LINEARLY-CONSTRAINED NONSMOOTH OPTIMIZATION FOR
TRAINING AUTOENCODERS*
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Abstract. A regularized minimization model with lj-norm penalty (RP) is introduced for
training the autoencoders that belong to a class of two-layer neural networks. We show that the
RP can act as an exact penalty model which shares the same global minimizers, local minimizers,
and d(irectional)-stationary points with the original regularized model under mild conditions. We
construct a bounded box region that contains at least one global minimizer of the RP, and propose
a linearly constrained regularized minimization model with l1-norm penalty (LRP) for training au-
toencoders. A smoothing proximal gradient algorithm is designed to solve the LRP. Convergence of
the algorithm to a generalized d-stationary point of the RP and LRP is delivered. Comprehensive
numerical experiments convincingly illustrate the efficiency as well as the robustness of the proposed
algorithm.
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1. Introduction. A deep neural network (DNN) [28] aims to solve a finite-sum
minimization problem
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Here @, n(W1,...,Wp,b1,...,bp) = o (Wrop_1(---o1(Wizy +b1) +---) + br) de-
notes the outputs of the L-th hidden layer, and v, denotes the loss function mea-
suring the output ¢, (Wi,...,Wr,b1,...,br) and its corresponding true output
for n = 1,...,N, where {z,})_, is the data set, W, € RNexNe-1 p, ¢ RNe,
op : RNe s RNe (¢ = 1,... L) are the weight matrices, the bias vectors and the
activation functions, respectively.

A broad class of methods, based on stochastic gradient descent (SGD), are pro-
posed to solve (1.1), such as the vanilla SGD [9], the Adadelta [38], and the Adam [20].
In SGD methods, the gradient of the objective function is calculated by the chain rule,
which is applicable to smooth activation functions, such as sigmoid, hyperbolic, and
softmax functions [14]. However if a nonsmooth activation function is used, such as
the rectified linear unit (ReLU) or the leaky ReLU [27], the subgradient of the objec-
tive function in (1.1) is difficult to calculate. At least the chain rule is no longer useful
(see [8, Theorem 10.6]). As shown by recent studies, such nonsmooth activation func-
tions have some advantages over the aforementioned smooth ones, as they can pursue
the sparsity of the network [13]. The readers may refer to Glorot et al. [13] and Jarrett
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et al. [18] for the numerical comparisons between the DNN with smooth activation
functions and those with nonsmooth ones. Due to excellent numerical behavior, the
ReLU activation function has been widely used since 2010 [1, 11, 30, 33, 37]. In prac-
tice, the SGD based approaches are still used to tackle the problem with nonsmooth
activation functions. The exactness in calculating the subgradient of a nonsmooth
function is usually neglected in SGD methods. Gradients in a neighborhood are often
used to approximate the one at a nonsmooth point. Certainly, such approximation
may cause theoretical and numerical troubles in some cases. Hence, it is worthwhile
to develop algorithms for solving problem (1.1) with nonsmooth activation functions
and deal with the nonsmoothness appropriately.

In [5], Carreira-Perpifidn and Wang reformulate problem (1.1) as the following

constrained optimization problem with u, o =z, foralln =1,2,..., N,
1N
in — u
(1 2) Weibg un ¢ N len( HVL)
£=1,...,L,n=1,..., n=

s.t. unvg:Jg(Wgun7g_1+bg), n=1...,N,{=1,...,L,

and propose a method of auxiliary coordinates to solve (1.2). Moreover, an alternating
direction method of multipliers (ADMM) [34] and a block coordinate descent method
(BCD) [22] are proposed to solve the constrained model and its lo-norm penalty
problem, respectively. However, these methods are less efficient than SGD based
approaches, and lack of theoretical guarantee (see [39]).

More recently, Cui et al. [10] use an /;-norm penalty method to replace the con-
straints in (1.2) by adding 25:1 Zngl |tin,e — oo(Wittn e—1 + bg)||1 in the objective
function. They provide an exact penalty analysis and establish the convergence of
the sequence generated by their proposed algorithm to a directional stationary point,
which will be defined in Definition 2.1. To the best of our knowledge, this is the first
mathematically rigorous method for training deep neural networks with nonsmooth
activation functions. However, some assumptions imposed in their theoretical analy-
sis are restrictive for some applications. For instance, the ReLU does not satisfies
the assumptions on activation functions in [10, Corollary 2.2]. Moreover, the bound-
edness assumption on the sequences of iterates imposed for convergence analysis is
not natural since the solution set of (1.2) is unbounded. For example, suppose that
{tine, Wg,Bg}f;Jinzl is a global minimizer of model (1.2), it is easy to verify that

. s~ JLN . .
{tin,e, Wo, bl}zél,nd is also a global minimizer, where

. _ A - - _ - 1 . 1-
U, = tUp,1, Wi = tW1, by = thy, lip,2 = Un,2, W2 = EWQ,bz = {b%
Up 0 = ﬂn,@Wg = V_Vz,i)g =by, forn=1,...,N{=3 ..L

for any ¢t > 0. Let t tend to infinity, if W, # 0 or by # 0, then the norm of
{tin, e, W, lA)g}ZL;JY’nzl tends to infinity.

To overcome the unboundness of the solution set of (1.2), in this paper we consider
the regularized model of problem (1.2) in [5], which adds the regularization term
|[W¢||% in the objective function. Motivated by the ideas of the exact [;-norm penalty
and directional stationarity in [10], we design a deterministic algorithm for training the
autoencoder, a special two-layer network, using ReLLU, with guaranteed convergence,
and achieve competitive performances comparing with the SGD based approaches in
solving large-scale problems. Our proposed model can be generalized to problem (1.2)
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with certain regularizing term (see (5.1)—(5.3) in the conclusion part.). In fact, the
number of layers does not affect the validity of our theoretical analysis on the model.
The reason we focus on the autoencoder in this paper is that a large number of layers
does increase lots of tedious notations as well as rapidly increasing number of variables
which requires further development on the algorithm to maintain the comparability
with existing approaches. Such development is out of the main scope of this paper.

1.1. Regularized Autoencoders. Training an autoencoder using ReLU as the
activation function can be formulated as the following nonsmooth nonconvex finite-
sum minimization problem.

N

(13) i D2 10V oW 40) 4 02) =,

where {z,, € RN} | is the given data, W € RN1*No ig the weight matrix, b; € RM
and by € RNo are the bias vectors. For convenience, we use X = (z1,22,...,2N) €
RNoXN to denote the data matrix, and denote b = (b ,bg )T € RN1+No a5 the com-
bination of two bias vectors. Here, we select W T as the weight matrix of the second
layer, which is the transpose of that of the first layer. The consequent model (1.3)
is called the autoencoder with tied weight which has been widely used in practice
(see in [14, 16]). However, there exists autoencoder without tied weight, namely, the
weight matrices of the two layers take W7 and Wy, respectively (see in [31]). Never-
theless, Li and Nguyen [26] have shown that by using the tied weight, the training
speed is increasing and the numerical performance is comparable than that without
tied weight. Then, it becomes uncommon to consider the general case. On the other
hand, our new model, algorithm and theorectical analysis can be generalized to the
autoencoder without tied weight easily.

o (Wax1+ b)
()

Fig. 1: Illustration of the network of an autoencoder

In this paper, we focus on the ReLU, ie. o(y) = y+ := max{0,y}. An autoen-
coder aims to learn a prediction function o(W T o(Wz,, + by) + by) for the given data
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{x, € RN}V without any label, since {x,}Y_; is also regarded as the true value
of the output layer. Hence, the autoencoder is classified as an unsupervised learning
tool. In recent years, autoencoders have been widely used in denoising, dimensionality
reduction, and feature learning (e.g., [3, 23, 36]). Besides, autoencoders can be used
as a preprocessing tool before training a DNN (e.g., [16, 32]).

In practice, directly solving (1.3) may lead to overfitting or ill-condition. To con-
quer these issues, the authors of [14] introduce two regularization terms to guarantee
the model’s robustness. The first class of regularizers is the [p-norm term ||[W||%,
called weight decay, which can effectively avoid the overfitting phenomenon [21]. The
second class is the l;-norm that can pursue the sparsity [14, 31]. In this paper, we use
the [p-norm for the weight matrix and the l;-norm for the auxiliary vectors. To pres-
ent our optimization model in RN? with Ny = NgN;1 + N1 + Ny + N1 N, we introduce
a vector variable

(1.4) z = (vec(W) T, 0" vec(V)T)T € RNz
where V = (v, vs,...,vx) € RVM*N is an auxiliary variable with v,, = (Wx, + b1)
for all m = 1,..., N, and vec(Y) € R denotes the columnwise vectorization of the

matrix Y € R>X™. Let

N N
1
Fl2) =+ S ONW vy +bo)y —anll3 and R(2) = A1 > _ e vn + Xl WF
n=1

n=1

denote the fidelity term and regularization term, respectively, where e = (1,...,1)T €
RM and A, Ay > 0. We consider the following Regularized (R) minimization model
for the autoencoders

min F(z) + R(z)
(R) :
st.zeQ:={z:v,=Wa,+b)s,n=1,...,N}.

We would like to mention that the equivalent form of problem (R), namely (1.3) with
regularizer R, has been widely used in autoencoders (see in [14, 36]).

1.2. Our Focuses and Motivation. The feasible set 2; of problem (R) is
nonconvex and the standard constraint qualifications may fail due to the nonsmooth
equality constraints in (R). Hence, we introduce the following Regularized minimiza-
tion model with [;-norm Penalty (RP) for the autoencoders.

min O(z) == F(2) + R(z) + P(z)

(RP)
st.z€Q:={z:v, > Wz, +b)s,n=1,...,N},

where P(z) := ZnN:1 e (vn, — (Wx, +b1)4) is the penalty term.

Compared with the [;-norm penalty term 25:1 |vn, — (Wa,, + b1) ||, proposed
in [10], the subdifferential of P(z) enjoys an explicit expression. In addition, the
feasible set 25 of (RP) is convex and the slater-type constraints qualification holds [8,
Section 6.3, Proposition 6.3.1]. However, the solution set of (RP) may be unbounded
as that of the model in [10]. To overcome the unboundness and ensure the sequence

generated by the algorithm is bounded, we introduce a convex set

Q3:={z: |[bllc <0},
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where

0 NNyt OV N 1
(1.5) a:max{h+ LN, I +|X||1}, 0> SIXI%

We will show that (RP) has a global solution in £23. Hence, it suffices to solve (RP)
restricted to Q3. Note that v,, > (Wax,, + b1), can be represented by v, > Wx,, + b;
and Un Z 0. Let V= 2(NN1 + No + Nl),

W : NogN1 b: N1+ Ny V:NN;
————
XT®IN1 €N®[IN1 0] —InN 0
0 0 Inn N 0
A= ! eERVY2 = eR”,
0 IN1+N0 0 ’ QEN,+No
0 _IN1+N0 0 QEN; 4Ny

where ® represents the Kronecker product, ey € RV, en, +n, € RM TN denote the

vector whose elements are all one. We consider the following Linearly constrained

Regularized minimization model with [;-norm Penalty (LRP)

min O(z)

(LRP) ?
st. z€ Z2:=QNQ3={z: Az <c}.

1.3. Contribution. We propose a partial penalty model (RP) and establish
the equivalence between the models (RP) and (R) regarding global minimizers, local
minimizers, and directional stationary points under some mild conditions. Moreover,
we show that the solution set of (LRP) is bounded and contains at least one of global
minimizers of (RP), and provide conditions such that (LRP) and (RP) have the same
local minimizers and directional stationary points in Z.

We propose a smoothing proximal gradient algorithm for solving (LRP), whose
subproblem at each iteration is a structured strongly convex quadratic program. We
develop a splitting algorithm for solving the subproblem by using the special struc-
ture, which is faster than the “quadprog” [35] and the “CVX” [15]. We prove that
the sequence generated by our algorithm converges to a generalized directional sta-
tionary point of (LRP) without assuming the boundness of sequences or existence of
accumulation points.

The numerical experiments demonstrate that our algorithm, equipped with adap-
tively selected stepsize and smoothing parameters, outperforms the popular SGD
methods (e.g., Adam, Adadelda, and vanilla SGD) in acquiring better and more ro-
bust solutions to a group of randomly generated data sets and one real data set for
autoencoders. More specifically, compared with SGD methods, our algorithm achieves
lower training error and objective function values, and obtains sparser solutions to
testing problems.

1.4. Notations and Organizations. Let B.(y) be the closed Euclidean ball in
R™ centered at y and radius e. The m x m identity matrix is denoted by I,,. Given
a nonempty closed set 2 and a point y*, we use dist(y*,Q) = inf,ecq|ly — y*||2 to
denote the distance from y* to Q. We use co(f2) to represent convex hull of Q.

The rest of this paper is organized as follows. In section 2, we give theoretical
results for the relationship among the three models (R), (RP) and (LRP). In section 3,
we propose a smoothing proximal gradient algorithm for solving (LRP) and present
the global convergence of the algorithm. In section 4, we illustrate the performance of
our proposed algorithm through comprehensive numerical experiments. Concluding
remarks are given in the last section.
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2. Model Analysis. In this section, we aim to theoretically investigate the
relationship among problems (R), (RP) and (LRP) for autoencoders.

2.1. Preliminaries. In this subsection, we present some preliminary definitions.
Let Projo(y*) = argmin{|ly — y*||2 : y € Q} denote the orthogonal projection of a
vector y* € R™ onto a convex set ) C R™.

The Clarke subdifferential [8, Section 1.2] of a locally Lipschitz continuous func-
tion f: R™ — R at y* is defined by 0f (y*) = co {limy_,,» Vf(y) : f is smooth at y}.

We use [’ (y;d) to denote the directional derivative of a directional differentiable
function f at y along the direction d, i.e.,

(2.1) f' (y;d) = lim

A function f is said to be regular [8, Definition 2.3.4] at § € R™ provided that if
for all d, the directional derivative f'(§;d) exists, and

f(7;d) = f°(5;d),

fly+td)—f(y)

n is the generalized directional derivative at

where f°(7;d) := lim SUp
7 along the direction d [8].
It is known that if f is piecewise smooth and Lipschitz continuous in a neighbor-
hood of y, then f is semismooth and directional differentiable at y [29]. The objective
functions of (R), (RP) and (LRP) are locally Lipschitz and piecewise smooth. Hence
they are semismooth functions and directional differentiable.
Let To(§) = {d : d = limyeqy—y,r10 =L} be the tangent cone of a set Q at .

DEFINITION 2.1. We call Z € Qq, Z € Qo, Z € Z a d(irectional)-stationary point
[10] of problems (R), (RP) and (LRP), respectively, if

(2.2) F'(2,d)+VR(2)Td >0, Vde T, (3),
(2.3) O (zd) >0, Vde To,(2),
(2.4) O (z;d) >0, VdeTz(2).

We call z € Qq, z € Qq, Z € Z a generalized d(irectional)-stationary point of
problems (R), (RP) and (LRP), respectively, if (2.2)—(2.4) hold with F°(z;d) and
0°(%;d) instead of F'(z;d) and O'(z;d).

We call z € Z a generalized KKT point of (LRP) if there exists a nonnegative
vector 7 € R” such that

(2.5) 0€00(z)+A"y, 7' (Az—¢)=0, Az—c<O.

2.2. Global and Local Solutions. Let $*, § and Z* be the global solution
sets of (R), (RP) and (LRP), respectively. In this subsection, we prove §*, S and Z*
are not empty, and Z* C § = §*.

We define a level set of problem (RP) using 6 defined in (1.5) as follows

Qg ={z€Qy:0(2) <0}.

Obviously, 0 € Qp since O(0) = + || X||% < 6 and 0 € Qs.
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THEOREM 2.2. For any z € Qy, the following statements hold.
(@) W2 < £, VI < £ and by oo < o
(b) 2= Projg,(2) € Z and O(z) = O(z).
Moreover, the solution set Z* of (LRP) is not empty and bounded, and Z* C S.
Proof. (a) The first two inequalities are from V > 0, O(z) < 0, F(z) > 0,
P(z) > 0 and R(z) > 0, which imply

N
(2.6) M Z e v, <0 and Ao|| W% < 6.

n=1

Now we prove [|by||cc < a. From the Cauchy inequality and (2.6), we have

L o N1 Nyb
27) > D Wil < VNG W e < | =

j=1s=1

For n=1,..., N, combining (2.6) with z € Qs, we obtain that

0
(28) - zelvn el Wan+ )y > (Wimn +b1g)y > Win + by
1

for all j = 1,...,N7. On the other hand, (2.7) yields ||[W; | < @/Nli]\:"e, which

implies

NN
(2.9) (W, n| < 4] —=—2

X[

Together with (2.8), we can conclude that b, ; satisfies

0 N1N0
-~ )\ +

(2.10) by XN, Vi=1,...,Ny.
From F(z) < 60, we have
(2.11) VNO > (W oy + by ) — Xjn > W hvg +baj — X0

foralln=1,...,Nand j =1,..., Nyg. From ||v,|1 < )% and ||[W. ;|1 < ,/NlTJ;[OO7 we
find

(2.12) (W L on| < OvIVLIVGG
’ AV

Together with (2.11), we obtain that

0/ N NoO
WY, +VNO+ || X1,

Combining (2.10) and (2. 13) we ﬁnally arrive at the assertion that |||l < a.
(b) Let z = (vec(W)T, b7, vec(V)T)T with W =W,V =V and

(2.13) by < Vi=1,...,No.

— « otherwise, — « otherwise

(2.14) bij, = {

bij, if b1, > —a, . {b27j2 if by j, > —a,
2,52 —
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for all j; =1,...,Ny, jo =1,..., Ng. By part (a), we have ||b|| < a. Hence z € Q3.
By (2.9) and (2.12), we have

_ _ N1Nyb —
b17.7'1 + le,'xn < bl;jl + lefxn S —a+ 1)\ " HX”l <0, if bl,j1 =,
2
- - 0+/N1Nyb .
T T - 14Vo . .
b2_,j2 + W‘,jzv" S b21j2 + W_Jz'l)n S —a + W S 0, if b2,j2 = —qQ,

which together with (2.14) implies that for all n = 1,..., N, it holds
(2.15) (Wxp, +by)y = (Way, +b1)y and (Wo, + bg)y = (Wo, + ba)..

Combining with W = W and V = V, we have O(z) = O(z). Moreover (2.15), W = W
and V =V yield z € Q5. Hence by the definition of z, Z = Projg, (z) € Q2N Q3 = Z.

Now we prove the last statement. By parts (a) and (b), the set 2Ny is a bounded
closed set. Hence, there exists z* € Z* such that O(z*) = min,cz O(z) < 0. Assume
on contradiction that z* € Z* but z* ¢ S. Then there exists z € gy such that
O(Z) < O(z*) < 0. As we have proved in (b), Z =Projq,(?) € Z and O(z) = O(2),
which implies O(Z) < O(z*). This is a contradiction. Hence Z* C S. 0

The following theorem shows that (RP) is an exact penalty formulation of (R) re-
garding global minimizers if the penalty parameter 5 in P is larger than a computable
number.

THEOREM 2.3. The following statements hold.

(a) The functions F and R are Lipschitz continuous over §g.

(b) Let Ly and Lg be Lipschitz modulus of F and R over Qg, respectively. Suppose
B> Lr+Lgr. If Z € Qy is a global minimizer of (R), then Z is also a global
minimizer of (RP).

(c) Let 6 := 30 + 2)\];[;?5 and Qs = {z € Q2 : O(2) < 0}. Let Ly and Lr be Lipschitz
modulus ofj: and R over Qs respectively. Suppose 8 > Lr+Ly. If Z € Qy
is a global minimizer of (RP), then Z is also a global minimizer of (R).

Proof. (a) From Theorem 2.2 (a), it is clear that R is Lipschitz continuous over
Qg. From Theorem 2.2 (a)-(b), the set Z N Qy is bounded. Suppose that Lz is the
Lipschitz constant of F over ZN§Qy. Let 21,25 € Qy. It follows Theorem 2.2 (b) that
O(Projg,(21)) = O(z1), O(Projg,(22)) = O(z2), and Projg, (21), Projg,(22) € Z.
From Z = Q5 N Q3, we have Projq_ (1), Projg, (22) € Q. Hence, it holds that

[O(21) — O(z2)||2 = [|O(Projg, (21)) — O(Projg, (22))]|2
< Lx|[Projg, (21) — Projg, (22)]|2
< Lr|lz1 — 222,

where the last inequality is from that (23 is a convex set and the projection is Lipschitz
continuous with Lipschitz constant 1. Hence we derive that F is Lipschitz continuous
over )y with the Lipschitz constant L.

(b) We first prove that Sdist(z, 1) < P(z) for all z € Q.

For z € Qy, let Z = (vec(W)T,b7,vec(V))T with &, = (Wz, + b)) for all
n=1,2,...,N. Then, we have z € Qq, v, < v, and

N
) ~ ~ 1
dist(z, ) < ||z = Zl|2 < [lvee(V = V)llz € D llon = (Wap +b1)+]h = 57,

n=1
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where the last inequality comes from the definition of ¥, and || - ||2 < || - ||1, and the
equality is from z € Q5.
Since 8 > Lr + Lg, P(z) =0 for all z € Q1, 21 C Qo, and Qp C Qa, we have
in F R > in F R
min F(z) + R(2) + P(z) 2 min, F(z) +R(2)

= min F(z)+R(z)+P(z)

z2€Q1NQy
> min F(z) + R(z) + P(2).
z2€Qp
Hence we obtain the statement (b).
(c) Let z € S and ((V) = NZn 1’ (WTUn+B2)+_xn

the definition of V', V is a global minimizer of

+)\1Z 16 Upn. By

N
Vnélslll4 (V) :=G6((V)+8 2—:1 an - (Wxn + 1_71)+|’1 )

where Q4:{V:vn2(V_Vxn—|—61)+,n:1, SN, G (V <6}

It follows from O(2) < O(0 ) < O that S0 [[(W 0, + bo)y — 2|2 < NO, Ao W][% <

9)\12 € To, <6, andﬁz € Tr, <6, where 1, = v, — (Wx,, +by)y >0 for
n=12,...,N. Let

z{V:Unz(Wx,L+51)+,n=1, SN, GV <5}

and 9, = (Wx, +by)4 foralln=1,..., N. We show that V € Q5 as follows.

N Ny
N 1 T
CQ(V):ﬁZ ( -,](U *7‘”)4*[)2]) Xin +)\le n = Tn)
n=1j=1
1 N Ny 9
<0+ =33 (|Kin = (Whon+525) | + (W)
n=1j=1
9 N Np
S‘HNZ ()(W_ijnerg,)Jr—Xm +(WTjrn)2+)
n=1j=1
9 N N B 9 N Ny
<O+204+ 3 Y (Whra)d <30+ 53> (W)’
n=1 j=1 n=1 j=1
N 2
<30+ —||W|% <ZeTrn> <4,
n=1

where the first inequality comes from |(a1 + a2)+ + az| < [(a1)+ + a3| + (a2)+ with
ai,as,as € R, the second last 1nequahty uses the fact r,, > 0, and the last inequality
is from )\2||WHF <4, an L€', <0, 8> Lg > )\, and the definition of §. Hence
5 is nonempty. Obviously Q5 C Q4 and {z : W =W, b=0b,V € Q5} C Q.

On the other hand, it is clear that Lz + Ly is also a Lipschitz constant of (»(V)
over {4. Besides, we have Z —1 [lon = (W, +b1) 4|11 > dist (2,95) for all 2 € Q,
which is resulted from [17, Proposition 4]. Together with 8 > Lr+ Ly and [7, Lemma
3.1], we obtain V is also a global minimizer of minycq, (2(V). Hence z € Q;. From
Q1 C g, we obtain z € §*. We complete the proof. 0
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The above two theorems show that the solution sets S*, S of problems (R)
and (RP) are the same and contain the solution set Z* of (LRP) that is bounded.
The following example shows that the solution sets S* and S are unbounded for some
data set X.

Example 2.1 Let 2* be a global minimizer of problem (R) with

0 0

X = (21,12) = [1 2} ER¥2 W = [wy,wa] € RY*2, by €R, by = [b2’1

€ R2.
b2,2:|

We set 2 = (vec(W*)T, b7, vec(V*)T)T € RN> with by = b%, by p = b3, and by <
min{—wf (w5 + b7) . —wf (2w + i)

From by € argminy, 212:77, (W) T (W=, + b7) 4 + b2)4 — an;, we can verify
that Z is also a global minimizer of (R). Hence S* is unbounded, and the solution set
S of problem (RP) with any large 8 > 0 is also unbounded.

By the similar argument, we can claim the following relationships among the local
minimizers of (R), (RP) and (LRP).

COROLLARY 2.4. Let Lr and Ly be Lipschitz modulus of F and R over Qg re-
spectively. Suppose B > Lr+Lyr. If Z € Qg is a local minimizer of (R) or (LRP),
then z is also a local minimizer of (RP). If Z € Q9N Qg3 is a local minimizer of (RP),
then z is also a local minimizer of (LRP).

2.3. Stationary Points. In this subsection, we investigate the relationships
among the stationary points of problems (R), (RP) and (LRP).

From Z = Q2 NQ3, we have {z: 2z € Z, O(z) <6} C Q.

THEOREM 2.5. Let Ly and Ly be the Lipschitz modulus of F and R over Q.
Suppose B > Ly + Lr. If z € Z with O(z) < 6 is a d-stationary point of (LRP),
then z € Q4 is a d-stationary point of (RP) and (R).

Proof. Firstly, we show z € ;. B

Assume on contradiction that Z ¢ Q;, we construct z = (vec(W) T, b7, vec(V)T) T
with 0, = (Wx, +b1); for all n =1,..., N. It then follows from z € Z that z € Qy,
which further implies that @, > (Wx, + b1)4 for all n = 1,..., N. Hence, we have
vV <V and Vv #* V.

Since O(z) < 6 and O is locally Lipschitz continuous, there exists t; € (0, 1] such
that O(z +¢(zZ — z)) < 0 for all 0 < t < ¢;. Together with || - ||]2 < || - ||1 and the
definition of Z and Z, we have

OzZ+4+t(z—2)—-0Z)=FEz+t(z—%2) — F(z)

+REFUEZ-2)-R(E)+BD e (Un+ 1T —n) =B e'D
n=1 n=

N N
<t(Lr+Lr)|Z—Zl2+t8Y e (T —0n) <tB— (Lr+Lr)) D> e (Tn —Tn).

n=1 n=1

Together with 8 > Lx + Ly, 1% #V,and v, <0, foralln=1,..., N, we arrive
at

(2.16) O'(z7—-2) < (B— (Lr + Lr))

e (U — Tn) < 0.

Mz

1

N 3

On the other hand, it holds that Tz(z) = {d :

0,7 € A} where A = {i €
{1,...,v} : (A2); = ¢;}. Since W = W,b = %

Ad); <
,V <V, we have (A(Z — 2)); < 0,

j=all
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for all i € A, i.e. Z—Z € Tz(2). This together with (2.16) contradicts to that z is
a d-stationary point of (LRP) in (2.4), which means O’ (Z;d) > 0 for all d € Tz(Z).
Hence, we have z € , which implies ¥, = (Wx,, + b;); holds foralln =1,...,N.

Secondly, we prove that Z is a d-stationary point of (RP). For any d € Tq,(2),
there exists t2 € (0,1] such that zZ + td € Qs for all 0 < ¢t < to, since {25 is a convex
set. Together with Theorem 2.2 (b), we have Projq, (Z +td) € Z for all 0 < ¢ < o,
and

(2.17) 0'(%d) = lim O(z +td) — O(2) — lim O(Projg, (z +td)) — O(Z).

t10 t t10,t<to t

Define a function ¢ : Ry — R™? satisfying ((t) = Projq, (z + td), then ((t) is a
piecewise linear function with respect to ¢, due to the explicit formula of Projo,(z)
for z € Qg (cf. (2.14)). Hence, there exists t3 € (0,t2] such that for all 0 < ¢ < t3,
we have ((t) = (1 — i)C(O) + %C(tg). Together with (2.17), t3 < t3, ((0) = z, and
Projq,(Z 4 t3d) — Z € Tz(%), we arrive at

0/ (s5d) — 1y 2CH () ~2) ~ OC)
t10 t

— 0 (z; %(g(tg) - z)) >0

for all d € Tq,(Z). Hence Z is a d-stationary point of (RP).

Finally, we prove that z is a d-stationary point of (R). Since the difference between
the objective functions of (RP) and (R) is the term P, we only need to prove P’(z;d) =
0 for all d € Tq,(2), which together with ; C Q2 and O'(z;d) > 0 for all d € Tq,(2)
yields (2.2).

For a fixed d € Tq,(Z), by the definition of Tq,(2), let {7x} be a sequence of
positive numbers with 7, < 7;_1 converging to zero, and {z(k)} C 1 a sequence
converging to z such that d = limy_, d®) with d%) = &;2 From z*) = z47,d*® e
Qy, we have P(Z + 7,d®)) = 0. Note that z € Q; implies P(Z) = 0. Hence from the
Lipschitz continuity and directional differentiability of P, we obtain

Pz +td) — P(z) Pz + 1d) — P(2)

P'(z;d) = lim = lim
t10 t 740 Tk
3 —P(z (k)
TkJ,O Tk
Since d € T, (2) is arbitrarily chosen, we complete the proof. d

THEOREM 2.6. Let Ly and Ly be the Lipschitz modulus of F and R over Q.
Suppose B > Lr+Lg. If z € Z with O(2) < 0 is a generalized KKT point of (LRP),
then zZ € Qy is a generalized d-stationary point of (LRP). In additional, if Z € int(23),
then Z is a generalized d-stationary point of (RP). Furthermore, if P is regular at Z,
then Z is a generalized d-stationary point of (R).

Proof. By the definition of generalized KKT point of (LRP), [8, Proposition 2.1.2]
and Tz(z) = {d: (Ad); <0,i€ A} where A= {i € {1,...,v}: (AZ); = ¢;}, we have

(
0<—(Ad)"5 < max ¢'d=0°(zd), VdeTz(%),
£€00(2)
which implies that z is a generalized d-stationary point of (LRP).
Now, we prove that z € Q.
Assume on contradiction that z ¢ €y, we construct the same Z as that in the
proof of Theorem 2.5. Since O(z) < 6 and O is locally Lipschitz continuous, there
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exists € > 0 such that for all z € B.(2), it holds that O(z) < 6. Furthermore, for any
z € B.(Z), there exists t; € (0,1] such that O(z +t(z — 2)) < 6 for all 0 < ¢ < ¢;.

Together with || - ||2 < || - ||1 and the definition of z and Z, we also have
N
O(z+1(Z—-2)) = O(2) <HB — (Lr+ Lr)) Y_ e (T — ).
n=1

Using a similar method as that in the proof of Theorem 2.5, we have z € €y, which
implies ©,, = (W, +b1)+ holds for all n =1,..., N.

Since z € int(€23) implies Tz(Z) = Tq,(Z), we obtain that z is a generalized
d-stationary point of (RP).

Finally, for all d € T, (%), we have

(F4+R)°(z;d) = (F+R)°(2;d) + P'(z;d) = (F +R)°(z;d) + P°(z; d)
>0°(z;d) > 0,

where the first equality comes from P’(z,d) = 0 (see the last part of the proof of
Theorem 2.5), the second equality comes from P being regular at z, and the last
inequality comes from d € Tq,(2) C Tq,(Z). Hence, Z is a generalized d-stationary
point of (R). d

We end this section by summarizing our results for the relationship of problems
(R), (RP) and (LRP) with 8 > Lz + L in the following diagram, where z € Qp, Lr
and Ly are the Lipschitz modulus of F and R over ()5, respectively.

R: global minimizer local minimizer d-stationary point generalized d-stationary point
U Y i P is regular at z
RP : global minimizer local minimizer d-stationary point generalized d-stationary point
z ez I z e Y oz <o 1 z € int(Q3), 0(2) < 0
LRP : global minimizer local minimizer d-stationary point generalized d-stationary point

3. A Smoothing Proximal Gradient Algorithm. In this section, we propose
a smoothing proximal gradient algorithm (SPG) for solving problem (LRP). The
proposed SPG introduces a smoothing function of the objective function of (LRP)
and solves a strongly convex quadratic program over its feasible set Z = {2z : Az < ¢}
at each iteration. In the rest of this section, we first present the algorithm framework
and then establish convergence results of the algorithm.

3.1. Algorithm Framework. B
DEFINITION 3.1. [6] Let f : R™ +— R be a continuous function. We call f :

R™ xRy — R a smoothing function of f, if for all fivred > 0, f(-, ) is continuously

differentiable, and lim,_,5 .10 f(y, 1) = (7).
In this paper, we adopt the following smoothing function o (y, p) : R™ xR — R™
for the ReLU activation function o = (y) as follows.

0 if y; <0,

Gily:m) =43, H0swm=n
©o
Vi g ify; > p

for all i = 1,...,m, where y; is the i-th element of y € R™. Then, we obtain that
Va&i(y, u) = min {max {% 0} ; 1}7 and o (y, p1) < o(y, p2) with p1 > po.
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We construct a smoothing function of O(z) over Z for p > 0,
(3.1) Olzp) : = Hlz 1) + R(2),

where H(z, 1) := F(z, 1) + P(z, 1), and

Z

N
1 1
:NZII(WTvn+b2)+||§+NHXII% Z (W o, + b, ),
n=1

N
P(z,p) =B _e" (vn — 5(Way + by, 1))
n=1
are the smoothing functions of F(z) and P(z), respectively. Here we use the smooth-
ness of Zn . (W v, +b2) 4|3 Tt is clear that ¢(Wax, + by, ) < (Wx, + by)y and

O(z 1) > (’)(z ua) for gy > po and z € Z. In addition, for all z € Z and p > 0, we
have

(3.2) 0<0(2) <O(z,p) < O(2) + ([ X[l1 + NMiNB) .

The function R is a convex quadratic function and the eigenvalues of the Hessian
matrix of R are in {0,2X2}. It is clear that P(-, u), F(-, 1), V. P(-, u) and V, F (-, p)
are locally Lipschitz continuous for any fixed p > 0. Moreover, ;ﬂS, ,u]? , uVﬂS and
uV . F are piecewise quadratic functions with respect to pu.

By the proof of Theorem 2.2, the set Qp N Z is bounded and ||z||cc < max{a,n}

holds for any z € QyNZ, where 7 := max{ NlNUe, 37} Let Ly and Ly be Lipschitz

modulus of yH over Q9N Z x (0,1), and uV.H over {z: 2]l < max{a, 2n}} % (0,1),
respectively.
Our smoothing proximal gradient algorithm is presented in Algorithm 3.1.

Algorithm 3.1 A smoothing proximal gradient algorithm (SPG)

1: Initialization: choose 20 € Z, 0 < pu® <1, 0< 7 <1, 7 >0, 73 > 1, and
LO > 1. Set k:= 0.

2: while a termination criterion is not met, do

3. Set z(**1) be the unique minimizer of the strongly convex quadratic program

) (*) L ()2
(3.3) m1n<V H(z® ),z — 2 >+R(z)—|—7||z—z II5-

z€EZ

4:  Update the smoothing and proximal parameters p*+1) and L1 by
(3.4)

) ~ (®)
(0, LED) = (u®, 20), it 00D, 1 M) = 00, M) < —m s

(D LYY = (7P 75 L)) otherwise.

Set k:=k+ 1.
5. end while
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3.2. Convergence Analysis. The following lemma will be used for the conver-
gence results of SPG.

LeMMA 3.2. Let {z®} and {u®)} be the sequences generated by Algorithm 3.1
with O(2(0) < 0, Tym3 > 1 and pO LO) satisfying

2
35)  p9L® > max {6)\2N1N0 - E(NQLQ + AMNIN), 8Xo + Lvﬁ} :

Then, the following statements hold.
(a) The sequence {6(z(k),u(k))} is mon-increasing, and {zF)} C Qo N Z;

(b) If Oz 1k)y — O(zF) 1By > —TQ%, then there exists a monnegative
vector vt € RY such that

[7:0G0, 1) + ATy S| < 20/3 ()2, and

(3.6) (M(k))Q

A0 < ¢ < (YFFNT(AW —¢) <.

8o + LV7-L -

The proof is given in Appendix A. It is worth mentioning that z(°) = 0 satisfies
the condition on the initial guess in Lemma 3.2. Now we present our main convergence
theorem as follows.

THEOREM 3.3. Under assumptions of Lemma 3.2, the following statements hold.
(a) limy, 00 p*) = 0;

(0) {0z} and {O(z%), u*)} are convergent. Moreover, we have
(3.7) lim O™, ™) = lim O(z).
k—o0 k— o0

Proof. (a) Assume on contradiction that there exists kg > 0 such that whenever
k> ko, O(*HD 10y — 00 1 k)) < 772% holds. Hence, it follows from the
updating formula (3.4) of  and L that p® = p*0) and L) = L) for all k > k.
Together with the inequality O(z 1D (k) > O (21 1 (F+1D)) " we have

) ko)
L&~ 2Lk

(33) O+, 1)) = Oz, u¥)) < —r,

for all & > k.
Denote | = | L) O(zko) | (ko) )], Tt then follows from (3.2) and (3.8) that

Tou(k0)

_ 6(2(/60)’ ‘u(ko)) < 6(Z(k0+l),u(k°+l)) _ 5(2(/60), ‘u(ko))

k0+l71 ~ ~ M(kﬂ) ~
= > (0GR, uk D) — 00, uM)) < —ry bt < O, uho),
k=ko

which leads to a contradiction. Hence, the second situation in (3.4) happens infinite
times and we prove the assertion (a).
(b) Recall the nonnegativity of O(z, ) and the monotonical non-increasing of

{(’3(z(k),u(k))}, we can conclude that {O(z*), ¥} is convergent. Together with

limy, 00 %) = 0, we have limy_, oo 6(z(k),u(k)) = limy_,00 O(2®)), which completes
the proof. 0
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THEOREM 3.4. Suppose the assumptions of Lemma 3.2 hold. Let K = {k :
pF Y = 7 u®) k> 0}, Then {z®) : k € K} is bounded and any accumulation
point z* of {z®) : k € K} is a generalized d-stationary point of (LRP). Moreover, if
O is regular at z*, then z* is a d-stationary point of (LRP).

Proof. Let {*+D} C RY satisfy (3.6) for k € K. By the structure of the ma-
trix A and Lipschitz continuity of O, {y*+1} is bounded. Due to the fact that
limy 00 %) = 0, it holds that K has infinitely many elements. Since z* is an accu-
mulation point of {z(%) : k € K}, there exist subsequences {z/*)} of {z(*) : k € K} and
{711 of {fy(jk“) : k € K} such that limj_,o 20k = 2* and limg_,ee Y7 T = 4*.
By taking k from the both sides of (3.6) to infinity, we obtain that
(3.9)

0= liminf Hvzé(z(k)’ﬂ(k)) + AT kD)

keK k—soo . (A=) Ty =0, A —c<O.

Since O(z) is a finite-sum composite max function, we have the gradient sub-
consistency [4, 6] that

(3.10) co {klim Vz(a(z(j"‘),u(j’“))} C 00(z").
—o0

Hence, we have 0 € dQ(z*) + ATy* and hence z* is a generalized KKT point of
(LRP).

It follows Theorem 2.6 that z* is a generalized d-stationary point of (LRP).

If O is regular at z*, then O°(z*;d) = O'(z*;d) for all d € Tz. In this case z* is
a d-stationary point of (LRP). o

4. Numerical Experiments. In this section, we evaluate the numerical perfor-
mance of our proposed SPG method for training the autoencoders. We first introduce
the implementation details including the default settings for the parameters and the
test problems. Then we report the numerical comparison among our SPG with a few
state-of-the-art SGD based approaches, including the Adam [20], the Adamax [20],
the Adadelata [38], the Adagrad [12], the AdagradDecay [12], and the Vanilla SGD [9].
Our numerical experiments will use both synthetic datasets and real dataset. All the
numerical experiments in this section are performed on a workstation with one In-
tel (R) Xeon (R) Silver 4110CPU (at 2.10GHz x 32) and 384GB of RAM running
MATLAB R2018b under Ubuntu 18.10.

4.1. Implementation Details. We first introduce the model parameters in-
volved in (LRP). We set the regularization parameter Ay = 0.1. If the sparsity of V
is pursued, we further set Ay = 0.0001 in (LRP). The penalty parameter § takes the
constant value %

We explain how to choose the algorithm parameters of SPG. The constants 7y
and 7o take the values 0.5 and 0.001, respectively. The initial value of the smoothing
parameter is set as u(%) = 0.001. Although the global convergence of Algorithm 3.1
requires sufficiently large parameters 73 and L(9), they can take much smaller values
for better performance in practice. Empirically, we set 73 = 1.1 and L(® = L, =
max{1,/NoN1/N, 3, Ny/30}, unless otherwise stated.

Recall (3.6), we set u(®) < e as the stopping criterion of Algorithm 3.1 and
the tolerance € takes 10~7 in the experiments unless otherwise stated. Besides, the
maximum number of iterations in SPG is set as 4000. Next, we describe the default
initial guess in the following. The matrix W are randomly generated by W(©) =
randn(Ny, Ny)/N, where randn(n, p) stands for an n X p randomly generated matrix
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under the standard Gaussian distribution. Then, we set b(®) = 0 and oY = (WO,
foralln=1,2,...,N.

For solving the quadratic programming subproblem (3.3), we propose a new split-
ting and alternating method, abbreviated as SAMQP, to significantly increase the
efficiency by exploiting the special structure. The details descriptions, as well as the
comparison with exiting QP solvers, are put in Appendix B.

The MATLAB codes of the SGD based approaches including Adam, Adamax,
Adadelata, Adagrad, AdagradDecay, and Vanilla SGD are downloaded from the Li-
brary [19]. These approaches directly solve problem (1.3). All of these algorithms are
run under their defaulting settings. The batch-size is set to max{N/100, 10}.

There are two classes of test problems. The first class of data sets are generated
randomly. Let N and Niess be the numbers of training and test samplings, respec-
tively. We use parameter €y > 0 to control the noise level. We construct the data sets
by the following two ways, where rand(n,p) stands for an n x p randomly generated
matrix under uniform distribution in [0, 1].

e Data type 1: we generate the data matrix Xa = (21,2, ..., N1 N,.., ) DY setting
i ~ N(,2] 2) + eoN(0,1) for all i = 1,2,..., N + Nyest, where 9 = 0.5 +
randn(Ng, 1) and Xy = randn(Ny, 1). We then set all negative elements of X,y
to be zero. The first N and the last Nis¢ columns of X, are selected to be the
training and test sets, respectively.

e Data type 2: we generate the data matrix X, by X.; = rand(N + Nyest, No) +
eorandn(N + Niest, No). We then set all negative elements of X, to be zero.
The first N and the last Niest columns of X, are selected to be the training and
test sets, respectively.

In the numerical experiments, we will frequently use the following nine combi-
nations of (N, Ng, N1) to determine the size of the randomly generated data sets.
For convenience, we simply call these combinations “E.g. 1 to 9” as follows. Other
combinations will be stated otherwise.

(1) E.g. 1: N =50, N7 =50, Ny = 25;

( N =50, Ny = 100, Ny = 25;
E.g. 3: N =50, Ny = 100, Ny = 40; (4

(6

(8

g 2

g4 —50 N1—10N0—5
.g. 6: N =100, Ny =10, Ny = 5;
g 8 N =150, N; = 10, Ny = 5;

3)
5) E.g. 5: N =175 Ny =10, Ny = 5;
7) E.g. 7: N =100, N; = 100, Ny = 25;
9) E.g. 9: N =150, N; =20, Ny = 10.

The second class of test problems are selected from the MNIST datasets [25]
consisting of 10-classes handwritten digits with the size 28 x 28, namely, Ny = 784. In
practice, we randomly pick up data entries from each class of MNIST under uniform
distribution.

We record the following four measurements, the function value of (LRP) (“FVal”),

the average feasibility violation (“FeasVi”), the training error (“TrainErr”) and the

test error (“TestErr”) of (R), which are denoted by O(z), N N1 25:1 o — (Wa, +

bi)+|l1, F(z), and Nt ” ij;i,\ﬁeztﬂ |(W T, + b2)+ 2, respectively. We use
“Noise” and “Time” to represent the value of ¢y and the CPU Time in seconds,
respectively.

4.2. Properties of SPG. In this subsection, we investigate the numerical per-
formance of SPG in solving problems with randomly generated data sets. We first
study the convergence properties of SPG. The test problem is generated by data type
1 with parameter combination E.g. 6. and ¢y = 0.05. The penalty parameter g
takes its default setting. The numerical results of SPG with randomly initial guess
is present in Figure 2. We can learn from Figure 2 that (i) all of the training er-
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ror, the test error, the function value of (LRP) and the smoothing function value
decrease in a same order, in particular the decreasing curves of the last two values
merge together very soon; (ii) the feasibility reduces to its tolerance rapidly; (iii) the
smoothing parameter sequence {,u(k)} converges almost linearly to zero.

10 10° 10°? T
—TrainErr, LL
-~ -TestErr Al 10

\‘ -5

| 10 ey
10°
107

1 0-1 0

0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
iter iter iter

TrainErr / TestErr / FVal
FeasVi
3
o
I

Fig. 2: Algorithm performance of SPG

Secondly, we compare SPG with different choices of L(®) on a group of randomly
generated data sets with data type 1, Niest = 0 and €9 = 0.05. We select three different
£ and four parameter combinations. The numerical results are shown in Figure 3.
We can learn from Figure 3 that SPG may diverge if L(®) is not sufficiently large,
particularly if 8 is large. When g is small, the performance of SPG is not very sensitive
to the choice of L(®). We also find that bigger L(®) usually leads to slow convergence.
Hence, we can conclude that a suitably selected L(9), such as our default setting, is
important to SPG.

Finally, we compare SPG with different choices of 5 on a group of randomly
generated data sets with Niest = 0, €9 = 0.05 and data type 1. We choose 3 from the
set {%, %, ﬁ, 1,10}. We record how TrainErr, the FVal and the FeasVi decrease
through the iteration. The numerical results with parameter combinations E.g. 4 and
E.g. 8 are illustrated in Figures 4 and 5, respectively. We can learn from these two
figures that the bigger 5 always leads to slower convergence.

4.3. Comparison with Other Methods. In this subsection, we compare SPG
with the existing SGD-based approaches.

We choose two groups of data sets randomly generated by the two data types
described in Subsection 4.1, and the numerical results are demonstrated in Figures
6 and 7, respectively. Here, all algorithms start from the same random initial guess.
We set g = 0.05 and Niest = 30. The chosen parameter combinations are given in
the subtitles of these two figures.

We can learn from Figures 6 and 7 that SPG reduces the training and test errors
slower than some other algorithms at very beginning. It can reach a lower residual
than the others finally.

It can also be observed from these two figures that Adadelta outperforms the other
SGD-based approaches in the aspects of efficiency and solution quality. Therefore,
we consider to use Adadelta as a pre-process to accelerate SPG. More specifically, we
first run Adadelta for 1000 epochs and then switch to SPG. We call the consequent
hybrid algorithm SPG-ADA. In the following tests, such pre-processing will be the
default setting of SPG.

We select a new group of data sets randomly generated by data type 1 with
N = 1000, Niest = 300, ¢g = 0.05, and different combinations of Ny and N;. The
iteration number of Adadelta is set as 10000. We run SPG-ADA and Adadelta 100
times and record the average output values in Table 1. We can learn from Table 1 that
SPG-ADA can obtain better training and test errors than Adadelta in comparable
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Table 1: Comparison between SPG-ADA and Adadelta with N = 1000.

SPG-ADA Adadelta
No N1 TrainErr TestErr FeaFErr Time TrainErr TestErr Time
5 20 3.297e-02 | 3.636e-02 | 1.234e-11 8.758 5.518e-02 | 5.847e-02 3.044
5 30 2.974e-02 | 3.103e-02 | 5.599e-12 | 10.592 | 5.470e-02 | 5.566e-02 3.623
5 40 2.960e-02 | 3.200e-02 | 7.238e-12 | 15.206 | 5.474e-02 | 5.632e-02 3.786
10 40 6.708e-02 | 7.727e-02 | 1.140e-11 | 19.184 | 1.257e-01 | 1.341e-01 5.590
10 60 6.867e-02 | 7.863e-02 | 5.138e-11 | 22.599 | 1.348e-01 | 1.436e-01 6.149
10 80 8.105e-02 | 9.057e-02 | 8.814e-11 | 25.701 | 1.364e-01 | 1.441e-01 7.169
20 80 1.824e-01 | 2.200e-01 | 3.020e-12 | 33.962 | 3.766e-01 | 4.265e-01 8.992
20 | 120 | 1.135e-01 | 2.611e-01 | 3.634e-12 | 38.191 | 4.051e-01 | 4.566e-01 | 12.275
20 | 160 | 1.946e-01 | 2.380e-01 | 2.181e-12 | 72.942 | 3.746e-01 | 4.240e-01 | 20.268
CPU time.

4.4. Tests on MINIST. In this subsection, we investigate the numerical com-
parison among SPG-ADA and Adadelta in solving problems arising from the real data

set MNIST.

Firstly, we set N = 100 and N; = 500. We can find the reconstruction results
corresponding to the autoencoder solutions obtained by SPG-ADA and Adadelta
in Figure 8 (a)-(b), respectively. We can conclude that SPG-ADA can reach the
comparable reconstruction quality as Adadelta.
reconstruction result derived by Adam, as a failure case. Therefore, we exclude Adam

in the last numerical experiment.
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Fig. 8: Reconstruction of MNIST by SPG-ADA, Adadelta and Adam.

Finally, we demonstrate how the training and test errors decrease through the
iterations of SPG-ADA and Adadelta. We select different combinations of N and Nj.
The results are illustrated in Figure 9. We can learn that SPG-ADA is much more

robust and can always find better solutions.
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Fig. 9: Comparison between SPG-ADA and Adadelta on MNIST.

5. Conclusion. The regularized minimization model (R) using the ReLU acti-
vation function has been extensively applied for the autoencoders. However, the set
of global minimizers of the model is generally unbounded. Existing algorithms cannot
guarantee to generate bounded sequences with decreasing objective function values. In
this paper, we propose the regularized minimization model with /;-norm penalty (RP)
that has same global minimizers, local minimizer and d-stationary points with the
regularized minimization model (R). Moreover, we develop the linearly constrained
regularized minimization model with [1-norm penalty (LRP) which has a bounded
solution set contained in the solution sets of (R) and (RP). We develop a smoothing
proximal gradient (SPG) algorithm to solve (LRP). We prove the sequence generated
by the SPG algorithm is bounded and has a subsequence converging to a generalized
d-stationary point of (LRP). We conduct comprehensive numerical experiments to
verify the effectiveness, efficiency and robustness of the SPG algorithm.

Finally, we mention that our results on the relationships among (R), (RP), (LRP)
can be extended to the following three corresponding problems for training an L-layer
DNN with ReLU activation functions, given input data {z,}"_; and output data

{yn}'r]yzl'

mzin F(z) +R(2)

(5.1)
8.t upe = Woup -1 +bs)y, n=1,...,N, £=1,...,L,
N L
(5.2) mm F(z) Z ZeNe (Une — (Wotpn i—1 +be)y)
: n=1¢=1
8.t Upe > Woup -1 +bg)y, n=1,...,N, £=1,...,L,
and
mln F(z) —&—5226% (Un,e — (Wotne—1 + be)+)
(53) n=1¢=1
St Uy p > (Wgun,g_1 +bo)w, Ibelloc <y, n=1,...,N,£=1,... L,

respectively, where oy is a given constant, u,0 = @, F(2) = + 27]:[:1 |(Wrun,r +
N L L
br)+ = Ynll3s R(2) = A Do,y Douy e, Unit + A2 2oy [[WellT,

z= (vec(Wl)T, e ,vec(WL)T,uil,ull,...,u;71,uI2, e ,uL,L,bl , .,bz)T
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forall £ =1,2,...,Land n =1,2,..., N. However, the increasing number of layers
results in more rapidly increasing number of variables which requires further devel-
opment on the algorithm to maintain the numerical comparability to SGD-based
approaches.
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Appendix A. Proof of Lemma 3.2.
Proof. (a) It follows from the updating formula (3.4) of p and L, the required relations
(3.5) and 7173 > 1 that

(A1) pPL® > O L® > max {6)\2N1N0 + %(NQLﬁ + A NIN), 8\ + Lvﬁ}
holds for all k =0,1,....

Next, we use the mathematical induction to prove the facts that {z¥)} € Qp N Z and
{O0(z®, u™))} is non-increasing. Naturally, we have z2(®) € Q4 N Z. Then we suppose that
2" € Qg N Z and 6(z(l), ,u(l)) < (5(2(171),/1071)) hold for all I =1,2,...,k.

We deduce from z*) € Qy N Z and the proof of Theorem 2.2 that ||z || < max{a,7}.
If || 2%*Y || oo > max{e, 20}, we immediately have 7 := ||z*+D — 2(®) || > 5. Then, it holds
that

~ 2
<VZH(z(’“>,u(’“>),u(’“))7z(“l) _ z(k)> FREFTY ZR(W)) 4 2D — )12

2
Ly LW
> = N + =5+ REY) = R(™)
>Nl B e NNT - aNoNi max WD 4w )
Z Q) 2 je{1,2,...N1} Y ng 1%
>_ N ﬁwﬂft,\ NiN7j — AaNoN1j (7 + 21) > 0
> zu(mn 57 1N1 VD 2No N1 (1) T 21 )

where the second inequality comes from the definition of R, the third inequality results
from the relations ||W(,I;-+1) + WU;)Hoo < HW(j-H) - WU;)HOo + 2||I/V(};)HOQ < 7 + 2n for

all j = 1,2,..., N1, and the last inequality comes from 0 < p® < 1 and (A.1). This
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leads to a contradiction, since z(**%
12490 < max{a, 29}

By the KKT condition of (3.3), there exists a nonnegative vector v**1) € RY such that

is a solution of subproblem (3.3). Hence, we have

(A2) { VA, 1) + VR(FD) 4 ATy *HD 4 L0+ _ o0

AzFD <o ()T (AHD _ oy = 0.
It follows from the inequality (A.1), the relations (A.2), (y**)T (42 —¢) < 0,
0< u(’“) <1 and the definition of L4 that
(A.3)
6(Z<k+1),p,(k)) _ 6(2(k)’u(k))

2)\2+L n 2

<VR(Z<k)) _ VR(Z(k+1)) _ AT,y(kJrl) _ L(k)(z(kJrl) _ z<k)),z(k+1) _ Z(k)>

2u(k)
Dot Lo —2VLY gy T (k) (k1) _ (k) (1) _ (k)2
= 2/1'(k) HZ -z ||2—<A 0% 2 — 2 >+2>\2||Z _ ”2
6Xo + Lo — 2/L(k)L(k)
< V;/:(k) Hz(kJrl) _ Z(k)Hg + (,y(k+1))T(Az(k) B C) <o.

Due to the nondecreasing property of {(5(z(k+1), ()} with respect to smoothing parame-
ter y1, we have O(zF+1 | 4Dy < O(zF+D | 1, (M) with ,u(’“'*'l) < u® . Together with the re-
lations (3.2) and (A.3), we arrive at O(z*+D uF+Dy < Oz 1 *®)) and O(z*+1)) < 0. Be-
sides, it follows from the definition of z**1) that (k1) € Z. Hence, we have 21 e QN =
and (5(z<l),,ua>) < (”)V(z(Fl)?u(l*l)) hold for all I = 1,2,...,k + 1. This completes the part
(a) by mathematical induction.

(b) By what we have proved in (a) and the inequality O(z*+1), ) — Oz L, *)) >
—TQ%, we can obtain that

p® 6o+ Loy —2u™MLY iy e
|2 27|12

k T k
T S MG + (YT (AP — ).

which together with the relations (v**9)T (42" —¢) < 0 and p® LK) > 8), + Ly g further
implies that

27y (M<k))2

A4 kD) _ 0012 <

( ) |E 272 < LFQuF) LK) — 6Xg — vﬁ)
(u™)? (F+DYT (4, )

A. — T < A —c) <0.

(A.5) gt ior SO0 - <o

It follows from the inequality (A.4) and the KKT condition (A.2) that

VO® y®y 4 ATHE | =
H )+ Ay ,

VR — UR(zFTD) _ L) (k1) _ (k) H
[VRE™) = VRE) - L0 (40 — 20|

< "VR(Z(k)) _ VR(z(k“))H L L® Hz(k+1) (k)H (22 + L®) H (1) (k)H
2
272 (k) (k) (k)\1/2
< 2x2 + L) < 2y
= \/L<k>(2u<k)L(k) “6Ag — Lvﬁ)u (A2 + L) < 2ym(p™) 7,

where the last inequality results from the inequalities 0 < ,u(k) <1, p““)L(k) > 8X2 + Lyg
and L™ > 2),. Together with (A.5), we can conclude the proof. ]
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Appendix B. A Structured Algorithm for Solving (3.3).

We notice that the subproblem (3.3) is a convex quadratic programming (QP), which
can be solved by any QP solvers such as ‘quadprog’ [35], the default QP solver in MATLAB,
and ‘CVX’ [15]. Since the subproblem of our SPG to be solved in autoencoder scenario is
usually large-scale but structured, the existing solvers are not efficient enough. Therefore,
in this subsection we propose a special algorithm for subproblem (3.3) to take the structure
into account. We focus on this subproblem at the k-th iteration of SPG for any kK =0, 1, ....
For brevity, we will drop the superscript (k) and let (W,b, V) to denote the current iterate
(W® b v ®)Y (and similarly for 4* and L(k>) in this section. In addition, we introduce

a new group of variables U = (u1,u2,...,un) subject to u, = Wz + by for allm =1,...,N.
Hence the quadratic programming (3.3) can be reformulated as
(B.1)

N
. _ . _ L,
nin (g, W= W)+ (g, b= B) + (v, V = V) MlWIlE + A2 D eTvn + 512 = 213

s.t. b€ Qs,vn > Un, vy, >0, up, = Wx+0b, for all n=1,2,..., N,

where gy = Vw’)?l(W,B, V., gv = Vvﬁ(V_V, b,V,u), and g = Vb7-[(V_V, b, V,u) are preset
constants in this subproblem.

The variables of problem (B.1) can be divided into two parts (W,b) and (V,U). We then
apply the alternating direction method of multipliers (ADMM) to solve (B.1). By penalizing
the equality constraints, we obtain the augmented Lagrange penalty function

N
GW,b,V, U, p) =MW+ X2 > e v+ (gw, W = W) + (go,b—b) + (gv,V = V)

n=1

l\')\»—t

N N I

where p = (p1,p2, ..., pn) with p, € RN foralln = 1,..., N, are the Lagrangian multipliers
associated with the equality constraints.

At the I-th iteration, we first fix W = W©® b =W, p = p¥ and the (V,U) subproblem
can be formulated as

Ilr/“‘? g(W(l)’ b(l)7 vV, U, p(l))
S.t. Up > Up, vn, >0, foralln=1,2,..., N.

Due to the separability of v, and u, for all n = 1, ..., N, the (V,U) subproblem has also
a closed-form solution, which is illustrated as follows,

1+1 1;1 1+1 2:1 ce e2il 131 1;1
VI = e Ut = e el > el and € <0

Jmn J,m
VD = o, Uty — g2t if €57 > 0,€5,
(B.2) VD — g g if €%/ <0, and ng & >0

yOr Z iy - CLg L&
L+1
for all 5 = 1,2,...,N; and n = 1,2,...,N. Here, &X' = g,./L — 0n + Ase/L, £3' =
p£f> — (W(l)xn + bg”), Gu,, is the n-th column of gy, and §J1-ji and 532',;2 are the j-th elements
of €5 and €2, respectively, for all j =1,2,..., Ny andn=1,2,...,N.
Secondly, we fix V = VWD U = ygtD 5 = p® and then the (W, b) subproblem can
be written as

, otherwise

min  G(W,b, VD ) 0y,
W,beQs
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By simply calculation, we can obtain its closed-form solution as follows.
(B.3) W = /I/[?(H'l)fr, and Y = Projg, (W(l+1)sN0+1,BQ — gby /L),
where

o~ _ ~ ~ ~ ~ o~ —1
WD — (_[gw,gbl} Y LW, b+ pPXT U”*”XT) (LINO+1 tonI T+ XXT) ,

SNo+1 = (0707 .. -’071) € RNOJrl? [gl;rlvgl;rg] = gl;r7 )/5 = (XT, 1N)T and T: [IN(HO}'
Finally, we present the framework of ADMM for solving the subproblem (3.3).

Algorithm B.1 A Splitting and Alternating Method for the Quadratic Program-
ming (3.3) (SAMQP)

1: Initialization: set (W® b0 V) = (W,b,V), p» =0, uld) = wWgz, + bgl) for
alln=1,...,N,and [ := 0.
while the stop criterion is not met do
Calculate VD U+ by (B.2);
Calculate W+ p(+D) by (B.3);
Calculate pgﬂ) = pg) + (ugﬂ) — (WD, + bglﬂ)))7 forallmn=1,2,...,N;
Set | :=1+1.
end while

NPT kD

Since the subproblem (3.3) is strongly convex, any sequence generated by SAMQP, a
two block ADMM, converges to a global solution of (3.3). Furthermore, the local R-linear
rate convergence of SAMQP can be guaranteed by Boley [2].

To test the efficiency of SAMQP, we construct the following randomly generated test
problems. We set X = rand(No, N), gw = rand(Ni, No), g» = rand(N1 + No, 1), gv =
rand(N1, N), W = randn(Ny, No)/N, Vi, = Waz,)4 foralln =1,2,...,N and b = 0. The
problem parameters p and L are set as 0.001 and 1, respectively. In addition, the stopping
criterion is set as

max {Hp”“) — N7 U — U(”H%} <1076,

We compare SAMQP with some existing QP solvers including the ‘quadprog’ solver from
MATLAB, the ‘fmincon’ solver from MATLAB and the ‘CVX’ solver [15] for solving (3.3).
We choose seven test problems with different sizes. We record the CPU time in seconds
required by these solvers. The results are displayed in Table 2, in which “~” stands for the
cases that the solver runs out of memory during the iteration or terminates abnormally. It
can be easily observed that SAMQP is the most efficient and robust one among these four
solvers.

Table 2: A comparison of CPU time for several solvers and SAMQP.

CPU time (s)

N N1 No No ‘fmincon’ ‘quadprog’ ‘CVX’ SAMQP
100 5 5 535 3.502 0.707 2.031 0.099
100 10 10 1120 33.990 4.546 1.172 0.105
100 20 20 2440 674.163 39.303 1.781 0.189
100 40 40 5680 — 359.555 6.672 0.419
100 100 10 11110 - - 7.453 0.838
1000 100 10 101110 - - 50.781 6.056

10000 | 784 | 1000 | 8625784 - — - 189.868
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