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Abstract. Implicit Runge-Kutta(IRK) methods for solving the nonsmooth ordinary differential
equation (ODE) involve a system of nonsmooth equations. We show superlinear convergence of the
slanting Newton method for solving the system of nonsmooth equations. We prove the slanting
differentiability and give a slanting function for the involved function. We develop a new code based
on the slanting Newton method and the IRK method for nonsmooth ODEs arising from structural
oscillation and pounding. We show that the new code is efficient for solving a nonsmooth ODE model
for the collapse of the Tacoma Narrows suspension bridge, and simulating 13 different earthquakes.
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1. Introduction. Let D ⊂ Rn be a domain, p : D → Rn be a continuously
differentiable function and f : D → Rn be a continuous function. The function f is
not necessarily differentiable.

We consider the following system of nonsmooth ordinary differential equations of
the first order

dp(u)

dt
= f(u), t ≥ 0

u(0) = u0,
(1.1)

where u ∈ Rn. Here smoothness refers to continuous differentiability. It is known
that if f is Lipschitz continuous, then (1.1) has a unique solution in a certain interval
[0, T ] [9]. Moreover, it is shown in [2] that f is Lipschitz continuous if and only if
f is slantly differentiable. A slanting Newton method can be defined in appropriate
function spaces. The concept of slanting differentiability of f means that f has a
slanting function fo such that

f(u+4u)− f(u)− fo(u+4u)4u = o(k4uk).

This property ensures that the slanting Newton method

uk+1 = uk − fo(uk)−1f(uk)

has a superlinear convergence rate [2].
Note that though the function f is nonsmooth, the solution of (1.1) may be

smooth (continuously differentiable). See the example of the collapse of the Tacoma
Narrows suspension bridge in Section 4. In this paper, we consider numerical solution
of the nonsmooth ODEs (1.1).
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One step of an s-stage implicit Runge-Kutta (IRK) method for solving (1.1) has
the following version [8].

IRK method

Given a step size h, a coefficient matrix A ∈ Rs×s and a weight vector b ∈ Rs.
Let U0 = u0. For k ≥ 0:
Step 1 Solve the s× n-dimensional system of nonlinear equations

H(x) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
p(x1)− p(Uk)− h

sX
j=1

a1jf(xj)

...

p(xs)− p(Uk)− h
sX
j=1

asjf(xj)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= 0 (1.2)

to get a solution xk = (xk1 , x
k
2 , . . . , x

k
s )
T ∈ Rs×n.

Step 2 Solve the n-dimensional system of nonlinear equations

H̃(U) := p(U)− p(Uk)− h
sX
j=1

bjf(x
k
j ) = 0 (1.3)

and let the solution be Uk+1.

A practical IRK method can be defined, by choosing appropriate matrix A and vector
b, such as coefficients of Gauss, Radau IA & IIA, Lobatto IIIA, Burrage, etc [1, 8].
Recently, much attention has been paid to choosing A, b such that the IRK method has
best properties in some sense of stability [5]. Moreover, Jay [8] showed that for various
choices of A, b the use of inexact simplified Newton methods is efficient for solving
the system of nonlinear equations (1.2) under the condition that H is continuously
differentiable. In this paper, we focus our attention on how to solve the system of
nonlinear equations (1.2) efficiently when f is not differentiable. Such nonsmooth
problems arise from mathematical models of structural pounding earthquake and
structural oscillations [7, 10, 11, 14]. We apply the slanting Newton method [2, 6] to
solve (1.2). In Section 2, we show that H is slantly differentiable if f is piecewise
continuously differentiable. Moreover, we give a simple method to compute a slanting
function for H. In Section 3, we discuss the convergence order of IRK methods
for nonsmooth ODEs. In Section 4, we illustrate the slanting Newton method by
using a simple model for the collapse of the Tacoma Narrow suspension bridge [14].
Furthermore, we develop a code based on the slanting Newton method and the IRK
method for nonsmooth ODEs arising from structural oscillation and pounding. A
suite of 27 ground motion records from 12 different earthquakes and a record from
the Kobe earthquake are used to show that the code is efficient for simulation of
structural pounding earthquake. All data used in the numerical experiments were
taken from the PEER Strong Motion Database (http://peer.berkeley.edu/smcat/).

2. Slanting Newton iterations for IRK methods. Let X and Y be Banach
spaces, and D be an open domain in X. Let L(X,Y ) denote the set of all bounded
linear operators on X into Y .

Definition 2.1. [2] A function H : D ⊂ X → Y is said to be slantly differentiable
at x ∈ D if there exists a mapping Ho : D → L(X,Y ) such that the family {Ho(x +
4x)} of bounded linear operators is uniformly bounded in the operator norm for h
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sufficiently small and

lim
4x→0

H(x+4x)−H(x)−Ho(x+4x)4x
k4xk = 0.

The function Ho is called a slanting function for H at x.
Definition 2.2. [2, 4] A function H : X → Y is said to be Lipschitz continuous

at x if there is a constant K such that for all sufficiently small 4x

kH(x+4x)−H(x)k ≤ Kk4xk.

Lemma 2.3. [2] A function H : X → Y is slantly differentiable at x if and only
if H is Lipschitz continuous at x.

Lemma 2.4. [2] Suppose that H is slantly differentiable at a solution x∗ of H(x) =
0. Let Ho be a slanting function for H at x∗ and kHo(x)−1k ≤ Γ in a neighborhood
N of x∗, where Γ is a positive constant. Then the iterative sequence {xm} generated
by the slanting Newton method

xm+1 = xm −Ho(xm)−1H(xm) (2.1)

superlinearly converges to x∗ in a neighborhood of x∗.
Definition 2.5. [12] We say f : Rn → Rn is piecewise continuously differentiable

if it is continuous and there is a finite collection of continuously differentiable functions
φl : R

n → R, l ∈ L := {1, 2, . . . , L} such that

fi(u) ∈ {φl(u), l ∈ L}, for any u ∈ Rn, i ∈ {1, 2, . . . , n}.

Such a collection is called a representation for f on Rn.
Theorem 2.6. The function H : Rs×n → Rs×n defined in (1.2) is slantly

differentiable at any point x ∈ Rs×n if f is piecewise continuously differentiable.
Proof. We first show that for a fixed point ū ∈ Rn and a fixed index i ∈

{1, 2, . . . , n}, fi is Lipschitz continuous at ū ∈ Rn. Let I and J be two index sets
defined by

I = {l | fi(ū) = φl(ū), l ∈ L}

and

J = {i | fi(ū) 6= φl(ū), l ∈ L}.

Since J is a finite set, we have

r = min
l∈J

kφl(ū)− fi(ū)k > 0. (2.2)

Since fi is continuous in R
n, there are positive constants δ0 and α < 1 such that if

ku− ūk < δ0, then

kfi(u)− fi(ū)k ≤ αr. (2.3)

Furthermore, since every φl, l ∈ L, is continuously differentiable, there are positive
constants Kl, δl such that if ku− ūk < δl, then

kφl(u)− φl(ū)k ≤ Klku− ūk, l ∈ L. (2.4)
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Let

K = max
l∈L

Kl and δ = min{δ0,
1− α
K

r,min
l∈L

δl}.

For any u satisfying ku− ūk < δ, if fi(u) = φl(u), l ∈ I, then we have

kfi(u)− fi(ū)k = kφl(u)− φl(ū)k ≤ Kku− ūk.

Otherwise, if fi(u) = φj(u), j ∈ J , we apply (2.2)-(2.4) and obtain

αr ≥ kfi(u)− fi(ū)k
= kφj(u)− fi(ū)k
≥ kφj(ū)− fi(ū)k− kφj(u)− φj(ū)k
≥ r −Kku− ūk > αr

which implies that there is no j ∈ J such that fi(u) = φj(u), j ∈ J . Hence

kfi(u)− fi(ū)k ≤ Kku− ūk. (2.5)

Now we show that H is Lipschitz continuous at a point x∗ = (x∗1, . . . , x
∗
s) ∈ Rs×n

for the norm k · k∞.
Note that p is continuously differentiable in Rn, and the point ū ∈ Rn, the

index i ∈ {1, 2, . . . , n} and the norm in (2.2)-(2.5) are arbitrarily chosen. Without
loss of generality, we may assume that there are a constant K and a neighborhood
N ∗ := N ∗1 ×N ∗2 . . .N ∗s of x∗ such that for any x ∈ N ∗,

kf(xi)− f(x∗i )k∞ ≤ Kkxi − x∗i k∞
and

kp(xi)− p(x∗i )k∞ ≤ Kkxi − x∗i k∞, i = 1, 2 . . . , s.

Therefore, by the definition of H , we find

kH(x)−H(x∗)k∞ ≤ max
1≤i≤s

kp(xi)− p(x∗i )k∞ + hkAk∞s max
1≤i≤s

kf(xi)− f(x∗i )k∞
≤ max

1≤i≤s
Kkxi − x∗i k∞ + hskAk∞ max

1≤i≤s
Kkxi − x∗i k∞

≤ (1 + hskAk∞)K max
1≤i≤s

kxi − x∗i k∞
≤ (1 + hskAk∞)Kkx− x∗k∞.

By Lemma 2.3, H is slantly differentiable at x∗.
Theorem 2.7. Let fo ∈ Rn×n be a slanting function for f at x∗i , i = 1, 2, . . . , s.

Then

Ho(x) = diag(p0(x1), . . . , p
0(xs))− h(A⊗ In)diag(fo(x1), . . . , fo(xs)) (2.6)

is a slanting function for H at x∗, where diag denotes block diagonal, In ∈ Rn×n is
the identity matrix, and the symbol ⊗ denotes the tensor product.

Proof. Since p is continuously differentiable and fo is a slanting function for f at
x∗i , i = 1, 2, . . . , s, we have that if kx− x∗k is sufficiently small,

p(xi)− p(x∗i ) = p0(xi)(xi − x∗i ) + o(kxi − x∗i k), i = 1, 2, . . . s
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and

f(xi)− f(x∗i ) = fo(xi)(xi − x∗i ) + o(kxi − x∗i k), i = 1, 2, . . . , s.

Therefore, we get

H(x)−H(x∗)

=

⎛⎜⎝ p(x1)− p(x∗1)
...

p(xs)− p(x∗s)

⎞⎟⎠− h
⎛⎜⎜⎜⎜⎜⎜⎜⎝

sX
j=1

a1j(f(xj)− f(x∗j ))

...
sX
j=1

asj(f(xj)− f(x∗j ))

⎞⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎝ p0(x1)(x1 − x∗1) + o(kx1 − x∗1k)
...

p0(xs)(xs − x∗s) + o(kxs − x∗sk)

⎞⎟⎠− h
⎛⎜⎜⎜⎜⎜⎜⎜⎝

sX
j=1

a1j(f
o(xj)(xj − x∗j ) + o(kxj − x∗jk))

...
sX
j=1

asj(f
o(xj)(xj − x∗j ) + o(kxj − x∗jk))

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎝ p0(x1)
. . .

p0(xs)

⎞⎟⎠
⎛⎜⎝ x1 − x∗1

...
xs − x∗s

⎞⎟⎠− h
⎛⎜⎝ a11f

o(x1) . . . a1sf
o(xs)

...
...

as1f
o(x1) . . . assf

o(xs)

⎞⎟⎠
⎛⎜⎝ x1 − x∗1

...
xs − x∗s

⎞⎟⎠
+o(kx− x∗k)

= (diag(p0(x1), . . . , p
0(xs))− h(A⊗ In)diag(fo(x1), . . . , fo(xs)))(x− x∗) + o(kx− x∗k).

Hence Ho defined in (2.6) is a slanting function for H at x∗.
Now we consider how to compute a slanting function fo for a piecewise continu-

ously differentiable function f . From Theorem 2.6, f is a locally Lipschitzian function.
By the Rademacher theorem, f is differentiable almost everywhere. Hence, we can
define the Clarke generalized Jacobian [3]

∂f(y) = co{ lim
yk→y

yk∈Df

f 0(yk)},

where the symbol co denotes the convex hull and Df is the set of points where f is
differentiable. In [2], it is shown that any single valued selection of ∂f(y) is a slanting
function of f at y. Furthermore, from Lemma 2 in [12], if fi is differentiable at y,
then there exists φl in the representation for f such that

fi(y) = φl(y) and f 0i(y) = φ0l(y).

Therefore, we can define a slanting function of f as

(fo(y))i = φ0l(y), where fi(y) = φl(y).

For such slanting function, by Theorem 2.6, Theorem 2.7 and Lemma 2.3, we can
easily obtain the following corollary.

Corollary 2.8. Let x∗ be a solution of H(x) = 0. If f is piecewise continuously
differentiable, and p0(x∗i ), i = 1, 2, . . . , s are nonsingular, then for small h, the slanting
Newton method (2.1) is well-defined and superlinearly converges to x∗.
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Proof. By the continuity of p0 and the nonsingularity of p0(x∗1), there are a pos-
itive constant γ1 and a neighborhood N1 of x∗ such that for any x ∈ N1, p0(xi) are
all nonsingular and kp0(xi)−1k∞ ≤ γ1, i = 1, 2, . . . , s. Moreover, by the locally Lips-
chitzian continuity of f , there are a positive constant γ2 and a neighborhood N2 of
x∗ such that for any x ∈ N2, kfo(xi)k∞ ≤ γ2, i = 1, 2, . . . , s. Let

B = hdiag(p0(x1)
−1, . . . , p0(xs)

−1)(A⊗ I)diag(fo(x1), . . . , fo(xs))

γ = sγ1γ2kAk∞

and N = N1 ∩N2. Then for h ≤ λ/γ (λ < 1) and x ∈ N , we have

kBk∞ ≤ λ < 1.

Hence for h ≤ λ/γ (λ < 1) and x ∈ N , Ho(x) is nonsingular and

kHo(x)−1k = kdiag(p0(xi)−1)(I − B)k∞
≤ kdiag(p0(xi)−1)k∞kI +B +B2 + . . . k∞
≤ γ

1− λ
=: Γ

By Lemma 2.4, the slanting Newton method (2.1) is well-defined and superlinearly
converges to x∗.

REMARK 2.1. When H is continuously differentiable, Jay [8] suggested to use
the simplified Newton method

xm+1 = xm −H 0(x0)−1H(xm) (2.7)

for solving the system of nonlinear equations in IRK methods. If x0 is sufficiently
close to a solution x∗ of H(x) = 0

Φ(x) := x−H 0(x0)−1H(x)

is locally contractive in a neighborhood of x∗ containing x0. Using the contractive
property, Jay proved the convergence of an inexact simplified Newton method. Note
that when H is continuously differentiable, H 0(x) is a slanting function Ho(x) for H .
However, if H is not differentiable at x∗,

Ψ(x) := x−Ho(x0)−1H(x)

is not locally contractive in any neighborhood of x∗ containing x0. For example,

H(x) =

½
x2 − 1 x ≥ 1
1− x x < 1.

The function H is not differentiable at the solution x∗ = 1 of H(x) = 0. It is easy to
get a slanting function for H ,

Ho(x) =

½
2x x ≥ 1
−1 x < 1
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For x0 < 1 and x ≥ 1,

|Ψ(x)−Ψ(x∗)| = |x−Ho(x0)−1H(x)−x∗| = |x+(x2−1)−1| = |x+2||x−x∗| > |x−x∗|.

For x0 ≥ 1 and 0 < x < 1,

|Ψ(x)−Ψ(x∗)| = |x−Ho(x0)−1H(x)−x∗| = |x−1− x
2x0

−1| = |1+ 1

2x0
||x−x∗| > |x−x∗|.

Therefore, the simplified Newton method cannot be applied to solve (1.2) when H is
not differentiable.

REMARK 2.2. Analysis in this section can be easily generalized to the system of
nonautonomous ordinary differential equations

dp(t, u)

dt
= f(t, u), t ≥ 0

u(0) = u0.
(2.8)

3. Convergence order of IRK methods. We have tested various IRK meth-
ods with the slanting Newton method and bisection method on numerous problems
in structural oscillation and pounding. From our numerical experiments, we observe
that the order of the IRK methods for Lipschitz continuous ODEs can be preserved
if there are finite discontinuous times and we can find these discontinuous times suffi-
ciently accurately. However, in many cases the order of convergence may drop to one.
In theory, we can show that the order of convergence is at least one for the Lipschitz
continuous ODEs under mild conditions. This is done for the solution u(t) to (1.1) in
a fixed interval [0, T ] with the number n of step chosen such that tn = nh = T. Let

ek(h) = Uk − u(tk), k = 0, 1, . . . , n

and

E(h) = max
k=0,... ,n

kek(h)k.

We assume that the IRK method is well-defined, that is, for any Uk there are x
k,

Uk+1 such that H(x
k) = 0 and H̃(Uk+1) = 0. For simplicity, we consider p(u) = u.

Let

G(x, U) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x1 − U − h

sX
j=1

a1jf(xj)

...

xs − U − h
sX
j=1

asjf(xj)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Since f is Lipschitz continuous, the function G is Lipschitz continuous. By the
Rademacher theorem, G is differentiable almost everywhere. Hence we can define
the Clarke generalized Jacobian [3]

∂G(x,U) = [πx∂G(x,U),πU∂G(x,U)],

where πx∂G(x, U) signifies the set of all (s × n)× (s× n) matrices M such that, for
some (s×n)×n matrix N , the (s×n)×(s×n+n) matrix [M,N ] belongs to ∂G(x, U).
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For small h, πx∂G(x
k, Uk) is of maximal rank, i.e., every matrixM in πx∂G(x

k, Uk)
is nonsingular. By the implicit function theorem for Lipschitz continuous function in
[3], there exist a neighborhood Uk of Uk and a Lispchitz function ψk(·;h) : Uk → Rs×n

such that xk = ψk(Uk;h) and for every U ∈ Uk, G(ψk(U ;h), U) = 0. Therefore, we
have

Uk+1 = Uk + h

sX
j=1

bjf((ψk(Uk;h))j) =: Uk + hφk(Uk;h). (3.1)

Obviously φk(·;h) : Rn → Rn is a locally Lipschitz continuous function.
Theorem 3.1. Suppose that there are positive constants K1 and K2 such that

kφk(u(tk);h)− φk(Uk;h)k ≤ K1ku(tk)− Ukk (3.2)

and

kφk(u(tk);h)− u0(tk)k ≤ K2h. (3.3)

Then there is a constant α > 0 such that

E(h) ≤ αh.

Proof. By the Lipschitz continuity of f , u0 is Lipschitz continuous. This implies
that there is a constant K3 > 0 such that

ku(tk + h)− u(tk)
h

− u0(tk)k ≤ K3h. (3.4)

By (3.1), we have

ek+1 − ek = Uk+1 − Uk − (u(tk+1)− u(tk)) = h(φk(Uk;h)−
u(tk + h)− u(tk)

h
).

Hence from (3.2)-(3.4), we obtain

kek+1k ≤ (1+hK1)kekk+(K2+K3)h
2 = (1+hK1)

k+1ke0k+
K2 +K3

K1
(K1h

kX
j=0

(1+K1h)
j)h,

which, together with ke0k = 0, implies

E(h) ≤ K2 +K3

K1
(eK1T − 1)h.

If s = 1, a11 = 0 and b1 = 1, then ψk(Uk;h) = Uk, φk(Uk;h) = f(Uk), and (3.1)
reduces to the Euler method which has convergence order one. Obviously, (3.2) and
(3.3) hold for φk(Uk;h) = f(Uk) and φk(u(tk);h) = f(u(tk)). Theorem 3.1 shows that
the IRK methods for Lispchitz continuous ODEs have convergence order one as the
Euler method if u0(t) is not differentiable at some points in the interval [tk, tk+1] for
some k. It is worth noting that the implicit RK methods are numerically stable but
require more computational time to solve a system of nonsmooth equations at each
step, while explicit methods are faster but may cause a numerical stability problem
for stiff ODEs. It will be interesting to study a hybrid method that takes advantage
of both implicit and explicit RK methods for solving Lipschitz continuous ODEs.
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4. Numerical experiment. Jay [8] developed a code based on 3-stage IRK
methods for the numerical solution of (1.1) where f is continuously differentiable.
To solve (1.1) where f is not differentiable, we developed a new code based on the
slanting Newton method and Jay’s code. In our code, the function f can be defined by
a finite collection of continuously differentiable functions {φl, l ∈ L}. See Definition
2.5 and Theorem 2.6. The set of points where f is not differentiable is

Sf = {u ∈ D |φi(u)− φj(u) = 0,φ0i(u)− φ0j(u) 6= 0, i, j ∈ L}.

If a point in Sf is contained within an integration interval, then the order of the IRK
method may drop to one. If we can compute exactly the discontinuity times, then the
order of the IRK method can be preserved. See the example in the subsection 4.1. In
our code, a root-finding process is used to find the discontinuities in time. We tested
the new code by using many nondifferentiable ODEs. Numerical results show that
the new code is efficient. In this section, we report numerical results of IRK methods
with the 2-stage Burrage coefficient [1]

A =

µ
1/4 0
1/2 1/4

¶
and b =

µ
1/2
1/2

¶
,

the 2-stage Radau IA coefficient [13]

A =

µ
1/4 −1/4
1/4 5/12

¶
and b =

µ
1/4
3/4

¶
,

the 2-stage Radau IIA coefficient [13]

A =

µ
5/12 −1/12
3/4 1/4

¶
and b =

µ
3/4
1/4

¶
and the 3-stage Lobatto IIIA coefficient [8]

A =

⎛⎝ 0 0 0
5/24 1/3 −1/24
1/6 2/3 1/6

⎞⎠ and b =

⎛⎝ 1/6
2/3
1/6

⎞⎠
for solving a nondifferentiable ODE model for the collapse of the Tacoma Narrows
suspension bridge, and simulating 13 different earthquakes with a suite of 28 ground
motion records.

4.1 The collapse of the Tacoma Narrows suspension bridge in 1940 left many open
questions about the collapse. Lazer and McKenna [10] contend that the nonlinear
effects were the main factors leading to the large oscillations of the bridge. The
following ODE is a simple version of their model [14].

mü+ q(u) = g(t), u(0) = 0, u̇(0) = γ > 0, (4.1)

where

q(u) =

½
αu, u ≥ 0
βu, u < 0.

Here m is the mass of the section of the roadway, g is the applied force, q is an upward
restoring force when u ≥ 0 and a downward restoring force when u < 0, and α and
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β are the Hooke’s constants for the tension and compression, respectively. Note that
the function q(u) can be written as

q(u) = αmax(0, u)− βmax(0,−u).

It is shown in [6] that the mapping max(0, ·) : Lq(Ω) → Lp(Ω) with 1 ≤ p < q ≤ ∞
is slantly differentiable on Lq(Ω) and

G(u)(t) =

⎧⎨⎩ 1, u(t) > 0
0, u(t) < 0
δ, u(t) = 0

is a slanting function for the mapping max(0, ·), where δ is a fixed arbitrary number.
By the linear combination [2], the function q : Lq(Ω) → Lp(Ω) with 1 ≤ p < q ≤ ∞
is slantly differentiable on Lq(Ω) and

qo(u)(t) =

⎧⎨⎩ α, u(t) > 0
β, u(t) < 0
δ, u(t) = 0

is a slanting function for q. Furthermore, this problem can be equivalently written as
(2.8), by resetting

u =

µ
u1
u2

¶
p(u) =

µ
u1
mu2

¶
and f(t, u) =

µ
u2 + γ
g(t)− q(u1)

¶
.

Hence, we can apply the IRK method with the slanting Newton method to obtain
numerical solution Uk, k ≥ 0 of this problem. Moreover, if q(Uk)q(Uk−1) < 0, then
there may be a t̃ ∈ [tk−1, tk] such that q(u(t̃)) = 0. We used the bisection method
to find the discontinuity time t̃ and recomputed Uk by the IRK method with t̃ and
h̃ = t̃− tk−1.

For α = 4,β = 1, γ = 1, and g(t) = sin 4t (Example 1, pp.264 [14]), the exact
solution in the interval [0, 3π] is

u∗(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23 − 1
6 cos 2t) sin 2t, 0 ≤ t ≤ π

2

(75 − 4
15 sin t cos 2t) cos t,

π
2 ≤ t ≤ 3π

2

(− 1115 − 1
6 cos 2t) sin 2t,

3π
2 ≤ t ≤ 2π

(− 2315 − 4
15 cos t cos 2t) sin t, 2π ≤ t ≤ 3π,

which is twice continuously differentiable in [0, 3π].
We chose step sizes

hl =
3π

Nl
, Nl = 100× 2l, l = 0, . . . , 6

so that

loghl−1 − loghl = log2, l = 1, . . . , 6

We obtain approximate solutions {Uk}Nl

k=0, l = 0, . . . , 6.
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Figure 4.1 shows what the exact solution and the velocity look like, and numerical
solution obtained by the IRK method with the Radau IA and hl =

3π
100 . Figure 2 shows

the error of the approximate solution

kUNl
− u∗(tNl

)k2, l = 0, . . . , 6

at the end point tNl
= 3π to compare the 2-stage Burrage, Radau IA and Radau IIA

coefficients. Logarithmic scale is used for the step sizes and errors so that the order
of convergence can be seen clearly, when kUNl

−u∗(tNl
)k2 = O(hl). Figure 4.2, shows

that the IRK method has order two of convergence for this nonsmooth ODE.

Fig. 4.1. Exact solution and numerical solution for the collapse of the Tacoma Narrows sus-
pension bridge.

4.2 We consider the following nonlinear model of seismic pounding between two
adjacent structures called B1 and B2.

For i = 1, 2, let mi be the masses, ri be the viscous damping coefficients and ki
be the initial stiffness for B1 and B2, respectively. The coupling equation of motion
for two adjacent buildings subjected to horizontal ground motion üg has the following
version [7, 11]

m1ü1 + r1u̇1 + k1u1 + q(u1, u2, u̇1, u̇2) = −m1üg
m2ü2 + r2u̇2 + k2u2 − q(u1, u2, u̇1, u̇2) = −m2üg,

(4.2)

where q is the pounding force

q(u1, u2, u̇1, u̇2) =

⎧⎨⎩ α(u1 − u2 − d)γ + β(u̇1 − u̇2), if u1 − u2 > d, u̇1 − u̇2 > 0,
α(u1 − u2 − d)γ , if u1 − u2 > d, u̇1 − u̇2 ≤ 0,
0, if u1 − u2 ≤ d.
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Fig. 4.2. Error at tNl
= 3π of the IRK method with Burrage and Radau coefficients and various

step sizes hl for the collapse of the Tacoma Narrows suspension bridge.

Here d is the initial separation distance between B1 and B2, and α > 0,β > 0, γ > 1
are fixed parameters.

The ordinary differential equation (4.2) is equivalent to the following system

u̇1 = u3
u̇2 = u4
m1u̇3 = −r1u3 − k1u1 − q(u1, u2, u3, u4)−m1üg
m2u̇4 = −r2u4 − k2u2 + q(u1, u2, u3, u4)−m2üg.

(4.3)

Let us denote

u =

⎛⎜⎜⎝
u1
u2
u3
u4

⎞⎟⎟⎠ p(u) =

⎛⎜⎜⎝
u1
u2
m1u3
m2u4

⎞⎟⎟⎠ and f(t, u) =

⎛⎜⎜⎝
u3
u4
−r1u3 − k1u1 − q(u)−m1üg
−r2u4 − k2u2 + q(u)−m2üg

⎞⎟⎟⎠ .
Together with the initial condition u(0) = 0, we obtain a system of nonsmooth ordi-
nary differentiable equations (2.8).

We choose

m1 = m2 = 7.8, r1 = 16.34, r2 = 8.17, k1 = 3421.5, k2 = 855.4

α = 25000, γ = 3/2, d = 0.5, T = 10.

Table 4.1 reports numerical results of the use of a suite of 27 ground motion
records with different peak ground accelerations(PGA) from 12 different earthquakes
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and difference parameters β. The values

e(h1) = ||Uh1(T )− Uh4(T )||2 and e(h3) = ||Uh3(T )− Uh4(T )||2
show the difference of numerical solutions at the end point, for approximate solutions
Uhl , with different step sizes

h1 = 2× 10−3, h3 = 2× 10−4, h4 = 10
−4.

Table 4.1
Numerical results for a suite of 27 ground motion records.

Burrage Lobatto IIIA
Earthquake PGA β e(h1) e(h3) e(h1) e(h3)
Northridge, 1994 0.11 113.77 0.0430 0.0010 0.0676 0.0010

Imperial valley, 1979 0.10 118.90 0.0183 0.0015 0.0564 0.0004
San Fernando, 1971 0.09 104.88 0.0286 0.0032 0.1902 0.0017
Loma Prieta, 1989 0.19 119.17 0.0380 0.0030 0.2140 0.0012

I Morgan Hill, 1984 0.19 103.95 0.0337 0.0027 0.1407 0.0004
N.Palm Springs, 1986 0.21 126.02 0.0276 0.0030 0.1184 0.0003
Whittier Narrows, 1987 0.30 143.88 0.0104 0.0017 0.0229 0.0005

Landers, 1992 0.28 141.05 0.0210 0.0008 0.1645 0.0061
Morgan Hill, 1984 0.29 138.12 0.0341 0.0034 0.1951 0.0022
Loma Prieta, 1989 0.37 121.05 0.0870 0.0077 0.1180 0.0074
Northridge, 1994 0.42 130.49 0.1980 0.0066 0.0871 0.0088

Cape Mendocino, 1992 0.39 128.33 0.0183 0.0032 0.3519 0.0032
Northridge, 1994 0.51 161.44 0.1408 0.0128 0.3350 0.0311

II Loma Prieta, 1989 0.48 150.10 0.0485 0.0053 0.5086 0.0049
Northridge, 1994 0.48 163.14 0.1893 0.0111 0.4833 0.0104
Loma Prieta, 1989 0.51 146.00 0.0883 0.0036 0.5095 0.0027
N.Palm Springs, 1986 0.59 146.00 0.0392 0.0028 0.1813 0.0005
Cape Mendocino, 1992 0.59 166.23 0.0683 0.0022 0.4249 0.0013
Loma Prieta, 1989 0.61 153.37 0.3305 0.0194 0.3815 0.0106
Coalinga, 1983 0.60 145.43 0.0570 0.0070 0.3204 0.0084
Northridge, 1994 0.59 160.51 0.3654 0.0380 0.7291 0.0387

Cape Mendocino, 1999 0.66 157.76 0.0726 0.0048 0.8559 0.0059
III Duzce, 1983 0.82 149.00 0.0525 0.0026 0.1905 0.0032

Coalinga, 1983 0.84 154.89 0.0127 0.0016 0.1759 0.0007
Northridge, 1994 0.84 140.00 0.0021 0.0002 0.3798 0.0005

Superstition Hills, 1987 0.89 141.05 0.0941 0.0038 0.3936 0.0084
Cape Mendocino, 1992 1.04 142.30 0.0469 0.0033 0.0721 0.0023
CPU-time(sec) for the 27 records 514 33532 573 34017

I: Low intensity II: Moderate intensity III: High intensity

Figure 4.3 reports numerical results of the 3-stage Lobatto IIIA coefficient with
parameter β = 112 in simulation of the 1995 Great Hanshin Earthquake, commonly
referred to as the Kobe earthquake. The exact solution of this problem is unknown. In
the first subplot, we show the difference of simulation solutions at end point T = 20,

kUhl(T )− Uh5(T )k2, l = 0, . . . , 4
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where

hl =
20

Nl
, Nl = 1000× 2l, l = 0, . . . , 5.

We use logarithmic scale for the step sizes and the difference. The 3-stage Lobatto
IIIA method seems to maintain its fourth order of convergence for this problem. The
remainder of Figure 4.3 uses step size h = 0.002, which shows the displacement u1, u2
and the force q for the first 20 seconds of the earthquake. Moreover, we enlarge the
plot around the maximum force in the first 10 seconds and the following 10 seconds
to show what the pounding force look like.

All the ground motion records used in the numerical experiments were taken
from the PEER Strong Motion Database (http://peer.berkeley.edu/smcat/). The
numerical experiments were performed by using MATLAB 7.0 on a Dell PC with
2MB memory and 800 MHz.

Fig. 4.3. Difference of simulation solutions. Displacement u1, u2, force q and maximum force
during the first 10 seconds and the following 10 seconds.

5. Conclusion. Systems of slantly differentiable ODEs arise from many applica-
tions in earthquake engineering and structural dynamics. We proposed IRK methods
with the slanting Newton method to solve the system of nonsmooth ODEs. We stud-
ied the slanting differentiability of the nonsmooth functions involved in the ODEs and
proved the superlinear convergence of the slanting Newton method for solving the sys-
tem of nonsmooth equations in the IRK method. Moreover, we developed a code for
nonsmooth ODEs based on Jay’s code [8] and the analysis in Section 2. Numerical
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experiments show that the code is efficient. In Section 4, we reported some numerical
results for the collapse of the Tacoma Narrows suspension bridge and simulating 13
different earthquakes.
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