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Abstract. Nonsmooth nonconvex optimization models have been widely used in the restoration
and reconstruction of real images. In this paper, we consider a linearly constrained optimization
problem with a non-Lipschitz regularization term in the objective function which includes the lp
norm (0 < p < 1) of the gradient of the underlying image in the l2-lp problem as a special case. We
prove that any cluster point of ǫ scaled first order stationary points satisfies a first order necessary
condition for a local minimizer of the optimization problem as ǫ goes to 0. We propose a smoothing
quadratic regularization (SQR) method for solving the problem. At each iteration of the SQR
algorithm, a new iterate is generated by solving a strongly convex quadratic problem with linear
constraints. Moreover, we show that the SQR algorithm can find an ǫ scaled first order stationary
point in at most O(ǫ−2) iterations from any starting point. Numerical examples are given to show
good performance of the SQR algorithm for image restoration.
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1. Introduction. In this paper, we consider the following constrained minimiza-
tion problem

min f(x) := Θ(x) +

m
∑

i=1

ϕ(|dTi x|
p)

s.t. x ∈ Ω := {x : Ax ≤ b},

(1.1)

where Θ : Rn → R+ is continuously differentiable, 0 < p ≤ 1, D = (d1, d2, . . . , dm)T ∈
Rm×n, ϕ : R+ → R+ is continuous with ϕ(0) = 0, A ∈ Rr×n and b ∈ Rr. Problem
(1.1) has many important applications in medical and astronomical image restoration
[6, 12, 14, 23, 24, 36, 37, 38] and film restoration [29]. In (1.1), the first term measures
how well the restored image is fitting the observed data under the imaging system,
the second term induces special properties of the restored image, and the constraints
can improve the restored image using a priori information.

Using a nonconvex nonsmooth non-Lipschitz regularization function in the second
term of the objective function of (1.1) has remarkable advantages for the restoration of
piecewise constant images [12, 23, 37]. Typical choices of D for the potential function
include the identity matrix, first order difference operator, second order difference
operator or some overcomplete dictionary [32]. Constrained optimization has been
used in various applications with substantial improvements in the image restoration
[1, 7, 31, 39]. For example, all gray level images with intensity values are ranging from
0 to 1. Based on the constrained TV-l2 models, the numerical tests in [1] indicate
that the peak signal-to-noise ratio (PSNR) can be improved more than 2 dB for some

∗Department of Mathematics, Harbin Institute of Technology, Harbin, China.
(bianweilvse520@163.com). The author’s work was supported in part by the NSF foundation
(11101107) of China.

†Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China.
(maxjchen@polyu.edu.hk). The author’s work was supported in part by Hong Kong Research Grant
Council grant (PolyU5001/12P).

1



special images by imposing the box constraint. The numerical experiments in [7] revel
that the improvement can even be as big as 10.28bB for a special image by adding
constraints. Moreover, most original images are comprised of entries in a nonnegative
region. The linear constraint in (1.1) includes the box constraint and the nonnegative
constraint as special cases.

The success of model (1.1) with 0 < p < 1 in sparse optimization is related to
the non-Lipschitz property of the objective function. Local minimizers of (1.1) with
0 < p < 1 have various nice properties over the minimizers of (1.1) with p = 1. In
image restoration, (i) it is shown in [8] that model (1.1) with 0 < p < 1 promotes a
better gradient sparsity than model (1.1) with p = 1; (ii) model (1.1) with 0 < p < 1 is
also robust with respect to noise; (iii) theoretical and numerical results show that local
minimizers of (1.1) with 0 < p < 1 have advantages in distinguishing zero and nonzero
entries of coefficients in sparse high-dimensional approximation [2, 8, 9, 26] and bring
the restored image closed contours and neat edges [12, 23]. Recently, Hintermuüller
et. al [22] present new results of the non-Lipschitz TVp with (0 < 1 < p) in the
function space setting for efficient restoration of real images. Moreover, in variable
selection, the lp potential function with 0 < p < 1 owns the oracle property [18, 30] in
statistics, while l1 does not; the problem (1.1) with 0 < p < 1 can be used for variable
selection at the group and individual variable levels simultaneously, while (1.1) with
p = 1 can only work for individual variable selection [27]. Thus, we focus on the
minimization problem (1.1) with 0 < p < 1 in this paper.

Theory and algorithms for some special cases of problem (1.1) with 0 < p < 1
have been developed in the last few years. The lower bound theory [12, 13, 36, 38]
ensures that each component of |Dx| at any local minimizer of problem (1.1) is either
zero or not less than a positive constant, which implies that the restored image has
closed contours and neat edges in the imaging system. Moreover, various optimality
conditions for local minimizers of non-Lipschitz optimization have been established
[11, 13]. In particular, all local minimizers are the scaled first and second order
stationary points which satisfy the first and second order necessary optimality con-
ditions of non-Lipschitz optimization, respectively. For the unconstrained version
of problem (1.1) with (0 < p < 1), the reweighted algorithms [33, 34] are glob-
ally convergent to a stationary point. Moreover, the generalized Newton method
using the R-regularization of the Hessian is superlinearly convergent to a stationary
point, where the R-regularization is motivated by reweighting to handle the possible
non-positive definiteness of the Hessian [24]. The trust region Newton method with
subspace techniques converges to a scaled second order stationary point [11]. An ef-
fective majorize-minimize subspace algorithm is proposed in [15] for solving a class of
unconstrained nonconvex regularization optimization in image computing problems,
where the asymptotic connection to l0-penalized problems and its convergence rate
are discussed. For problem (1.1) with D being the identity matrix, the smoothing
quadratic regularization (SQR) algorithm for (1.1) with Ω = Rn and the interior point
algorithm for (1.1) with the nonnegative constraint converge to an ǫ scaled first order
stationary point with worst-case iteration complexity O(ǫ−2) [3, 4]. Moreover, when
ǫ → 0, any cluster point of ǫ scaled first order stationary points is a scaled first order
stationary point which satisfies a first order necessary condition for a local minimizer
of the optimization problem. However, to the best of our knowledge, for problem (1.1)
with an arbitrary matrix D in the regularization term and arbitrary linear constraint,
there is no algorithm which can always find an ǫ scaled first order stationary point in
no more than O(ǫ−2) iterations from any staring point.
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The matrix D and linear constraints in (1.1) bring problem (1.1) many advan-
tages in image restoration and reconstruction [11, 12, 28, 36, 37, 38, 39]. However,
because the non-Lipschitz potential function in (1.1) is neither separable with respect
to components of x nor concave in the feasible set, (1.1) is harder to solve than the
problem with D being the identity matrix and with the nonnegative constraints. Al-
gorithms in [3, 4, 11, 24, 33, 34, 38] cannot be directly extended to solve (1.1), and
the lower bound theory in [12, 13, 36, 38] and the definitions of the ǫ scaled first order
stationary point in [3, 4] are invalid. Thus, (1.1) gives many challenging problems in
developing effective algorithms with desired convergence theorems and computational
complexity bounds.

In this paper, we generalize the subspace idea for unconstrained optimization in
[11] and define the first order necessary optimality condition and an ǫ scaled first
order stationary point of problem (1.1). We prove that any cluster point of ǫ scaled
first order stationary points satisfies the first order necessary optimality condition
as ǫ tending to 0. Moreover, a new SQR algorithm with the worst-case complexity
O(ǫ−2) is given for solving (1.1), where the updating techniques in the algorithm for
approximating the Lipschitz constant of the gradient of Θ is adopted from [5].

The rest of this paper is organized as follows. In section 2, we derive a first
order necessary condition for a local minimizer of (1.1), and define an ǫ scaled first
order stationary point of (1.1). We prove that any cluster point of ǫ scaled first order
stationary points of (1.1) satisfies the first order necessary condition as ǫ tends to 0. In
section 3, using a smoothing function of the objective function f in (1.1), we present
an SQR algorithm for solving (1.1). In section 4, we show that the SQR algorithm can
find an ǫ scaled first order stationary point of (1.1) in at most O(ǫ−2) iterations. In
section 5, we report numerical experiments with one randomly generated test example
and four image restoration problems to validate the theoretical results and show good
performance of the proposed SQR algorithm for image problems.

Notations: Denote N0 = {0, 1, 2, . . .} and e = (1, 1, . . . , 1)T ∈ Rn. For x, y ∈ Rn,
let ‖x‖ := ‖x‖2, x ≤ y means xi ≤ yi, i = 1, 2, . . . , n. For a matrix M ∈ R

r×n and
an index set J ⊆ {1, . . . , r}, MJ denotes the submatrix of M whose rows are indexed
by J . For Π ⊆ Rn consisted by a class of column vectors of Rn, spanΠ indicates
the subspace of Rn spanned by the elements in Π, and (spanΠ)⊥ is its orthogonal

complement space. For a subspace S ⊆ Rn, orthon(S) is a subset of Rn×dim(S), in
which the columns of each matrix form an orthonormal basis of S if dim(S)≥ 1 and
orthon(S) = 0n×1 if S = {0}.

2. First order necessary condition. The scaled first order and second order
necessary conditions for unconstrained non-Lipschitz optimization have been studied
in [11, 13]. For the constrained non-Lipschitz optimization (1.1) with D = In, the
scaled first and second order stationary points are defined in [4, 20]. Inspired by the
subspace idea, we first derive a first order necessary condition for local minimizers of
constrained non-Lipschitz optimization (1.1), whereafter the scaled and ǫ scaled first
order stationary points of (1.1) are defined. Note that the results established in this
paper have no assumption on the matrices D and A.

First, we give some notations used in the following. For fixed x ∈ Rn and ǫ > 0,
denote

Dǫ
x = {di : i ∈ {1, 2, . . . ,m}, |dTi x| ≤ ǫ}.

For simplicity, we denote Dx := Dǫ
x when ǫ = 0. Obviously, dim(spanDx̄) = n implies

x̄ = 0, and f is non-Lipschitz at x̄ if Dx̄ is nonempty.
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Now, we derive a first order necessary condition for local minimizers of (1.1)
using two matrices whose columns form orthonormal basis of spanDx̄ and (spanDx̄)

⊥,
namely,

Yx̄ ∈ orthon(spanDx̄) and Zx̄ ∈ orthon((spanDx̄)
⊥).

From the definitions of Dx̄ and Zx̄, we have ZT
x̄ dx̄ = 0 ∀dx̄ ∈ spanDx̄ and there

is a unique vector z̄ such that

x̄ = Zx̄z̄ and z̄ = ZT
x̄ x̄. (2.1)

In what follows, we denote

Φ(t) =

{

pϕ′(s)s=|t|p |t|
p−1sign(t) if t 6= 0

0 if t = 0,

which is the first order derivative of ϕ(|t|p) with respect to t when t 6= 0.
Lemma 2.1. If x̄ is a local minimizer of (1.1), there exists a nonnegative vector

γ ∈ Rr such that x̄ satisfies

ZT
x̄ (∇Θ(x̄) +

m
∑

i=1

Φ(dTi x̄)di +ATγ) = 0, (2.2a)

Ax̄− b ≤ 0, (Ax̄ − b)Tγ = 0. (2.2b)

Proof. If dim(spanDx̄) = n, then x̄ = 0 and Zx̄ = 0n×1, which means the
conditions in this lemma naturally holds for x̄ with γ = 0r×1.

Now, we suppose dim(spanDx̄) = n− t < n, then Zx̄ ∈ Rn×t is a nonzero matrix
and there is an ηx̄ > 0 such that

f(x̄) =min
x

{f(x) : Ax− b ≤ 0, ‖x− x̄‖ ≤ ηx̄}

=min
y,z

{Θ(Yx̄y + Zx̄z) +

m
∑

i=1

ϕ(|dTi (Yx̄y + Zx̄z)|
p) :

A(Yx̄y + Zx̄z)− b ≤ 0, ‖Yx̄y + Zx̄z − Zx̄z̄‖ ≤ ηx̄}

≤min
z

{Θ(Yx̄0 + Zx̄z) +

m
∑

i=1

ϕ(|dTi (Yx̄0 + Zx̄z)|
p) :

A(Yx̄0 + Zx̄z)− b ≤ 0, ‖Yx̄0 + Zx̄z − Zx̄z̄‖ ≤ ηx̄}

=min
z

{Θ(Zx̄z) +
m
∑

i=1

ϕ(|dTi Zx̄z|
p) : AZx̄z − b ≤ 0, ‖Zx̄z − Zx̄z̄‖ ≤ ηx̄}

=min
z

{Θ(Zx̄z) +
∑

dT
i
x̄ 6=0

ϕ(|dTi Zx̄z|
p) : AZx̄z − b ≤ 0, ‖Zx̄z − Zx̄z̄‖ ≤ ηx̄},

where the last equality uses dTi Zx̄z = 0, ∀z ∈ R
t, di ∈ Dx̄.

In what follows, we will find the first order necessary condition for local minimizers
of (1.1) from the reduced optimization problem in Rt:

min v(z) = Θ(Zx̄z) +
∑

dT
i
x̄ 6=0

ϕ(|dTi Zx̄z|
p), s.t. AZx̄z − b ≤ 0,

(2.3)
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where v(z) is continuously differentiable and its gradient is locally Lipschitz continuous
around z̄.

By (2.1) and (2.3),

v(z̄) = Θ(Zx̄z̄) +
∑

dT
i
x̄6=0

ϕ(|dTi Zx̄z̄|
p) = f(x̄).

Therefore, v(z̄) ≤ minz{v(z) : AZx̄z − b ≤ 0, ‖Zx̄(z − z̄)‖ ≤ ηx̄}.
Since Zx̄ ∈ Rn×t is of full column rank, z̄ is a local minimizer of (2.3). By the

KKT condition for a local minimizer of (2.3), there exists a nonnegative vector γ ∈ R
r

such that z̄ satisfies

∇v(z̄) + ZT
x̄ A

Tγ = 0, (2.4a)

AZx̄z̄ − b ≤ 0, (AZx̄z̄ − b)Tγ = 0. (2.4b)

By (2.1), (2.2b) can be obtained from (2.4b), and

∇v(z̄) =ZT
x̄ (∇Θ(y)y=Zx̄z̄ +

∑

dT
i
x̄ 6=0

Φ(dTi Zx̄z̄)di)

=ZT
x̄ (∇Θ(x̄) +

∑

dT
i
x̄ 6=0

Φ(dTi x̄)di),
(2.5)

which together with (2.4a) and the definition on Φ(dTi x̄) gives (2.2a).
In view of the first order necessary condition for local minimizers of (1.1) given

in Lemma 2.1, we define the scaled and ǫ scaled first order stationary points of (1.1).
Definition 2.2. We call x̄ a scaled first order stationary point of (1.1), if there

exists a nonnegative vector γ ∈ Rr such that x̄ satisfies (2.2) in Lemma 2.1.
Definition 2.3. For ǫ > 0, we call xǫ an ǫ scaled first order stationary point of

(1.1), if there exists a nonnegative vector γǫ ∈ R
r such that xǫ satisfies

∥

∥

∥

∥

∥

(Zǫ
xǫ)

T
(∇Θ(xǫ) +

m
∑

i=1

Φ(dTi x
ǫ)di +AT γǫ)

∥

∥

∥

∥

∥

∞

≤ ǫ, (2.6a)

Axǫ − b ≤ 0, −ǫ ≤ (Axǫ − b)Tγǫ ≤ 0, (2.6b)

where Zǫ
xǫ ∈ orthon((spanDǫ

xǫ)⊥).
Definitions 2.2 and 2.3 are consistent at ǫ = 0. The next proposition validates

this consistence for ǫ tending to 0, which gives some hints on how to find a scaled first
order stationary point of (1.1).

Proposition 2.4. Let xǫ be an ǫ (ǫ > 0) scaled first order stationary point of
(1.1). Then any cluster point of xǫ is a scaled first order stationary point of (1.1) as
ǫ → 0.

Proof. Suppose x̄ is a limit point of {xk} as k tending to ∞, where xk is an ǫk
scaled first order stationary point of (1.1) and limk→∞ ǫk = 0.

If dim(spanDx̄)= n, then x̄ = 0 and Zx̄ = 0n×1, which implies that x̄ is a scaled
first order stationary point. In what follows, we suppose that dim(spanDx̄)< n.

First, we prove that there is kx̄ ∈ N0 such that Dk ⊆ Dx̄ ∀k ≥ kx̄, where Dk :=
Dǫk

xk . If not, there is a subsequence {xkj} ⊆ {xk} such that limj→∞ ǫkj
= 0 and

Dkj
6⊆ Dx̄ for all j, by Dkj

⊆ {d1, d2, . . . , dm}, there is an element d ∈ Rn and a
subsequence of {kj} (also denoted as {kj}) such that d ∈ Dkj

but d 6∈ Dx̄. Then,
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|dTxkj | ≤ ǫkj
, letting j tend to ∞, we have |dT x̄| = 0, which leads a contradiction

with d 6∈ Dx̄.
Denote Zk ∈ orthon((spanDk)

⊥). Then, we can find matrices Zk and Zx̄ such
that Zk contains all columns of Zx̄ for all k ≥ kx̄.

By (2.6a), there is a nonnegative vector γk ∈ R
r such that

∥

∥

∥

∥

∥

ZT
k (∇Θ(xk) +

m
∑

i=1

Φ(dTi x
k)di +AT γk)

∥

∥

∥

∥

∥

∞

≤ ǫk,

from the inclusion property between Zx̄ and Zk, which gives

∥

∥

∥

∥

∥

ZT
x̄ (∇Θ(xk) +

m
∑

i=1

Φ(dTi x
k)di +AT γk)

∥

∥

∥

∥

∥

∞

≤ ǫk.

By the definition of Zx̄, we have

∥

∥

∥

∥

∥

∥

ZT
x̄ (∇Θ(xk) +

∑

dT
i
x̄ 6=0

Φ(dTi x
k)di + ATγk)

∥

∥

∥

∥

∥

∥

∞

≤ ǫk. (2.7)

For i ∈ {i : dTi x̄ 6= 0}, we obtain

lim
k→∞

Φ(dTi x
k) = Φ(dTi x̄). (2.8)

Moreover, from (2.6b), we have

lim
k→∞

(Axk − b)Tγk = 0. (2.9)

Then, limk→∞ γk
j = 0, ∀j 6∈ Jx̄ = {j ∈ {1, 2, . . . , r} : [Ax̄]j − bj = 0}. If Jx̄ = ∅,

letting k tend to ∞ in (2.7), (2.8) and (2.9) imply that x̄ satisfies (2.2) with γ = 0.
We suppose Jx̄ 6= ∅ and let Jx̄ = {q+1, . . . , r} without loss of generality. Letting

k → ∞ in (2.7), by (2.8), we have

− lim
k→∞

ZT
x̄ A

Tγk = ZT
x̄ (∇Θ(x̄) +

m
∑

i=1

Φ(dTi x̄)di),

which follows

− lim
k→∞

[AZx̄]
T
Jx̄
γk
Jx̄

= ZT
x̄ (∇Θ(x̄) +

m
∑

i=1

Φ(dTi x̄)di). (2.10)

Consider the quadratic programming

min
y≥0

‖[AZx̄]
T
Jx̄
y + ZT

x̄ (∇Θ(x̄) +

m
∑

i=1

Φ(dTi x̄)di)‖
2. (2.11)

By the Frank-Wolfe theorem [19], a global minimizer y∗ of (2.11) exists, and thus

‖[AZx̄]
T
Jx̄
y∗+ZT

x̄ (∇Θ(x̄)+

m
∑

i=1

Φ(dTi x̄)di)‖
2 ≤ ‖[AZx̄]

T
Jx̄
γk
Jx̄
+ZT

x̄ (∇Θ(x̄)+

m
∑

i=1

Φ(dTi x̄)di)‖
2.
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Passing k to ∞ in the above equation and by (2.10), we have

‖[AZx̄]
T
Jx̄
y∗ + ZT

x̄ (∇Θ(x̄) +

m
∑

i=1

Φ(dTi x̄)di)‖ = 0,

which implies that there exists a nonnegative vector y∗ ∈ Rr−q such that

−[AZx̄]
T
Jx̄
y∗ = ZT

x̄ (∇Θ(x̄) +

m
∑

i=1

Φ(dTi x̄)di).

Hence x̄ satisfies (2.2) with the nonnegative vector γ ∈ Rr, where γJx̄
= y∗ and

the other elements of γ are 0. This implies that x̄ is a scaled first order stationary
point of (1.1).

3. Smoothing quadratic regularization method. In this section, we present
an SQR method for solving (1.1). The objective function is not Lipschitz continuous
at points in {x : dTi x = 0, for some i ∈ {1, . . . ,m}}. Throughout this paper, we need
the following assumptions on Θ and ϕ:

• Θ : Rn → R is continuously differentiable and its gradient ∇Θ is globally
Lipschitz with a Lipschitz constant β̂;

• ϕ is differentiable and concave in (0,∞), ϕ′ is globally Lipschitz continuous
and there is a positive constant α such that for all t ∈ (0,∞),

0 ≤ ϕ′(t) ≤ α and |ξ| ≤ α ∀ξ ∈ ∂(ϕ′(t)), (3.1)

where

∂(ϕ′(t)) = con{v |ϕ′′(s) → v, ϕ is twice differentiable at s, s → t}, (3.2)

and “con” means the convex hull [16].
Many data fitting functions and penalty functions in sparse image restoration and

reconstruction satisfy these conditions [12, 14, 23, 36, 37, 38].

3.1. Smoothing approximation. One of difficulties for solving (1.1) comes
from the nonsmoothness and nonconvexity of the objective function f , which let the
usual gradient-based methods be inappropriate. The approximation idea is often used
for image restoration problems [12, 37, 38]. The approximate energy minimization in
[37] can be split into a total variational-type regularization term and a smooth non-
convex term. The approximate energy function in [38] is with an additional variable,
which can be separated to a twice continuously differentiable problem and a TV de-
noising problem.

In this paper, we approximate f by a smoothing function f̃ : Rn × (0,∞) →
R, which is continuously differentiable with respect to x for any fixed parameter
µ > 0 and limz→x,µ↓0 f̃(z, µ) = f(x) holds for any x ∈ Rn. We can construct a
quadratic approximation function of f by using the gradient of the smoothing function
f̃(x, µ), where the continuous differentiability of ϕ on (0,∞) is sufficient to support
the algorithm proposed in this paper.

According to the assumptions on Θ and ϕ, we define f̃(x, µ) by using a smoothing
function of the absolute value function as follows

f̃(x, µ) = Θ(x) +
m
∑

i=1

ϕ(θp(dTi x, µ)) with θ(t, µ) =







|t| if |t| > µ

t2

2µ
+

µ

2
if |t| ≤ µ.
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The function θ(t, µ) is continuously differentiable with respect to t for any fixed
µ > 0, nondecreasing with respect to µ, and

0 = argmin
t∈R

|t| = argmin
t∈R

θ(t, µ) = argmin
t∈R

ϕ(θp(t, µ)), ∀µ ∈ (0,∞).

Moreover, we have

|∇tθ
p(t, µ)| ≤ pθp−1(t, µ), |∇2

t θ
p(t, µ)| ≤ pθp−2(t, µ) when |t| 6= µ. (3.3)

Specially, when |t| < µ, ∇2
t θ

p(t, µ) > 0, which means that θp(t, µ) is a convex smooth-
ing function of |t|p in (−µ, µ).

Since ϕ′(t) ≥ 0 for all t ∈ (0,∞), f̃(x, µ) is nondecreasing with respect to µ for
any fixed x ∈ Rn. Denote

g(x, µ) := ∇xf̃(x, µ) = ∇Θ(x) +

m
∑

i=1

∇tϕ(θ
p(t, µ))t=dT

i xdi. (3.4)

From 0 ≤ θp(t, µ)− |t|p ≤ θp(0, µ) = (µ2 )
p and (3.1), we have

0 ≤ ϕ(θp(t, µ)) − ϕ(|t|p) ≤ α(
µ

2
)p,

which gives

0 ≤ f̃(x, µ)− f(x) ≤
∑

|dT
i
x|<µ

α(
µ

2
)p ∀x ∈ R

n, µ ∈ (0,∞). (3.5)

Denote

O = {t : ϕ is not twice differentiable at θp(t, µ) or |t| = µ}.

Then, when t 6∈ O, ϕ(θp(t, µ)) is twice differentiable at t and

∇2
tϕ(θ

p(t, µ)) = ϕ′′(s)s=θp(t,µ)(∇tθ
p(t, µ))2 + ϕ′(s)s=θp(t,µ)∇

2
t θ

p(t, µ). (3.6)

For any fixed µ ∈ (0,∞), θp(t, µ) is twice differentiable when |t| 6= µ and strictly
increasing with respect to t in R+ and R−, respectively. Combining this with the
Lipschitz property of ϕ′, the measure of O is 0. Thus, by (3.2), (3.3), (3.6) and the
assumptions on ϕ, the following estimation on the elements in ∂t(∇tϕ(θ

p(t, µ))) holds
for all t ∈ R and µ ∈ (0, 1]

max{|ξ| : ξ ∈ ∂t(∇tϕ(θ
p(t, µ)))} ≤αp2θ2p−2(t, µ) + αpθp−2(t, µ)

≤αp2(
µ

2
)2p−2 + αp(

µ

2
)p−2 ≤ 8αpµp−2.

Inspired by Taylor’s expansion, for any x+, x ∈ Rn,

ϕ(θp(dTi x
+, µ))− ϕ(θp(dTi x, µ))

≤∇tϕ(θ
p(t, µ))t=dT

i
xd

T
i (x

+ − x) + 4αpµp−2(dTi (x
+ − x))2.

(3.7)

Notice that ϕ(|t|p) is concave on R+ and R−, respectively. We have

ϕ(|t̂|p) ≤ ϕ(|t|p) +∇ϕ(|t|p)(t̂− t)
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for any t̂, t ∈ R such that t̂t > 0. Hence, for any x, x+ ∈ Rn satisfying

(dTi x
+)(dTi x) > 0, |dTi x

+| ≥ µ and |dTi x| ≥ µ,

by θ(s, µ) = |s| when |s| ≥ µ, we have

ϕ(θp(dTi x
+, µ)) ≤ ϕ(θp(dTi x, µ)) +∇tϕ(θ

p(t, µ))t=dT
i
xd

T
i (x

+ − x). (3.8)

Lemma 3.1. For x ∈ Ω, s ∈ Rn and µ ∈ (0, 1], if −‖D‖−1
∞ µpe ≤ s ≤ ‖D‖−1

∞ µpe
and the following inequality holds

Θ(x+ s) ≤ Θ(x) + 〈∇Θ(x), s〉+
β

2
‖s‖2 (3.9)

with β > 0, then

f̃(x+ s, µ)− f̃(x, µ) ≤ 〈g(x, µ), s〉+
β

2
‖s‖2 + 4αpµp−2

∑

|dT
i x|≤2µp

(dTi s)
2. (3.10)

Proof. From −‖D‖−1
∞ µpe ≤ s ≤ ‖D‖−1

∞ µpe, we have

|dTi s| ≤ ‖Ds‖∞ ≤ ‖D‖∞‖s‖∞ ≤ µp, i = 1, 2, . . . ,m.

Then, |dTi x| > 2µp implies |dTi (x + s)| > µp and (dTi x)(d
T
i (x + s)) > 0 for i =

1, 2, . . . ,m, which together with (3.7) and (3.8) gives

m
∑

i=1

ϕ(θp(dTi (x+ s), µ))−
m
∑

i=1

ϕ(θp(dTi x, µ))

≤〈
m
∑

i=1

∇tϕ(θ
p(t, µ))t=dT

i
x, d

T
i s〉+ 4αpµp−2

∑

|dT
i
x|≤2µp

(dTi s)
2.

Thus, we obtain (3.10) based on (3.9).

From the assumption on Θ, (3.9) holds with β = β̂. However, in general, the

Lipschitz constant β̂ of ∇Θ is difficult to evaluate. We use β as an approximation of
β̂ and update β in the algorithm.

For x ∈ Ω and µ ∈ (0, 1], to achieve a potential reduction, we solve the following
strongly convex quadratic program in Rn with linear constraints:

min 〈g(x, µ), s〉+
β

2
‖s‖2 + 4αpµp−2

∑

|dT
i
x|≤2µp

(dTi s)
2

s.t. − δµpe ≤ s ≤ δµpe, A(x + s)− b ≤ 0,

(3.11)

where δ = ‖D‖−1
∞ and g(x, µ) is defined in (3.4).
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SQR Algorithm.

Step 0: Initialization: Choose x0 ∈ Ω, 0 < µ0 ≤ 1, β0 ≥ 1, 0 < σ < 1 and η > 1.
Set k = 0.
Step 1: New point calculation: Solve (3.11) with x = xk, µ = µk and β = βk

for sk, and let yk = xk + sk.
Step 2: Updating the regularization weight: If

Θ(yk)−Θ(xk) > 〈∇Θ(xk), yk − xk〉+
1

2
βk‖x

k − yk‖2,

let

βk+1 = ηβk, xk+1 = xk, µk+1 = µk

and return to Step 1; otherwise, let

βk+1 = βk, xk+1 = yk

and go to Step 3.
Step 3: Updating the smoothing parameter: Let

µk+1 =

{

µk if f̃(xk+1, µk)− f̃(xk, µk) < −µ2p
k

σµk otherwise.
(3.12)

Step 4: Constructing convergence sequence: Let

zk+1 =

{

xk if µk+1 = σµk

zk otherwise.
(3.13)

Increment k by one and return to Step 1.

The proposed SQR algorithm is for the linearly constrained optimization problem
(1.1) with an arbitraryD in the potential function ϕ, while the SQR method in [3] can
only be applied to the unconstrained problem with ϕ(|dTi x|

p) = ϕ(|xi|p). Hence, the
two SQR algorithms in this paper and [3] are different through the framework of the
SQR algorithm in this paper is adopted from [3]. The construction of the quadratic
subproblem and the updating scheme of the smoothing parameter are entirely different
in the two algorithms. In [3], the quadratic program is an unconstrained problem and
can be split into n one dimensional problems to get a simple closed form solution. In
this paper, the quadratic program is a constrained problem and cannot have a closed
form solution. Moreover, the convergence and complexity analysis in [3] uses the
separability of variables in the term

∑n
i=1 ϕ(|xi|p) without considering the feasibility of

iterates. The convergence and complexity analysis for the SQR algorithm in this paper
is more comprehensive due to the existence of linear constraints and the arbitrary D
in the non-Lipschitz potential function.

From Lemma 3.1, for xk ∈ Ω and µk ∈ (0, 1], by A(xk+sk) ≤ b and σ ∈ (0, 1), we
have xk+1 ∈ Ω and µk+1 ∈ (0, 1]. Then, the proposed SQR algorithm is well defined,
and xk ∈ Ω, µk ∈ (0, 1] for all k ∈ N0.

Let {xk}, {yk}, {zk}, {µk} and {βk} be the sequences generated by the SQR
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algorithm. Denote

Ns = {k ∈ N0 : βk+1 = βk}, T = {k ∈ N0 : µk+1 = σµk}. (3.14)

We call the kth iteration is successful if k ∈ Ns. Note that T ⊆ Ns.
Lemma 3.2. The sequence {f̃(xk, µk)} is non-increasing. Moreover, when k ∈

Ns, there are nonnegative vectors νk and γk such that

f̃(xk+1, µk+1)− f̃(xk, µk) ≤−
βk

2
‖sk‖2 − 4αpµp−2

k

∑

|dT
i
xk|≤2µp

k

(dTi s
k)2

− µp
ke

T νk + (γk)T (Axk − b).

Proof. From the KKT condition of (3.11), the solution sk of the strongly convex
quadratic program (3.11) satisfies

g(xk, µk) + βks
k + 8αpµp−2

k

∑

|dT
i
xk|≤2µp

k

(dTi s
k)di − ̺k1 + ̺k2 +AT γk = 0, (3.15a)

A(xk + sk) ≤ b, (Ask +Axk − b)Tγk = 0, (3.15b)

− δµp
ke ≤ sk ≤ δµp

ke, (s
k + δµp

ke)
T̺k1 = 0, (sk − δµp

ke)
T̺k2 = 0, (3.15c)

with ̺k1 , ̺
k
2 , γ

k ≥ 0.
On the one hand, when k ∈ Ns, x

k+1 = yk, from Lemma 3.1 and (3.15), we have

f̃(xk+1, µk)− f̃(xk, µk)

≤〈g(xk, µk), s
k〉+

βk

2
‖sk‖2 + 4αpµp−2

∑

|dT
i xk|≤2µp

k

(dTi s
k)2

=−
βk

2
‖sk‖2 − 4αpµp−2

k

∑

|dT
i
xk|≤2µp

k

(dTi s
k)2 + (̺k1)

T sk − (̺k2)
T sk − (γk)TAsk

=−
βk

2
‖sk‖2 − 4αpµp−2

k

∑

|dT
i
xk|≤2µp

k

(dTi s
k)2 − δµp

ke
T (̺k1 + ̺k2) + (γk)T (Axk − b) ≤ 0.

(3.16)
Since µk+1 ≤ µk and f̃(x, µ) is non-decreasing about µ for any fixed x ∈ Rn, the

results in this lemma holds for k ∈ Ns, where ν
k = δ(̺k1 +̺k2) is a nonnegative vector.

On the other hand, when k 6∈ Ns, xk+1 = xk and µk+1 = µk, which implies
f̃(xk+1, µk+1) = f̃(xk, µk). Thus, f̃(x

k, µk) is nonincreasing for all k ∈ N0.
Lemma 3.3. For all k ∈ Ns, if

f̃(xk+1, µk)− f̃(xk, µk) > −µ2p
k , (3.17)

then there exists a nonnegative vector γk ∈ Rr such that xk satisfies

∥

∥

∥

∥

∥

ZT
k (∇Θ(xk) +

m
∑

i=1

Φ(dTi x
k)di +AT γk)

∥

∥

∥

∥

∥

∞

≤ (
√

2βk + δ−1)µp
k,

Axk − b ≤ 0, −µ2p
k ≤ (Axk − b)Tγk ≤ 0,

(3.18)

where Zk ∈orthon((span{di : |dTi x
k| ≤ 2µp

k})
⊥).
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Proof. If one of the following four inequalities fails

βk

2
‖sk‖2 < µ2p

k , 4αpµp−2
k

∑

|dT
i
xk|≤2µp

k

(dTi s
k)2 < µ2p

k , (3.19a)

µp
ke

T νk < µ2p
k , (b−Axk)Tγk < µ2p

k , (3.19b)

by (3.16), we obtain f̃(xk+1, µk) − f̃(xk, µk) ≤ −µ2p
k . Hence, (3.17) implies all in-

equalities in (3.19) hold and then we only need to prove the estimation in (3.18) under
the conditions in (3.19).

First, from Axk − b ≤ 0, γk ≥ 0, (3.19b) gives

−µ2p
k ≤ (Axk − b)Tγk ≤ 0. (3.20)

By ̺k1 , ̺
k
2 ≥ 0, νk = δ(̺k1 + ̺k1) and the first inequality in (3.19b), we have

‖̺k1 − ̺k2‖ ≤ ‖̺k1 + ̺k2‖ ≤ δ−1‖νk‖1 ≤ δ−1µp
k. (3.21)

Moreover, (3.15a) can be rewritten as

g(xk, µk) +AT γk = −βks
k − 8αpµp−2

k

∑

|dT
i
xk|≤2µp

k

(dTi s
k)di + ̺k1 − ̺k2 . (3.22)

From the definition of Zk, we have ZT
k di = 0 for all di such that |dTi x

k| ≤ 2µp
k.

Combining this with ϕ(θp(dTi x
k, µk)) = ϕ(|dTi x

k|p) for all di such that |dTi x
k| > 2µp

k,
we obtain

ZT
k

m
∑

i=1

∇tϕ(θ
p(t, µk))t=dT

i
xkdi = ZT

k

m
∑

i=1

Φ(dTi x
k)di. (3.23)

Thus, multiplying ZT
k to the both sides of (3.22) gives

ZT
k (g(x

k, µk) +AT γk) = ZT
k (∇Θ(xk) +

m
∑

i=1

Φ(dTi x
k)di +ATγk), (3.24a)

ZT
k (−βks

k − 8αpµp−2
k

∑

|dT
i
xk|≤2µp

k

(dTi s
k)di + ̺k1 − ̺k2) = −βkZ

T
k s

k + ZT
k (̺

k
1 − ̺k2).

(3.24b)

Then, from (3.19a), (3.21), (3.22) and (3.24), we obtain
∥

∥

∥

∥

∥

ZT
k (∇Θ(xk) +

m
∑

i=1

Φ(dTi x
k)di +ATγk)

∥

∥

∥

∥

∥

∞

=
∥

∥βkZ
T
k s

k − ZT
k (̺

k
1 − ̺k2)

∥

∥

∞

≤βk‖Z
T
k s

k‖∞ + ‖ZT
k (̺

k
1 − ̺k2)‖∞

≤βk‖s
k‖+ ‖̺k1 − ̺k2‖ ≤ (

√

2βk + δ−1)µp
k,

(3.25)

where we use that the columns of Zk are orthonormal. By (3.20) and (3.25), we obtain
the results in this lemma.

The following lemma presents some properties of the sequences {βk}, {µk} and
{f(xk)}.

Lemma 3.4. The following statements hold.
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(i) βk ≤ β̄ := max{β0, ηβ̂} for all k ∈ N0;
(ii) limk→∞ µk = 0;
(iii) limk→∞ f(xk) exists.

Proof. By Step 2 in the SQR algorithm, βk is updated when βk ≤ β̂, then
statement (i) can be easily proved by the assumption on Θ.

From (3.14), we have

∑

k∈T

µ2p
k <

∞
∑

k=1

µ2p
0 σ2p(k−1) =

µ2p
0

1− σ2p
. (3.26)

Note that when k ∈ Ns\T , from (3.12), we have

µ2p
k < f̃(xk, µk)− f̃(xk+1, µk+1) and µk+1 = µk.

This, together with the nonincreasing property of f̃(xk, µk) and (3.5), gives

∑

k∈Ns\T

µ2p
k <

∑

k∈Ns\T

(f̃(xk, µk)− f̃(xk+1, µk+1)) ≤ f̃(x0, µ0)−min
x∈Ω

f(x). (3.27)

Adding (3.26) and (3.27), we have

∑

k∈Ns

µ2p
k < f̃(x0, µ0)−min

x∈Ω
f(x) +

µ2p
0

1− σ2p
. (3.28)

If there are finite elements in Ns, then there is k̄ ∈ N0 such that k 6∈ Ns ∀k ≥ k̄,
which implies that βk ≥ β0η

k−k̄ ∀k ≥ k̄. By η > 1, limk→∞ βk = ∞, which leads
a contradiction with the boundedness of {βk} given in (i). Thus, there are infinite
elements in Ns, which together with (3.28) gives limk→∞ µk = 0.

By (3.5) and xk ∈ Ω, we have

f̃(xk, µk) ≥ f(xk) ≥ min
x∈Ω

f(x),

which shows that {f̃(xk, µk)} is bounded from below. Combining this with the non-
increasing property of {f̃(xk, µk)}, we obtain limk→∞ f̃(xk, µk) exists. By virtue of
limk→∞ µk = 0 and (3.5), we have

lim
k→∞

f̃(xk, µk) = lim
k→∞

f(xk) = lim
k→∞

f(zk).

From the proof of Lemma 3.4, we can guarantee the existence of the limit f(xk)
for (1.1) with the unbounded linear constraints when the minimum of f in the feasible
region exists.

4. Worst-case complexity analysis. We are now ready to present the worst-
case complexity of the SQR algorithm for finding an ǫ scaled first order stationary
point of (1.1).

Theorem 4.1. Given any ǫ ∈ (0, 1], the proposed SQR algorithm obtains an ǫ
scaled first order stationary point of (1.1) defined in Definition 2.3 in no more than
O(ǫ−2) iterations.
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Proof. Without loss of generality, we suppose µ0 = 1. Fix ǫ > 0 and let j be the
smallest positive integer such that

Cσp(j−1) ≤ ǫ and Cσp(j−2) > ǫ, (4.1)

where C = max{
√

2β̄ + δ−1, 2} with β̄ given in Lemma 3.4.
Denote tj be the jth element of T defined in (3.14). Then, we will prove that xtj

is an ǫ scaled first order stationary point of (1.1).
Note that

µk = σj−1 ∀ tj−1 + 1 ≤ k ≤ tj . (4.2)

Using 2µp
tj = 2σp(j−1) < ǫ, Dtj ⊆ Dǫ

tj , where

Dtj = {di : |d
T
i x

tj | ≤ 2µp
tj}, Dǫ

tj = {di : |d
T
i x

tj | ≤ ǫ}.

Then, we can find Ztj and Zǫ
tj such that Ztj ∈ orthon((spanDtj )

⊥), Zǫ
tj ∈ orthon((spanDǫ

tj )
⊥)

and Ztj contains all columns of Zǫ
tj .

From Lemma 3.3, (3.12) and (4.2), there is a nonnegative vector γtj ∈ R
r such

that xtj satisfies
∥

∥

∥

∥

∥

ZT
tj (∇Θ(xtj ) +

m
∑

i=1

Φ(dTi x
tj )di +AT γtj )

∥

∥

∥

∥

∥

∞

≤ ǫ, (4.3a)

Axtj − b ≤ 0, −ǫ2 ≤ (Axtj − b)Tγtj ≤ 0. (4.3b)

(4.3a) implies that

∥

∥

∥

∥

∥

(Zǫ
tj )

T (∇Θ(xtj ) +

m
∑

i=1

Φ(dTi x
tj )di +AT γtj)

∥

∥

∥

∥

∥

∞

≤ ǫ. (4.4)

Thus, we conclude that xtj is an ǫ scaled first order stationary point of (1.1) and
we need at most tj iterations to find it.

Suppose there are sj successful iterations up to the tjth iteration. From Step 2
in the SQR algorithm and Lemma 3.4 (i), β̄ ≥ βtj ≥ β0η

tj−sj , which implies that
ηtj−sj ≤ β̄/β0. Then,

tj ≤ sj + logη β̄ − logη β0. (4.5)

Thus, in order to evaluate tj , we only need to evaluate sj.
From (3.12), when k ∈ Ns\T ,

f̃(xk+1, µk+1)− f̃(xk, µk) ≤ −µ2p
k . (4.6)

Since there are at least sj − j + 1 successful iterations before the tjth iteration such

that (4.6) holds, from the nonincreasing of f̃(xk, µk), we have

f̃(xtj , µtj )− f̃(x0, µ0) ≤ −(sj − j + 1)σ2p(j−1). (4.7)

By the second inequality in (4.1), we have

j ≤
1

p
logσ

ǫ

C
+ 2, σ2p(j−1) ≥ σ2pC−2ǫ2. (4.8)
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(4.7) and (4.8) give

sj ≤
C2(f̃(x0, µ0)−minx∈Ω f(x))

σ2pǫ2
+

1

p
logσ

ǫ

C
+ 1. (4.9)

From (4.5) and (4.9), we have

tj ≤
C2(f̃(x0, µ0)−minx∈Ω f(x))

σ2pǫ2
+

1

p
logσ

ǫ

C
+ logη β̄ − logη β0 + 1. (4.10)

Thus, the worst-case complexity of the proposed SQR algorithm for obtaining an ǫ
scaled first order stationary point of (1.1) is O(ǫ−2).

Corollary 4.2. Suppose f is level bounded in Ω, i.e. {x ∈ Ω : f(x) ≤ Γ} is
bounded for any Γ ∈ R. Then, any accumulation point of {zk} is a scaled first order
stationary point of (1.1).

Proof. By xk ∈ Ω, f(xk) ≤ f̃(xk, µk) ≤ f̃(x0, µ0), ∀k ∈ N0, and the level
boundedness of f in Ω, the iterates {xk} is bounded. By (3.13), for any fixed j =
1, 2, . . ., zk = ztj+1 = xtj , ∀tj +1 ≤ k ≤ tj+1. From Lemma 3.4 (ii), (4.3b) and (4.4),
any accumulation point of {zk} is a scaled first order stationary point of (1.1).

When Ω is bounded, the supposition in Corollary 4.2 holds naturally.
Remark 4.1. Whether the complexity and convergence of the SQR algorithm

are dependent on the dimension of the problem are interesting problems. When
initialized properly, the semismooth Newton process enjoys the mesh independence
convergence[21]. Due to the computational cost of the preconditioning conjugate gra-
dient technique, the overall computational cost of the proposed method in [37] is
O(cn log n), where c depends on the number of approximate value ε. Since the right
hand of (4.10) is independent on n, the worst-case iteration complexity of the pro-
posed SQR algorithm for obtaining an ǫ scaled first order stationary point of (1.1) is
independent on the dimension n. Moreover, if the inequality in (2.6a) is defined by
the Euclidean 2-norm, then this independence result also holds. However, the total
computational cost for reaching an ǫ scaled first order stationary point must increase
with n and the estimation of it is up to the solution method for the subproblem (3.11).

Remark 4.2. Let µ0 = 1. From the proof of Theorem 4.1, if j satisfies (4.1),
then ztj+1 = xtj is an ǫ scaled first order stationary point of (1.1). By (4.1) and
(4.2), if k̄ ∈ N0 satisfies

max{
√

2β0 + δ−1,

√

2ηβ̂ + δ−1, 2}µp

k̄
≤ ǫ and µk̄+1 = σµk̄, (4.11)

then zk is an ǫ scaled first order stationary point of (1.1) for all k ≥ k̄ + 1.
Though it is difficult to judge which iterate is an ǫ scaled first order stationary

point of (1.1) from Definition 2.3, we can use (4.11) to find an ǫ scaled first order
stationary point of (1.1), which is a sufficient condition for the conditions in Definition
2.3.

5. Numerical Experiments. In this section, we report numerical results of
five examples to validate the theoretical results and show the good performance of
the proposed SQR algorithm. The numerical testing is performed using MATLAB
2009a on a Lenov PC (3.00GHz, 2.00GB of RAM). The strongly convex quadratic
subproblem (3.11) is solved by the projected alternating Barzilai-Borwein method in
[17] with the zero vector as the initial iterate, and we stop when we find s∗ such
that ‖s∗ −PSk [s∗ −∇q(s∗, xk, µk, βk)]‖ ≤ 10−5, where Sk and q(s, xk, µk, βk) are the
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constraint set and objective function in (3.11) with x = xk, µ = µk and β = βk.
Without special clarification, we let µ0 = 1, β0 = 2 and η = 1.1 in the SQR algorithm
throughout the numerical experiments. Denote the first order difference operator by

D1 =

(

L1 ⊗ I
I ⊗ L1

)

with L1 =











1 −1
1 −1

. . .
. . .

1 −1











.

Example 5.1 is a randomly generated test problem to support the complexity
theory of the SQR algorithm for finding a scaled first order stationary point of (1.1)
given in Theorem 4.1 and the independence of parameter σ ∈ (0, 1) for the complexity
of SQR algorithm. Meantime, the computational performance of the SQR algorithm
with respect to the dimension of problem (1.1) is also discussed.

Example 5.2- Example 5.5 are four often used gray level image restoration prob-
lems with intensity values ranging from 0 to 1 with size 64×64, 256×256 and 512×512.
Two classes of observed images are considered. One is the observed image with blur-
ring and Gaussian noise, and another is the observed image only with Gaussian noise.
Numerical results show that the proposed SQR algorithm is robust and efficient for
these image restoration problems. Let xo and xb be the original and observed images
with the dimension nl×nw. We use the peak signal-to-noise ratio (PSNR) to evaluate
the quality of the restored image, i.e.

PSNR(xk) = −10 log10
‖xk − xo‖

nl × nw
.

In Example 5.2 and Example 5.3, we will show the importance of the constraint in
(1.1) for image restoration, where we test the following three constraints:

Ω1 = {x : 0 ≤ x ≤ e}, Ω2 = {x : x ≥ 0}, Ω3 = R
n. (5.1)

Moreover, the independence on initial iterate for the SQR algorithm is also discussed,
where we test three different initial iterates: the zero vector denoted by 0, the observed
data projected on Ω1 denoted by PΩ1(xb), and a randomly generated vector in Ω1

denoted by xr. For the regularization term, we use two different potential functions

ϕ1(s) = λs, ϕ2(s) = λ
0.5s

1 + 0.5s
, where λ > 0. (5.2)

Example 5.1. In this example, we solve (1.1) with Θ(x) = ‖x− c‖2, D = D1,
Ω = {x : −2e ≤ x ≤ 2e} and ϕ(s) := ϕ1(s) with λ = 0.2. For a positive integer nl,
we use the following codes to generate c ∈ Rn.
nw=nl; n=nw*nl; s=randn(n,1);

s’=median([-2*ones(1,n);s’;2*ones(1,n)]); c=s+normrnd(0,0.05,[n,1]);

The algorithms in recent literatures [23, 25, 37, 38] also focus on solving this prob-
lem without constraint, where the approximation ideas are also used. The algorithms
and convergence proof are based on a fixed approximation parameter in [23, 37, 38].
The smoothing descent method in [25] forces the smoothing parameter converging to
zero and has the provable convergence to a stationary point of the non-smooth and
non-convex TVq model. However, there is no computational complexity analysis in
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all of these literatures, while the convergence and computational complexity bound
are proved theoretically with the updating parameter for the SQR algorithm in this
paper. Here, we use this example to verify these results.

Independence of σ for the complexity of the SQR algorithm. The Parameter σ
in the SQR algorithm is to control the decreasing scale of smoothing parameter µk.
From the proof of Theorem 4.1, we find that the worst-case complexity of the SQR
algorithm is stable with respect to σ ∈ (0, 1).

Let p = 0.5 in (1.1) and generate 20 samples of c by the above codes with nl = 2.
For these 20 randomly generated vectors c and some different values of σ in (0, 1),
the mean average number of iterations for obtaining an ǫ scaled first order stationary
point of (1.1) by the SQR algorithm with x0 = 04×1 is illustrated in Figure 5.1(a),
where we can find that the worst-case complexity is stable for different values of
σ. For a certain random generated c and three different values of σ ∈ (0, 1), the
convergence of the SQR algorithm is plotted in Figure 5.1(b), where we can find that
the obtained solutions are slightly different for σ = 0.3, 0.5, 0.9, but the first order
difference at those solutions x∗ has the same zero elements, (Dx∗)1 = (Dx∗)4 = 0, as
x∗
1 = x∗

2 = x∗
4.
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Fig. 5.1: For different values of σ (a) Iteration complexity; (b) convergence of xk

Computational complexity bound and convergence tests. Let nl = 2 in the codes.
Choose σ = 0.5. With the above 20 randomly generated vectors c , the average
number of iterations for obtaining an ǫ scaled first order stationary point of (1.1)
with three different values of p is illustrated in Figure 5.2(a), where we use the stop
criterion in Remark 4.2. Moreover, in order to show the total computational effort of
the SQR algorithm, which includes the effort for calculating the quadratic subproblem
(3.11) with BB method, we show the computational complexity of the SQR algorithm
with respect to the CPU time for obtaining an ǫ scaled first order stationary point of
(1.1) in Figure 5.2(b), where the stop criterion is same as in Figure 5.2(a).

Computational performance with respect to dimension n. In this part, we test the
computational complexity of the SQR algorithm with respect to n for finding an ǫ
(ǫ = 10−3) scaled first order stationary point of (1.1). In the codes, we let nl=2:2:50

and generate 20 random vectors c ∈ Rn for each nl. For n = k2, k = 2, 4, . . . , 50, the
average number of iterations for obtaining an ǫ (ǫ = 10−3) scaled first order stationary
point of (1.1) with the 20 random generated c is shown in Figure 5.3(a), where we
use the stop criterion in (4.11). From Figure 5.3(a), we find that the total iteration
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Fig. 5.2: (a) Iteration complexity; (b) CPU time complexity

for finding an ǫ scaled first order stationary point of (1.1) is not increase with n.
The total computational cost with respect to the CPU time is given in Figure 5.3(b),
which indicates the increasing effort with respect to the increasing of n.
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Fig. 5.3: For different values of n, (a) Iteration complexity; (b) CPU time complexity

Example 5.2. Circles image with size 64× 64. In this example, we test the
proposed SQR algorithm using the 64× 64 Circles image [12, 23, 37]. We discuss the
restoration of the circles image in two parts according to the class of observed images.

A. Observed image with blurring and noise. In this part, the observed
image xb is that all the pixels are blurred by a two dimensional Gaussian function,
and then added a Gaussian noise. The blurring function is chosen to be

h(i, j) = exp−2(i/3)2−2(j/3)2 ,

truncated such that the function has a support of 7 × 7, and the Gaussian noise is
with the mean of 0 and the standard deviation of 0.05. The original image and the
observed image are shown in Figure 5.4.

Dependence on parameter σ in the SQR algorithm. First, we test the influence of
σ in the SQR algorithm for this image. Let ϕ := ϕ2 with λ = 0.019, Ω := Ω1, D := D1
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Fig. 5.4: (a) original image; (b) observed image(PSNR=15.50)

σ 0.99 0.7 0.5 0.3 0.1
PSNR(x500) 21.15 19.91 19.92 19.76 19.37

f(x500) 15.51 15.54 15.56 15.63 15.60

Table 5.1: The SQR algorithm for the circles image with different values of σ

and p = 0.5 in (1.1), and x0 = PΩ1 (xb) in the SQR algorithm. Then, f(xo) = 13.71,
f(xb) = 32.62 and f(x0) = 30.99. For different values of σ in (0, 1), the PSNR and
objective function values at the 500th iteration are listed in Table 5.1, which shows
that the SQR algorithm with a larger σ can find an image with higher PSNR value.
The convergence of the PSNR and objective function values are figured in Figure 5.5
for σ = 0.1, 0.5, 0.99. In the sequence of this example, we let σ = 0.99.
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Fig. 5.5: For different values of σ: (a) PSNR values; (b) objective function values

Dependence on D in (1.1). In order to show the importance of the difference
operators in image restoration, we choose ϕ := ϕ1, Ω := Ω1 and p = 0.5 in (1.1) and
we test the SQR algorithm with D := I and D := D1 to restore the circles image
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with blurring and noise. Let x0 = PΩ1(xb). Figure 5.6(a) shows the convergence of
PSNR(xk) with D := I and λ = 0.081, which is the best choice of λ among 0.0001 :
0.0002 : 0.1 to let the SQR algorithm find an xk with the highest PSNR before 500
iterations. Also withD := I and λ = 0.081, f(x500) = 80.82 and f(xo) = 85.22. When
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Fig. 5.6: (a) PSNR with D := I; (b) PSNR with D := D1

D := I, from our numerical experiments, for almost all λ among 0.0001 : 0.0002 : 0.1,
f̃(xk, µk) is monotone decreasing, whereas, the PSNR is not monotonely increasing
and f(xk) can decrease below f(xo). Thus, the original image is not the optimal
solution of (1.1) with D := I and λ among 0.0001 : 0.0002 : 0.1. However, when
D := D1 and λ = 0.006, PSNR(xk) is monotonely increasing as shown in Figure
5.6(b).

The first or second order difference operators are also considered in the models in
[1, 2, 7, 11, 12, 14, 15, 23, 24, 36, 37, 38, 39]. From this numerical experiment, we find
that problem (1.1) with D := I seems not suitable for the restoration of this image,
but using D := D1 performs well. This shows the importance of the linear operator
D in the image restoration problems.

In the sequel parts of this example, we shall choose D := D1 in (1.1).
Dependence on the constraints in (1.1). In this part, we test the importance

of the constraints in (1.1) for obtaining the image with high PSNR values. To let
the observed image in the usual dynamical range of the intensity values, we set the
observed image be the projection of the above observed image on [0, e] in this part.
Then, the PSNR of the observed image is 15.63dB. Let ϕ := ϕ2 and x0 = 0n×1. For
different values of p and different constraints given in (5.1), the PSNR values at the
500th iteration are given in Table 5.2, where the parameter λ is also manually chosen
in order to obtain the best PSNR value. From this table, we can find that the box
constraints Ω1 in (5.1) can improve the performance of the restored image clearly
for different values of p. The average improvement of PSNR values is about 2.10dB.
Moreover, when p = 0.5, the convergence of PSNR(xk) by the SQR algorithm for the
three constraints in (5.1) is shown in Figure 5.7(a).

Dependence on p in (1.1). In this part, we consider the influence of the value of p
in (1.1) to restore the circles image with blurring and noise. Let ϕ := ϕ2, Ω := Ω1 and
x0 = 0n×1. From Table 5.2, 0 < p < 1 in (1.1) brings the restored image with better
performance. With the same λ as in Table 5.2 for different values of p, the PSNR
values at the 200th iteration are listed in Table 5.3, where the convergence of the
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p 1 0.8 0.7 0.6 0.5 0.4 0.3 0.1
λ 0.017 0.018 0.018 0.019 0.019 0.020 0.020 0.040
Ω1 20.95 21.06 21.17 21.24 21.27 21.20 21.20 21.20
Ω2 19.89 19.96 20.08 20.17 20.24 20.20 20.22 20.20
Ω3 18.81 18.93 19.09 19.16 19.18 19.04 19.10 19.15

Table 5.2: PSNR values of the SQR algorithm for (1.1) with different constraints and
values of p
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Fig. 5.7: Convergence of PSNR(xk) for the circles image: (a) with different con-
straints; (b) with different values of p

PSNR values for some cases are plotted in Figure 5.7(b). From Table 5.3 and Figure
5.7(b), we find that solving (1.1) with a smaller value of p by the SQR algorithm can
find an image with higher PSNR value in 200 iterations.

Independence on initial iterate in the SQR algorithm. In this part, we let p = 0.5,
Ω := Ω1 and ϕ := ϕ1 with λ = 0.006. The objective value with the original image
is f(xo) = 13.44. For the three different initial iterates given in the beginning of
this section, the corresponding results at the 500th iteration are given in Table 5.4,
where we observe that the SQR algorithm is stable with respect to the choice of initial
iterates, in terms of the PSNR values and objective values. Moreover, the mean CPU
time of the SQR algorithm with 50 different iterates in Ω1 to calculate x500 is 24.62
seconds, and the variance of it is 0.31.

At the end of this part, we should state that the PSNR of the restored image
by the SQR algorithm for (1.1) with D := D1 is better than the resorted images in
[12, 37] (PSNR=19.03 reported in [37] and PSNR=19.97 reported in [12] by using
different stop rules).

B. Observed image with Gaussian noise. In this part, we generate the
observed image xb without blurring that all the pixels are contaminated by Gaussian
noise with mean of 0 and standard deviation of 0.1. Define p = 0.5, ϕ := ϕ2 with
λ = 0.15 and D := D1 in (1.1). Then f(xo) = 64.27, f(xb) = 172.43 and PSNR(xb) =
20.07.

Let Ω := Ω1. With the three initial iterates used in Table 5.4, the numerical results
of the SQR algorithm for solving (1.1) to restore the circles image with Gaussian noise
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p 1 0.8 0.7 0.6 0.5 0.4 0.3 0.1
PSNR(x200) 20.16 20.26 20.34 20.39 20.50 20.59 20.72 20.85

Table 5.3: The SQR algorithm for the circles image with different values of p

x0 PSNR(x0) PSNR(x500) f(x0) f(x500)
0 7.30 21.13 585.41 14.32

PΩ1(xb) 15.63 21.10 27.34 14.29
xr 5.04 20.83 818.19 14.37

Table 5.4: The SQR algorithm for the circles image with different initial iterates

are given in Table 5.5, which shows that the SQR algorithm is stable with respect
to the initial iterates. With 50 different random initial iterates in Ω1, the mean
CPU time of the SQR algorithm to calculate x500 is 40.88 seconds and its variance
is 0.49. Moreover, with x0 = PΩ1(xb), the convergence of µk and PSNR(xk) are
illustrated in Figure 5.8. From the results in Table 5.5 and Figure 5.8, the PSNR
of the restored image by the SQR algorithm is also higher than the restored images
in [23, 37] (PSNR=31.03 reported in [23] and PSNR=31.28 reported in [37] by using
different stop rules) for the circles image with the same Gaussian noise.

For the three constraints in (5.1), the restored images by the SQR algorithm with
x0 = 0 at the 700th iteration are shown in Figure 5.9. We see that the quality of the
restored image with box constraint Ω1 is the best and more accurate of the feasible
region in (1.1) brings better restoration image, which further shows the importance
of the constraints in the image models. Moreover, let the allowable error be 10−3,
the original image has 3027 pixels with value 0 and 660 pixels with value 1, while the
recovered image in Figure 5.9(a) has 1073 pixels with value 0 and 25 pixels with value
1.
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Fig. 5.8: Convergence of PSNR(xk) and µk for the circles image with Gaussian noise:
(a) PSNR(xk); (b) µk

Example 5.3. Phantom image with size 256 × 256. First, we test the
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x0 PSNR(x0) PSNR(x500) f(x0) f(x500)
0 7.30 33.83 794.42 79.65

PΩ1(xb) 22.57 33.85 139.82 79.12
xr 5.04 33.83 1.56e+3 79.74

Table 5.5: Stability of the SQR algorithm with different initial iterates for the circles
image without blurring
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Fig. 5.9: Restored images with different constraints: (a) Ω1(PSNR(x700)=34.11); (b)
Ω2 (PSNR(x700)=33.66); (c) Ω3(PSNR(x700)=32.76)

proposed SQR algorithm using the 256×256 phantom image with blurring and Gaus-
sian noise as in Example 5.2-(A), where the original and observed images are given
in Figure 5.10.

Define ϕ := ϕ1 with λ = 0.009, p = 0.5 and D := D1 in (1.1), and let σ = 0.99
in the SQR algorithm. With the three different constraints in (5.1), we show the
restored images by the SQR algorithm with x0 = 0 in Figure 5.11. And we draw
the PSNRs and images of the 20 slices from 180 to 200 with the three constraints in
Figure 5.12. Similar as the performance in Example 5.2, the box constraint Ω1 can
provide a better image restoration with higher PSNR value. Also let the allowable
error be 10−3, the original image has 38127 pixels with value 0 and 2846 pixels with
value 1, while the recovered image in Figure 5.11(a) has 29866 pixels with value 0 and
1740 pixels with value 1.

Let Ω := Ω1. The convergence of PSNR(xk) with x0 = PΩ1(xb) is plotted in
Figure 5.13(a). Figure 5.13(b) shows convergence of f(xk) and f̃(xk, µk) generated
by the SQR algorithm with x0 = PΩ1(xb). In order to see the edge-preserving property
by the SQR algorithm, we display the 176th line of the original, observed and restored
images in Figure 5.14.

Next, we test this phantom image only with Gaussian noise as in Example 5.2-
(B). The PSNR of the observed image is 26.05dB. Choose ϕ := ϕ2, D := D1, Ω := Ω1

in (1.1), let x0 = PΩ1(xb), σ = 0.9 in the SQR algorithm and we stop when µk < 0.01.
For p = 0.25, 0.5, 0.75, f(xo), f(x

0), K, f(xK), PSNR(xK) and PSNR[23] are reported
in Table 5.6, where K denotes the number of terminate iterates and PSNR[23] is the
PSNR values reported in [23] for this image with the same power on the regularization
term. From this table, we would find that the proposed SQR algorithm performs well
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Fig. 5.10: Phantom image: (a) original image; (b) observed image(PSNR=21.23)
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Fig. 5.11: Restored images for the phantom image with different constraints: (a) Ω1

(PSNR(x500)=29.60); (b) Ω2 (PSNR(x500)=28.90); (c) Ω3 (PSNR(x500)=28.12)
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Fig. 5.12: (a) PSNRs of the restored 20 slices; (b) image of 20 slices: (b1) original
(b2) observed (b3) with Ω1 (b4) with Ω2 (b5) with Ω3
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Fig. 5.13: Convergence for the phantom image: (a) PSNR(xk) with different con-
straints; (b) f(xk) and f̃(xk, µk) with Ω = Ω1.
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Fig. 5.14: 176th line of phantom image: (a) original image; (b) observed image; (c)
restored image

for this image with Gaussian noise and the smaller p brings the restored image with
higher PSNR values and fewer iterations.

Example 5.4. Phantom image with size 512 × 512. In this example, we
use another phantom image with size 512× 512 to test the performance of the SQR
algorithm in image restoration. The observed image is generated with the blurring
and Gaussian noise as in Example 5.2. Figures 5.15(a)-5.15(b) show the original and
observed images. Define Ω := Ω1, ϕ := ϕ2 with λ = 0.07, p = 0.5 and D := D1 in
(1.1). Let x0 = PΩ1 (xb) and σ = 0.9 in the SQR algorithm. The restored image is
given in Figure 5.15(c), where the restored image is generated by the 400th iteration
of the SQR algorithm with the smoothing parameter µ400 = 0.01. The convergence
of the PSNR(xk), f(xk) and f̃(xk, µk) are plotted in Figure 5.16. Similar as the
simulation results in Examples 5.2 and 5.3, (1.1) with box constraint Ω1 can provide
a good restoration for this image.

Example 5.5. Rice image with size 256× 256. Our fifth experiment corre-
sponds to the rice image with size 256 × 256. We generate the observed image with
the same blurring as in Example 5.2-(A) and Gaussian noise with mean 0 and stand
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p λ f(xo) f(x0) K f(xK) PSNR(xK) PSNR[23]
0.75 0.088 313.46 1.08× 103 307 381.35 40.97 41.00
0.5 0.054 264.60 1.28× 103 192 465.46 42.66 41.02
0.25 0.046 261.45 2.28× 103 113 1.19× 103 43.37 39.93

Table 5.6: Performance of the SQR algorithm for phantom image with Gaussian noise
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Fig. 5.15: Phantom image with size 512 × 512: (a) original image; (b) observed
image(PSNR=25.01); (c)restored image (PSNR(x400)=34.88)

deviation of 0.1. The original and observed images are shown in Figures 5.17(a)-
5.17(b). Define Ω := Ω1, ϕ := ϕ1 with λ = 0.0003, p = 0.5 and D := D1 in (1.1).
Let x0 = PΩ1(xb) and σ = 0.9 in the SQR algorithm. The restored image and the
convergence of PSNR values are given in Figures 5.17(c)-5.17(d).
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Fig. 5.16: Phantom image with size 512× 512: (a) PSNR values; (c)objective and its
smoothing values
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