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Abstract
Extensive numerical experiments have shown that the iteratively reweighted `1

minimization algorithm (IRL1) is a very efficient method for variable selection, signal
reconstruction and image processing. However no convergence results have been
given for the IRL1. In this paper, we first give a global convergence theorem of the
IRL1 for the `2-`p (0 < p < 1) minimization problem. We prove that any sequence
generated by the IRL1 converges to a stationary point of the `2-`p minimization
problem. Moreover, the stationary point is a global minimizer in certain domain
and the convergence rate is approximately linear under certain conditions. We derive
posteriori error bounds which can be used to construct practical stopping rules for
the algorithm. Other contribution of this paper is to prove the uniqueness of solution
of the truncated `p minimization problem under the truncated null space property
which is weaker than the restricted isometry property.

Keywords. `p minimization, stationary points, nonsmooth and nonconvex opti-
mization, pseudo convex, global convergence, truncated null space property.
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1 Introduction

Iteratively reweighted `1 minimization algorithms have been widely used for solving non-
convex optimization problems in variable selection, signal reconstruction and image pro-
cessing [2, 3, 4, 6, 7, 16, 19]. Candès, Wakin, and Boyd [2] proposed the iteratively
reweighted `1 minimization algorithm (IRL1) to solve the penalized likelihood signal
restoration problems of the form [13]

min
x∈Rn

‖Ax− b‖2
2 + λ‖x‖p

p, 0 < p < 1, (1.1)

where A ∈ Rm×n, b ∈ Rm, λ is a positive penalty parameter and

‖x‖p
p =

n∑

i=1

|xi|p.
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A version of the IRL1 for solving (1.1) is as follows:

xk+1 = arg min
x∈Rn

fk(x, ε) := ‖Ax− b‖2
2 + λ‖W kx‖1 (1.2)

where the weight W k =diag(wk) is defined by the previous iterates and updated in each
iteration as

wk
i =

p

(|xk
i |+ ε)1−p

, i = 1, . . . , n.

Here ε is a positive parameter to ensure that the algorithm is well-defined.
At each iteration, the IRL1 (1.2) solves a convex `2-`1 minimization problem. Exten-

sive numerical experiments have shown that the IRL1 (1.2) is a very efficient method for
variable selection, signal reconstruction and image processing. However no convergence
results have been given for (1.2).

In this paper, we first give a global convergence theorem of (1.2). We prove that any
sequence generated by the IRL1 (1.2) converges to a stationary point x∗ of the following
`2-`p minimization problem.

min
x∈Rn

f(x, ε) := ‖Ax− b‖2
2 + λ

n∑

i=1

(|xi|+ ε)p, 0 < p < 1. (1.3)

Moreover, we show that the stationary point is a global minimizer of (1.3) in certain
domain and the convergence rate is approximately linear under certain conditions. More-
over, we derive posteriori error bounds

‖xk − x∗‖2 ≤ γ‖xk+1 − xk‖2,

with a positive constant γ, which can be used to construct practical stopping rules for
the algorithm.

The model (1.3) is a natural unconstrained version of the following constrained `p

optimization problem

min
x∈Rn

n∑

i=1

(|xi|+ ε)p, s.t. Ax = b, (1.4)

which is an approximation of the `p minimization problem

min
x∈Rn

‖x‖p
p, s.t. Ax = b. (1.5)

The models (1.1) and (1.3) are also called denoising models of (1.4) and (1.5).
Problems (1.4) and (1.5) have been widely used [2, 3, 4, 5, 6, 7, 14, 16] when the

vector b contains little or no noise. Ge, Jiang and Ye [15] show that the `p minimization
problem (1.5) is NP-hard. Following their proof in [15], it is not difficult to show that
(1.4) is also NP-hard. An advantage of (1.4) is that its objective function is Lipschitz
continuous. Moreover, the sparse signal can be exactly recovered by solving it when ε is
sufficiently small. In fact, Foucart and Lai [14] proved the following result. Suppose that

αs‖x‖2 ≤ ‖Ax‖2 ≤ βs‖x‖2, ∀ ‖x‖0 ≤ s, (1.6)
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where ‖x‖0 = #{ i |xi 6= 0}. Set

γ2s :=
β2

2s

α2
2s

≥ 1. (1.7)

Lemma 1.1. [14] Given 0 < p < 1 and the original s-sparse vector x∗, if for some t ≥ s,

γ2t − 1 < 4(
√

2− 1)(
t

s
)

1
p
− 1

2 ,

then there exists ζ > 0 such that, for any nonnegative ε ≤ ζ, the vector x∗ is exactly
recovered by solving the problem (1.4). Here ζ depends only on n, p, x∗, γ2t, and the ratio
s/t.

Other contribution of this paper is to prove that any feasible solution x̄ of the `p

minimization problem (1.5) is a unique solution of a truncated `p minimization problem

min
x∈Rn

‖xT ‖p
p, s.t. Ax = b, (1.8)

where ‖xT ‖p
p =

∑

i∈T

|xi|p and T is a subset of {1, . . . , n}.

It was shown in [15] that the set of all basic feasible solutions of (1.5) is exactly the
set of all of its local minimizers. However, checking if a local minimizer is a solution
of (1.5) is still NP-hard. We present sufficient conditions for a local minimizer being a
unique solution of a truncated `p minimization problem (1.8). The sufficient conditions
extend the truncated null space property [20, 10] for `1 norm to `p norm. The truncated
null space property is weaker than the restricted isometry property [1].

Our convergence analysis for IRL1 can be applied to the following truncated IRL1:

xk+1 = arg min
x∈Rn

fT,k(x, ε) := ‖Ax− b‖2
2 + λ‖(W kx)T ‖1 (1.9)

for the `2-`p truncated minimization problem.

min
x∈Rn

fT (x, ε) := ‖Ax− b‖2
2 + λ

∑

i∈T

(|xi|+ ε)p, 0 < p < 1. (1.10)

We summary some notations and results in nonsmooth optimization [8], which will
be used in this paper. It is known that a Lipschitz function g : Rn → R is almost
everywhere differentiable and its subgradient is defined by

∂g(y) = co{ lim
yk→y

yk∈Dg

∇g(yk)},

where Dg is the set of points at which g is differentiable.
We say x∗ is a stationary point of g if 0 ∈ ∂g(x∗). If g is a convex function, then x∗

is a global minimizer of g in Rn if and only if x∗ is a stationary point of g.
A function g is convex if and only if ∂g is a monotone operator, that is,

(y − x, ξy − ξx) ≥ 0, ∀ ξy ∈ ∂g(y), ∀ ξx ∈ ∂g(x).
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We say a function g : Rn → R is strongly pseudoconvex at x on D if for every
ξ ∈ ∂g(x) and every y ∈ D,

ξT (y − x) ≥ 0 ⇒ g(y) ≥ g(x).

We say a function g : Rn → R is strongly pseudoconvex on D if g is strongly pseudoconvex
at every point in D.

Throughout this paper, ‖ · ‖ denotes the `2 norm. The vector ei ∈ Rn is the ith
column of the identity matrix. The vector ai ∈ Rm is the ith column of the matrix A.
The cardinality of a subset T ⊂ {1, . . . , n} is denoted by |T |, and its complement set is
denoted by TC .

2 Convergence analysis

In this section, we give convergence analysis for the IRL1 (1.2). Note that both objective
functions f and fk are Lipschitz continuous for any fixed ε > 0. Hence we can define
their subgradients in Rn. Moreover, both functions are nonnegative and satisfy

f(x, ε) →∞, fk(x, ε) →∞ as ‖x‖ → ∞. (2.1)

Therefore, the solution sets of (1.2) and (1.3) are nonempty and bounded.

Lemma 2.1. For any nonnegative constants α, β and t ∈ (0, 1), we have

α1−tβt ≤ (1− t)α + tβ, (2.2)

and equality holds if and only if α = β.

Proof Young’s inequality states that for any nonnegative constants µ and ν,

µν ≤ 1
q
µq +

1
r
νr, (

1
q

+
1
r

= 1 )

where equality holds if and only if µq = νr. Set 1
q = 1 − t, µq = α and νr = β in this

inequality. We obtain (2.2) and equality holds if and only if α = β. ¤

Lemma 2.2. Let {xk} be the sequence generated by the IRL1 (1.2). Then we have

f(xk+1, ε) ≤ f(xk, ε)− ‖A(xk+1 − xk)‖ − δ(xk+1, xk), (2.3)

where δ(xk+1, xk) ≥ 0 and equality holds if and only if |xk+1| = |xk|. If p = 1
2 , then

δ(xk+1, xk) = λ
1
2

n∑

i=1

(
(|xk+1

i |+ ε)
1
2 − (|xk

i |+ ε)
1
2

)2

(|xk
i |+ ε)

1
2

.

Proof Since xk+1 is the solution of problem (1.2), by [8, Corollary 1, p39] we have

0 ∈ ∂fk(xk+1, ε).
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The function fk is the sum of n + 1 convex functions, namely, ‖Ax − b‖2 and |xi|,
i = 1, . . . , n. By the addition rule of subgradient for the sum of convex functions [8,
Proposition 2.3.3], we have

∂fk(x, ε) = λ

n∑

i=1

∂p|xi|
(|xk

i |+ ε)1−p
ei + 2AT (Ax− b).

Hence, we find

0 ∈ ∂fk(xk+1, ε) = λ

n∑

i=1

p

(|xk
i |+ ε)1−p

∂|xk+1
i |ei + 2AT (Axk+1 − b), (2.4)

which means that there exist ci ∈ ∂|xk+1
i |, i = 1, · · · , n such that

λ
( pci

(|xk
i |+ ε)1−p

)
1≤i≤n

+ 2AT (Axk+1 − b) = 0. (2.5)

By the definition of the subdifferential for |xi|, we have

ci =





1, if xk+1
i > 0,

−1, if xk+1
i < 0,

α, if xk+1
i = 0, α ∈ [−1, 1].

(2.6)

By (2.5), (2.6) and (2.2), we obtain

f(xk, ε)− f(xk+1, ε)

= λ
n∑

i=1

(
(|xk

i |+ ε)p − (|xk+1
i |+ ε)p

)
+ ‖Axk+1 −Axk‖2 + 2(Axk −Axk+1)T (Axk+1 − b)

= ‖Axk+1 −Axk‖2 + λ
n∑

i=1

(
(|xk

i |+ ε)p − (|xk+1
i |+ ε)p +

pci(xk+1
i − xk

i )
(|xk

i |+ ε)1−p

)
(2.7)

≥ ‖Axk+1 −Axk‖2 + λ
n∑

i=1

(
(|xk

i |+ ε)p − (|xk+1
i |+ ε)p +

p(|xk+1
i | − |xk

i |)
(|xk

i |+ ε)1−p

)

= ‖Axk+1 −Axk‖2 + λ
n∑

i=1

((|xk
i |+ ε)− (|xk

i |+ ε)1−p(|xk+1
i |+ ε)p + p(|xk+1

i | − |xk
i |)

(|xk
i |+ ε)1−p

)

= ‖Axk+1 −Axk‖2 + λ
n∑

i=1

((1− p)(|xk
i |+ ε) + p(|xk+1

i |+ ε)− (|xk
i |+ ε)1−p(|xk+1

i |+ ε)p

(|xk
i |+ ε)1−p

)

= ‖Axk+1 −Axk‖2 + δ(xk+1, xk)

≥ ‖Axk+1 −Axk‖2,

where the first inequality uses

cix
k+1
i = |xk+1

i | and |ci| ≤ 1

and the last inequality uses Lemma 2.1. ¤

Lemma 2.3. Suppose that g1 : Rn → R and −g2 : Rn → R are convex on a closed

convex set Ω, and g1(x) ≥ 0 and g2(x) > 0, for all x ∈ Ω then h(x) =
g1(x)
g2(x)

is strongly

pseudoconvex on Ω.

5



Proof This lemma is a simple generalization of [17], which proved that the condition
number of a symmetric positive definite matrix is pseudoconvex. For completeness, we
give a proof of this lemma.

From the convexity assumption, for any x, y ∈ Ω and ξ1 ∈ ∂g1(x), ξ2 ∈ ∂g2(x), we
have

g1(y)− g1(x) ≥ ξT
1 (y − x),

and
−g2(y) + g2(x) ≥ ξT

2 (y − x).

Hence we obtain

g1(y)− h(x)g2(y) = g1(y)− g1(x) + h(x)(−g2(y) + g2(x))

≥ ξT
1 (y − x) + h(x)ξT

2 (y − x)

= g2(x)
(ξ1g2(x)− g1(x)ξ2

g2(x)2
)T

(y − x).

By the quotient rule for the Clarke generalized gradient [8, Proposition 2.3.14], we find

that
ξ1g2(x)− g1(x)ξ2

g2(x)2
∈ ∂h(x), from that g2 and g1 are Clarke regular. Therefore we

have h(y) ≥ h(x) if ξT (y − x) ≥ 0 with ξ ∈ ∂h(x). ¤

Lemma 2.4. For constants α > 0, ε > 0 and p ∈ (0, 1), let

φ(t) = |t|+ (αt2 + βt)(|t|+ ε)1−p.

Then φ is convex in [0,∞) and (−∞, 0] if

|β| ≤ αε

1− p
. (2.8)

Proof The function φ is differentiable in R except t = 0. To show the convexity of φ,
we consider the second derivative of φ for t 6= 0.

First we consider t > 0. By simple calculation, we get

φ
′′
(t) = (t + ε)−1−p(c1t

2 + c2t + c3),

where
c1 = α(2 + (4− p)(1− p)),

c2 = (2− p)((1− p)β + 4αε),

c3 = 2ε(αε + (1− p)β).

Obviously, ci > 0, i = 1, 2 and c3 ≥ 0. This implies that φ is convex for t > 0.
Now, we consider t < 0. In this case,

φ(t) = −t + (αt2 + βt)(−t + ε)1−p.

Similarly, we can find that for t < 0,

φ
′′
(t) = (−t + ε)−1−p(c1t

2 + c4t + c5)
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where
c4 = (2− p)((1− p)β − 4αε),

c5 = 2ε(αε− (1− p)β).

Obviously, c4 < 0 and c5 ≥ 0. This implies that φ′′(t) ≥ 0 and thus φ is convex for t < 0.
By the continuity of φ and that for t1t2 > 0

φ(µt1 + (1− µ)t2) ≤ µφ(t1) + (1− µ)φ(t2), for 0 ≤ µ ≤ 1,

we can take t1 → 0 or t2 → 0, and claim that φ is convex in [0,∞) and (−∞, 0].
¤

Theorem 2.1. Let {xk} be a sequence generated by the IRL1 (1.2). Then the sequence
{xk} converges to a stationary point x∗ of (1.3). Moreover, the following statements
hold.

(1) If ε ≥
(

λ(1− p)p
2‖ai‖2

) 1
2−p

, then

f(x∗, ε) ≤ f(x∗ + tei, ε), for t ∈
{

[−x∗i ,∞) if x∗i ≥ 0,

(−∞,−x∗i ] if x∗i ≤ 0.
(2.9)

(2) If |aT
i (AIx

∗
I − b)| ≤ ‖ai‖2ε

2(1− p)
then (2.9) holds. Moreover, if aT

i (AIx
∗
I − b) = 0,

then x∗i = 0 and
f(x∗, ε) ≤ f(x∗ + tei, ε), for t ∈ R, (2.10)

where AI = [a1, . . . , ai−1, ai+1, . . . , an] and x∗I = [x∗1, . . . , x
∗
i−1, x

∗
i+1, . . . , x

∗
n]T .

Proof By Lemma 2.2, the sequence {f(xk, ε)} is monotonically decreasing. Hence it
converges. It is clear that the sequence {xk} is contained in the level set

L(x0) = {x | f(x, ε) ≤ f(x0, ε)}.

Obviously, L(x0) is bounded from (2.1). Let {xnk} be a subsequence of {xk} which
converges to x∗.

By (2.3), we have δ(xk+1, xk) → 0, as k → ∞. This implies that {|xnk+1|} also
converges to |x∗|. From (2.3) and (2.7), we have

lim
k→∞

f(xk, ε)− f(xk+1, ε) = lim
k→∞

‖A(xk+1 − xk)‖ = lim
k→∞

|xk| − |xk+1| = 0.

This, together with (2.7), implies

lim
k→∞

ci(xk+1
i − xk

i ) = 0, i = 1, . . . , n.

Hence, from the definition of ci and lim
nk→∞

|xnk | − |xnk+1| = 0, we obtain

lim
nk→∞

(xnk+1
i − xnk

i ) = 0, i = 1, . . . , n.
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Moreover, it implies that the whole sequence {xk} converges to x∗.
By the upper semi-continuous property of the subdifferential [8, Proposition 2.1.5],

there exist c∗i ∈ ∂|x∗i |, i = 1, . . . , n such that

0 = λ
( pc∗i

(|x∗i |+ ε)1−p

)
1≤i≤n

+ 2AT (Ax∗ − b) ∈ ∂f(x∗). (2.11)

Hence x∗ is a stationary point.
Now we prove (1) of this theorem. Let

ϕ(t) = λ‖|x∗ + tei|+ ε‖p
p + ‖A(x∗ + tei)− b‖2. (2.12)

The subdifferential of ϕ is

∂ϕ(t) = λ
p sign(x∗i + t)

(|x∗i + t|+ ε)1−p
+ 2aT

i (A(x∗ + tei)− b).

By (2.11), we have 0 ∈ ϕ(0), that is, 0 is a stationary point of ϕ. For t1 and t2 satisfying
(x∗i + t1)(x∗i + t2) > 0, there is t0 between t1 and t2 such that for any ξ1 ∈ ∂ϕ(t1) and
ξ2 ∈ ∂ϕ(t2),

ξ1 − ξ2 = (− λ(1− p)p
(|x∗i + t0|+ ε)2−p

+ 2‖ai‖2)(t1 − t2) ≥ (−λ(1− p)p
ε2−p

+ 2‖ai‖2)(t1 − t2).

Hence if ε ≥
(

λ(1− p)p
2‖ai‖2

) 1
2−p

, then

(t1 − t2, ξ1 − ξ2) ≥ 0.

Hence ϕ is convex, and 0 is the minimizer of ϕ in (−x∗i ,∞) if x∗i ≥ 0, and in (−∞,−x∗i )
if x∗i ≤ 0. This gives (2.9).

To prove the first part of (2) of this theorem, we show ϕ defined in (2.12) is pseudo-
convex in [−x∗i ,∞) and (−∞,−x∗i ]. The function ϕ can be rewritten as

ϕ(t) = λ(|x∗i + t|+ ε)p + ‖ai‖2(x∗i + t)2 + 2aT
i (AIx

∗
I − b)(x∗i + t) + c0,

= λ
( |x∗i + t|+ ε +

(‖ai‖2
λ (x∗i + t)2 + 2aT

i (AIx∗I−b)
λ (x∗i + t)

)
(|x∗i + t|+ ε)1−p

(|x∗i + t|+ ε)1−p

)
+ c0,

where c0 is a constant. Using Lemma 2.4, with

α =
‖ai‖2

λ
and β =

2aT
i (AIx

∗
I − b)

λ
,

we find that the function

|x∗i + t|+ ε +
(‖ai‖2

λ
(x∗i + t)2 +

2aT
i (AIx

∗
I − b)

λ
(x∗i + t)

)
(|x∗i + t|+ ε)1−p

is convex. Since (|x∗i + t|+ ε)1−p is concave, we find that ϕ is pseudoconvex by Lemma
2.3.
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By the definition of the pseudo convexity and (2.11), we obtain (2.9).
If aT

i (AIx
∗
I − b) = 0, then (2.11) implies that

0 ∈ λ
( pc∗i

(|x∗i |+ ε)1−p

)
+ 2aT

i aix
∗
i .

Since c∗i = 1 if x∗i > 0 and c∗i = −1 if x∗i < 0, this encloser only holds at x∗i = 0. Moreover,
it is easy to see that in such case

ϕ(−x∗i ) = ϕ(0) ≤ ϕ(t), for t ∈ R,

that is,
f(x∗ − x∗i ei, ε) = f(x∗, ε) ≤ f(x∗ + tei), for t ∈ R.

We obtain the desired results. ¤

Remark 1. Consider the constrained IRL1 [2]

xk+1 = arg min
x∈Rn

‖W kx‖1, s.t. Ax = b (2.13)

where the weight W k =diag(wk) is defined by

wk
i =

p

(|xk
i |+ ε)1−p

, i = 1, . . . , n.

From the proof of Theorem 2.1, we can easily find that if the sequence {xk} generated by
(2.13) converges to x∗, then x∗ is a stationary point of (1.4), that is, there is µ ∈ Rm

such that

0 =
( pc∗i

(|x∗i |+ ε)1−p

)
1≤i≤n

+ AT µ ∈ ∂xL(x∗, µ)

0 = Ax− b

where ci ∈ ∂|x∗i | and L(x, µ) =
n∑

i=1

(|xi|+ ε)p + µ(Ax− b) is the Lagrangian function.

In [7], it was shown that any local minimizer x∗ of (1.1) satisfies

either |x∗i | = 0 or |x∗i | ≥ L, ∀ i = 1, · · · , n, (2.14)

where

L :=
( λp(1− p)

maxi∈{i,··· ,n} ‖ai‖2

) 1
2−p

.

This lower bound for absolute value of nonzero elements of any local minimizer of (1.1)
can be easily extended to the model (1.3). Also see Theorem 3.3 in [18]. We give the
lower bound theory for (1.3) in the following theorem.

Theorem 2.2. If ε < L, then every local minimizer x∗ of (1.3) satisfies

either |x∗i | = 0 or |x∗i | ≥ L− ε, ∀ i = 1, · · · , n. (2.15)
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Now we use the lower bound L to derive the convergence rate of the IRL1 (1.2) and
error bounds.

Theorem 2.3. Assume that the sequence {xk} generated by (1.2) converges to a local
minimizer x∗ of (1.3). If

λp(1− p)
L2−p

< 2λmin(AT
SAS),

then for any positive constant ε < L, there exist positive constants γi, i = 1, 2, 3 and
c ∈ (0, 1) such that for all sufficiently large k

‖xk
S − x∗S‖ ≤ γ1‖xk

S − xk+1
S ‖+ γ2‖xk+1

SC ‖,

and
‖xk+1

S − x∗S‖ ≤ c‖xk
S − x∗S‖+ γ3‖xk+1

SC ‖.

Proof Denote

S = { i | |x∗i | 6= 0 } and Sk = { i | |xk
i | 6= 0 }.

Since xk → x∗, by (2.15) we have S ⊂ Sk and there exists a small constant δ ∈ (0, ε)
such that for sufficiently large k, |xk

i | ≥ L− δ, for i ∈ S.
Consider the function

g(z) =
∑

i∈S

λ(|zi|+ ε)p + ‖ASz − b‖2, z ∈ R|S|.

Since f(x∗) = g(x∗S), it is easy to show that x∗S is a local minimizer of g(z). Therefore
we have from the optimal condition for minimizing g(z) that

( λp sign(x∗i )
(|x∗i |+ ε)1−p

)
i∈S

+ 2AT
S (ASx∗S − b) = 0, (2.16)

and the matrix
diag

(( λp(p− 1)
(|x∗i |+ ε)2−p

)
i∈S

)
+ 2AT

SAS

is semipositive definite, which implies that the matrix AT
SAS is positive definite since

p− 1 < 0.
Since xk+1 is a local minimizer of fk(x) and for sufficiently large k,

sign(xk+1
i ) = sign(xk

i ) = sign(x∗i ), i ∈ S,

we have 


( λp sign(x∗i )
(|xk

i |+ ε)1−p

)
i∈S

(λp sign(xk+1
i )

(|xk
i |+ ε)1−p

)
i∈SC


 + 2

(
AT

S (Axk+1 − b)
ASC (Axk+1 − b)

)
= 0. (2.17)

By (2.16) and (2.17), we have

BS(xk
S − x∗S) = 2AT

SAS(xk
S − xk+1

S )− 2AT
SASC xk+1

SC , (2.18)
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and

xk+1
S − x∗S = −(2AT

SAS)−1DS(xk
S − x∗S)− (AT

SAS)−1AT
SASC xk+1

SC , (2.19)

where ζi is between x∗i and xk
i for any i ∈ S, and

DS = diag
(( λp(p− 1)

(|ζi|+ ε)2−p

)
i∈S

)
, BS = DS + 2AT

SAS .

From sign(xk
i ) = sign(x∗i ), we have |ζi| ≥ L − δ > 0, for i ∈ S. Moreover, from the

following inequalities

λp(1− p)
(|ζi|+ ε)2−p

≤ λp(1− p)
(L− δ + ε)2−p

≤ λp(1− p)
(L)2−p

< 2λmin(AT
SAS),

we obtain that BS is nonsingular and we have from (2.18) and (2.19) that

‖xk
S − x∗S‖ ≤ 2‖B−1

S ‖‖AT
SAS‖‖xk

S − xk+1
S ‖+ 2‖B−1

S ‖‖AT
SASC‖‖xk+1

SC ‖,

and

‖xk+1
S − x∗S‖ ≤ ‖(2AT

SAS)−1DS‖‖xk
S − x∗S‖+ ‖(AT

SAS)−1AT
SASC‖‖xk+1

SC ‖.

Therefore, we complete the proof with γ1 = 2‖B−1
S ‖‖AT

SAS‖, γ2 = 2‖B−1
S ‖‖AT

SASC‖,
γ3 = ‖(AT

SAS)−1AT
SASC‖ and c = ‖(2AT

SAS)−1DS‖. ¤
If we know the index set S of nonzero elements x∗ exactly, we can set xk

SC = 0 for all
large k. Then from Theorem 2.3, we have

‖xk − x∗‖ = ‖xk
S − x∗S‖ ≤ γ1‖xk

S − xk+1
S ‖ = γ1‖xk − xk+1‖

and
‖xk+1 − x∗‖ = ‖xk+1

S − x∗S‖ ≤ c‖xk
S − x∗S‖ = c‖xk − x∗‖.

3 Unique solution of truncated `p minimization

In the last section, we show that the IRL1 (1.2) converges to a stationary point of (1.3)
which is a denoising problem of the `p minimization problem (1.5). Although (1.5) is an
NP-hard problem, it is easy to find its local minimizers. In [15], Ge, Jiang and Ye showed
that all basic feasible solutions of (1.5) are local minimizers of (1.5). In this section, we
show that if x∗ is a feasible solution of (1.5), then x∗ is a unique global minimizer of a
truncated `p minimization problem (1.8) under the the truncated null space property.

In [20], Wang and Yin proposed an iterative support detection method which solves
a sequence of truncated `1 minimization problems

min
x∈Rn

‖xT ‖1, s.t. Ax = b. (3.1)

They introduced the truncated null space property of A in the `1 norm, an extension of
the null space property studied in [9, 10, 11] which is more general than the widely used
restricted isometry property [1].

The following definition is the truncated null space property of A in the `p norm.
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Definition 3.1. A matrix A satisfies the t-NSP of order K for γ > 0, 0 < t ≤ n if

‖ηS‖p ≤ γ‖η(T∩SC)‖p (3.2)

holds for all sets T ⊂ {1, · · · , n} with |T | = t, all subsets S ⊂ T with |S| ≤ K, and all
η ∈ N(A), the null space of A.

Following the notation in [20], we use t-NSP(t,K, γ) to denote the t-NSP of order K

for γ and t, and use γ̄ to replace γ and write t-NSP(t,K, γ̄) if γ̄ is the infimum to all
the feasible γ satisfying (3.2).

The truncated null space property for 0 < p < 1 is also a generalization of restricted
isometry property. For |T | = n, we have the following result.

Lemma 3.1. Given 0 < p < 1, if for some t1 ≥ K,

γ2t1 − 1 < 4(
√

2− 1)
( t1

K

) 1
p
− 1

2
,

where γ2t1 is defined by (1.7), then the matrix A satisfies the t-NSP of order K for γ < 1
and |T | = n.

Proof It follows directly from the inequality (15) in Theorem 3.1 of [14]. ¤
The following three inequalities of the `p (0 < p < 1) norm will be used in the proof

of Theorem 3.1 and Theorem 3.2. For any vectors u, v ∈ Rn, we have

‖u‖1 ≤ ‖u‖p, ‖u‖p ≤ n
1
p
− 1

2 ‖u‖2, ‖u + v‖p
p ≤ ‖u‖p

p + ‖v‖p
p. (3.3)

We denote the feasible solution set of (1.5) by

F = {x |Ax = b}

and the index set of nonzero element of a given vector x by

S(x) = { i | xi 6= 0 }.

The following result is an extension of Theorem 3.1 in [20] from p = 1 to 0 < p < 1,
which provides a sufficient exact recovery condition for K-sparse vector.

Theorem 3.1. Let x∗ ∈ F and T be a subset of {1, . . . , n}. Let S = T ∩S(x∗). If S = ∅,
then x∗ is a solution of (1.8). If S 6= ∅ and

‖ηS‖p ≤ γ‖η(T∩SC)‖p, γ < 1 (3.4)

for all η ∈ N(A), then x∗ is the unique solution of (1.8).

Proof If S = ∅, then x∗T with x∗i = 0, i ∈ T is a solution of (1.8). Suppose S 6= ∅.
It is easy to see that the vector x∗ is the unique solution of (1.8) if and only if for any
x ∈ N(A)

‖x∗T + xT ‖p
p > ‖x∗T ‖p

p. (3.5)
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Since ‖x∗S‖p
p = ‖x∗T ‖p

p, we have from the third inequality in (3.3) that

‖x∗T + xT ‖p
p

= ‖x∗S + xS‖p
p + ‖0 + xT∩SC‖p

p

= ‖x∗S + xS‖p
p − ‖x∗S‖p

p + ‖xS‖p
p + ‖x∗T ‖p

p + (‖xT∩SC‖p
p − ‖xS‖p

p)

≥ ‖x∗T ‖p
p + (‖xT∩SC‖p

p − ‖xS‖p
p).

By assumption (3.4) the above inequality shows that (3.5) holds. ¤

Corollary 3.1. Let T be a subset of {1, . . . , n}. Assume that A satisfies t-NSP(t,K, γ̄)
for t = |T | and γ̄ < 1. Then for any x∗ ∈ F , ‖x∗T ‖0 ≤ K, S(x∗) ∩ T 6= ∅, x∗ is the
unique minimizer of (1.8).

In [20], Wang and Yin gave a class of matrices which satisfies the t-NSP property in
`1 norm.

Lemma 3.2. [20] Let m < n. Assume that A ∈ Rm×n is either a standard Gaussian
matrix (i.e., one with i.i.d. standard normal entries) or a rank-m matrix with its m

rows all orthogonal to an (n −m)-dimensional standard Gaussian linear subspace (i.e.,
existing a standard Gaussian matrix B ∈ Rn×(n−m) such that AB = 0). Given an index
set T , with probability greater than 1 − e−c0(n−m), the matrix A satisfies t-NSP(t,K, γ)
in `1 norm with

γ =
√

K

2
√

k(d)−√K
, k(d) := c

m− d

1 + log( n−d
m−d)

, (3.6)

where d = n − |T |, and c0, c > 0 are absolute constants independent of the dimensions
m,n, and d.

The following theorem gives a class of matrices which satisfies the t-NSP property in
`p norm.

Theorem 3.2. Under the assumption of Lemma 3.2, given an index set T , with proba-
bility greater than 1− e−c0(n−m), the matrix A satisfies t-NSP(t,K, γ) in `p norm with

γ =
( K1−p/2

(4k(d))p/2 −K1−p/2

)1/p
, k(d) := c

m− d

1 + log( n−d
m−d)

, (3.7)

where d = n − |T |, and c0, c > 0 are absolute constants independent of the dimensions
m,n, and d.

Proof By Lemma 3.1 in [20], for all S ⊂ T with |S| ≤ K we have

√
k(d)‖vT ‖ ≤ 1

2
‖vT ‖1, ∀ v ∈ N(A), v 6= 0.

By the second inequality and the first inequality in (3.3), we have

‖vS‖p ≤ |S|1/p−1/2‖vS‖ ≤ K1/p−1/2‖vS‖ ≤ K1/p−1/2

2
√

k(d)
‖vT ‖1 ≤ K1/p−1/2

2
√

k(d)
‖vT ‖p,
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which together with the third inequality in (3.3) shows that

‖vS‖p
p ≤

(K1/p−1/2

2
√

k(d)

)p
‖vT ‖p

p ≤
(K1/p−1/2

2
√

k(d)

)p
(‖vS‖p

p + ‖vT∩SC‖p
p).

Therefore we have ‖vS‖p ≤ γ‖vT∩SC‖p, with γ defined by (3.7). ¤
It is clear that Theorem 3.2 reduces to Lamma 3.2 in the case of p = 1. Moreover if

K < k(d)
p

2−p , then γ < 1 by direct computation. Therefore by the above two theorems
we have the following corollary.

Corollary 3.2. Let x∗ ∈ F and T be given such that T ∩S(x∗) 6= ∅. Let m < n. Assume
that A ∈ Rm×n satisfies the assumption of Theorem 3.2. Then with probability greater
than 1− e−c0(n−m), the true sparse vector x∗ is the unique solution of the problem (1.8)
if ‖x∗T ‖0 < k(d)

p
2−p where k(d) is given by (3.7).

The following two theorems extend Lemma 3.2 and Theorem 3.3 in [20] from p = 1
to 0 < p < 1. Here we only present the results but omit the proof since they can be
proved by very similar technique in [20].

Theorem 3.3. Assume that A satisfies t-NSP(t,K, γ̄) for a t = |T | and γ̄ < 1. For
z, z′ ∈ F , let S ⊂ T be the set of indices corresponding to the largest K entries in zT .
We have

‖(z − z′)T∩SC‖p
p ≤

1
1− γ̄p

(
‖z′T ‖p

p − ‖zT ‖p
p + 2(σK(zT )p)p

)
, (3.8)

where σK(z)p := inf‖x‖0≤K ‖z − x‖p.

Theorem 3.4. Assume that A satisfies t-NSP(t,K, γ̄) for t = |T | and γ̄ < 1. Let x∗ be
the solution of the problem (1.8) and x be the true signal. Then we have ‖x∗T ‖p ≤ ‖xT ‖p

and
‖x∗ − x‖p ≤ CT σL(xT )p, (3.9)

where

CT =
(
2
1 + (1 + max{1, |TC |/K})γ̄p

1− γ̄p

)1/p
.

Remark 2. Convergence analysis in the last section can be directly extended to the
truncated IRL1 (1.9). For instance, we can claim that for a given index set T , any
sequence generated by (1.9) is a stationary point of the `2-`p truncated minimization
problem (1.10).
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