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In this paper, we consider a well-known sparse optimization problem that aims to find a sparse solution of a
possibly noisy underdetermined system of linear equations. Mathematically, it can be modeled in a unified
manner by minimizing ‖x‖pp subject to ‖Ax−b‖q ≤ σ for given A∈Rm×n, b∈Rm, σ≥ 0, 0≤ p≤ 1 and q≥ 1.
We then study various properties of the optimal solutions of this problem. Specifically, without any condition
on the matrix A, we provide upper bounds in cardinality and infinity norm for the optimal solutions, and
show that all optimal solutions must be on the boundary of the feasible set when 0< p≤ 1. Moreover, for
q ∈ {1,∞}, we show that the problem with 0 < p < 1 has a finite number of optimal solutions and prove
that there exists 0< p∗ < 1 such that the solution set of the problem with any 0< p< p∗ is contained in the
solution set of the problem with p= 0 and there further exists 0< p < p∗ such that the solution set of the
problem with any 0< p≤ p remains unchanged. An estimation of such p∗ is also provided. In addition, to
solve the constrained nonconvex non-Lipschitz Lp-L1 problem (0< p< 1 and q= 1), we propose a smoothing
penalty method and show that, under some mild conditions, any cluster point of the sequence generated is
a stationary point of our problem. Some numerical examples are given to implicitly illustrate the theoretical
results and show the efficiency of the proposed algorithm for the constrained Lp-L1 problem under different
noises.
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1. Introduction In this paper, we consider a class of sparse optimization problems, which
can be modeled in a unified manner as the following constrained Lp-Lq problem:

min
x∈Rn

‖x‖pp :=
∑n

i=1|xi|
p s.t. ‖Ax− b‖q ≤ σ, (1.1)

where A ∈ Rm×n, b ∈ Rm, σ ≥ 0, 0≤ p≤ 1 and 1≤ q ≤∞ are given. We assume that the feasible
set of problem (1.1) is nonempty so that problem (1.1) is well-defined. With this assumption, one
can easily verify that an optimal solution for p= 0 (namely, a sparsest solution) exists thanks to
the discrete and discontinuous nature of ‖ · ‖0 and the closedness of the feasible set. Moreover,
for 0< p≤ 1, since ‖x‖pp is level-bounded, then an optimal solution exists (see [33, Theorem 1.9]).
Therefore, the optimal solution set of problem (1.1), denoted by SOL(A,b, σ, p, q), is nonempty for
any 0≤ p≤ 1 and 1≤ q≤∞. We also assume that ‖b‖q >σ so that A 6= 0 and 0 6∈ SOL(A,b, σ, p, q).
Obviously, when p= 1, (1.1) is a convex optimization problem and when 0< p< 1, (1.1) yields a
nonconvex and non-Lipschitz optimization problem.
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Problem (1.1) aims to find a sparse vector x from the corrupted observation b=Ax+ ξ, where
ξ denotes an unknown noisy vector bounded by σ (the noise level) in Lq-norm, i.e., ‖ξ‖q ≤ σ. This
problem arises in many contemporary applications and has been widely studied under different
choices of p, q and σ in the literature; see, for example, [3, 4, 5, 6, 7, 8, 12, 13, 15, 16, 17, 18, 20, 23,
31, 34, 35, 41, 42, 43]. Among these studies, the L2-norm is commonly used for measuring the noise
and leads to a mathematically tractable problem when the noise exists and comes from a Gaussian
distribution [3, 5, 12, 13, 17, 20, 34, 35]. In particular, it has been known that a sparse vector can
be (approximately) recovered by the solution of the convex optimization problem (1.1) with p= 1
and q = 2 under some well-known recovery conditions such as the restricted isometry property
(RIP) [5], the mutual coherence condition [3, 17] and the null space property (NSP) [15, 41]. Such
convex constrained L1-L2 problem can also be solved efficiently by a spectral projected gradient
L1 minimization algorithm (SPGL1) proposed by Van den Berg and Friedlander [35]. On the other
hand, it is natural to find a sparse vector by solving problem (1.1) with 0 < p < 1 since ‖x‖pp
approaches ‖x‖0 as p→ 0. Indeed, under certain RIP conditions, Foucart and Lai [20] showed that
a sparse vector can be (approximately) recovered by the solution of the nonconvex non-Lipschitz
problem (1.1) with 0< p< 1 and q = 2. Chen, Lu and Pong [12] also proposed a penalty method
for solving this constrained Lp-L2 problem (0 < p < 1) with promising numerical performances.
Later, this penalty method and the SPGL1 are further combined to solve (1.1) with 0< p< 1 and
q = 2 for recovering sparse signals on the sphere in [13]. However, when the noise does not come
from the Gaussian distribution but other heavy-tailed distributions (e.g., Student’s t-distribution)
or contains outliers, using ‖Ax−b‖2 as the data fitting term is no longer appropriate. In this case,
some robust loss functions such as the L1-norm [19, 36, 37] and the L∞-norm [4, 7] are used to
develop robust models. Recently, Zhao, Jiang and Luo [43] also established a fairly comprehensive
weak stability theory for problem (1.1) with p= 1 and q ∈ {1,2,∞} under a so-called weak range
space property (RSP) condition. The weak RSP condition can be induced by several existing
compressed sensing matrix properties and hence can be the mildest one for the sparse solution
recovery. However, it is still not easy to verify this condition in practice.

In this paper, we focus on problem (1.1) with different choices of p and q, and establish the
following theoretical results concerning its optimal solutions without any condition on the sensing
matrix A.
(i) For any x∗ ∈ SOL(A,b, σ, p, q) with 0≤ p < 1 and 1≤ q≤∞, we have ‖x∗‖0 = rank(AJ ) and

(‖b‖q −σ)mmin{ 1
2−

1
q ,0}√

|J |λmax(A>JAJ )
≤ ‖x∗‖∞ ≤

σmmax{ 1
2−

1
q ,0}+ ‖b‖2√

λmin(A>JAJ )
,

where J = supp(x∗), |J | denotes its cardinality, and λmax(A>JAJ ) and λmin(A>JAJ ) are the
largest and smallest eigenvalues of A>JAJ , respectively. Moreover, for any 1≤ q≤∞, ‖Ax∗−
b‖q = σ for 0< p≤ 1; and ‖A(αx∗)− b‖q = σ with some α∈ (0,1] for p= 0.

(ii) For q ∈ {1,∞}, the solution set SOL(A,b, σ, p, q) with 0< p< 1 has a finite number of elements.
(iii) There exists a p∗ ∈ (0, 1] such that SOL(A,b, σ, p,1)⊆ SOL(A,b, σ,0,1) for any p∈ (0, p∗). An

explicit estimation of such p∗ ∈ (0,1] is also given. Moreover, there exists a p ∈ (0, p∗) such
that SOL(A,b, σ, p,1) = SOL(A,b, σ, p,1) for any p∈ (0, p].

Here, we would like to point out that the sparse solution recovery result (iii) is developed without
any aforementioned recovery condition on A. This not only complements the existing recovery
results in the literature, but also shows the potential advantage of using the Lp-norm (0< p< 1)
for recovering the sparse solution over the L1-norm ball.

Note that problem (1.1) is a constrained problem, while, in statistics and computer science,
the Lp-Lq problem/minimization often refers to the following unconstrained regularized problem
[9, 11, 14]:

min
x∈Rn

‖Ax− b‖qq +λ‖x‖pp, (1.2)
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where λ is a positive regularization parameter. Indeed, when p= 1 and q= 2, problem (1.2) is the
well-known L1-regularized least-squares problem (namely, the LASSO problem) and it is known
that, in this case, there exists a λ̄ > 0 such that, for λ ≥ λ̄, the constrained problem (1.1) is
equivalent to the unconstrained problem (1.2) regarding solutions; see, for example, [3, Section
3.2.3]. However, Example 3.1 in [12] shows that for 0< p< 1 and q= 2, there does not exist a λ so
that problems (1.1) and (1.2) have a common global or local minimizer. Hence, for 0< p< 1, one
cannot expect to solve (1.1) by solving the regularized problem (1.2) with some fixed λ> 0. In view
of this, we shall consider a penalty method for solving problem (1.1) with 0< p< 1, which basically
solves the constrained problem (1.1) by solving a sequence of unconstrained penalty problems.
Specifically, we consider the following penalty problem of (1.1):

min
x∈Rn

‖x‖pp +λ
(
‖Ax− b‖qq −σq

)
+
. (1.3)

Note that the function x 7→ ‖Ax− b‖qq is continuously differentiable for 1 < q <∞. Then, based
on problem (1.3), one can readily extend the penalty method proposed in [12] for solving problem
(1.1) with 0 < p < 1 and q = 2 to solve problem (1.1) with 0 < p < 1 and 1 < q <∞. However,
for q ∈ {1,∞}, since the function x 7→ ‖Ax− b‖q is nonsmooth, then the approach in [12] cannot
be adapted directly. In view of this, in this paper, we propose an alternative smoothing penalty
method for solving

min
x∈Rn

‖x‖pp s.t. ‖Ax− b‖1 ≤ σ, (1.4)

where 0< p< 1. Notice that we omit the case of q =∞ to save space in this paper. Nevertheless,
our approach can be extended without much difficulty to solve problem (1.1) with 0< p < 1 and
q=∞, because the L1-constrained problem and the L∞-constrained problem have similar proper-
ties in the sense that both constraints ‖Ax− b‖1 ≤ σ and ‖Ax− b‖∞ ≤ σ can be represented as
linear constraints, and the functions x 7→ ‖Ax− b‖1 and x 7→ ‖Ax− b‖∞ are piecewise linear. We
shall show that problem (1.3) with q = 1 is the exact penalty problem of problem (1.4) regarding
local minimizers and global minimizers. We also prove that any cluster point of a sequence gen-
erated by our smoothing penalty method is a stationary point of problem (1.4). Moreover, some
numerical results are reported to show that all computed stationary points have the properties in
our theoretical contribution (i) mentioned above. Here, we would like to emphasize that finding a
global optimal solution of (1.4) is NP-hard [11, 21]. Thus, it is interesting to see that our smoothing
penalty method can efficiently find a ‘good’ stationary point of problem (1.4), which has important
properties of a global optimal solution of problem (1.4).

The rest of this paper is organized as follows. In Section 2, we rigorously prove properties (i)-(iii)
listed above and give a concrete example to verify these properties. In Section 3, we present a
smoothing penalty method for solving problem (1.4) and show some convergence results. Some
numerical results are presented in Section 4, with some concluding remarks given in Section 5.

Notation and Preliminaries In this paper, we use the convention that 1
∞ = 0. For an index

set J ⊆ {1, · · · , n}, let |J | denote its cardinality and J c denote its complementarity set. We denote
by xJ ∈R|J | the subvector formed from a vector x∈Rn by picking the entries indexed by J and
denote by AJ ∈ Rm×|J | the submatrix formed from a matrix A ∈ Rm×n by picking the columns
indexed by J . Recall from [33, Definition 8.3] that, for a proper closed function f , the regular
(or Fréchet) subdifferential, the (limiting) subdifferential and the horizon subdifferential of f at
x∈ domf are defined respectively as

∂̂f(x) :=

{
d∈Rn : lim inf

y→x,y 6=x

f(y)− f(x)−〈d,y−x〉
‖y−x‖

≥ 0

}
,

∂f(x) :=
{
d∈Rn : ∃xk f−→x, dk→ d with dk ∈ ∂̂f(xk)

}
,

∂∞f(x) :=
{
d∈Rn : ∃xk f−→x, λkdk→ d, λk ↓ 0 with dk ∈ ∂̂f(xk)

}
.
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It can be observed from the above definitions (or see [33, Proposition 8.7]) that{
d∈Rn : ∃xk f−→x, dk→ d with dk ∈ ∂f(xk)

}
⊆ ∂f(x),{

d∈Rn : ∃xk f−→x, λkdk→ d, λk ↓ 0 with dk ∈ ∂f(xk)
}
⊆ ∂∞f(x).

(1.5)

When f is convex, the above (limiting) subdifferential coincides with the classical subdifferential
in convex analysis [33, Proposition 8.12]. Moreover, if f is continuously differentiable, we have
∂f(x) = {∇f(x)}, where ∇f(x) is the gradient of f at x [33, Exercise 8.8(b)]. For a closed set
X ⊆Rn, its indicator function δX is defined by δX (x) = 0 if x ∈X and δX (x) = +∞ otherwise. In
addition, we use B(y; δ) to denote the closed ball of radius δ centered at y, i.e., B(y; δ) := {x ∈
Rn : ‖x− y‖2 ≤ δ}, and FEA(A,b, σ, q) := {x∈Rn : ‖Ax− b‖q ≤ σ} to denote the feasible set of
problem (1.1).

2. Properties of solutions of problem (1.1) In this section, we characterize the properties
of the optimal solutions of problem (1.1) with different choices of p and q. We first give a supporting
lemma.

Lemma 2.1. Let 1≤ q≤∞. For any x∈Rn, we have

nmin{ 1
q−

1
2 ,0}‖x‖2 ≤ ‖x‖q ≤ nmax{ 1

q−
1
2 ,0}‖x‖2.

Proof. We consider the following two cases.
� 1≤ q ≤ 2. In this case, it is easy to see that ‖x‖q ≥ ‖x‖2. On the other hand, since 2/q ≥ 1, it

then follows from the Hölder’s inequality that

‖x‖qq =
n∑
i=1

|xi|q =
n∑
i=1

|xi|q · 1≤

(
n∑
i=1

(|xi|q)
2
q

) q
2
(

n∑
i=1

1
2

2−q

)1− q2

= n1− q2 ‖x‖q2,

which results in ‖x‖q ≤ n
1
q−

1
2 ‖x‖2.

� q≥ 2. In this case, it is easy to see that ‖x‖q ≤ ‖x‖2. On the other hand, since q/2≥ 1, it then
follows from the Hölder’s inequality that

‖x‖22 =
n∑
i=1

|xi|2 =
n∑
i=1

|xi|2 · 1≤

(
n∑
i=1

(
|xi|2

) q
2

) 2
q
(

n∑
i=1

1
q
q−2

)1− 2
q

= n1− 2
q ‖x‖2q,

which results in ‖x‖q ≥ n
1
q−

1
2 ‖x‖2.

Combing the above results, we prove this lemma. �

The following theorem is given for 0≤ p≤ 1 and 1≤ q≤∞.

Theorem 2.1. Let 1 ≤ q ≤∞. For any x∗ ∈ SOL(A,b, σ, p, q), the following statements hold
with J := supp(x∗).
(i) For 0< p≤ 1, ‖Ax∗− b‖q = σ; and for p= 0, there is a scalar α ∈ (0,1] such that ‖A(αx∗)−

b‖q = σ and α′x∗ ∈ SOL(A,b, σ,0, q) for any α′ ∈ [α, 1].
(ii) For 0≤ p < 1, ‖x∗‖0 = |J |= rank(AJ ).
(iii) For 0≤ p < 1,

(‖b‖q −σ)mmin{ 1
2−

1
q ,0}√

|J |λmax(A>JAJ )
≤ ‖x∗‖∞ ≤

σmmax{ 1
2−

1
q ,0}+ ‖b‖2√

λmin(A>JAJ )
,

where λmax(A>JAJ ) and λmin(A>JAJ ) are the largest and smallest eigenvalues of A>JAJ , respec-
tively. Moreover, when σ= 0, we have x∗ = (A>JAJ )−1A>J b.



5

Proof. Statement (i). If ‖Ax∗− b‖q = σ, the results hold trivially. Next, we assume that ‖Ax∗−
b‖q <σ.

Consider 0 < p ≤ 1. From ‖b‖q > σ, we see that Ax∗ 6= 0. Then, it is easy to verify that there
exists a constant 0< c< 1 such that ‖A(cx∗)− b‖q <σ. Thus, cx∗ ∈FEA(A,b, σ, q), but ‖cx∗‖pp =
cp‖x∗‖pp < ‖x∗‖pp for 0< p≤ 1. This leads to a contradiction. Hence, we have ‖Ax∗− b‖q = σ.

Consider p = 0. Let f(t) := ‖A(tx∗) − b‖q. Then, from the continuity of f , f(0) = ‖b‖q > σ
and f(1) = ‖Ax∗ − b‖q < σ, there exists a scalar α ∈ (0,1) such that f(α) = ‖A(αx∗)− b‖q = σ.
Moreover, it is easy to verify that f is convex on [0, 1]. Thus, for any α′ ∈ [α, 1], there exists a
0≤ λ≤ 1 such that α′ = λα+ (1−λ) and f(α′)≤ λf(α) + (1−λ)f(1)≤ σ. Hence, α′x∗ is feasible.
This together with ‖α′x∗‖0 = ‖x∗‖0 shows that α′x∗ ∈ SOL(A,b, σ,0, q) for any α′ ∈ [α, 1].

Statement (ii). Let s := ‖x∗‖0 = |J | for simplicity. We then consider the following two cases.
Case 1, p = 0. First, it is not hard to see that s ≤m since any set of m+ 1 vectors in Rm is

linearly dependent. Thus, we have rank(AJ ) ≤ min{m, s} = s. We next prove rank(AJ ) = s by
contradiction. Assume that rank(AJ )< s. Then, there exists a vector ĥ ∈Rs such that ĥ 6= 0 and
AJ ĥ= 0. Let h∈Rn be a vector such that hJ = ĥ and hJ c = 0. Thus, we have Ah= 0. Now, let

τ := min
hi 6=0, i∈J

{
x∗i
hi

}
=
x∗i0
hi0

for some i0.

Then, we see that x̃ :=x∗−τh∈FEA(A,b, σ, q) since Ax̃=A(x∗−τh) =Ax∗. Moreover, from the
definition of τ , one can verify that x̃i0 = 0 and thus ‖x̃‖0 < ‖x∗‖0. This leads to a contradiction.
Hence, we only have rank(AJ ) = s= ‖x∗‖0.
Case 2, 0 < p < 1. We first prove s ≤ m by contradiction. Assume that s > m. Thus, there

exists a vector h̃ ∈ Rs such that h̃ 6= 0 and AJ h̃ = 0, since rank(AJ ) ≤min{m, s} = m< s. Let
h∈Rn be a vector such that hJ = h̃ and hJ c = 0. Thus, we have that Ah= 0 and hence x∗+ th∈
FEA(A,b, σ, q) for any t ∈ R. Moreover, we can choose a sufficiently small real positive number
t0 > 0 such that, for all |t| ≤ t0,

x∗J + thJ 6= 0, and sgn(x∗i ) = sgn(x∗i + thi) for i∈J . (2.1)

Let f(t) :=
∑

i∈J [sgn(x∗i )(x
∗
i + thi)]

p
. Then, we have

f(0) =
∑
i∈J

|x∗i |p = ‖x∗‖pp = min
t∈[−t0, t0]

‖x∗+ th‖pp

= min
t∈[−t0, t0]

∑
i∈J

[sgn(x∗i + thi)(x
∗
i + thi)]

p
= min

t∈[−t0, t0]
f(t),

where the third equality follows because x∗ ∈ SOL(A,b, σ, p, q) and the last equality follows from
(2.1). However, for all |t| ≤ t0,

f ′′(t) = p(p− 1)
∑

i∈J [sgn(x∗i )(x
∗
i + thi)]

p−2
h2
i < 0.

This leads to a contradiction. Hence, we have s≤m and rank(AJ )≤min{m, s}= s. We further
assume that rank(AJ ) < s. Then, there also exists a vector ĥ ∈ Rs such that ĥ 6= 0 and AJ ĥ =
0. Using the similar arguments as above, we can get a contradiction. Hence, we only have that
rank(AJ ) = s.

Statement (iii). From statement (ii), AJ has full column rank and hence λmin(A>JAJ ) 6= 0. Then,
we see that

σ≥ ‖Ax∗− b‖q = ‖AJx∗J − b‖q ≥m
min{ 1

q−
1
2 ,0}‖AJx∗J − b‖2

≥mmin{ 1
q−

1
2 ,0}(‖AJx∗J ‖2−‖b‖2)≥m

min{ 1
q−

1
2 ,0}

(√
λmin(A>JAJ )‖x∗J ‖2−‖b‖2

)
,
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where the second inequality follows from Lemma 2.1 and the last inequality follows from ‖AJx∗J ‖22 ≥
λmin(A>JAJ )‖x∗J ‖22. Thus, the above relation implies that

‖x∗‖∞ ≤ ‖x∗‖2 = ‖x∗J ‖2 ≤
σmmax{ 1

2−
1
q ,0}+ ‖b‖2√

λmin(A>JAJ )
,

which gives the upper bound for ‖x∗‖∞. On the other hand, we have

σ≥ ‖Ax∗− b‖q = ‖AJx∗J − b‖q ≥ ‖b‖q −‖AJx∗J ‖q
≥ ‖b‖q −mmax{ 1

q−
1
2 ,0}‖AJx∗J ‖2 ≥ ‖b‖q −m

max{ 1
q−

1
2 ,0}

√
λmax(A>JAJ )‖x∗J ‖2,

where the third inequality follows from Lemma 2.1 and the last inequality follows from ‖AJx∗J ‖22 ≤
λmax(A>JAJ )‖x∗J ‖22. This results in

‖x∗‖∞ = ‖x∗J ‖∞ ≥
‖x∗J ‖2√
|J |
≥ (‖b‖q −σ)mmin{ 1

2−
1
q ,0}√

|J |λmax(A>JAJ )
,

which gives the lower bound for ‖x∗‖∞. Recall that ‖b‖q > σ (our blanket assumption). Thus,
this lower bound is nontrivial. Moreover, when σ = 0, we have Ax∗ =AJx

∗
J = b and hence x∗ =

(A>JAJ )−1A>J b. We then complete the proof. �

Remark 2.1 (The sparse solution of the Lp-L2 problem). Theorem 2.1(ii) implies that
without any condition on the sensing matrix A, ‖x∗‖0 ≤min(m,n) for any x∗ ∈ SOL(A,b, σ, p, q)
with 0< p< 1 and 1≤ q≤∞, while Shen and Mousavi show in [34, Proposition 3.1] that ‖x∗‖0 ≥
n−m+ 1 for any x∗ ∈ SOL(A,b, σ, p,2) with p > 1 and n≥m if every m×m submatrix of A is
invertible. Combining these results gives a formal confirmation that if n�m, all solutions of the
Lp-L2 problem with 0 ≤ p < 1 are sparse, but the Lp-L2 problem with p > 1 may not have sparse
solutions.

In the following, we shall derive more theoretical results for the optimal solution set of the L1-
constrained problem (1.4) with 0≤ p < 1. But we should point out that all results established later
can be extended without much difficulty to the L∞-constrained case or other more general cases;
see Remarks 2.2 and 2.3 for more details. As we shall see later, solving problem (1.4) with an
arbitrarily sufficiently small 0< p< 1 actually gives an optimal solution of problem (1.4) with p= 0.
This nice result is obtained based on a simple observation that the feasible set FEA(A,b, σ,1) is
indeed a convex polyhedron in Rn (see Lemma C.1). Moreover, observe that Rn can be represented
as a union of 2n orthants, denoted by Pj for j = 1, · · · ,2n, such that any two vectors x and y in
each Pj have the same sign for each entry, i.e., for each Pj, we have

∀x, y ∈ Pj =⇒ xiyi ≥ 0 for i= 1, · · · , n. (2.2)

For example, when n = 2, we have R2 =
⋃4

j=1 Pj, where P1 = {x : x1 ≥ 0, x2 ≥ 0}, P2 = {x : x1 ≥
0, x2 ≤ 0}, P3 = {x : x1 ≤ 0, x2 ≥ 0} and P4 = {x : x1 ≤ 0, x2 ≤ 0}. Then, for each j, one can see that
Pj ∩FEA(A,b, σ,1) is empty or a polyhedron that has a finite number of extreme points because
Pj ∩FEA(A,b, σ,1) contains no lines; see [32, Corollary 18.5.3] and [32, Corollary 19.1.1].

Lemma 2.2. Let 0 < p < 1. Suppose that j ∈ {1, · · · ,2n} is an arbitrary index such that Pj ∩
FEA(A,b, σ,1) 6= ∅, where Pj is defined in (2.2). Then, any optimal solution of the following problem

min
x∈Rn

‖x‖pp s.t. x∈ Pj ∩FEA(A,b, σ,1) (2.3)

is an extreme point of Pj ∩FEA(A,b, σ,1).
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Proof. Let x∗ be an optimal solution of (2.3). Suppose that there exist y, z ∈ Pj ∩FEA(A,b, σ,1)
such that x∗ = λy+ (1−λ)z for some 0<λ< 1. Then, we have

‖x∗‖pp = ‖λy+ (1−λ)z‖pp =
∑n

i=1 |λyi + (1−λ)zi|p =
∑n

i=1 (λ|yi|+ (1−λ)|zi|)p

≥
∑n

j=1 (λ|yj|p + (1−λ)|zj|p) = λ‖y‖pp + (1−λ)‖z‖pp ≥ ‖x∗‖pp,

where the third equality follows because any y, z ∈ Pj have the same sign for each entry, the first
inequality follows because f(t) = tp is strictly concave for t ≥ 0, and the last inequality follows
because x∗ is an optimal solution of (2.3). Note that the above relation holds if and only if y =
z =x∗. This implies that x∗ is an extreme point of Pj ∩FEA(A,b, σ,1). �

Based on Lemma 2.2, we are able to characterize the number of the optimal solutions of problem
(1.4) with 0< p< 1. For notational simplicity, for j = 1, · · · ,2n, let

EXT(Pj ∩FEA(A,b, σ,1)) :=
{

all extreme points of Pj ∩FEA(A,b, σ,1)
}
.

Proposition 2.1. For any 0 < p < 1, the optimal solution set SOL(A,b, σ, p,1) of problem
(1.4) is a finite set. Moreover, the set

⋃
0<p<1 SOL(A,b, σ, p,1) is a finite set.

Proof. For a given 0 < p < 1, let x∗ be an optimal solution of problem (1.4), i.e., x∗ ∈
SOL(A,b, σ, p,1). Then, there must exist a j∗ ∈ {1, · · · ,2n} such that x∗ ∈ Pj∗ ∩FEA(A,b, σ,1) and
x∗ is also an optimal solution of (2.3) with j∗ in place of j. Then, it follows from Lemma 2.2 that
x∗ is an extreme point of Pj∗ ∩FEA(A,b, σ,1). This implies that

SOL(A,b, σ, p,1)⊆
⋃

j∈{1,··· ,2n}

EXT(Pj ∩FEA(A,b, σ,1)) . (2.4)

Note that, for each j, Pj ∩ FEA(A,b, σ,1) is empty or a polyhedron that has a finite number
of extreme points since Pj ∩ FEA(A,b, σ,1) contains no lines; see [32, Corollary 18.5.3] and [32,
Corollary 19.1.1]. This together with (2.4) implies that SOL(A,b, σ, p,1) is a finite set.

Moreover, since (2.4) holds for any 0< p< 1, then we have⋃
0<p<1

SOL(A,b, σ, p,1)⊆
⋃

j∈{1,··· ,2n}

EXT(Pj ∩FEA(A,b, σ,1)) ,

which implies
⋃

0<p<1 SOL(A,b, σ, p,1) is a finite set. This completes the proof. �

Remark 2.2 (Comments on Proposition 2.1). Proposition 2.1 is obtained based on the
observation that the feasible set FEA(A,b, σ,1) is a convex polyhedron in Rn. From this observation,
we can extend Proposition 2.1 to that for any 0< p< 1, the optimal solution set SOL(A,b, σ, p, q)
of (1.1) with q=∞ is a finite set. However, it is not clear whether for any 0< p< 1, the optimal
solution set SOL(A,b, σ, p, q) of problem (1.1) with q = 2 is a finite set. Thanks to Theorem 2.1,
we can claim that if A satisfies rank(A) = 2, the optimal solution set SOL(A,b, σ, 1

k
,2) is a finite

set, where k≥ 2 is a positive integer. Indeed, in this case, by Theorem 2.1(ii), any optimal solution
x∗ satisfies that ‖x∗‖0 = |J |= rank(AJ )≤ rank(A) = 2 and hence has at most two nonzero entries
supported on J . Then, there are only n(n−1)

2
different choices of the support set J . Let ν∗ be the

optimal objective value and, without loss of generality, assume that x∗1 ≥ 0, x∗2 ≥ 0, x∗3 = · · ·= x∗n = 0.
Then, k

√
x∗1 + k

√
x∗2 = ν∗. Also, let t := k

√
x∗1 and k

√
x∗2 = ν∗ − t. We then see from Theorem 2.1(i)

that ‖AJx∗J − b‖22 = ‖Ax∗ − b‖22 = σ2 and this equation can be further written as a 2k-th order
polynomial equation f(t) = 0, which has at most 2k real roots. This implies that, for each J sat-
isfying |J |= 2, there are only 2k different choices of x∗1 and x∗2. Hence, the optimal solution set
SOL(A,b, σ, 1

k
,2) is a finite set and the number of solutions is at most n(n− 1)k.
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We next give two supporting lemmas and relegate the proofs to Appendices A and B, respectively.

Lemma 2.3. Suppose that a= (a1, · · · , an)> ∈Rn and b= (b1, · · · , bn)> ∈Rn satisfy

a1 ≤ a2 ≤ · · · ≤ an, b1 ≤ b2 ≤ · · · ≤ bn,
∑n

j=1a
k
j =

∑n

j=1b
k
j , k= 1, · · · , n,

then a= b.

Lemma 2.4. Given a, b ∈Rn with ‖a‖0 = ‖b‖0 = s. Let {ai1 , · · · , ais} and {bt1 , · · · , bts} be the
nonzero entries in a and b, respectively, and, without loss of generality, assume that |ai1 | ≤ · · · ≤
|ais | and |bt1 | ≤ · · · ≤ |bts |. For k= 1, · · · , s, define

∆k(a,b) :=
∑s

j=1

(
(ln |aij |)

k− (ln |btj |)
k
)
. (2.5)

Then, the following statements hold.
(i) If ∆k(a,b) = 0 for all k= 1, · · · , s, then ‖a‖pp = ‖b‖pp holds for any p > 0.
(ii) Otherwise, there exists a sufficiently small p′ such that either ‖a‖pp < ‖b‖pp or ‖a‖pp > ‖b‖pp

holds for any p∈ (0, p′].

Now, we are ready to present our results concerning the optimal solution set SOL(A,b, σ, p,1)
with different choices of p.

Theorem 2.2. There exists a p∗ ∈ (0, 1] such that SOL(A,b, σ, p,1)⊆ SOL(A,b, σ,0,1) for any
p ∈ (0, p∗). Moreover, there exists a p ∈ (0, p∗) such that SOL(A,b, σ, p,1) = SOL(A,b, σ, p,1) for
any p∈ (0, p].

Proof. We prove the first result by contradiction. Assume that there does not exist a number p∗ ∈
(0, 1] such that, for any p∈ (0, p∗), SOL(A,b, σ, p,1)⊆ SOL(A,b, σ,0,1). Consider a sequence {pk}
with 0< pk < 1 and pk→ 0 as k→∞. Thus, from the hypothesis, for each pk, there exists a point
xk such that xk ∈ SOL(A,b, σ, pk,1) and xk /∈ SOL(A,b, σ,0,1). Now, we consider the sequence
{xk}. Note that all elements in {xk} come from the set

⋃
0<p<1 SOL(A,b, σ, p,1) but they are not

contained in SOL(A,b, σ,0,1). Since there are only finitely many points in
⋃

0<p<1 SOL(A,b, σ, p,1)
(by Proposition 2.1), then there exists at least one point x̂ ∈

⋃
0<p<1 SOL(A,b, σ, p,1) such that

{xk} contains infinitely many x̂, i.e., there exists a subsequence {xkj} so that xkj ≡ x̂ for all

kj. Moreover, let x∗ ∈ SOL(A,b, σ,0,1). Then, for all kj, we have ‖xkj‖
pkj
pkj
≤ ‖x∗‖

pkj
pkj

since xkj ∈
SOL(A,b, σ, pkj ,1). Then, we see that

‖x∗‖0 = lim
kj→∞

‖x∗‖
pkj
pkj
≥ lim

kj→∞
‖xkj‖

pkj
pkj

= lim
kj→∞

‖x̂‖
pkj
pkj

= ‖x̂‖0,

which implies that x̂∈ SOL(A,b, σ,0,1). This leads to a contradiction and completes the proof for
the first result.

Next, we prove the second result. For notational simplicity, let S0∼p∗ :=
⋃

0<p<p∗ SOL(A,b, σ, p,1)
and s := ‖x∗‖0, where x∗ ∈ SOL(A,b, σ,0,1). For any x ∈ S0∼p∗ , we have ‖x‖0 = s (by the first
result) and define a set as C(x) :=

{
z ∈ S0∼p∗ : ∆k(x,z) = 0, ∀k= 1, · · · , s

}
, where ∆k(·, ·) is defined

as (2.5). Then, given x ∈ S0∼p∗ and y ∈ S0∼p∗ \ C(x), it follows from Lemma 2.4(ii) that there
exists a sufficiently small p(x,y) ∈ (0, p∗) such that either ‖x‖pp < ‖y‖pp or ‖x‖pp > ‖y‖pp holds for
any p ∈ (0, p(x,y)]. Since S0∼p∗ is contained in

⋃
0<p<1 SOL(A,b, σ, p,1), then the number of such

a pair (x, y) is finite. Therefore, we must have a sufficiently small p̃ ∈ (0, p∗) such that, for any
x∈ S0∼p∗ and y ∈ S0∼p∗ \C(x), either ‖x‖pp < ‖y‖pp or ‖x‖pp > ‖y‖pp holds for any p∈ (0, p̃]. Now, for

such p̃, consider any p′ ∈ (0, p̃] and let x′ ∈ SOL(A,b, σ, p′,1). We must have ‖x′‖p
′

p′ < ‖y‖
p′

p′ for any
y ∈ S0∼p∗ \C(x′). This together with Lemma 2.4(ii) implies that for any 0< p< p′, ‖x′‖pp < ‖y‖pp for
any y ∈ S0∼p∗ \ C(x′). Moreover, from Lemma 2.4(i), for any p > 0, ‖x′‖pp = ‖y‖pp for any y ∈ C(x′).
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These two facts show that for any 0 < p < p′, ‖x′‖pp ≤ ‖y‖pp for any y ∈ S0∼p∗ . Hence, we have
x′ ∈ SOL(A,b, σ, p,1) for any 0< p< p′ ≤ p̃. Since p′ is arbitrary and x′ ∈ SOL(A,b, σ, p′,1) is also
arbitrary, we can conclude that SOL(A,b, σ, p′,1)⊆ SOL(A,b, σ, p′′,1) for any 0< p′′ < p′ ≤ p̃.

We now prove by contradiction that there must exist a p ∈ (0, p̃] such that SOL(A,b, σ, p,1) =
SOL(A,b, σ, p,1) for any p ∈ (0, p]. Assume this is not true. Then, for any p′ ∈ (0, p̃], there exists
a p′′ ∈ (0, p′) such that SOL(A,b, σ, p′′,1) 6= SOL(A,b, σ, p′,1). This together with the conclusion
obtained above implies that SOL(A,b, σ, p′,1) must be strictly contained in SOL(A,b, σ, p′′,1), i.e.,
SOL(A,b, σ, p′,1) ⊂ SOL(A,b, σ, p′′,1). With this fact, we generate a sequence {pk} as follows.
Let p0 = p̃. Then, there exists a p1 ∈ (0, p0) such that SOL(A,b, σ, p0,1)⊂ SOL(A,b, σ, p1,1). For
such p1, there exists a p2 ∈ (0, p1) such that SOL(A,b, σ, p1,1) ⊂ SOL(A,b, σ, p2,1). Repeating this
procedure, we can obtain a sequence {pk} such that p0 > p1 > · · · > 0 and SOL(A,b, σ, p0,1) ⊂
SOL(A,b, σ, p1,1)⊂ · · · ⊂ SOL(A,b, σ,0,1). Thus, along such sequence {pk}, the number of elements
of SOL(A,b, σ, p,1) will strictly increase and hence

⋃
{pk} SOL(A,b, σ, p,1) must have infinitely

many elements. This leads to a contradiction and completes the proof. �

Remark 2.3 (Comments on Theorem 2.2). Theorem 2.2 is established based on the obser-
vation that the feasible set FEA(A,b, σ,1) of problem (1.4) is a polyhedron, and then, for each j,
Pj ∩ FEA(A,b, σ,1) has at most a finite number of extreme points. Thus, one can also consider
minimizing ‖x‖0 under many other polyhedral constraints, for example, {x∈Rn : ‖Ax− b‖∞ ≤ σ}
and {x ∈ Rn : ‖Ax− b‖1 ≤ σ, l ≤ x ≤ u} with l ∈ Rn ∪ {−∞}n, u ∈ Rn ∪ {∞}n and l < u, to fit
different scenarios in practice. Following the similar arguments presented in this paper, one can
obtain the similar results in Theorem 2.2 as well as Theorem 2.3 under these polyhedral constraints.
Moreover, it is also possible to extend our smoothing penalty method presented in the next section
to solve problems in these cases. Here, we will omit more details to avoid overcomplicating the
presentation. In addition, we are aware that the first result in Theorem 2.2 has also been discussed
in [40]. However, the analysis there is much more tedious.

Based on Theorem 2.2, it is easy to give the following corollary for σ = 0 (namely, the noiseless
case), which has also been discussed in [31, Theorem 1].

Corollary 2.1. There exists a p∗ ∈ (0, 1] such that, for any p∈ (0, p∗), every optimal solution
of problem min

{
‖x‖pp :Ax= b

}
is an optimal solution of problem min

{
‖x‖0 :Ax= b

}
.

Theorem 2.2 says that there exists a p∗ ∈ (0, 1] such that solving problem (1.4) with any p ∈
(0, p∗) also solves problem (1.4) with p = 0. Therefore, the constant p∗ is obviously the key for
such nice relation and we are interested in estimating such p∗ in the next theorem. Our analysis
is motivated by that of [31, Theorem 1], but makes use of results developed in Theorem 2.1 and
Lemma 2.2 for the more general feasible set. Before proceeding, we define two constants as follows:

r :=
σ+ ‖b‖2√

λ∗
, where λ∗ is the smallest nonzero eigenvalue of A>A, (2.6)

r̃ := min
{
|xi| : x∈

⋃
j∈{1,··· ,2n}EXT(Pj ∩FEA(A,b, σ,1)) , |xi| 6= 0, 1≤ i≤ n

}
. (2.7)

Note that for any subset I ⊆ {1, · · · , n} such that AI has full column rank, A>IAI is a principal
submatrix of A>A. Then, it follows from [27, Theorem 1.4.10] that λmin(A>IAI)> 0 is an eigenvalue
of A>A and hence λmin(A>IAI)≥ λ∗. This together with Theorem 2.1(iii) implies that

‖x∗‖∞ ≤ r, for any x∗ ∈ SOL(A,b, σ, p,1) with 0≤ p < 1. (2.8)

From (2.7), (2.8) and Lemma 2.2, one can also see that r≥ r̃.



10

Theorem 2.3. Let s be the optimal objective value of problem (1.4) with p= 0 and

p∗ := min

{
1,

ln(s+ 1)− lns

ln r− ln r̃

}
. (2.9)

Then, for any p∈ (0, p∗), SOL(A,b, σ, p,1)⊆ SOL(A,b, σ,0,1).

Proof. First, we show that (r
r̃

)p
s < s+ 1 (2.10)

holds for any p ∈ (0, p∗). Since r
r̃
≥ 1 and (2.10) holds trivially when r

r̃
= 1, then we only consider

r
r̃
> 1 in the following two cases.
�

r
r̃
≤ s+1

s
. In this case, p∗ = 1. Since r

r̃
> 1, then

(
r
r̃

)p
< r

r̃
≤ s+1

s
for any p∈ (0, 1).

�
r
r̃
> s+1

s
. In this case, p∗ = ln(s+1)−ln s

ln r−ln r̃ . Since r
r̃
> 1, then

(
r
r̃

)p
<
(
r
r̃

)p∗
= s+1

s
for any p∈ (0, p∗).

Hence, (2.10) holds for any p∈ (0, p∗).
Next, let x∗ be an arbitrary optimal solution of problem (1.4) with p ∈ (0, p∗), i.e., x∗ ∈

SOL(A,b, σ, p,1). It then follows from Lemma 2.2 that x∗ is an extreme point of Pj∗∩FEA(A,b, σ,1)

for some j∗ ∈ {1, · · · ,2n}. Thus, we have
|x∗i |
r̃
≥ 1 for any |x∗i | 6= 0. Moreover, we see that

s≤ ‖x∗‖0 = lim
p′↓0

n∑
i=1

|x∗i |p
′
= lim

p′↓0

n∑
i=1

(
|x∗i |
r̃

)p′
≤

n∑
i=1

(
|x∗i |
r̃

)p
= r̃−p ‖x∗‖pp

= r̃−pmin
{
‖x‖pp : ‖Ax− b‖1 ≤ σ

} (i)
= r̃−pmin

{
‖x‖pp : ‖Ax− b‖1 ≤ σ, ‖x‖∞ ≤ r

}
=
(r
r̃

)p
min

{
‖r−1x‖pp : ‖Ax− b‖1 ≤ σ, ‖x‖∞ ≤ r

}
≤
(r
r̃

)p
min

{
‖r−1x‖0 : ‖Ax− b‖1 ≤ σ, ‖x‖∞ ≤ r

}
=
(r
r̃

)p
min{‖x‖0 : ‖Ax− b‖1 ≤ σ, ‖x‖∞ ≤ r}

(ii)
=
(r
r̃

)p
min{‖x‖0 : ‖Ax− b‖1 ≤ σ}=

(r
r̃

)p
s < s+ 1,

where the second inequality follows because for any t≥ 1, the function p 7→ tp is non-decreasing on
[0,1), the equality (i) follows from (2.8), the third inequality follows because for any 0≤ t≤ 1, the
function p 7→ tp is non-increasing on [0,1), the equality (ii) follows again from (2.8), and the last
inequality follows from (2.10). Then, from the above relation, we have that ‖x∗‖0 = s and hence
x∗ is an optimal solution of problem (1.4) with p= 0. This completes the proof. �

Before closing this section, we present a simple example to illustrate our previous theoretical
results.

Example 2.1. Let A=

[
1 1 1
1 1 −1

]
, b=

[
3
3

]
and σ= 1. Then, we consider

min
x∈R3

‖x‖pp s.t. ‖Ax− b‖q ≤ 1 (2.11)

with 0≤ p≤ 1 and q = 1, 2,∞. Next, for each q, we discuss the optimal solution sets of problem
(2.11) with different choices of p.
For q= 1, the feasible set of (2.11) is

S1 :=
{
x∈R3 : |x1 +x2 +x3− 3|+ |x1 +x2−x3− 3| ≤ 1

}
.
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Then,
Arg min

x∈S1
{‖x‖0}=

{
(x1,0,0)> : 5

2
≤ x1 ≤ 7

2

}
∪
{

(0, x2,0)> : 5
2
≤ x2 ≤ 7

2

}
,

Arg min
x∈S1
{‖x‖pp}=

{
( 5
2
, 0, 0)>, (0, 5

2
, 0)>

}
for any 0< p< 1,

Arg min
x∈S1
{‖x‖1}=

{
(x1, x2,0)> : x1 +x2 = 5

2
, x1 ≥ 0, x2 ≥ 0

}
.

(2.12)

For q= 2, the feasible set of (2.11) is

S2 :=
{
x∈R3 :

√
(x1 +x2 +x3− 3)2 + (x1 +x2−x3− 3)2 ≤ 1

}
.

Then,

Arg min
x∈S2
{‖x‖0}=

{
(x1,0,0)> : 3−

√
2
2
≤ x1 ≤ 3 +

√
2
2

}
∪
{

(0, x2,0)> : 3−
√
2
2
≤ x2 ≤ 3 +

√
2
2

}
,

Arg min
x∈S2
{‖x‖pp}=

{
(3−

√
2
2
, 0, 0)>, (0, 3−

√
2
2
, 0)>

}
for any 0< p< 1,

Arg min
x∈S2
{‖x‖1}=

{
(x1, x2,0)> : x1 +x2 = 3−

√
2
2
, x1 ≥ 0, x2 ≥ 0

}
.

For q=∞, the feasible set of (2.11) is

S∞ :=
{
x∈R3 : max{|x1 +x2 +x3− 3|, |x1 +x2−x3− 3|} ≤ 1

}
.

Then,
Arg min

x∈S∞
{‖x‖0}=

{
(x1,0,0)> : 2≤ x1 ≤ 4

}
∪
{

(0, x2,0)> : 2≤ x2 ≤ 4
}
,

Arg min
x∈S∞

{‖x‖pp}=
{

(2, 0, 0)>, (0, 2, 0)>
}

for any 0< p< 1,

Arg min
x∈S∞

{‖x‖1}=
{

(x1, x2,0)> : x1 +x2 = 2, x1 ≥ 0, x2 ≥ 0
}
.

From this example, one can easily see that every optimal solution x∗ of (2.11) is at the boundary
of the feasible set for 0< p≤ 1 and there is a α ∈ (0,1] such that αx∗ is at the boundary of the
feasible set for p = 0, as claimed in Theorem 2.1(i). Moreover, every optimal solution of (2.11)
with 0< p< 1 is exactly a sparsest solution over {x∈R3 : ‖Ax−b‖q ≤ 1} for q= 1, 2,∞, while an
optimal solution of (2.11) with p= 1 may not be a sparest one. This shows the potential advantage
of using the Lp-norm (0< p< 1) to approximate the L0-norm. In particular, when q = 1, one can
further estimate p∗ by (2.9) for this example. Indeed, it is easy to see that s= 1. Then, from (2.6),
we compute that r= 1+3

√
2√

2
. Moreover, one can verify that

⋃
j∈{1,··· ,8}

EXT(Pj ∩S1) =


(
7
2
, 0, 1

2

)
,
(
0, 7

2
, 1

2

)
,
(
7
2
, 0, − 1

2

)
,
(
0, 7

2
, − 1

2

)(
5
2
, 0, 1

2

)
,
(
0, 5

2
, 1

2

)
,
(
5
2
, 0, − 1

2

)
,
(
0, 5

2
, − 1

2

)(
7
2
, 0, 0

)
,
(
0, 7

2
, 0
)
,
(
5
2
, 0, 0

)
,
(
0, 5

2
, 0
)
 .

Thus, it follows from (2.7) that r̃= 1
2
. Now, using (2.9), since r

r̃
= 6 +

√
2> s+1

s
= 2, we have

p∗ =
ln(s+ 1)− lns

ln r− ln r̃
=

ln2

ln(6 +
√

2)
≈ 0.346.

Recalling Theorem 2.3, we know that every optimal solution of (2.11) with p∈
(

0, ln 2
ln(6+

√
2)

)
shall

be an optimal solution of (2.11) with p = 0. This is clearly evident in (2.12). In fact, for this
example, every optimal solution of (2.11) with 0 < p < 1 is an optimal solution of (2.11) with
p = 0. This shows that p∗ given in (2.9) may not be the optimal upper bound of p such that
SOL(A,b, σ, p,1) ⊆ SOL(A,b, σ,0,1) for any p ∈ (0, p∗). In addition, our current estimate p∗ in
(2.9) depends on the knowledge on the optimal value s, which may be unknown or difficult to
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find in practice. Fortunately, we observe that p∗, viewed as a function of s, is actually decreasing
when ln(s+1)−ln s

ln r−ln r̃ ≤ 1. Thus, one may estimate a proper upper bound s̃ for the true optimal value s

(i.e., s̃≥ s) and compute p̃∗ = ln(s̃+1)−ln s̃
ln r−ln r̃ satisfying p̃∗ ≤ p∗. It then follows from Theorem 2.3 that

SOL(A,b, σ, p,1)⊆ SOL(A,b, σ,0,1) for any p ∈ (0, p̃∗). But it should be noticed that such p̃∗ can
be more conservative. Improving estimations of p∗ and p̃∗ will be an interesting research topic in
the future.

3. A smoothing penalty method In this section, we propose a smoothing penalty method
for solving the L1-constrained problem (1.4) with 0< p < 1. Before proceeding, we would like to
point out that the smoothing penalty method presented in this paper can be extended without much
difficulty to solve the L∞-constrained problem, namely, problem (1.1) with 0< p < 1 and q =∞.
Because the L∞-constrained problem is similar to the L1-constrained problem in the sense that
both constraints ‖Ax− b‖1 ≤ σ and ‖Ax− b‖∞ ≤ σ are polyhedral constraints, and the functions
x 7→ ‖Ax− b‖1 and x 7→ ‖Ax− b‖∞ are piecewise linear. On the other hand, for 1< q <∞, the
function x 7→ ‖Ax−b‖qq is continuously differentiable. Then, one can readily extend the smoothing
penalty method proposed in [12] to solve problem (1.1) with 0< p< 1 and 1< q <∞. However, the
approach in [12] cannot be directly adapted for q ∈ {1,∞} due to the nonsmoothness of the function
x 7→ ‖Ax− b‖q in these two cases. In view of the above, in this paper, we consider an alternative
smoothing penalty method for solving the L1-constrained problem and omit the discussions on
solving the L∞-constrained problem to save space.

We first study the first-order optimality conditions for problem (1.4) with 0< p< 1. For simplic-
ity, from now on, let Φ(x) := ‖x‖pp. Then, problem (1.4) with 0< p< 1 can be equivalently written
as follows:

min
x∈Rn

Φ(x) + δFEA(A,b,σ,1)(x). (3.1)

It is known from the generalized Fermat’s rule [33, Theorem 10.1] that, at any local minimizer x̄
of (3.1) (hence (1.4)), the following first-order necessary condition holds:

0∈ ∂
(
Φ + δFEA(A,b,σ,1)

)
(x̄). (3.2)

This motivates the following definition.

Definition 3.1 (Stationary point of problem (1.4) with 0< p< 1). A point x∗ is said to
be a stationary point of problem (1.4) with 0< p < 1 if x∗ ∈ FEA(A,b, σ,1) and (3.2) is satisfied
with x∗ in place of x̄.

Note that finding an optimal solution of problem (1.4) with 0 < p < 1 is NP-hard [11, 21].
Therefore, we shall focus on finding a stationary point of this problem. To this end, we introduce
the following auxiliary penalty problem:

min
x∈Rn

Fλ(x) := Φ(x) +λ(‖Ax− b‖1−σ)+, (3.3)

where λ> 0 is the penalty parameter and (·)+ := max{·, 0}. This problem is indeed an exact penalty
problem for problem (1.4) with 0< p< 1. The detailed analysis for the exact penalization results
regarding global and local minimizers is given in Appendix C. However, problem (3.3) is still not
conceivably solvable because both parts in (3.3) are nonsmooth, and moreover, Φ is nonconvex and
non-Lipschitz. We then consider a partially smoothing problem of (3.3) as follows:

min
x∈Rn

Fλ,µ,ν(x) := Φ(x) + fλ,µ,ν(x), (3.4)

where µ, ν > 0 are smoothing parameters and

fλ,µ,ν(x) := λgµ
(
Hν(Ax− b)−σ

)
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with

gµ(s) :=

{
(s)+, if |s| ≥ µ

2
,

s2

2µ
+ s

2
+ µ

8
, if |s|< µ

2
,

Hν(z) :=
m∑
i=1

hν(zi), hν(t) :=

{
|t|, if |t| ≥ ν

2
,

t2

ν
+ ν

4
, if |t|< ν

2
.

Note that gµ(s) and hν(t) are the smoothing functions of (s)+ and |t|, respectively (see Figure 1),
and they have the following nice properties:

0≤ gµ(s)− (s)+ ≤ µ
8
, ∀s∈R, (3.5)

0≤ hν(t)− |t| ≤ ν
4
, ∀ t∈R,

0≤Hν(Ax− b)−‖Ax− b‖1 ≤ m
4
ν, ∀x∈Rn. (3.6)

More details on these smoothing functions can be found in [10, Section 3] and references therein.
Thus, the composite function fλ,µ,ν(x) is indeed obtained by applying the smoothing technique
twice. Hence, it is continuously differentiable and can be viewed as a smoothing function of λ(‖Ax−
b‖1−σ)+. It is worth mentioning that when σ= 0, the auxiliary penalty problem (3.3) reduces to
min
x∈Rn

{Φ(x) +λ‖Ax− b‖1}. Then, the smoothing function gµ of (·)+ is no longer needed and the

subsequent analysis can also be simplified in this special case. Now, based on (3.4), we are ready
to present a smoothing penalty method as Algorithm 1 for solving problem (1.4) with 0< p < 1.
We call it SPeL1 for short in the rest of this paper.
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Figure 1. Graphs of the smoothing functions gµ and hν with different values of µ and ν.

The reader may have observed that, since problem (3.3) is a penalty counterpart of problem
(1.4) and problem (3.4) is a partially smoothing counterpart of problem (3.3), our method actually
adapts the penalty strategy and the smoothing strategy at the same time for solving the nonconvex
nonsmooth non-Lipschitz constrained problem (1.4) with 0 < p < 1. Specifically, in our method,
at each iteration, we solve problem (3.4) approximately with given (λ,µ, ν), and then update x
and (λ,µ, ν). The cooperation of these two strategies indeed provides an efficient practical way to
solve problem (1.4) with 0< p< 1. This circumvents the potential disadvantages of the traditional
penalty approach that directly solves the penalty problem (3.3) with an exact penalty parameter
λ∗, because (i) it is still not easy to solve problem (3.3) efficiently; (ii) it is, in general, hard to
estimate the exact penalty parameter λ∗ and the overestimation may make the penalty problem
(3.3) ill-conditioned. The convergence result that characterizes a cluster point of the sequence
generated by the SPeL1 in Algorithm 1 is shown in the next theorem. We should note that, though
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Algorithm 1 A smoothing penalty method for solving (1.4) with 0< p< 1 (SPeL1)

Input: a feasible point xfeas ∈ FEA(A,b, σ,1), λ0 > 0, µ0 > 0, ν0 > 0, ε0 > 0, ρ > 1 and 0< θ < 1.
Set k= 0 and x0 =xfeas.
while a termination criterion is not met, do

Step 1. If Fλk,µk,νk(xk)≤Fλk,µk,νk(xfeas), set xk,0 =xk; otherwise, set xk,0 =xfeas.
Step 2. Apply certain method with xk,0 as the initial point to find an approximate first-order

stationary point xk,lk of (3.4) with (λk, µk, νk) such that

dist
(
0, ∂Φ(xk,lk+1) +∇fλk,µk,νk(xk,lk)

)
≤ εk, (3.7)∥∥xk,lk+1−xk,lk

∥∥
2
≤ εk, (3.8)

Fλk,µk,νk(xk,lk)−Fλk,µk,νk(xk,0) ≤ 0. (3.9)

Step 3. Set xk+1 =xk,lk , λk+1 = ρλk, µk+1 = θµk, νk+1 = θνk and εk+1 = θεk.
Step 4. Set k= k+ 1 and go to Step 1.

end while
Output: xk

the proofs are motivated by those in [12, Theorem 4.2] and [29, Theorem 2], the technical details
become much more involved since our smoothing function fλ,µ,ν is obtained by a composition of
two smoothing functions gµ and Hν .

For the ease of future reference, we write down the gradients of fλ,µ,ν and Hν as well as the
derivatives of gµ and hν as follows:

∇fλ,µ,ν(x) = λg′µ (Hν(Ax− b)−σ)A>∇Hν(Ax− b), (3.10)

g′µ(s) = min
{

max
{
s
µ

+ 1
2
, 0
}
, 1
}
, (3.11)

∇Hν(z) =
(
h′ν(z1), · · · , h′ν(zm)

)>
,

h′ν(t) = min
{

max
{

2
ν
t, −1

}
, 1
}
. (3.12)

Moreover, we claim that Φ is regular at any x ∈ Rn as follows. Let φ(t) = |t|p for any t ∈ R. It is
easy to see that φ(t) is regular at any t 6= 0, because φ(t) is smooth in a neighborhood of any t 6= 0;
see [33, Exercise 8.8] and [33, Corollary 8.11]. For t= 0, it follows from [12, Lemma 2.5] and its
proof that ∂̂φ(0) = ∂φ(0) = ∂∞φ(0) =R. Moreover, from the definition of the horizon cone (see [33,
Definition 3.3]), we have that ∂̂φ(0)∞ = R. Using these facts and [33, Corollary 8.11], we see that
φ(t) is also regular at t= 0. Therefore, it follows from [33, Proposition 10.5] that Φ is regular at
any x∈Rn.

Theorem 3.1. Let {xk}∞k=0 be the sequence generated by the SPeL1 in Algorithm 1. Then, the
following statements hold.
(i) {xk} is bounded.

(ii) Any cluster point x∗ of {xk} is a feasible point of problem (1.4) with 0< p< 1.
(iii) Suppose that x∗ is a cluster point of {xk} and it holds at x∗ that

− ∂∞Φ(x∗) ∩ NFEA(A,b,σ,1)(x
∗) = {0}. (3.13)

Then, x∗ is a stationary point of problem (1.4) with 0< p< 1.

Proof. Statement (i). First, we see that

Φ(xk+1)≤ Fλk,µk,νk(xk+1) = Fλk,µk,νk(xk,lk)≤ Fλk,µk,νk(xk,0)≤ Fλk,µk,νk(xfeas) = Φ(xfeas),
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where the first inequality follows from the nonnegativity of fλk,µk,νk(xk+1) (since gµ(s)≥ 0 for all
s), the second inequality follows from (3.9), and the last inequality follows from Step 1 in Algorithm
1. This together with the level-boundedness of Φ (recall that Φ(x) := ‖x‖pp) implies that {xk} is
bounded.

Statement (ii). Since {xk} is bounded, there exists at least one cluster point. Suppose that x∗

is a cluster point of {xk} and let {xki} be a convergent subsequence such that lim
i→∞

xki =x∗. Note

that

λk−1
(
‖Axk− b‖1−σ

)
+
≤ fλk−1,µk−1,νk−1

(xk)≤ Fλk−1,µk−1,νk−1
(xk)≤ Fλk−1,µk−1,νk−1

(xfeas) = Φ(xfeas),

where the first inequality follows from (3.5), (3.6) and the fact that gµ is non-decreasing. Then,

(‖Axk− b‖1−σ)+ ≤
Φ(xfeas)

λk−1
.

Taking limit in above inequality along {xki} and recalling that λki−1→∞ (see Step 3 in Algorithm
1), we see that ‖Ax∗− b‖1 ≤ σ. Hence, x∗ is a feasible point of (1.4) with 0< p< 1.

Statement (iii). We next show that x∗ is a stationary point of problem (1.4) with 0 < p < 1.
For simplicity, let aj ∈Rn (j = 1, · · · ,m) be the column vector formed from the jth row of A, i.e.,
A = [a1, · · · ,am]> ∈ Rm×n. Moreover, let yk+1 := xk,lk+1. Then, lim

i→∞
yki = x∗ thanks to xki → x∗

and (3.8) with εk → 0. Thus, from (3.7) and (3.10), we see that for any k ≥ 1, there exists a
ξk ∈ ∂Φ(yk) such that∥∥ξk +∇fλk−1,µk−1,νk−1

(xk)
∥∥

=
∥∥ξk +λk−1g

′
µk−1

(
Hνk−1

(Axk− b)−σ
)
A>∇Hνk−1

(Axk− b)
∥∥

=
∥∥ξk +λk−1g

′
µk−1

(
Hνk−1

(Axk− b)−σ
)∑m

j=1h
′
νk−1

(
[Axk− b]j

)
aj
∥∥

≤ εk−1.

(3.14)

In the following, we consider two cases: ‖Ax∗− b‖1 <σ and ‖Ax∗− b‖1 = σ.
Case 1. In this case, we suppose that ‖Ax∗ − b‖1 < σ. Since ‖Axki − b‖1→‖Ax∗ − b‖1, then,

for any 0< γ < σ − ‖Ax∗ − b‖1, there exists a sufficiently large Kγ > 0 such that
∣∣‖Axki − b‖1 −

‖Ax∗− b‖1
∣∣≤ γ for all ki ≥Kγ . Note that

Hνki−1
(Axki − b)−σ
µki−1

+
1

2
≤
‖Axki − b‖1−σ+ m

4
νki−1

µki−1
+

1

2

=
‖Axki − b‖1−σ

µki−1
+
m

4

ν0
µ0

+
1

2
≤ ‖Ax

∗− b‖1−σ+ γ

µki−1
+
m

4

ν0
µ0

+
1

2
< 0,

where the first inequality follows from (3.6), the equality follows from νk
µk

=
θνk−1

θµk−1
= · · ·= ν0

µ0
, the

second inequality holds for all ki ≥Kγ and the last inequality follows whenever ki ≥ K̃γ for some
K̃γ ≥ Kγ because µki → 0 and ‖Ax∗ − b‖1 − σ + γ < 0. This together with (3.11) implies that
g′µki−1

(
Hνki−1

(Axki − b)−σ
)

= 0 for all sufficiently large ki. Hence, (3.14) reduces to ‖ξki‖ ≤ εki−1
for all sufficiently large ki. Then, we have from (1.5) that 0 = ξ∗ ∈ ∂Φ(x∗). This together with
NFEA(A,b,σ,1)(x

∗) = {0} (since ‖Ax∗− b‖1 <σ) implies that

0∈ ∂Φ(x∗) +NFEA(A,b,σ,1)(x
∗).

Moreover, since Φ and δFEA(A,b,σ,1) are regular, then it follows from [33, Corollary 8.11] and [33,

Exercise 8.14] that ∂Φ(x∗) = ∂̂Φ(x∗) and NFEA(A,b,σ,1)(x
∗) = ∂δFEA(A,b,σ,1)(x

∗) = ∂̂δFEA(A,b,σ,1)(x
∗).

Using these facts and recalling [33, Theorem 8.6], [33, Corollary 10.9], we have

0∈ ∂Φ(x∗) +NFEA(A,b,σ,1)(x
∗) = ∂̂Φ(x∗) + ∂̂δFEA(A,b,σ,1)(x

∗)

⊆ ∂̂
(
Φ + δFEA(A,b,σ,1)

)
(x∗)⊆ ∂

(
Φ + δFEA(A,b,σ,1)

)
(x∗),
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which implies that x∗ is a stationary point of problem (1.4) with 0< p< 1.
Case 2. In this case, we suppose that ‖Ax∗−b‖1 = σ. For such x∗, one can follow [25, Theorem

1.3.5 in Section D] to compute that

NFEA(A,b,σ,1)(x
∗) =

{
cA>d : d∈ ∂‖ · ‖1(Ax∗− b), c≥ 0

}
=


m∑
j=1

zjaj : c≥ 0,
zj = c, if [Ax∗− b]j > 0,
zj ∈ [−c, c], if [Ax∗− b]j = 0,
zj =−c, if [Ax∗− b]j < 0,

for j = 1, · · · ,m

 .
(3.15)

For simplicity, let t̃k := λk−1g
′
µk−1

(Hνk−1
(Axk−b)−σ) and tjk := t̃kh

′
νk−1

([Axk−b]j) for j = 1, · · · ,m.

Also, let J 0 := {j : [Ax∗−b]j = 0}, J + := {j : [Ax∗−b]j > 0} and J − := {j : [Ax∗−b]j < 0}. Then,
(3.14) is equivalent to ∥∥ξk +

∑m

j=1t
j
kaj
∥∥≤ εk−1. (3.16)

Since xki → x∗ and νki−1 → 0, there exists a sufficiently large K > 0 such that for all ki ≥ K,
we have [Axki − b]j > 0 and 2

νki−1
[Axki − b]j ≥ 1 for all j ∈ J +, and have [Axki − b]j < 0 and

2
νki−1

[Axki − b]j ≤ −1 for all j ∈ J −. Thus, it follows from (3.12) that for all ki ≥ K, we have

h′νki−1
([Axki − b]j) = 1 for all j ∈J + and h′νki−1

([Axki − b]j) =−1 for all j ∈J −. Moreover, for all

ki ≥ 1, we see from (3.11) and (3.12) that g′µki−1
(Hνki−1

(Axki−b)−σ)≥ 0 and h′νki−1
([Axki−b]j)∈

[−1,1] for all j. Then, for all ki ≥K, we have that tjki = t̃ki ≥ 0 for all j ∈J +, tjki =−t̃ki ≤ 0 for all

j ∈J − and tjki ∈ [−t̃ki , t̃ki ] for all j ∈J 0.
We next prove by contradiction that {ξki} is bounded. Suppose that {ξki} is unbounded. Without

loss of generality, we assume that ‖ξki‖→∞ and that 1

‖ξki‖ξ
ki→ ξ∗ for some ξ∗. Then, it follows

from (3.16) that ∥∥∥∥∥ 1

‖ξki‖
ξki +

m∑
j=1

tjki
‖ξki‖

aj

∥∥∥∥∥≤ εki−1
‖ξki‖

. (3.17)

Moreover, from the discussions in the last paragraph, for all ki ≥ K, we have that tjki/‖ξ
ki‖ =

t̃ki/‖ξki‖ ≥ 0 for all j ∈ J +, tjki/‖ξ
ki‖ = −t̃ki/‖ξki‖ ≤ 0 for all j ∈ J − and tjki/‖ξ

ki‖ ∈[
−t̃ki/‖ξki‖, t̃ki/‖ξki‖

]
for all j ∈J 0. Then, it follows from (3.15) that

m∑
j=1

tjki
‖ξki‖

aj ∈NFEA(A,b,σ,1)(x
∗)

for all ki ≥K. Then, passing to the limit in (3.17) along {xki}, together with
εki−1

‖ξki‖ → 0 and the

closeness of NFEA(A,b,σ,1)(x
∗), it is not hard to see that

ξ∗ ∈ ∂∞Φ(x∗) and − ξ∗ ∈NFEA(A,b,σ,1)(x
∗).

Since ξ∗ 6= 0 due to ‖ξ∗‖= 1, this is in contradiction to (3.13). Hence, {ξki} is bounded. Without
loss of generality, assume that ξki→ ξ∗. Then, passing to the limit in (3.16) along {xki} and {yki},
making use of (3.15) and the closeness of NFEA(A,b,σ,1)(x

∗), recalling (1.5), we obtain that

0∈ ∂Φ(x∗) +NFEA(A,b,σ,1)(x
∗).

Thus, following the similar arguments in Case 1, one can show that x∗ is a stationary point of
problem (1.4) with 0< p< 1. This completes the proof. �
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Remark 3.1 (Comments on condition (3.13)). Condition (3.13) used for Theorem 3.1(iii)
is actually a classic constraint qualification for nonconvex nonsmooth optimization problems; see
[33, Theorem 8.15]. Note that, for any x∗ ∈FEA(A,b, σ,1), we have

NFEA(A,b,σ,1)(x
∗) =

{{
cA>d : d∈ ∂‖ · ‖1(Ax∗− b), c≥ 0

}
6= {0}, if ‖Ax∗− b‖1 = σ,{

0
}
, if ‖Ax∗− b‖1 <σ.

Moreover, recall from [12, Lemma 2.5(ii)] that

∂∞Φ(x∗) =
{
v ∈Rn : vi = 0 for i∈ supp(x∗)

}
.

Thus, condition (3.13) obviously holds at a point x∗ satisfying ‖Ax∗−b‖1 <σ. For a point x∗ satis-
fying ‖Ax∗−b‖1 = σ, one sufficient condition for (3.13) is that, for some i∈ supp(x∗), [A>d]i 6= 0
holds for any d∈ ∂‖ · ‖1(Ax∗− b), i.e., Diag(x∗)A>d 6= 0 for any d∈ ∂‖ · ‖1(Ax∗− b).

To end this section, we briefly discuss the method for approximately solving the smoothing
penalty problem (3.4) such that conditions (3.7)–(3.9) hold. Note that, for any given (λ,µ, ν),
Fλ,µ,ν is a continuous function that consists of a nonconvex nonsmooth non-Lipschitz function Φ
and a smooth function fλ,µ,ν . It is also not hard to verify that the gradient of fλ,µ,ν is Lipschitz
continuous. Moreover, Fλ,µ,ν is level-bounded because Φ is level-bounded and fλ,µ,ν is nonnegative
since gµ is nonnegative. Hence, the well-known proximal gradient method and its variants are
suitably applied for solving (3.4) with convergence guarantee; see, for example, [1, 2, 12, 39]. In
our numerical experiments, we follow [12] to adapt the nonmonotone proximal gradient (NPG)
method. The NPG method is basically the proximal gradient method with a non-monotone line
search technique and allows the occasional increases in objective. By incorporating this technique,
the NPG has been shown to have more favorable numerical performance over the monotone version
in many applications; see, for example, [22, 38, 39]. The iterative scheme of the NPG for solving
(3.4) with (λk, µk, νk) is given as follows:

Choose Lmax
k ≥Lmin

k > 0, τ > 1, c > 0, and an integer N ≥ 0. At the l-th (l≥ 0) iteration, choose
L0
k,l ∈ [Lmin

k ,Lmax
k ] and find the smallest nonnegative integer il such thatw ∈ arg min

x∈Rn

{
Φ(x) + 〈∇fλk,µk,νk(xk,l), x〉+

τ ilL0
k,l

2
‖x−xk,l‖2

}
,

Fλk,µk,νk(w)− max
[l−N ]+≤i≤l

Fλk,µk,νk(xk,i)≤− c
2
‖w−xk,l‖2.

(3.18)

Then, set xk,l+1 =w and L̄k,l = τ ilL0
k,l.

One can also show that, for any given (λk, µk, νk) and εk, a point xk,lk satisfying conditions (3.7)–
(3.9) can be found by the NPG within a finite number of iterations. Indeed, it follows from [12,
Proposition A.1(i)] that (3.9) holds for all l≥ 0. Moreover, from the optimality condition of (3.18),
we see that

0∈ ∂Φ(xk,l+1) +∇fλk,µk,νk(xk,l) + L̄k,l(x
k,l+1−xk,l),

=⇒ − L̄k,l(xk,l+1−xk,l)∈ ∂Φ(xk,l+1) +∇fλk,µk,νk(xk,l),

which implies that

dist
(
0, ∂Φ(xk,l+1) +∇fλk,µk,νk(xk,l)

)
≤ L̄k,l‖xk,l+1−xk,l‖. (3.19)

This together with the boundedness of {L̄k,l}l≥0 (see [12, Proposition A.1(ii)]) and ‖xk,l+1−xk,l‖→
0 as l→∞ (see [12, Theorem A.1]) implies that (3.7) and (3.8) hold when l is sufficiently large. In
view of the above, the sequence {xk} generated by the SPeL1 in Algorithm 1 is well-defined.
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4. Numerical simulations In this section, we conduct some numerical experiments for prob-
lem (1.4) with 0< p < 1 on finding sparse solutions to implicitly illustrate the theoretical results
established in Section 2 and show the efficiency of our SPeL1 in Algorithm 1. All experiments are
run in Matlab R2016a on a workstation with Intel(R) Xeon(R) Processor E-2176G@3.70GHz and
64GB of RAM, equipped with 64-bit Windows 10 OS.

For the SPeL1, we set λ0 = µ0 = ν0 = 1 and x0 = xfeas =A†b, where the computation of A†b is
not counted in the CPU time below. At the kth outer iteration, we compute

ηk1 :=
‖xk+1−xk‖
1 + ‖xk+1‖

, ηk2 :=
|Φ(xk+1)−Φ(xk)|

1 + Φ(xk+1)
, ηk3 := max

{
‖Axk+1− b‖1−σ, 0

}
. (4.1)

Then, based on these quantities, we set

θ= 1/ρ and ρ=

{
1.2, if max

{
ηk1 , η

k
2 , η

k
3

}
< 10−2,

2, otherwise.

The initial tolerance for the subproblem is set to ε0 = 10−3 and εk+1 is updated as max{θεk,10−8}
(instead of θεk) in our implementation. Finally, we terminate the SPeL1 when

max
{
ηk1 , η

k
2 , η

k
3

}
< 10−8.

Once the SPeL1 is terminated and returns an approximate solution x∗, we also perform a refinement
step by setting x∗i = 0 if |x∗i |/‖x∗‖∞ < 10−8 to improve the quality of the approximate solution.

For solving each subproblem (3.4) with (λk, µk, νk) in the SPeL1, we adapt the NPG described
in (3.18) with Lmin

k = 10−6, Lmax
k =

(
m
µk

+ 2
νk

)
λk‖A‖2, τ = 2, c= 10−4 and N = 2. Moreover, we set

L0
k,0 = 1 and, for any l≥ 1,

L0
k,l = min

{
max

{
max

{
∆̃k, 0.5L̄k,l−1

}
, Lmin

k

}
, Lmax

k

}
with xk,−1 =xk,0, where

∆̃k :=
∆k(x

k,l,xk,l−1) + ∆k(x
k,l,xk,l−2) + ∆k(x

k,l−1,xk,l−2)

3
,

∆k(y, ỹ) :=


〈y− ỹ, ∇fλk,µk,νk(y)−∇fλk,µk,νk(ỹ) 〉

‖y− ỹ‖2
, if y 6= ỹ,

0, otherwise.

The NPG method is terminated when the number of iterations exceeds 1000 or

L̄k,l‖xk,l+1−xk,l‖
1 + ‖xk,l+1‖

< εk or

∣∣Fλk,µk,νk(xk,l+1)−Fλk,µk,νk(xk,l)
∣∣

1 +
∣∣Fλk,µk,νk(xk,l+1)

∣∣ < ε1.2k .

Note from (3.19) that if the first inequality above holds, condition (3.7) is then approximately
satisfied.

In the following experiments, we consider randomly generated instances. Given a dimensional
triple (m,n, s), we randomly generate an instance as follows. First, we generate a matrix A∈Rm×n
with i.i.d. standard Gaussian entries and then normalize A so that each column of A has unit norm.
We next choose a subset S ⊂ {1, · · · , n} of size s uniformly at random and generate an s-sparse
vector x̂∈Rn, which has i.i.d. standard Gaussian entries on S and zeros on Sc. Then, we generate
the vector b ∈ Rm by setting b= Ax̂+ δξ, where δ > 0 is a scaling parameter and ξ ∈ Rm is the
noisy vector with each entry ξi independently following certain distribution. We shall consider two
cases:
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� Case 1. We use the standard Gaussian distribution via the Matlab command: xi =

randn(m,1).
� Case 2. We use the Student’s t(2) distribution via the Matlab command: xi =

trnd(2,m,1).
Finally, we set σ = δ‖ξ‖1 so that x̂ ∈ FEA(A,b, σ,1). In particular, for such σ, we have observed
from our simulations that all random instances satisfy ‖b‖1 >σ and hence 0 /∈FEA(A,b, σ,1).

Table 1 presents the numerical results of the SPeL1 for solving problem (1.4) with 0 < p < 1,
where we use δ= 10−3 and consider different choices of (m,n, s) and p under different noisy cases.
In this table, “nnz” denotes the number of nonzero entries in the refined terminating solution x∗;
“rank” denotes the rank of AJ with J = supp(x∗); err1 := max

{
‖x∗‖∞ − (λmin(A>JAJ ))−

1
2 (σ+

‖b‖2), (|J |λmax(A>JAJ ))−
1
2 (‖b‖1−σ)−‖x∗‖∞, 0

}
; and err2 := σ−‖Ax∗−b‖1. All results presented

are the average of 10 independent instances for each (m,n, s) and we display the rounding numbers
for “nnz” and “rank”. From Table 1, one can see that nnz = rank, err1 = 0 and err2 ≈ 0 always
hold, clearly matching Theorem 2.1 established for an optimal solution of problem (1.4) with
0< p < 1. This implies that our SPeL1 is able to find a ‘good’ stationary point of problem (1.4)
with 0< p< 1, which has important properties of an optimal solution.

We further generate one random instance for each (m,n, s) under different noisy cases, and then
apply our SPeL1 to solve problem (1.4) with different p. The number of nonzero entries in the
approximate solution obtained for different p are presented in Figure 2. From this figure, we see
that solving problem (1.4) with a smaller p always gives a sparser approximate solution, and the
sparsity is almost unchanged and is close to the sparsity of x̂ when p is smaller than a certain
threshold. This observation implicitly matches Theorem 2.2, which says that SOL(A,b, σ, p,1) ⊆
SOL(A,b, σ,0,1) and SOL(A,b, σ, p,1) remains unchanged for any sufficiently small p, and shows
the potential advantage of solving problem (1.4) with a small p for finding a sparse solution.
Moreover, in practice, such p may not be necessarily too small. From our experiments, we observe
that p= 0.5 is small enough for problem (1.4) to give a sparse solution.

Table 1. Numerical results of the SPeL1 for solving (1.4) with 0< p< 1.

Gaussian noise Student’s t(2) noise

m n s p nnz rank err1 err2 nnz rank err1 err2

500 2500 50

0.9 92 92 0 2.54e-7 163 163 0 1.82e-7
0.7 53 53 0 1.15e-7 87 87 0 6.65e-8
0.5 50 50 0 2.24e-7 50 50 0 2.17e-7
0.3 50 50 0 4.02e-7 50 50 0 2.47e-7
0.1 50 50 0 3.43e-7 50 50 0 3.00e-7

1000 5000 100

0.9 164 164 0 4.71e-7 366 366 0 3.69e-7
0.7 105 105 0 1.87e-7 210 210 0 1.35e-7
0.5 99 99 0 3.53e-7 100 100 0 4.00e-7
0.3 99 99 0 4.08e-7 99 99 0 4.43e-7
0.1 99 99 0 6.97e-7 99 99 0 5.11e-7

2000 10000 200

0.9 337 337 0 8.03e-7 706 706 0 6.04e-7
0.7 214 214 0 3.72e-7 426 426 0 2.34e-7
0.5 199 199 0 4.90e-7 199 199 0 3.97e-7
0.3 198 198 0 6.10e-7 198 198 0 6.71e-7
0.1 198 198 0 7.01e-7 198 198 0 6.86e-7

4000 20000 400

0.9 703 703 0 1.01e-6 1611 1611 0 9.52e-7
0.7 433 433 0 5.24e-7 873 873 0 3.34e-7
0.5 398 398 0 6.72e-7 418 418 0 6.52e-7
0.3 397 397 0 6.79e-7 396 396 0 1.16e-6
0.1 396 396 0 8.68e-7 396 396 0 1.16e-6
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Figure 2. The number of nonzero entries in the approximate solution for different p.

Next, we consider using model (1.4) to recover a sparse solution of an underdetermined linear
system from noisy measurements, and compare its performance with that of using the widely-
studied L2-constrained problem (see, for example, [3, 12, 13, 35]):

min
x∈Rn

‖x‖pp s.t. ‖Ax− b‖2 ≤ σ. (4.2)

We will solve problem (4.2) with 0< p< 1 by the smoothing penalty method1 proposed in [12] and
call it SPeL2 for short. All parameters in the SPeL2 are chosen as the default settings, except that
we terminate its subroutine NPG when the inner iteration number exceeds 1000 to save the cost
for solving the subproblem, while maintaining the quality of the eventual solution. Moreover, we
initialize the SPeL2 at the same point as the SPeL1 and terminate the SPeL2 at the kth iteration
when max

{
ηk1 , η

k
2 , η

k
4

}
< 10−8, where ηk1 , ηk2 are defined in (4.1) and ηk4 := max

{
‖Axk+1 − b‖2 −

σ, 0
}

. We also adapt the refinement step for the approximate solution obtained by the SPeL2 to
improve the quality of the approximate solution.

In comparisons below, we use p= 0.5 and consider different (m,n, s) and δ under different noisy
cases. For each (m,n, s) and δ, we randomly generate A, x̂, b, ξ as described above, but set σ =
δ‖ξ‖1 for (1.4) and set σ= δ‖ξ‖ for (4.2) so that both resulting feasible sets of (1.4) and (4.2) will
contain the sparse vector x̂ as a boundary point. The computational results are reported in Table 2,
where “nnz” denotes the number of nonzero entries in the refined terminating solution x∗; “feas”
denotes the deviation of x∗ from the constraint, which is given by ηk3 for (1.4) and ηk4 for (4.2);
“recerr” denotes the relative recovery error ‖x∗ − x̂‖2/‖x̂‖2; “time” denotes the computational
time (in seconds). All results reported are the average of 10 independent instances for each (m,n, s)
and δ. One can observe from this table that for the Gaussian noisy case, the performance of our
SPeL1 is comparable with that of the SPeL2 with respect to the relative recovery error, while
for the Student’s t(2) noisy case, our SPeL1 gives sparse solutions with smaller relative recovery
errors for all instances. It is worth noting that, for the problem of recovering sparse solutions, even
marginal improvements on recovery error could be very hard. Moreover, all approximate solutions
obtained by the SPeL1 are exactly the feasible points of (1.4) and the sparsity of each solution is
closer to that of the true sparse vector for most cases.

To better visualize the recovery performances of SPeL1 and SPeL2, we generate more instances
to test and plot the “frequency of success” for each method with different p. Specifically, we fix

1 The Matlab codes implemented by the authors in [12] are available at http://www.mypolyuweb.hk/~tkpong/

Exact_lp_codes/

http://www.mypolyuweb.hk/~tkpong/Exact_lp_codes/
http://www.mypolyuweb.hk/~tkpong/Exact_lp_codes/
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Table 2. Comparisons between SPeL1 and SPeL2.

Problem Setting SPeL1 SPeL2

noise m n s δ nnz feas recerr time nnz feas recerr time

Gaussian

500 2500 50

10−1 44 0 2.29e-1 0.41 37 1.07e-9 2.13e-1 1.88

10−2 49 0 1.86e-2 0.61 48 2.47e-9 1.82e-2 1.41

10−3 50 0 1.79e-3 0.71 50 3.22e-9 1.79e-3 0.99

1000 5000 100

10−1 91 0 2.11e-1 2.79 73 7.02e-10 1.89e-1 16.31

10−2 97 0 1.59e-2 4.08 94 2.53e-9 1.51e-2 10.35

10−3 99 0 1.52e-3 5.11 99 3.32e-9 1.54e-3 10.30

2000 10000 200

10−1 184 0 1.94e-1 11.41 150 4.65e-10 1.73e-1 79.54

10−2 196 0 1.49e-2 16.46 190 2.46e-9 1.43e-2 51.62

10−3 199 0 1.44e-3 21.82 198 5.58e-9 1.43e-3 26.58

4000 20000 400

10−1 374 0 2.03e-1 46.68 294 7.15e-10 1.81e-1 438.38

10−2 398 0 1.54e-2 60.79 382 2.16e-9 1.47e-2 213.82

10−3 399 0 1.49e-3 99.13 397 5.24e-9 1.48e-3 140.70

Student’s t(2)

500 2500 50

10−1 45 0 3.61e-1 0.41 22 8.63e-10 6.51e-1 5.02

10−2 51 0 2.89e-2 0.71 45 9.02e-10 5.74e-2 2.12

10−3 50 0 2.43e-3 1.18 50 2.89e-9 5.42e-3 1.11

1000 5000 100

10−1 93 0 3.45e-1 2.64 44 4.02e-10 6.49e-1 31.04

10−2 104 0 2.59e-2 5.05 88 8.77e-10 5.23e-2 15.53

10−3 99 0 2.13e-3 9.24 97 2.67e-9 5.03e-3 11.38

2000 10000 200

10−1 196 0 3.33e-1 11.65 87 2.41e-10 6.68e-1 175.28

10−2 219 0 2.63e-2 22.64 178 3.65e-9 5.55e-2 50.26

10−3 206 0 2.23e-3 45.44 195 3.55e-9 5.47e-3 36.93

4000 20000 400

10−1 383 0 3.40e-1 48.74 179 3.53e-10 7.06e-1 1404.59

10−2 474 0 3.05e-2 84.90 351 2.57e-9 6.21e-2 384.40

10−3 410 0 2.27e-3 225.96 390 5.17e-9 5.93e-3 177.51

m= 128, n= 512 and vary s from 20 to 70. The noisy level is set to δ = 10−3. For each (m,n, s),
we generate 500 independent instances, and for each instance, we run each method to obtain an
approximate solution x∗ and consider the recovery successful if ‖x∗ − x̂‖2/‖x̂‖2 < 5× 10−3. The
results of the experiments are presented in Figure 3. Note that when the number of measurements
is fixed, a larger s generally leads to a more difficult recovery problem and thus the successful rate
would be decayed, as shown in the figure. Moreover, one can see that for the Gaussian noisy case,
the successful rate of our SPeL1 is comparable with that of the SPeL2, while for the Student’s t(2)
noisy case, our SPeL1 can give better successful rates especially when p is small. This highlights
the potential advantage of our approach for recovering a sparse solution under non-Gaussian noisy
cases. One may also observe that when s becomes larger and p≤ 0.5, the successful rates of both
methods appear to become lower as p becomes smaller. The possible reason is that when s is large
and p is too small, finding a solution of problem (1.4) or (4.2) can be rather difficult and hence
it is less likely for a stationary point to be a good candidate. Therefore, both SPeL1 and SPeL2
may still need some improvements for the hard cases (p is small and s is large). We will leave this
interesting research topic in the future.

5. Concluding remarks In this paper, we consider a unified Lp-Lq sparse optimization prob-
lem (1.1) and study various properties of its optimal solutions. Specifically, without any condition
on the sensing matrix A, we provide upper bounds in cardinality and infinity norm for the optimal
solutions, and show that all optimal solutions must be at the boundary of the feasible set when
0 < p ≤ 1; see Theorem 2.1. Moreover, for q ∈ {1,∞}, we show that the Lq-constrained problem
with 0< p< 1 has finitely many optimal solutions; see Proposition 2.1 and Remark 2.2. We further
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Figure 3. Comparisons between SPeL1 and SPeL2 with m= 128, n= 512 and different s.

show that, for q ∈ {1,∞}, there exists 0< p∗ < 1 such that the solution set of the problem with any

0< p< p∗ is contained in the solution set of the problem with p= 0 and there also exists 0< p< p∗

such that the solution set of the problem with any 0< p≤ p remains unchanged; see Theorem 2.2

and Remark 2.3. An estimation of such p∗ is also provided in Theorem 2.3. A convergent smoothing

penalty method is also proposed to solve the L1-constrained problem with 0< p< 1. Some numer-

ical examples are presented to implicitly illustrate the theoretical results and show the efficiency

of the proposed method for solving the constrained Lp-L1 problem under different noises.

Appendix A: Proof of Lemma 2.3 First, for k = 1, · · · , n, we define pk(a) :=
∑n

j=1a
k
j ,

pk(b) :=
∑n

j=1b
k
j ,

Λk(a) :=
∑

1≤i1<i2<···<ik≤n

ai1ai2 · · ·aik and Λk(b) :=
∑

1≤i1<i2<···<ik≤n

bi1bi2 · · · bik .
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Then, from Viète’s formula [24], we see that a1, · · · , an and b1, · · · , bn are the roots of qn(t) and
rn(t), respectively, where

qn(t) := tn−Λ1(a)tn−1 + Λ2(a)tn−2 + · · ·+ (−1)n−1Λn−1(a)t1 + (−1)nΛn(a) = 0,
rn(t) := tn−Λ1(b)t

n−1 + Λ2(b)t
n−2 + · · ·+ (−1)n−1Λn−1(b)t

1 + (−1)nΛn(b) = 0.

Moreover, from [30, Eq. (2.11′)] and the discussions that follow, we have that, for k= 1, · · · , n,

kΛk(a) =
∑k

j=1(−1)j−1pj(a)Λk−j(a), kΛk(b) =
∑k

j=1(−1)j−1pj(b)Λk−j(b) (A.1)

with Λ0(a) = Λ0(b) = 1. Notice that Λ1(a) = Λ1(b) = p1(a) = p1(b) and pk(a) = pk(b) for k =
1, · · · , n. Thus, from (A.1), it is not hard to show by induction that Λk(a) = Λk(b) holds for
k= 2, · · · , n. This implies that qn(t) and rn(t) have the same roots and hence a= b. �

Appendix B: Proof of Lemma 2.4 First, from the Taylor expansion (with Lagrange
remainder), for any 0< p< 1, c > 0 and k≥ 0, we have

cp = ep ln c = 1 + p ln c+
(ln c)2

2!
p2 + · · ·+ (ln c)k

k!
pk +

eξk+1(ln c)k+1

(k+ 1)!
pk+1,

where ξk+1 is a number between 0 and p ln c. Then, for any 0< p< 1 and k≥ 0, we have

‖a‖pp =
s∑
j=1

|aij |
p = s+

k∑
l=1

∑s

j=1(ln |aij |)l

l!
pl +

∑s

j=1 e
ξij ,k+1(ln |aij |)k+1

(k+ 1)!
pk+1,

‖b‖pp =
s∑
j=1

|btj |
p = s+

k∑
l=1

∑s

j=1(ln |btj |)l

l!
pl +

∑s

j=1 e
ηtj ,k+1(ln |btj |)k+1

(k+ 1)!
pk+1,

(B.1)

where, for j = 1, · · · , s, ξij ,k+1 is a number between 0 and p ln |aij |, and ηtj ,k+1 is a number between
0 and p ln |btj |. In the following, we consider two cases.

Case 1: ∆k(a,b) = 0 for all k= 1, · · · , s, where ∆k(a,b) is defined as (2.5). In this case, we have∑s

j=1(ln |aij |)k =
∑s

j=1(ln |btj |)k for all k = 1, · · · , s. This together with Lemma 2.3 further implies
that (ln |ai1 |, · · · , ln |ais |) = (ln |bt1 |, · · · , ln |bts |) and hence (|ai1 |, · · · , |ais |) = (|bt1 |, · · · , |bts |). Then,
we have ‖a‖pp = ‖b‖pp for any p > 0. This proves statement (i).

Case 2: Case 1 does not hold. In this case, there must exist some 1≤ k̃≤ s so that ∆k̃(a,b) 6= 0
and ∆k(a,b) = 0 for k= 1, · · · , k̃− 1. Then, we have from (B.1) and (2.5) that

‖a‖pp−‖b‖pp =
pk̃

k̃!

(
∆k̃(a,b) +

p

k̃+ 1
Ξp
k̃+1

(a,b)

)
, (B.2)

where Ξp
k̃+1

(a,b) :=
∑s

j=1

(
e
ξ
ij ,k̃+1(ln |aij |)k̃+1−eηtj ,k̃+1(ln |btj |)k̃+1

)
. Note also that ∆k̃(a,b) 6= 0 and

p

k̃+1
Ξp
k̃+1

(a,b)→ 0 as p→ 0. Thus, there must exist a sufficiently small p′ such that∣∣∣ p

k̃+1
Ξp
k̃+1

(a,b)
∣∣∣≤ 1

2
|∆k̃(a,b)|, ∀p∈ (0, p′]. (B.3)

We now consider the following two cases.
� ∆k̃(a,b)< 0: in this case, using (B.2) and (B.3), we obtain that

‖a‖pp−‖b‖pp ≤
pk̃

k̃!

(
∆k̃(a,b) +

1

2
|∆k̃(a,b)|

)
=
pk̃

2k̃!
∆k̃(a,b)< 0, ∀p∈ (0, p′].

This implies that ‖a‖pp < ‖b‖pp for any p∈ (0, p′].
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� ∆k̃(a,b)> 0: in this case, using (B.2) and (B.3), we obtain that

‖a‖pp−‖b‖pp ≥
pk̃

k̃!

(
∆k̃(a,b)−

1

2
|∆k̃(a,b)|

)
=
pk̃

2k̃!
∆k̃(a,b)> 0, ∀p∈ (0, p′].

This implies that ‖a‖pp > ‖b‖pp for any p∈ (0, p′].
Combing the above results, we complete the proof for statement (ii). �

Appendix C: Exact penalization In this section, we show that problem (3.3) is actually
an exact penalization for problem (1.4) with 0< p< 1. For notational simplicity, we define a set U
and a matrix U as follows:

U :=
{
u1, · · · ,u2m

}
and U := [u1, · · · ,u2m ]> ∈R2m×m, (C.1)

where ui ∈ {−1, 1}m and ui 6= uj for any i 6= j. Since each entry of ui is either 1 or −1 and the
dimension of ui is m, then one can have 2m different choices of ui and hence such U and U are
well-defined. Moreover, it is easy to see that if ui ∈ U , then −ui ∈ U . A simple example is given as
follows: let m= 2, then

U =

{[
1
1

]
,

[
1
−1

]
,

[
−1

1

]
,

[
−1
−1

]}
and U =

[
1 1 −1 −1
1 −1 1 −1

]>
.

We next present some auxiliary lemmas, which will be useful in our analysis.

Lemma C.1. Let A∈Rm×n, b∈Rm and σ > 0. Then, FEA(A,b, σ,1) can be equivalently rewrit-
ten as {x∈Rn :UAx≤Ub+σ1}, where U is defined in (C.1) and 1 := (1, · · · ,1)> ∈R2m.

Proof. Observe that{
x∈Rn : ‖Ax− b‖1 ≤ σ

}
=
{
x∈Rn : max

‖u‖∞≤1
〈u, Ax− b〉 ≤ σ

}
=
{
x∈Rn : max

u∈U
〈u, Ax− b〉 ≤ σ

}
=
{
x∈Rn :u>i (Ax− b)≤ σ, ui ∈ U , i= 1, · · · ,2m

}
=
{
x∈Rn :U(Ax− b)≤ σ1

}
=
{
x∈Rn :UAx≤Ub+σ1

}
,

where the first equality follows from ‖Ax− b‖1 = max
‖u‖∞≤1

〈u, Ax− b〉, the second equality follows

because the maximizer of max
‖u‖∞≤1

〈u, Ax− b〉 must be an extreme point of {u : ‖u‖∞ ≤ 1} (see [32,

Corollary 32.3.4]) and U is the set of all extreme points of {u : ‖u‖∞ ≤ 1}. This completes the
proof. �

From Lemma C.1, it is easy to see that the feasible set FEA(A,b, σ,1) is a convex polyhedron.
This together with the Hoffman error bound theorem [26] gives the following lemma.

Lemma C.2. There exists a constant c̃ > 0 such that

dist (x, FEA(A,b, σ,1))≤ c̃‖(Ãx− b̃)+‖1

holds for any x∈Rn, where Ã=UA, b̃=Ub+σ1 and U is defined in (C.1).

Based on this error bound result, we further give the following lemma.

Lemma C.3. There exists a constant c > 0 such that, for any x∈Rn, we have

dist (x, FEA(A,b, σ,1))≤ c (‖Ax− b‖1−σ)+.
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Proof. We first show that, for any x∈Rn, it holds that

21−m‖(Ãx− b̃)+‖1 ≤ (‖Ax− b‖1−σ)+ ≤ ‖(Ãx− b̃)+‖1, (C.2)

where Ã and b̃ are defined in Lemma C.2. Indeed, for any x∈Rn, there exists some ũ∈ {−1, 1}m
such that ‖Ax− b‖1 = ũ>(Ax− b). Then, we have

‖(Ãx− b̃)+‖1 = ‖(UAx−Ub−σ1)+‖1 = ‖(U(Ax− b)−σ1)+‖1
=
∑
ui∈U

(u>i (Ax− b)−σ)+ ≥ (ũ>(Ax− b)−σ)+ = (‖Ax− b‖1−σ)+.

On the other hand, from ‖Ax− b‖1 = max
‖u‖∞≤1

〈u, Ax− b〉, we have

‖Ax− b‖1 ≥u>i (Ax− b), ∀ui ∈ U , i= 1, · · · ,2m. (C.3)

Then, we see that

‖(Ãx− b̃)+‖1 =
2m∑
i=1

(u>i (Ax− b)−σ)+ =

|K|=2m−1∑
j∈K⊂{1,··· ,2m}

(u>j (Ax− b)−σ)+

≤
|K|=2m−1∑

j∈K⊂{1,··· ,2m}

(‖Ax− b‖1−σ)+ = 2m−1(‖Ax− b‖1−σ)+,

where the second equality follows because if ui ∈ U and u>i (Ax− b)− σ > 0 , then −ui ∈ U and
−u>i (Ax−b)−σ <− (u>i (Ax− b)−σ)< 0, and the inequality follows from (C.3). From the above,
we obtain (C.2). This together with Lemma C.2 completes the proof. �

Now, we are ready to present our exact penalization results. Our first theorem concerns local
minimizers of problems (1.4) and (3.3). The other two theorems concern ε-minimizers of problems
(1.4) and (3.3) (see definitions later).

Theorem C.1. Suppose that x∗ is a local minimizer of (1.4). Then, there exists a λ∗ > 0 such
that x∗ is a local minimizer of (3.3) whenever λ≥ λ∗.

Proof. We first assume that x∗ = 0 and consider any bounded neighborhood N of 0 and λ> 0. Let
L denote a Lipschitz constant of the function x 7→ λ(‖Ax− b‖1 − σ)+ on N . For this L, one can
verify that there exists a neighborhood Ñ ⊆ N of 0 such that ‖x‖pp ≥ L‖x‖ for all x ∈ Ñ . Then,

for any x∈ Ñ , we have

Fλ(x) = ‖x‖pp +λ(‖Ax− b‖1−σ)+ ≥L‖x‖+λ(‖Ax− b‖1−σ)+ ≥ λ(‖b‖1−σ)+ = Fλ(0),

where the last inequality follows from the definition of L being a Lipschitz constant. This shows
that x∗ = 0 is a local minimizer of (3.3) for any λ> 0.

From now on, we assume that x∗ 6= 0. Let J := supp(x∗) for simplicity. Then, J 6= ∅ since x∗ 6= 0.
Since x∗ is a local minimizer of (1.4), one can verify that x∗J is a local minimizer of the following
problem:

min
xJ
‖xJ ‖pp s.t. xJ ∈ΩJ := {xJ : ‖AJxJ − b‖1 ≤ σ} . (C.4)

Let ε̃= 1
2

min
{
|x∗i | : i∈J

}
> 0. Thus, there exists a small δ > 0 such that x∗J is a local minimizer of

(C.4) and min
{
|xi| : i∈J

}
> ε̃ for all xJ ∈B(x∗J ; δ). Moreover, note that xJ 7→ ‖xJ ‖pp is Lipschitz

continuous on B(x∗J ; δ) and there exists a constant c′ > 0 such that dist(xJ , ΩJ ) ≤ c′ (‖AJxJ −
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b‖1−σ)+ for all xJ ∈B(x∗J ; δ) (see Lemma C.3). Then, from [12, Lemma 3.1] (or [28, Proposition
4]), there exists a λ∗ > 0 such that, for any λ≥ λ∗, x∗J is a local minimizer of the following problem:

min
xJ

FJλ (xJ ) := ‖xJ ‖pp +λ(‖AJxJ − b‖1−σ)+,

i.e., there exists a neighborhood NJ of 0 with NJ ⊆B(0; δ
2
) such that

FJλ (x∗J +vJ )≥ FJλ (x∗J ), ∀vJ ∈NJ . (C.5)

We now show that x∗ is a local minimizer of (3.3) for any λ≥ λ∗. Fix any ε > 0 and any λ≥ λ∗.
Consider the bounded neighborhood V :=NJ × (−ε, ε)n−|J | of 0 and let L̃ be a Lipschitz constant
of the function gλ(x) := λ(‖Ax− b‖1 − σ)+ on x∗ + V. For this L̃, there exists an ε̃ ∈ (0, ε) such
that ‖vJ c‖pp ≥ L̃‖vJ c‖ for all vJ c ∈ (−ε̃, ε̃)n−|J |. Then, for any v ∈ Ṽ :=NJ × (−ε̃, ε̃)n−|J |, we have

Fλ(x∗+v) = ‖x∗+v‖pp + gλ(x∗+v) = ‖x∗J +vJ ‖pp + ‖vJ c‖pp + gλ(x∗+v)

≥ ‖x∗J +vJ ‖pp + ‖vJ c‖pp + gλ

(
x∗J +vJ

0

)
− L̃‖x∗J c +vJ c‖

≥ ‖x∗J +vJ ‖pp + L̃‖vJ c‖+λ
(
‖AJ (x∗J +vJ )− b‖1−σ

)
+
− L̃‖vJ c‖

= FJλ (x∗J +vJ )≥ FJλ (x∗J ) = Fλ(x∗J ),

where the first inequality follows from the Lipschitz continuity of gλ with Lipschtiz constant L̃ and
the last inequality follows from (C.5). This shows that x∗ is a local minimizer of (3.3) for any
λ≥ λ∗ and completes the proof. �

We next study ε-minimizers of (1.4) and (3.3), which are defined as follows.

Definition C.1 (ε-minimizer). Let ε > 0.
(i) xε is said to be an ε-minimizer of problem (1.4) if xε ∈FEA(A,b, σ,1) and ‖xε‖pp ≤min

{
‖x‖pp :

x∈FEA(A,b, σ,1)
}

+ ε.
(ii) xε is said to be an ε-minimizer of problem (3.3) if Fλ(xε)≤ min

x∈Rn
Fλ(x) + ε.

We also introduce the following function:

Ψµ(x) =
n∑
i=1

(
ψµ(xi)

)p
with ψµ(t) =

{
|t|, |t| ≥ µ,
t2

2µ
+ µ

2
, otherwise,

(C.6)

where µ> 0 is a constant. Note that Ψµ is continuously differentiable. Moreover, from the discus-
sions in [12, Section 3.3], we have that

0≤Ψµ(x)−‖x‖pp ≤ n(µ/2)
p
, (C.7)

|Ψµ(x)−Ψµ(y)| ≤
√
npµp−1‖x−y‖. (C.8)

Then, we characterize the relation between the global minimizer of problem (1.4) and the ε-
minimizer of problem (3.3) in the next theorem.

Theorem C.2. Suppose that x∗ is a global minimizer of problem (1.4). Then, for any ε > 0,
there exists a λ∗ε > 0 such that x∗ is an ε-minimizer of problem (3.3) whenever λ≥ λ∗ε .

Proof. First, for any ε > 0, we consider µ= 2(ε/n)
1
p and Ψµ defined in (C.6). Then, we see from

(C.7) and (C.8) that

0≤Ψµ(x)−‖x‖pp ≤ n
(µ

2

)p
= ε, ∀x∈Rn, (C.9)
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and Ψµ is globally Lipschitz continuous with Lipschitz constant Lµ :=
√
npµp−1. Now, let λ∗ε := cLµ,

where c > 0 is chosen as in Lemma C.3. For any x∈Rn, we also use PFEA(A,b,σ,1)(x) to denote the
projection of x on FEA(A,b, σ,1). Then, for λ≥ λ∗ε and any x∈Rn,

Fλ(x) = ‖x‖pp +λ(‖Ax− b‖1−σ)+ ≥Ψµ(x)− ε+λ(‖Ax− b‖1−σ)+

≥Ψµ(x)− ε+
λ

c
dist (x, FEA(A,b, σ,1))≥Ψµ(x) +Lµ ‖x−PFEA(A,b,σ,1)(x)‖− ε

≥Ψµ(PFEA(A,b,σ,1)(x))− ε≥ ‖PFEA(A,b,σ,1)(x)‖pp− ε≥ ‖x∗‖pp− ε= Fλ(x∗)− ε,

where the first inequality follows from (C.9), the second inequality follows from Lemma C.3, the
third inequality follows from λ≥ λ∗ε = cLµ, the fourth inequality follows the Lipschitz continuity of
Ψµ with Lipschtiz constant Lµ, and the last two inequalities follows from (C.9) and the definition
of x∗ as a minimizer of problem (1.4). This shows that x∗ is an ε-minimizer of problem (3.3) and
completes the proof. �

From Theorems C.1 and C.2, we see that if x∗ is a local minimizer or global minimizer of
problem (1.4), then it is also a local minimizer or ε-minimizer of problem (3.3). Conversely, it is
easy to see that if x∗ is a local minimizer or ε-minimizer of problem (3.3) for some λ > 0 and
x∗ ∈ FEA(A,b, σ,1), then it is also a local minimizer or ε-minimizer of problem (1.4). Finally,
we shall study the case when x∗ is a global minimizer of problem (3.3) for some λ > 0 but x∗ /∈
FEA(A,b, σ,1).

Theorem C.3. Suppose that x̃ is an arbitrary feasible point of problem (1.4), i.e., x̃ ∈
FEA(A,b, σ,1). Take any ε > 0 and consider any λ≥ c

(
n
p
2−1ε

)− 1
p ‖x̃‖pp, where c > 0 is chosen as in

Lemma C.3. Then, for any global minimizer x∗λ of problem (3.3), the projection PFEA(A,b,σ,1)(x
∗
λ)

is an ε-minimizer of problem (1.4).

Proof. First, from the definition of Fλ and the global optimality of x∗λ, we have

‖x∗λ‖pp ≤ Fλ(x∗λ)≤ Fλ(x) = ‖x‖pp, ∀x∈FEA(A,b, σ,1), (C.10)

(‖Ax∗λ− b‖1−σ)+ ≤ λ−1Fλ(x∗λ)≤ λ−1Fλ(x̃) = λ−1‖x̃‖pp. (C.11)

Then, for any x∈FEA(A,b, σ,1), we have

‖PFEA(A,b,σ,1)(x
∗
λ)‖pp−‖x‖pp ≤ ‖PFEA(A,b,σ,1)(x

∗
λ)‖pp−‖x∗λ‖pp

≤ ‖PFEA(A,b,σ,1)(x
∗
λ)−x∗λ‖pp = n · 1

n

∑n

i=1

(∣∣[PFEA(A,b,σ,1)(x
∗
λ)]i− [x∗λ]i

∣∣2) p2
≤ n

(
1
n

∑n

i=1

∣∣[PFEA(A,b,σ,1)(x
∗
λ)]i− [x∗λ]i

∣∣2) p2 = n1− p2 ‖PFEA(A,b,σ,1)(x
∗
λ)−x∗λ‖p

= n1− p2
[
dist (x∗λ, FEA(A,b, σ,1))

]p ≤ n1− p2
[
c (‖Ax∗λ− b‖1−σ)+

]p
≤ n1− p2

[
cλ−1‖x̃‖pp

]p ≤ ε,
where the first inequality follows from (C.10), the second inequality follows from [12, Lemma 2.4],
the third inequality follows from the concavity of the function t 7→ t

p
2 for nonnegative t, the fourth

inequality follows from Lemma C.3 and the last two inequality follows from (C.11) and the choice
of λ. This implies that PFEA(A,b,σ,1)(x

∗
λ) is an ε-minimizer of (1.4) and completes the proof. �
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