {xℓ}ℓ∈K is a stationary point of (1) associated with f̃ .
(ii) In addition, if f̃ satisfies the Riemannian gradient sub-consistency at x∗ on M, then x∗ is a

limiting stationary point of (1).

Proof. We first claim that if there exists an accumulation point x∗ ∈M, then K is an infinite
set, and

lim
ℓ→∞, ℓ∈K

δℓ = 0 and lim
ℓ→∞, ℓ∈K

µℓ = 0. (54)

Suppose on the contrary that K is a finite set. This means there exists ℓ̄ such that for all ℓ≥ ℓ̄,

δℓ ≡ δℓ̄, µℓ ≡ µℓ̄,

and

ηℓ =−grad f̃(xℓ, µℓ̄), ∥ηℓ∥> δℓ̄ > 0. (55)

Therefore, for ℓ≥ ℓ̄, we have xℓ+1 =Rxℓ(tℓηℓ), where tℓ is obtained by using the line search (53)
with fixed µℓ̄. Then Algorithm 1 becomes a Riemannian steepest descent method for minimizing
a smooth function f̃(·, µℓ̄) on M. According to Theorem 4.3.1 of [2], we have grad f̃(x∗, µℓ̄) = 0,
which contradicts (55). Therefore, K is an infinite set. Note that for each ℓ∈K, we have

µℓ+1 = θµµℓ and δℓ+1 = θδδℓ

with decaying factors θµ ∈ (0,1) and θδ ∈ (0,1). This, together with K being an infinite set, yields
(54) as desired.

By Algorithm 1, we have

lim
ℓ→∞, ℓ∈K

∥grad f̃(xℓ, µℓ)∥= lim
ℓ→∞, ℓ∈K

∥ηℓ∥ ≤ lim
ℓ→∞, ℓ∈K

δℓ = 0.

Let Ǩ be a subsequence of K such that limℓ→∞, ℓ∈Ǩ xℓ = x∗. The completeness of M guarantees
that x∗ ∈M. Thus

lim inf
x→x∗, x∈M, µ↓0

∥gradf̃(x,µ)∥= 0, and 0∈Gf̃ ,R(x
∗).

Hence x∗ is a stationary point of (1) associated with f̃ . That is, statement (i) holds.
In addition, if f̃ satisfies the Riemannian gradient sub-consistency at x∗ on M, then we know

Gf̃ ,R(x
∗) ⊆ ∂Rf(x

∗). Thus we find 0 ∈ ∂Rf(x
∗). Hence x∗ is a limiting stationary point of (1).

Consequently statement (ii) holds. □

The sequence {xℓ} generated by Algorithm 1 is guaranteed to have an accumulation point, if the
following assumption holds.

Assumption 2. For any µ̄∈ (0, µ0] and any given vector x̄∈M, the level set Lx̄,µ̄ = {x∈M |
f̃(x, µ̄)≤ f̃(x̄, µ̄)} is compact.

Assumption 2 holds if M is compact. Assumption 2 also holds if f is coercive in Rn, i.e.,
|f(x)| →∞ if ∥x∥→∞, because for an arbitrary µ̄∈ (0, µ0] and an arbitrary given vector x̄∈M,
by using Definition 4 for smoothing function, x∈Lx̄,µ̄ implies that

f(x)≤ f(x̄)+ 2κω(µ̄),
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which, together with the coercivity of f , yields that Lx̄,µ̄ is compact.

Next, we explain how the RSSD method can be considered as an extension of the smoothing
steepest descent method from Rn to an embedded submanifold of Rn in the following remark. Here
the smoothing steepest descent method comes from Algorithm 3.1 and Remark 3.2 of [59]. To be
specific, we set Ω=Rn in Algorithm 3.1 of [59], and substitute “the active set method in Algorithm
2.1” in Algorithm 3.1 [59] by the well-known “steepest descent method with Armijo line search”;
see, e.g., subsection 1.2 of [7]. Then we get the smoothing steepest descent method on Rn.
Remark 4. When M=Rn, let us set the parameters in our RSSD method to be

θµ = θδ = ζ, δ0 = γ̂µ0,

where ζ and γ̂ are the parameters in the smoothing steepest descent method on Rn. On the other
hand, for the smoothing steepest descent method on Rn, let us set n1 = 1, choose the steepset
descent method with Armijo line search to be the same as (53) in our RSSD method, and

µk+1 = ζµk.

Then from the same initial point x0, the sequence {x0, xℓ}ℓ∈K where K = {ℓ | ∥ηℓ∥ ≤ δℓ} generated
by our RSSD method coincides with the sequence generated by the smoothing steepest descent
method.

In computation, we do not set µopt = δopt = 0, but instead set them to be small positive real
numbers. For instance, we can set µopt = δopt = ϵ for a given small positive real number ϵ. Then we
expect to get an ϵ-approximate stationary point x̂ of (1) associated with f̃ defined as follows, by
implementing Algorithm 1.
Definition 9. We say that x̂∈M is an ϵ-approximate stationary point of (1) associated with

f̃ , if

µ≤ ϵ and ∥grad f̃(x̂, µ)∥ ≤ ϵ. (56)

This definition of an ϵ-approximate stationary point of (1) associated with f̃ is motivated by [28],
where smoothing direct-search methods in nonsmooth optimization on Rn have been developed to
obtain an ϵ-approximate solution.

Theorem 5 below is novel even when M=Rn. It has not been considered before for the smoothing
steepest descent method in Rn.

Theorem 5. Under Assumption 2, after finite iterations, Algorithm 1 with µopt = δopt = ϵ will
reach an iterate point that is an ϵ-approximate stationary point of (1) with respect to f̃ .

Proof. Let θ=max{θµ, θδ}, and

nK :=

⌈
max

{
logθ

ϵ

µ0

, logθ
ϵ

∥η0∥
,1

}⌉
.

Here ⌈r⌉ refers to the smallest integer that is no less than the real number r.
We then have

θnKµ0 ≤ ϵ and θnK∥η0∥ ≤ ϵ.

Let us denote Kϵ = {k1, k2, . . . , knK
} where ki <kj for 1≤ i < j ≤ nK such that Kϵ contains the first

nK elements that satisfy ∥ηki∥ ≤ δki . Thus

µknK
≤ θnKµ0 ≤ ϵ and θknK

≤ θnK∥η0∥ ≤ ϵ,
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and we get the iterate point xnK
as an ϵ-approximate stationary point of (1) associated with f̃ .

From iterations xki to xki+1
for 1≤ i≤ nK − 1, the smoothing parameter keeps the same as µki

and Algorithm 1 performs the iterates of the Riemannian steepest descent method for minimizing
the smooth function f̃(x,µki) on M. According to Corollary 4.3.2 of [2],

lim
ℓ→∞

∥grad f̃(xℓ, µki)∥= 0.

This implies that after a finite number of steps (say ℓ̂i), we will get ∥ηki+ℓ̂i
∥= ∥grad f̃(xki+ℓ̂i , µki)∥ ≤

δki . Hence after

knK
=

nK−1∑
i=1

ℓ̂i

steps, we will get an ϵ-approximate stationary point of (1) associated with f̃ as desired. □
Remark 5. Complexity for non-Lipschitz optimization in Rn has been investigated in [8, 9,

19, 20]. In [20], it is shown that solving a non-Lipschitz optimization problem is strongly NP-hard.
In [8, 9], a smoothing sequential quadratic regularization (SSQR) algorithm was proposed for
solving non-Lipschitz optimization. The worst-case iteration complexity of the SSQR algorithm for
finding an ϵ affine-scaled stationary point is O(ϵ−2). It is worth mentioning that the construction
of a special strongly convex quadratic minimization problem, and a special rule for updating the
smoothing parameter at each iteration are essential to show the worst-case complexity in [8, 9].
New techniques need to be developed to obtain the iteration complexity of our RSSD method for
Riemannian non-Lipschitz optimization and we leave it as a future work.

5. Numerical experiments In this section, we apply our RSSD method (Algorithm 1) to solve
two problems: finding the sparsest vectors in a subspace (FSV), and the sparsely-used orthogonal
complete dictionary learning problem (ODL). A notebook with 1.80GHz CPU and 16GB of RAM
is used for the numerical experiments. We implement Algorithm 1 in MATLAB (version R2018b).

5.1. Finding the sparsest vectors in a subspace The FSV problem seeks the sparsest
vectors in an n-dimensional linear subspace W ⊂ Rm (m > n). This problem has been studied
recently and it finds interesting applications and connection with sparse dictionary learning, sparse
PCA, and many other problems in signal processing and machine learning [45, 46]. This problem is
also known as dual principal component pursuit and finds applications in robust subspace recovery
[51, 63]. Let Q∈Rm×n denote a matrix whose columns form an orthonormal basis of W . The FSV
problem can be formulated as

min ∥Qx∥0, s.t. x∈ Sn−1, (57)

where Sn−1 is the unit sphere, and ∥z∥0 counts the number of nonzero entries of z. Because of the
combinatorial nature of the cardinality function ∥ · ∥0, (57) is very difficult to solve in practice. In
the literature, people have been focusing on its ℓ1 norm relaxation given below [46, 45, 51, 63]:

min ∥Qx∥1, s.t. x∈ Sn−1, (58)

where ∥z∥1 :=
∑

i |zi| is the ℓ1 norm of vector z. Many algorithms have been proposed for solving
(58), including the Riemannian gradient sampling algorithm [32], projected subgradient method
[62], Riemannian subgradient method [41], manifold proximal point algorithm [15] and so on.
Moreover, for the compressive sensing problems that have the same objective functions as (57)

and (58), people have found that using the ℓp quasi-norm ∥z∥pp :=
∑

i |zi|p (0< p < 1) to replace
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∥z∥1 can help to promote the sparsity of z [14, 27, 20, 24, 42, 43]. Motivated by this, we propose
the following ℓp (0< p< 1) minimization model for the FSV problem:

min f(x) := ∥Qx∥pp, s.t. x∈ Sn−1. (59)

We will illustrate that comparing with (58), (59) with proper choices of 0< p < 1 is a better
approximation to (57). To this end, we construct a simple example below for which the global
minimizers of the Riemannian ℓ0 model are known ahead of time.

Let V = [v1,v2, . . . ,v5]∈R35×5 be a matrix, whose columns have 5,6,7,8, and 9 nonzero entries
sequentially, and each nonzero entry of the column is the only nonzero entry in its row. Specifically,
the nonzero entries of V are

V (1 : 5,1) = ( 10 20 30 40 50 )T ;
V (6 : 11,2) = ( 11 21 31 41 51 61 )T ;
V (12 : 18,3) = ( 12 22 32 42 52 62 72 )T ;
V (19 : 26,4) = ( 13 23 33 43 53 63 73 83 )T ;
V (27 : 35,5) = ( 14 24 34 44 54 64 74 84 94 )T .

Let the linear space W be the span of column vectors of V , and let Q= [q1,q2, . . . ,q5]∈R35×5 be a
matrix where qj =

vj

∥vj∥
for j = 1, . . . ,5. Clearly the columns of the matrix Q form an orthonormal

basis of W .
Denote by ei ∈R5 the i-th column of the identity matrix for i= 1, . . . ,5. It is then easy to see that

for the Riemannian ℓ0 model, the sparsest vector in the linear space W has five nonzero entries and
±e1 are the only two global minimizers, and ±ei, i=2,3,4,5 are local minimizers corresponding
to vectors ±Qei ∈R35 in the linear space W with 6,7,8,9 nonzero entries, respectively. By direct
computation, we list in Table 1 the objective values at ±ei for i= 1, . . . ,5 for the three models,
respectively.

Table 1. Objective values of the three models at ±ei, i= 1, . . . ,5

i= 1 i= 2 i= 3 i= 4 i= 5

∥Q(±ei)∥0 5 6 7 8 9

∥Q(±ei)∥1 2.2361 2.2014 2.0473 1.9385 1.8631

∥Q(±ei)∥pp, p= 0.1 4.6134 5.3531 5.8989 6.3284 6.6766

∥Q(±ei)∥pp, p= 0.01 4.9599 5.9310 6.8764 7.8018 8.7088

∥Q(±ei)∥pp, p= 0.001 4.9960 5.9931 6.9875 7.9798 8.9702

It is obvious that ±e1 are not global minimizers of the Riemannian ℓ1 model, and ∥Q(±e5)∥1
achieves the lowest values among the five objective values. For p= 0.1,0.01,0.001, we find that ±e1
achieve the lowest objective values among ±ei, i= 1, . . . ,5. In view of the facts that each entry of Q
is nonnegative and each nonzero entry of the column of Q is the only nonzero entry in its row, we
know that Qei ≥ 0, i= 1, . . . ,5, and there is no index j̄ such that

(Qei1)j̄ > 0 and (Qei2)j̄ > 0, ∀ i1 ̸= i2, i1, i2 ∈ {1, . . . ,5}.

For any x∈ S4, we have x=
∑5

i=1 xiei,
∑5

i=1 x
2
i =1, and |xi| ≥ x2

i for i=1, . . . ,5. It is easy to see
that

|Qx|= |
5∑

i=1

xiQei|=
5∑

i=1

|xi|Qei ≥
5∑

i=1

x2
iQei,
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and consequently

∥Qx∥pp = ∥|Qx|∥pp ≥ ∥
5∑

i=1

x2
iQei∥pp

≥
5∑

i=1

x2
i ∥Qei∥pp ≥

5∑
i=1

x2
i ∥Qe1∥pp = ∥Qe1∥pp,

where the second inequality is obtained from the concavity of ∥ · ∥pp for 0< p< 1. Therefore, ±e1

are the global minimizers of the Riemannian ℓp model for p= 0.1,0.01,0.001, which coincide to
the global minimizers of the original Riemannian ℓ0 model. Moreover, the objective values at ±ei,
i= 1, . . . ,5 for the Riemannian ℓp model keep increasing for i as that for the Riemannian ℓ0 model.

There exists at least one nonzero row of Q, say q̂⊤i0 , and there exists a vector x̂∈ Sn−1 such that
q̂⊤i0 x̂= 0. Then by the same arguments as in Remark 2, the objective function in (59) is not locally
Lipschitz on Sn−1. Hence algorithms proposed in [32, 62, 41, 15] for solving (58) do not apply to
(59). We propose to solve (59) using our RSSD method. We also use the proposed RSSD method to
solve the Riemannian ℓ1 norm minimization problem (58). Now we show the details below.
According to [2], the tangent space at x∈ Sn−1 is

TxS
n−1 := {z ∈Rn | x⊤z = 0},

and the projection of ξ ∈Rn onto the tangent space TxS
n−1 is

ProjTxSn−1 ξ = (I −xx⊤)ξ.

In our RSSD algorithm, we use Rx(ξ) = (x+ ξ)/∥x+ ξ∥ as the retraction function. We use the
following smoothing function for (59):

f̃(x,µ) =
m∑
i=1

[sµ((Qx)i)]
p, (60)

where sµ(t) is the uniform smoothing function for |t| defined in (16).
The parameters of our RSSD method are set as

µ0 = 1, δ0 = 0.1, θµ = 0.5, θδ = 0.5. (61)

We choose 50 initial points x0 from normally distributed random vectors, using MATLAB code

randn(′state′, j);x0 = randn(n,1);x0 = x0/norm(x0),

for j = 1, . . . ,50.
For each instance, we terminate it when the CPU time reaches 50 seconds and find that all the

50 computed solutions fall in {±ei, i= 1, . . . ,5} corresponding to p= 0.1,0.01,0.001. The CPU time
is measured with MATLAB command “cputime”. Here we say x̂ fall in {±ei} for i= 1, . . . ,5, if

gap(x̂,±ei) =min{∥x̂− ei∥,∥x̂+ ei∥} ≤ 10−8. (62)

We record in Table 2 the frequencies of the computed solutions that fall in {±ei, i= 1, . . . ,5},
respectively. We can conclude that the Riemannian ℓp model with p=0.001 succeeds to find the
true global minimizers of the original Riemannian ℓ0 model 10 times from the 50 initial points. In
contrast, the Riemannian ℓ1 minimization model does not find the true global minimizers from the
50 initial points.
This example demonstrates that there indeed exists a problem for which the Riemannian ℓ1

model fails to find the sparsest vector in a subspace, while the Riemannian ℓp model with suitable
0< p< 1 can find the sparsest vector in a subspace. Hence it is useful to develop an algorithm for
solving Riemannian non-Lipschitz optimization with rigorous convergence result. This is the main
motivation of this paper.
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Table 2. Frequencies of the computed solutions that fall in ±ei, i = 1, . . . ,5 from the 50 initial points, using
Riemannian ℓ1 model and Riemannian ℓp model, respectively.

±e1 ±e2 ±e3 ±e4 ±e5

ℓ1 model 0 4 15 10 21

ℓp model, p= 0.1 1 4 16 9 20

ℓp model, p= 0.01 6 5 14 8 17

ℓp model, p= 0.001 10 9 10 5 16

5.2. Sparsely-used orthogonal complete dictionary learning Given a set of data Y =
[y1,y2, . . . ,ym] ∈ Rn×m, the sparsely-used orthogonal complete dictionary learning (ODL) seeks
a dictionary that can sparsely represent Y . More specifically, ODL seeks an orthogonal matrix
X = [x1,x2, . . . ,xn] ∈ Rn×n and a sparse matrix S ∈ Rn×m such that Y ≈XS. The matrix X is
called an orthogonal dictionary. We refer to [50] for more details of this model. This problem can
be modeled as the Riemannian ℓ0 minimization problem [49]:

min
1

m

m∑
i=1

∥y⊤
i X∥0, s.t. X ∈ St(n,n), (63)

where St(n,n) = {X ∈Rn×n | X⊤X = In} is the orthogonal group, which is a special case of the
Steifel manifold. To overcome the computational difficulty of the Riemannian ℓ0 minimization
model, the ℓ0 term is usually replaced by the ℓ1 norm in the literature, which leads to the following
Riemannian ℓ1 minimization problem for ODL [49, 50]:

min
1

m

m∑
i=1

∥y⊤
i X∥1, s.t. X ∈ St(n,n). (64)

Here we again consider the Riemannian ℓp (0< p< 1) quasi-norm minimization model

min
1

m

m∑
i=1

∥y⊤
i X∥pp, s.t. X ∈ St(n,n), (65)

and apply the RSSD method to solve it. We now specify the details. The tangent space of the
Stiefel manifold St(n,n) is

TXSt := {ξ ∈Rn×n : ξ⊤X +X⊤ξ = 0}.

The projection of Z ∈Rn×n onto the tangent space TXSt(n,n) is

ProjTXStZ =Z − 1

2
X(X⊤Z +Z⊤X). (66)

We use the QR factorization as the retraction on the Stiefel manifold, which is given by RX(ξ) =
qf(X + ξ). Here qf(A) denotes the Q factor of the QR decomposition of A.
In [41], Li et al. proposed a Riemannian subgradient method and its variants – Riemannian

incremental subgradient method and Riemannian stochastic subgradient method – for solving
the Riemannian ℓ1 minimization problem (64). In this section, we use our RSSD to solve the
Riemannian ℓp minimization model (65) with p= 0.001, and compare its performance with the
algorithms proposed in [41] for solving (64). We thus generate the synthetic data for ODL in a similar
manner as [41], which is detailed below. We first generate the underlying orthogonal dictionary
X∗ ∈ St(n,n) with n= 30 whose entries are drawn according to standard Gaussian distribution.
The number of samples m= ⌊10 · n1.5⌋= 1643. The sparse matrix S∗ ∈ Rn×m is generated such
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that the entries follow the Bernoulli-Gaussian distribution with parameter 0.5. Finally, we set
Y =X∗S∗. We generate 50 instances using this procedure. For each instance, we generate two
different initial points: one is a standard Gaussian random vector denoted as xGauss

0 , and the other
one is a uniform random vector denoted as xuniform

0 . For the ease of presentation, we denote the three
algorithms in [41] – Riemannian subgradient method, Riemannian incremental subgradient method,
and Riemannian stochastic subgradient method – as R-Full, R-Inc and R-Sto, respectively. We use
the same parameters in (61) for RSSD. The codes for R-Full, R-Inc and R-Sto were downloaded
from the author’s webpage1.
For each instance, we terminate each method if the CPU time reaches 50 seconds. We truncate

the entries of Y ⊤X̂ as

(Y ⊤X̂)ij = 0, if |(Y ⊤X̂)ij|< τ,

where τ > 0 is a pregiven tolerance, and X̂ is the computed solution. We report the average of the
sparsity level of Y ⊤X̂ over 50 instances in Table 3, where the sparsity level is computed by

sparsity level=
number of zero entries of Y ⊤X̂

mn
.

Note that the desired sparsity level of Y ⊤X̂ is 0.5 because of the way that S∗ was generated. We see
from Table 3 that the ℓp minimization model with p= 0.001 solved by our RSSD method provides
the best results in terms of the sparsity level.
For each instance, we compute the sparsity level at the latest iterate point obtained by each

method when the CPU time reaches t= 1,2, . . . ,50 seconds, respectively. We then compute the
corresponding average sparsity level of the 50 instances and plot the trajectory of the sparsity
level at t= 1,2, . . . ,50 seconds in Figures 1 and 2. We use a log-scale on the x-axis in Figures 1
and 2. From these figures, it is clear that the ℓp minimization model (65) with p= 0.001 solved
by the RSSD method provides the best results in terms of sparsity level. More specifically, the
RSSD method can improve the sparsity to the desired level 0.5 after about 15 seconds, while the
other three algorithms stopped making progress after about one second and none of the three
algorithms achieves the sparsity level higher than 0.4. This example also demonstrates the necessity
of developing the RSSD method for solving the Riemannian non-Lipschitz optimization.

Table 3. Average of sparsity levels of computed solutions from 50 instances

Initial points
ℓ1 minimization model ℓp model, p= 0.001

R-Full R-Inc R-Sto RSSD

xGauss
0 , τ = 10−4 0.3727 0.3857 0.3456 0.5000

xGauss
0 , τ = 10−5 0.3697 0.3852 0.3450 0.4895

xUniform
0 , τ = 10−4 0.3727 0.3784 0.3234 0.5000

xUniform
0 , τ = 10−5 0.3675 0.3773 0.3222 0.4915

We admit that from our numerical experience, the computation cost of our RSSD method for
each iteration is higher than the Riemannian subgradient-type methods including R-Full, R-Inc,
and R-Sto methods in [41]. The reason is that the Armijo line search is used in the RSSD method,
while no line search strategy is adopted in the Riemannian subgradient-type methods in [41]. It is
also possible to develop more efficient smoothing algorithms than the RSSD method for solving
Riemannian non-Lipschitz optimization, by making use of the theoretical analysis of Riemannian

1 https://github.com/lixiao0982/Riemannian-subgradient-methods.
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Figure 1. Average sparsity level versus CPU time of 50 instances using Gaussian initial points. Left: τ = 10−4;
Right: τ = 10−5. Log-scale on the x-axis.

10
0

10
1

10
2

CPU time (seconds)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

A
v
e
ra

g
e
 s

p
a
rs

it
y
 l
e
v
e
l

R-Full

R-Inc

R-Sto

RSSD

10
0

10
1

10
2

CPU time (seconds)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

A
v
e
ra

g
e
 s

p
a
rs

it
y
 l
e
v
e
l

R-Full

R-Inc

R-Sto

RSSD

Figure 2. Average sparsity level versus CPU time of 50 instances using uniform initial points. Left: τ = 10−4;
Right: τ = 10−5. Log-scale on the x-axis.

generalized subdifferentials and Riemannian gradient sub-consistency property developed in this
paper.
Recall that we use the CPU time budget (50 seconds) to terminate each method in numerical

experiments. For our RSSD method, we record µℓ and ∥ηℓ∥= ∥− grad f̃(xℓ, µℓ)∥ when the sparsity
level becomes stable, and try the values around them. We find that µopt ∈ [2× 10−3,3× 10−3] and
δopt ∈ [4× 10−3,10−2] are suitable as stopping criterion of the RSSD method for the sparsely-used
ODL problem, and in this case the sparsity level keeps almost the same but the number of iterations
are around 1/3 of that given by the CPU budget (50 seconds). If smaller values of µopt and δopt are
also used as a stopping criteria, together with the CPU budget (50 seconds), the RSSD method will
often reach the CPU time budget, but the sparsity level keeps almost the same.

6. Concluding remarks In this paper, we study the Riemannian generalized subdifferentials,
and Riemannian gradient sub-consistency relating to non-Lipschitz optimization on embedded
submanifolds of Rn. We then develop RSSD, a novel Riemannian smoothing steepest descent
method, for minimizing a non-Lipschitz function over embedded submanifolds of Rn. We prove
that any accumulation point generated by our RSSD method is a stationary point of (1) associated
with the smoothing function employed in the method, which is necessary for local optimality of
(1). Moreover, we also prove that any accumulation point is a limiting stationary point of (1),
if the Riemannian gradient sub-consistency property holds at the accumulation point. We show
that smoothing functions satisfy the Riemannian gradient sub-consistency under mild conditions.
Numerical results on finding the sparsest vectors in a subspace and the sparsely-used orthogonal



C. Zhang, X. Chen, and S. Ma: RSSD method for Riemannain non-Lipschitz optimization
26 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

complete dictionary learning demonstrate the necessity of studying non-Lipschitz optimization on
embedded submanifolds of Rn and the effectiveness of our RSSD method for solving non-Lipschitz
optimization on embedded submanifolds of Rn.
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