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We propose a group sparse optimization model for inpainting of a square-integrable isotropic random
field on the unit sphere, where the field is represented by spherical harmonics with random complex
coefficients. In the proposed optimization model, the variable is an infinite-dimensional complex vec-
tor and the objective function is a real-valued function defined by a hybrid of the ℓ2 norm and non-
Liptchitz ℓp(0 < p < 1) norm that preserves rotational invariance property and group structure of the
random complex coefficients. We show that the infinite-dimensional optimization problem is equivalent
to a convexly-constrained finite-dimensional optimization problem. Moreover, we propose a smoothing
penalty algorithm to solve the finite-dimensional problem via unconstrained optimization problems. We
provide an approximation error bound of the inpainted random field defined by a scaled KKT point of the
constrained optimization problem in the square-integrable space on the sphere with probability measure.
Finally, we conduct numerical experiments on band-limited random fields on the sphere and images from
CMB data to show the promising performance of the smoothing penalty algorithm for inpainting of ran-
dom fields on the sphere.
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1. Introduction

Let (Ω ,F ,P) be a probability space, and let B(S2) be the Borel sigma algebra on the unit sphere
S2 := {x ∈R3 : ∥x∥= 1}, where ∥·∥ is the ℓ2 norm. A real-valued random field on S2 is an F ⊗B(S2)-
measurable function T : Ω ×S2 → R, and it is said to be 2-weakly isotropic if the expected value and
covariance of T are rotationally invariant (see Gia et al. (2019)). It is known that a 2-weakly isotropic
random field on the sphere has the following Karhunen-Loève (K-L) expansion (see, for example, Lang
& Schwab, 2015; Marinucci & Peccati, 2011),

T (ω,x) =
∞

∑
l=0

l

∑
m=−l

αl,m(ω)Yl,m(x), x ∈ S2, ω ∈ Ω , (1.1)

where αl,m(ω) =
∫
S2 T (ω,x)Yl,m(x)dσ(x) ∈ C are random spherical harmonic coefficients of T (ω,x),

Yl,m, for m = −l, . . . , l, l = 0,1,2, . . . are spherical harmonics with degree l and order m, and σ is the
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surface measure on S2 satisfying σ(S2) = 4π. For convenience, let

α(ω) = (α0,0(ω),α1,−1(ω),α1,0(ω),α1,1(ω)︸ ︷︷ ︸
3

, . . . ,αl,−l(ω), . . . ,αl,l(ω)︸ ︷︷ ︸
2l+1

, . . .)T

denote the coefficient vector of an isotropic random field T (ω,x). The infinite-dimensional coefficient
vector α(ω) can be grouped according to degrees l and written in the following group structure

α(ω) = (αT
0·(ω),αT

1·(ω), . . . ,αT
l· (ω), . . .)T , (1.2)

where
αl·(ω) = (αl,−l(ω), . . . ,αl,0(ω), . . . ,αl,l(ω))T ∈ C2l+1, l ⩾ 0.

From Gia et al. (2019), we know that for any given degree l ⩾ 1 and any ω ∈ Ω , the sum

l

∑
m=−l

|αl,m(ω)|2 = ∥αl·(ω)∥2

is rotationally invariant, while ∑
l
m=−l |αl,m(ω)| is not invariant under rotation of the coordinate axes.

Moreover, in Gia et al. (2019) the angular power spectrum is given by

Cl =
1

2l +1
E[∥αl·(ω)∥2]

if the expected value E[T (ω,x)] = 0 for all x ∈ S2. In the study of isotropic random fields (see, for
example, Creasey & Lang, 2018; Lang & Schwab, 2015; Marinucci & Peccati, 2011), the angular power
spectrum plays an important role since it contains full information of the covariance of the field and
provides characterization of the field. Hence, considering the group structure (1.2) of the coefficients of
an isotropic random field is essential.

Sparse representation of a random field T is an approximation of T with few non-zero elements
αl,m(ω) of α(ω). In group sparse representation, instead of considering elements individually, we seek
an approximation of T with few non-zero groups αl·(ω) of α(ω), i.e., few non-zero entries of the
following vector

(∥α0·(ω)∥, ∥α1·(ω)∥, . . . ,∥αl·(ω)∥, . . . ,)T .

In recent years, sparse representation of isotropic random fields has been extensively studied. In Cam-
marota & Marinucci (2015) the authors studied the sparse representation of random fields via an ℓ1-
regularized minimization problem. In Gia et al. (2019), the authors considered isotropic group sparse
representation of Gaussian and isotropic random fields on the sphere through an unconstrained optimiza-
tion problem with a weighted ℓ2,1 norm, which is an example of group Lasso (see Yuan & Lin, 2006).
In Li & Chen (2022), the authors proposed a non-Lipschitz regularization problem with a weighted ℓ2,p
(0 < p < 1) norm for the group sparse representation of isotropic random fields. The non-Lipschitz
regularizer also preserves the rotational invariance property of ∥αl·(ω)∥2 for any given degree l ⩾ 1 and
any ω ∈ Ω .

Isotropic random fields on the sphere have many applications (see, for example, Cabella & Marin-
ucci, 2009; Jeong et al., 2017; Oh & Li, 2004; Porcu et al., 2018; Stein, 2007), especially in the study
of the Cosmic Microwave Background (CMB) analysis (see, for example, Abrial et al., 2007; Starck
et al., 2013; Bucher & Louis, 2012; Gruetjen et al., 2017; Kim et al., 2012). However, the true spherical
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random field usually presents masked regions and missing observations. Many inpainting methods (see,
for example, Abrial et al., 2007; Feeney et al., 2014; Starck et al., 2013; Wallis et al., 2017) have been
proposed for recovering the true field based on sparse representation. The group structure (1.2) was
also previously considered and associated to an isotropy assumption but with a non sparse penalty (a
weighted ℓ2 norm) in Starck et al. (2013).

Group sparse optimization models have been successfully used in signal processing, imaging sci-
ences and predictive analysis (see Beck & Hallak, 2019; Chen & Toint, 2021; Huang & Zhang, 2010;
Huang et al., 2009; Pan & Chen, 2021, and references therein). In this paper, we propose a constrained
group sparse optimization model for inpainting of isotropic random fields on the sphere based on group
structure (1.2). Moreover, to recover the true random field by using information only on a subset Γ ⊆ S2

which contains an open set, we need the unique continuation property (see, Isakov, 2006) of any real-
ization of a random field, that is, for any fixed ω ∈ Ω , if the value of a field equals to zero on Γ , then
the random field is identically zero on the sphere (see Appendix A for more details).

Let L2(Ω ×S2) be the L2 space on the product space Ω ×S2 with product measure P⊗σ and the
induced norm ∥·∥L2(Ω×S2) =E[∥·∥L2(S2)], where L2(S2) is the space of square-integrable functions over
S2 endowed with the inner product

⟨ f ,g⟩L2(S2) =
∫
S2

f (x)g(x)dσ(x), ∀ f ,g ∈ L2(S2),

and the induced L2-norm ∥ f∥L2(S2) = (⟨ f , f ⟩L2(S2))
1
2 . By Fubini’s theorem, for ω ∈ Ω , T (ω,x) ∈

L2(S2), P-a.s., where “P-a.s.” stands for almost surely with probability 1. For brevity, we write T (ω,x)
as T (x) or T if no confusion arises. Let the observed field be given by

T ◦ := A (T ∗)+∆ , (1.3)

where T ∗ ∈ L2(Ω ×S2) is the true isotropic random field that we aim to recover, ∆ : Ω ×S2 → R is
observational noise and A : L2(Ω ×S2)→ L2(Ω ×S2) is an inpainting operator defined by

A (T (x)) =
{

T (x) if x ∈ Γ

0 if x ∈ S2 \Γ ,
(1.4)

where S2 \Γ ⊂ S2 is a nonempty inpainting area and the set Γ ⊂ S2 has an open subset. In our opti-
mization model, we consider the observed field T ◦ as one realization of a random field. For notational
simplicity, let

α = (αT
0·,α

T
1·, . . . ,α

T
l· , . . .)

T (1.5)

denote the spherical harmonic coefficient vector of an isotropic random field T for a fixed ω ∈ Ω , where
αl· = (αl,−l , . . . ,αl,0, . . . ,αl,l)

T ∈ C2l+1, l ∈ N0 := {0,1,2, . . .}.
By Parseval’s theorem, we have

∥T∥2
L2(S2) =

∞

∑
l=0

l

∑
m=−l

|αl,m|2 =
∞

∑
l=0

∥αl·∥2 < ∞.

Hence the sequence {∥αl·∥}l∈N0 ∈ ℓ2(N0), where ℓ2(N0) is the space of square-summable sequences.
We write α ∈ ℓ2 to indicate {∥αl·∥}l∈N0 ∈ ℓ2(N0).
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The number of non-zero groups of α with group structure (1.5) is calculated by

∥α∥2,0 =
∞

∑
l=0

∥αl·∥0,

where ∥αl·∥0 =

{
1 if ∥αl·∥> 0
0 otherwise, and ∥α∥2,0 is called ℓ2,0 norm of α . The ℓ2,0 norm is discontinuous

and ∥T∥2
L2(S2)

< ∞ does not ensure ∥α∥2,0 < ∞. In Gia et al. (2019), the authors used a weighted ℓ2,1

norm of α defined by

∥α∥2,1 =
∞

∑
l=0

βl∥αl·∥,

where βl > 0. It is easy to see that limp↓0 ∥αl·∥p = ∥αl·∥0. The ℓ2,p norm (0 < p < 1) has advantages
for finding group sparse solutions and has been widely used in group sparse approximation (see Chen &
Toint, 2021; Huang & Zhang, 2010, and references therein). In this paper, we use a weighted ℓ2,p norm
of α . Let

ℓp
β

:=

{
α : ∥α∥p

2,p :=
∞

∑
l=0

βl∥αl·∥p < ∞

}
be a weighted ℓp (0 < p < 1) space with positive weights β0 = 1 and βl = η l lp for l ⩾ 1, where η > 1
is a constant. In Appendix A we show that with such choice of βl , any realization of a random field
whose coefficient α ∈ ℓp

β
in the K-L expansion has the unique continuation property. Moreover, from

βl∥αl·∥p → 0 as l → ∞, there is L0 such that for all l ⩾ L0, βl∥αl·∥p < 1, which implies ∥αl·∥ <

β
− 1

p
l = l−1(η− 1

p )l < (η− 1
p )l and ∥αl·∥2 < β

− 2
p

l = l−2η
− 2l

p < l−2. Hence we have α ∈ ℓ2,1 := {α :
∑

∞
l=0 ∥αl·∥ < ∞} and α ∈ ℓ2 if α ∈ ℓp

β
. Some results for isotropic sparse regularization for spherical

harmonic representations of random fields on the sphere, with a hybrid of the norms imposed on the
coefficients α ∈ ℓ2,1 and α ∈ ℓ2 in Cammarota & Marinucci (2015); Gia et al. (2019) can be applied
to α ∈ ℓp

β
. Moreover, for the CMB experiments, the angular power spectrum Cl =

1
2l+1E[∥αl·(ω)∥2]⩽

O(l−3) for sufficiently large l.
For a fixed ω ∈ Ω , we consider the following constrained optimization problem

min ∥T (x)∥2
L2(S2)

s.t. ∥A (T (x))−T ◦(x)∥2
L2(S2)

⩽ ρ,
(1.6)

where ρ >
∫
S2\Γ

|T ◦(x)|2dσ(x) and

T (x) =
∞

∑
l=0

l

∑
m=−l

αl,mYl,m(x), x ∈ S2, α ∈ ℓp
β
.

Since T ◦ ∈ L2(S2), for ε = ρ −
∫
S2\Γ

|T ◦(x)|2dσ(x), there is a finite number L such that ∥T ◦(x)−
T ◦

L (x)∥2
L2(S2)

< ε , where T ◦
L (x) =∑

L
l=0 ∑

l
m=−l bl,mYl,m(x) and bl,m =

∫
S2 T ◦(x)Yl,m(x)dσ(x). Let bl,m = 0

for l = L+1, . . ., m =−l, . . . , l, then (b0,0, . . . ,bL,L,0,0,0, . . .)T ∈ ℓp
β

. From the definition of A , we have

∥A (T ◦
L (x))−T ◦(x)∥2

L2(S2) =
∫
S2\Γ

|T ◦(x)|2dσ(x)+
∫

Γ

|T ◦(x)−T ◦
L (x)|2dσ(x)

<
∫
S2\Γ

|T ◦(x)|2dσ(x)+ ε = ρ.
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Thus, the feasible set of problem (1.6) is nonempty. Moreover the objective function of problem (1.6) is
continuous and level-bounded. Hence an optimal solution of problem (1.6) exists. Since α = 0 implies
that ∥T (x)∥2

L2(S2)
= 0, we assume ∥T ◦(x)∥2

L2(S2)
> ρ , which implies that T (x)≡ 0 is not a feasible field

of problem (1.6).
Our main contributions are summarized as follows.

• Based on the K-L expansion, problem (1.6) can be written in a discrete form with variables α ∈ ℓp
β

.
Based on the discrete form, we propose a sparse optimization problem and derive a lower bound
for the ℓ2 norm of nonzero groups of scaled KKT points of the sparse optimization problem.
Furthermore, we prove that the infinite-dimensional sparse optimization problem is equivalent to
a finite-dimensional optimization problem.

• We propose a penalty method for solving the finite-dimensional optimization problem via un-
constrained optimization problems. We establish the exact penalization results regarding local
minimizers and ε-minimizers. Moreover, we propose a smoothing penalty algorithm and prove
that the sequence generated by the algorithm is bounded and any accumulation point of the se-
quence is a scaled KKT point of the finite-dimensional optimization problem.

• We give the approximation error of the random field represented by scaled KKT points of the
finite-dimensional optimization problem in L2(Ω ×S2).

The rest of this paper is organised as follows. In Section 2, we prove that the infinite-dimensional
discrete optimization problem is equivalent to a finite-dimensional problem. In Section 3, we present the
penalty method and give exact penalization results. In Section 4, we discuss optimality conditions of the
finite-dimensional optimization problem and its penalty problem. Moreover, we propose a smoothing
penalty algorithm and establish its convergence. In Section 5, we give the approximation error in L2(Ω ×
S2). In Section 6, we conduct numerical experiments on band-limited random fields and images from
CMB data to compare our approach with some existing methods on the quality of the solutions and
inpainted images. Finally, we give conclusion remarks in Section 7.

2. Discrete formulation of problem (1.6)

In this section, we propose the discrete formulation of problem (1.6) and prove that the discrete problem
is equivalent to a finite-dimensional problem (2.10).

Based on the definition of A and the spherical harmonic expansion of T , we obtain that

∥A (T (x))−T ◦(x)∥2
L2(S2)

=
∫
S2
|A (T (x))−T ◦(x)|2dσ(x) =

∫
Γ

|T (x)−T ◦(x)|2dσ(x)+
∫
S2\Γ

|T ◦(x)|2dσ(x)

=
∫

Γ

∣∣∣∣ ∞

∑
l=0

l

∑
m=−l

αl,mYl,m(x)
∣∣∣∣2dσ(x)−2Re

(∫
Γ

T ◦(x)

(
∞

∑
l=0

l

∑
m=−l

ᾱl,mYl,m(x)

)
dσ(x)

)
+
∫
S2
|T ◦(x)|2dσ(x)

= α
TY ᾱ −2Re

(
∞

∑
l=0

l

∑
m=−l

ᾱl,m

∫
Γ

T ◦(x)Yl,m(x)dσ(x)

)
+
∫
S2
|T ◦(x)|2dσ(x)

= α
HY α −2Re(αH

α
◦)+ c,
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where Y is an infinite-dimensional matrix with (Y )l2+l+m+1,l′2+l′+m′+1 =
∫

Γ
Yl,m(x)Yl′,m′(x)dσ(x) ∈ C,

α◦=((α◦
0·)

T , . . . ,(α◦
l·)

T , . . .)T with α◦
l· ∈C2l+1, α◦

l,m =
∫

Γ
T ◦(x)Yl,m(x)dσ(x) and c=

∫
S2 |T ◦(x)|2dσ(x).

By Parseval’s theorem, ∥T (x)∥2
L2(S2)

= ∑
∞
l=0 ∥αl·∥2. Hence the minimization problem (1.6) can be

written as the following optimization problem

min
α∈ℓp

β

∞

∑
l=0

∥αl·∥2

s.t. G(α) := αHY α −2Re(αHα◦)+ c−ρ ⩽ 0.
(2.1)

Based on this discrete problem, we replace ∥αl·∥2 by βl∥αl·∥p and propose a sparse optimization prob-
lem

min
α∈ℓp

β

∥α∥p
2,p

s.t. G(α)⩽ 0.
(2.2)

From the setting of ρ in problem (1.6) and Theorem A.1, the feasible set of (2.2) has an interior point
and bounded. The following assumption follows from our assumption on problem (1.6).

Assumption 2.1 The feasible set of problem (2.2) does not contain α = 0.

Note that the objective function and constraint function in (2.2) are real-valued functions with com-
plex variables. Thus, following Li & Chen (2022); Sorber et al. (2012); Sun et al. (2018), we apply the
Wirtinger calculus (See Appendix B for more details) in this paper.

Since the objective function in problem (2.2) is not Lipschitz continuous at points containing zero
groups, we extend the definition of scaled KKT points for finite-dimensional optimization problem with
real variables in Chen et al. (2016, 2010); Rockafellar & Wets (2009).

DEFINITION 2.2 We call α∗ ∈ ℓp
β

a scaled KKT point of (2.2), if there exists a nonnegative number
ν ∈ R such that

pβl∥α
∗
l·∥p

α
∗
l·+2ν∥α

∗
l·∥2(Yl·α

∗−α
◦
l·) = 0, ∀ l ∈ N0, (2.3)

νG(α∗) = 0, G(α∗)⩽ 0. (2.4)

Now we show that problem (2.2) has an optimal solution α∗ that is a scaled KKT point of (2.2). We
introduce the following auxiliary smoothing problem of (2.2),

min
α∈ℓp

β

∞

∑
l=0

βl(∥αl·∥2 +ζl)
p
2

s.t. G(α)⩽ 0,
(2.5)

where 0 < ζ0 < 1 and 0 < ζl ⩽ (l
1

1−p βl)
− 2

p , l ∈ N0 are smoothing parameters. By the subadditivity
(t + s)p ⩽ t p + sp, for p ∈ (0,1), t ⩾ 0,s > 0, we have

∞

∑
l=0

βl(∥αl·∥2 +ζl)
p
2 ⩽

∞

∑
l=0

βl(∥αl·∥p +ζ

p
2
ℓ )< ∞.

LEMMA 2.1 Assume Assumption 2.1 holds. Let α∗ and α∗
ζ

be the optimal solutions of problems (2.2)
and (2.5), respectively, then we have G(α∗) = 0 and G(α∗

ζ
) = 0.
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Proof. By Assumption 2.1, α∗ ̸= 0 and α∗
ζ
̸= 0. If G(α∗) < 0, then there is an ε ∈ (0,1) such that

G(εα∗)< 0 and ∥εα∗∥p
2,p = ε p∥α∗∥p

2,p < ∥α∥p
2,p, which leads to a contradiction. Similarly, if G(α∗

ζ
)<

0, then there is an ε ∈ (0,1) such that G(εα∗
ζ
) < 0 and ∑

∞
l=0 βl(∥εα∗

l·∥2 + ζl)
p
2 = ∑

∞
l=0 βl(ε

2∥α∗
l·∥2 +

ζl)
p
2 < ∑

∞
l=0 βl(∥α∗

l·∥2 + ζl)
p
2 , which also leads to a contradiction. Hence, G(α∗) = 0 and G(α∗

ζ
) = 0.

□

THEOREM 2.3 Assume Assumption 2.1 holds. Then problem (2.2) has an optimal solution that satisfies
the scaled KKT conditions (2.3)-(2.4).

Proof. Let bl,m =
∫
S2 T ◦(x)Yl,m(x)dσ(x), l ⩽ L and bl,m = 0, l > L for some L ∈N0 such that ∥T ◦(x)−

T ◦
L (x)∥2

L2(S2)
< ρ −

∫
S2\Γ

|T ◦(x)|2dσ(x), where T ◦
L (x) = ∑

L
l=0 ∑

l
m=−l bl,mYl,m(x). From the discussion

on (1.6) in section 1, we have G(b)< 0.
Let α∗

ζ
be an optimal solution of (2.5). From Lemma 2.1, G(α∗

ζ
) = 0 holds. Since G(b) < G(α∗

ζ
),

α∗
ζ

is not a minimizer of G. Hence, by Wirtinger gradient, ∂ᾱζ
G(α∗

ζ
) = Y α∗

ζ
−α◦ ̸= 0. Choose an

l̂ ∈ N0 such that Yl̂·α
∗
ζ
−α◦

l̂· ̸= 0. Let dk· = −Yl̂·α
∗
ζ
+α◦

l̂· for k = l̂ and dk· = 0 for k ̸= l̂. Then we
have that d ∈ ℓp

β
and (Y α∗

ζ
−α◦)Hd < 0. Let R− = {x ∈ R : x ⩽ 0}. Then we have G(α∗

ζ
) ∈ R− and

0 ∈ int{G(α∗
ζ
)+(Y α∗

ζ
−α◦)Hd −R−}. By Maurer & Zowe (1979, (2.3)), α∗

ζ
is regular. Moreover, by

Maurer & Zowe (1979, Theorem 3.2), there is νζ ⩾ 0 such that

pβl(∥(α∗
ζ
)l·∥2 +ζl)

p
2 −1(α∗

ζ
)l·+2νζ (Yl·α

∗
ζ
−α

◦
l·) = 0, ∀ l ∈ N0, (2.6)

νζ G(α∗
ζ
) = 0, G(α∗

ζ
)⩽ 0. (2.7)

Multiplying both sides of equality (2.6) by ∥(α∗
ζ
)l·∥2, we obtain

pβl∥(α∗
ζ
)l·∥2(∥(α∗

ζ
)l·∥2 +ζl)

p
2 −1(α∗

ζ
)l·+2νζ∥(α∗

ζ
)l·∥2(Yl·α

∗
ζ
−α

◦
l·) = 0, ∀ l ∈ N0. (2.8)

Since b is in the feasible set of (2.5), we have ∑
∞
l=0 βl(∥(α∗

ζ
)l·∥2 +ζl)

p
2 ⩽ ∑

∞
l=0 βl(∥bl·∥2 +ζl)

p
2 , which

implies that the optimal value of problem (2.5) is uniformly bounded.
From α∗

ζ
∈ ℓp

β
, by Lemma A.1, we have ∑

∞
l=0 η l l∥(α∗

ζ
)l·∥< ∞, for some η > 1, which implies that

{α∗
ζ
} is bounded in ℓ2, and thus there is a subsequence {α∗

ζ k} of {α∗
ζ
}, which weakly converges to ᾱ as

∥ζ∥ → 0 in ℓ2 (see, for example, Kreyszig, 1991). Moreover from Yl̂·α
∗
ζ
−α◦

l̂· ̸= 0 and (2.8), {νζ} ⊂ R
is bounded. Hence there is a subsequence{ν

ζ ki} of {ν
ζ k}, which converges to ν̄ as ∥ζ k∥→ 0.

Let α∗ be an optimal solution of (2.2). From weak convergence of {α∗
ζ ki

} to ᾱ , ∥ζ ki∥ → 0, as

ki → ∞, and that α∗
ζ ki

is an optimal solution of (2.5) and G(α∗
ζ ki

) = 0 for all {ζ ki} ⊂ {ζ k}, we have

∥ᾱ∥p
2,p ⩽ lim inf

ki→∞

∞

∑
l=0

βl(∥(α∗
ζ ki )l·∥2 +ζ

ki
l )

p
2 ⩽ lim

ki→∞

∞

∑
l=0

βl(∥α
∗
l·∥2 +ζ

ki
l )

p
2 ⩽ ∥α

∗∥p
2,p

and
G(ᾱ)⩽ lim

ki→∞
G(α∗

ζ ki ) = 0.

Hence we obtain that ᾱ is an optimal solution of (2.2). From Lemma 2.1, we have ν̄G(ᾱ) = 0 and
condition (2.4) holds. Since α∗

ζ ki
is weakly convergent to ᾱ in ℓ2, as ∥ζ ki∥ → 0, (α∗

ζ ki
)l· is convergent



8 of 27 C. LI AND X. CHEN

to ᾱl·, for any l ∈ N0. Moreover, the product Yl·α
∗
ζ ki

is also convergent to Yl·ᾱ for any l ∈ N0 under
the weak convergence of α∗

ζ ki
(see, for example, Kreyszig, 1991). Hence ᾱ satisfies the scaled KKT

conditions (2.3). We complete the proof. □
For any nonzero vector α∗

l· ∈ C2l+1 that satisfies (2.3), we have

pβl∥α
∗
l·∥p−1 = 2ν∥Yl·α

∗−α
◦
l·∥⩽ 2ν∥Y α

∗−α
◦∥.

By the definition of Y and feasibility of α∗, there exists c̃ > 0 such that ∥Y α∗−α◦∥⩽ c̃. Hence for any
nonzero vector α∗

l· ∈ C2l+1, we have

∥α
∗
l·∥⩾

(
pβl

2ν c̃

) 1
1−p

. (2.9)

By the definition of βl , l ∈ N0, we obtain that

∞ > ∥α
∗∥p

2,p =
∞

∑
l=0

βl∥α
∗
l·∥p = ∑

{l∈N0:∥α∗
l·∥≠0}

βl∥α
∗
l·∥p ⩾

( p
2ν c̃

) p
1−p

∑
{l∈N0:∥α∗

l·∥≠0}
(η l lp)

1
1−p ,

which implies that {l ∈ N0 : ∥α∗
l·∥ ≠ 0} is a finite set. Thus, the number of nonzero vectors α∗

l· ∈ C2l+1

of a scaled KKT point of problem (2.2) is finite and there exists an L ∈ N0 such that L = max{l ∈ N0 :
∥α∗

l·∥ ̸= 0}.
Therefore, we consider a truncated problem of (2.2) in a finite-dimensional space.
For notational simplicity, we truncate α ∈ ℓp

β
to α = (α0,0,α

T
1·, . . . ,α

T
L·)

T ∈Cd , where d := (L+1)2.

We use α̂◦ ∈ Cd to denote the truncated vector whose elements are the first d elements of α◦ and
Ŷ ∈ Cd×d to denote the leading principal submatrix of order d of Y . Since Γ has an open subset, we
have zHŶ z > 0 for any nonzero z ∈ Cd . Thus, the matrix Ŷ is positive definite.

The truncated finite-dimensional problem of problem (2.2) has the following version

min
α∈Cd

Φ(α) := ∑
L
l=0 βl∥αl·∥p

s.t. αHŶ α −2Re(αH α̂◦)+ c ⩽ ρ.
(2.10)

By the definition of ρ , the feasible set of (2.10) is nonempty and has an interior point. The objective
function Φ(α) is continuous and level-bounded, nonnegative with Φ(0) = 0, and differentiable except
at points containing zero groups. Hence an optimal solution of problem (2.10) exists. The penalty
formulation for (2.10) is

min
α∈Cd

Fλ (α) := Φ(α)+λ (αHŶ α −2Re(αH
α̂
◦)+ c−ρ)+, (2.11)

for some λ > 0, where (·)+ := max{·,0}. For any nontrivial solution α∗ of (2.11), we have

0 < Fλ (α
∗) = min

α∈Cd
Fλ (α)< Fλ (0) = λ (c−ρ)+ = λ (c−ρ)< λc. (2.12)

In Sections 3-4, we focus on problems (2.10) and (2.11).
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3. Exact penalization

In this section, we consider the relationship between problems (2.10) and (2.11). We first give some
notations. For a closed set S ⊂ Cn, dist(z,S) = infz′∈S ∥z− z′∥ denotes the distance from a point z ∈ Cn

to S and B(b;r) = {z ∈ Cn : ∥z−b∥⩽ r} denotes a closed ball with radius r > 0 and center b ∈ Cn. Let
g : Cd → R be defined as

g(α) := α
HŶ α −2Re(αH

α̂
◦)+ c−ρ,

S(α) := {δ ∈ R : g(α)⩽ δ} for α ∈ Cd , and S−1(δ ) := {α ∈ Cd : g(α)⩽ δ}. We denote the feasible
set of problem (2.10) by Fe := {α ∈ Cd : g(α)⩽ 0}. Let L := {0,1, . . . ,L}.

Since Ŷ is positive definite, g is strongly convex and has a unique global minimizer Ŷ−1α̂◦ ̸= α̂◦

which implies that g(α̂◦) ∈ (inf
α∈Cd g(α),∞). Since g is strongly convex and quadratic, there is a such

that ∥α − ᾱ∥ ⩽ a|g(α)− g(ᾱ)| for α, ᾱ ∈ Cd . Choosing ᾱ such that g(ᾱ) = 0, from Rockafellar &
Wets (2009, Theorem 9.48), we obtain the following lemma.

LEMMA 3.1 There exists a constant C > 0 such that for any α ∈ Cd ,

dist(α,Fe)= dist(α,S−1(0))⩽Cdist(0,S(α)) =C(g(α))+.

THEOREM 3.1 There exists a λ ∗ > 0 such that a local minimizer α∗ ∈ Cd of problem (2.10) is a local
minimizer of problem (2.11) whenever λ ⩾ λ ∗.

Proof. Let α∗ ∈ Cd be a local minimizer of problem (2.10), that is there exists a neighborhood
N of α∗ such that Φ(α∗) ⩽ Φ(α) for α ∈ N ∩Fe. We denote the group support set of α∗ by
γ := {l ∈ L : ∥α∗

l·∥ ≠ 0}, and the complement set of γ in L by τ := {l ∈ L : ∥α∗
l·∥= 0}. Let αγ and ατ

denote the restrictions of α onto γ and τ , respectively. We obtain that α∗
γ is a local minimizer of the

following problem
min

αγ

∑l∈γ βl∥αl·∥p

s.t. αH
γ Ŷγ αγ −2Re(αH

γ α̂◦
γ )+ c ⩽ ρ.

(3.1)

Let ε̄ = 1
2 min{∥α∗

l·∥ : l ∈ γ}> 0. Then, there exists a small δ ∗ such that α∗
γ is a local minimizer of (3.1)

and min{∥αl·∥ : l ∈ γ}> ε̄ for all αγ ∈ B(α∗
γ ;δ ∗). Let

gγ(αγ) = α
H
γ Ŷγ αγ −2Re(αH

γ α
◦
γ )+ c−ρ and Ω1 := {αγ : gγ(αγ)⩽ 0}.

Let [αγ ;0τ ] be the vector with ([αγ ;0τ ])l· = αl·, l ∈ γ and ([αγ ;0τ ])l· = 0, l ∈ τ. It is easy to see that
g([αγ ;0τ ]) = gγ(αγ) and dist(αγ ,Ω1) = dist([αγ ;0τ ],Fe). By Lemma 3.1, dist(αγ ,Ω1) ⩽ C(gγ(αγ))+
for all αγ ∈ B(α∗

γ ;δ ∗).
The objective function of (3.1) is Lipschitz continuous on B(α∗

γ ;δ ∗). Then by Chen et al. (2016,
Lemma 3.1), there exists a λ ∗ > 0 such that, for any λ ⩾ λ ∗, α∗

γ is a local minimizer of the following
problem

min
αγ

Fγ

λ
(αγ) := ∑

l∈γ

βl∥αl·∥p +λ (gγ(αγ))+,

that is, there exists a neighborhood Uγ of 0 with Uγ ⊆ B(0;δ ∗) such that

Fγ

λ
(αγ)⩾ Fγ

λ
(α∗

γ ), ∀αγ ∈ α
∗
γ +Uγ .

We now show that α∗ is a local minimizer of (2.11) with λ ⩾ λ ∗.
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For fixed ε ∈ (0, ε̄) and λ ⩾ λ ∗, we consider problem (2.11) in the neighborhood U := Uγ ×
(−ε,ε)dτ , where dτ = ∑l∈τ(2l + 1). Let κ̃ be a Lipschitz constant of the function λ (g(α))+ over
α∗+U . For this constant κ̃ , there exists an ε0 ∈ (0,ε) such that whenever ∥αl·∥< ε0, l ∈ τ ,

βl∥αl·∥p ⩾ κ̃∥αl·∥, l ∈ τ. (3.2)

Hence for any y ∈Uγ × (−ε0,ε0)
dτ , we have

Fλ (α
∗+ y) = λ (g(α∗+ y))++∑

l∈γ

βl∥α
∗
l·+ yl·∥p +∑

l∈τ

βl∥yl·∥p

⩾ λ (g([α∗
γ + yγ ;0τ ]))+− κ̃∥yτ∥+∑

l∈γ

βl∥α
∗
l·+ yl·∥p + κ̃∥yτ∥

⩾ Fγ

λ
(α∗

γ ) = Fλ (α
∗),

where the first inequality follows from the Lipschitz continuity of λ (g(α))+ with Lipschitz constant κ̃

and (3.2), and the last inequality follows from the local optimality of α∗
γ . Thus, α∗ is a local minimizer

of problem (2.11) with λ ⩾ λ ∗. This completes the proof. □

THEOREM 3.2 Let α̃ = Ŷ−1α̂◦, ε > 0 and λ ⩾ Cβ̄
1
p (ε(L+ 1)

p
2 −1)−

1
p Φ(α̃), where C is defined in

Lemma 3.1 and β̄ = ηLLp. Then for any global minimizer α∗ of problem (2.11), the projection αε :=
PFe(α

∗) is an ε-minimizer of (2.10), that is, Φ(αε)⩽ min{Φ(α) : α ∈ Fe}+ ε .

Proof. Note that g is a strongly convex function and α̃ is a minimizer of g. Since the feasible set Fe of
(2.10) has an interior point, we have α̃ ∈ intFe.

By the global optimality of α∗, we have Fλ (α
∗)⩽ Fλ (α̃) and

((α∗)HŶ α
∗−2Re((α∗)H

α̂
◦)+ c−ρ)+ ⩽ 1

λ
Fλ (α

∗)⩽ 1
λ

Fλ (α̃) = 1
λ

Φ(α̃). (3.3)

Hence for any α ∈ Fe, we obtain

Φ(αε)−Φ(α) ⩽
L

∑
l=0

βl(∥(αε)l·∥p −∥α
∗
l·∥p)⩽

L

∑
l=0

βl∥(αε)l·−α
∗
l·∥p ⩽ β̄

L

∑
l=0

(
∥(αε)l·−α

∗
l·∥2) p

2

⩽ β̄ (L+1)

(
1

L+1

L

∑
l=0

∥(αε)l·−α
∗
l·∥2

) p
2

⩽ β̄ (L+1)1− p
2 (dist(α∗,Fe))

p

⩽ β̄ (L+1)1− p
2 (C((α∗)HŶ α

∗−2Re((α∗)H
α̂
◦)+ c−ρ)+)

p

⩽ β̄ (L+1)1− p
2
(C

λ
Φ(α̃)

)p
⩽ ε,

where the first inequality is from the global optimality of α∗, the second inequality is from Lemma 2.4
in Chen et al. (2016), the fifth inequality is from the concavity of function t → t

p
2 for t ⩾ 0, the sixth

inequality is from Lemma 3.1, the seventh inequality is from (3.3) and the last inequality follows from
the choice of λ . Thus, the projection PFe(α

∗) is an ε-minimizer of (2.10). This completes the proof.
□

4. Optimality conditions and a smoothing penalty algorithm

In this section, we first define first-order optimality conditions of (2.10) and (2.11), which are necessary
conditions for local optimality. We also derive lower bounds for the ℓ2 norm of nonzero groups of first-
order stationary points of (2.10) and (2.11). Next we propose a smoothing penalty algorithm for solving
(2.10) and prove its convergence to a first-order stationary point of (2.10).
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4.1 First-order optimality conditions

We first present a first-order optimality condition of problem (2.11).

DEFINITION 4.1 We call α∗ ∈ Cd a scaled first-order stationary point of problem (2.11) if

pβl∥α
∗
l·∥p

α
∗
l·+2λξ∥α

∗
l·∥2(Ŷl·α

∗−α
◦
l·) = 0, ∀ l ∈ L, (4.1)

for some ξ satisfying ξ

 = 0 if(α∗)HŶ α∗−2Re((α∗)H α̂◦)+ c < ρ

∈ [0,1] if(α∗)HŶ α∗−2Re((α∗)H α̂◦)+ c = ρ

= 1 otherwise.

THEOREM 4.2 Let α∗ ∈ Cd be a local minimizer of (2.11). Then α∗ is a scaled first-order stationary
point of (2.11).

Proof. Let α∗ ∈ Cd be a local minimizer of (2.11). We obtain that α∗
γ is a local minimizer of

min
αγ

∑
l∈γ

βl∥αl·∥p +λ (αH
γ Ŷγ αγ −2Re(αH

γ α̂
◦
γ )+ c−ρ)+. (4.2)

Note that ∥α∗
l·∥ ≠ 0, l ∈ γ , the first term of the objective function of (4.2) is continuously differentiable

at α∗
γ . The first-order necessary optimality condition for problem (4.2) holds at α∗

γ , that is,

pβl∥α
∗
l·∥p−2

α
∗
l·+2λξ ((Ŷγ α

∗
γ )l·−α

◦
l·) = 0, ∀ l ∈ γ, (4.3)

for some ξ satisfying ξ


= 0 if(α∗

γ )
HŶγ α∗

γ −2Re((α∗
γ )

H α̂◦
γ )+ c < ρ

∈ [0,1] if(α∗
γ )

HŶγ α∗
γ −2Re((α∗

γ )
H α̂◦

γ )+ c = ρ

= 1 otherwise.
Multiplying ∥α∗

l·∥2 on both sides of (4.3), we obtain

pβl∥α
∗
l·∥p

α
∗
l·+2λξ∥α

∗
l·∥2((Ŷγ α

∗
γ )l·−α

◦
l·) = 0, ∀ l ∈ γ.

Since ∥α∗
l·∥= 0 for l ∈ τ , we have

pβl∥α
∗
l·∥p

α
∗
l·+2λξ∥α

∗
l·∥2(Ŷl·α

∗−α
◦
l·) = 0, ∀ l ∈ L.

Hence (4.1) holds at α∗. □
The next theorem gives a lower bound for the l2 norm of nonzero groups of stationary points of

(2.11).

THEOREM 4.3 Let α∗ ∈ Cd be a scaled first-order stationary point of (2.11) and ∥Ŷ α∗− α̂◦∥ ⩽ c̃ for
some c̃ > 0. Then,

∥α
∗
l·∥⩾

(
pβl

2λ c̃

) 1
1−p

,∀ l ∈ γ.

The proof is similar with that of (2.9), and thus we omit it here. According to Theorems 3.1 and
4.2, Theorem 4.3 gives a lower bound for the ℓ2 norm of nonzero groups of local minimizers of problem
(2.10).

Next, we consider the first-order optimality condition of problem (2.10). Similar to Definition 2.2,
we call α∗ is a scaled first-order stationary point or a scaled KKT point of (2.10) if the following
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conditions hold,

pβl∥α
∗
l·∥p

α
∗
l·+2ν∥α

∗
l·∥2(Ŷl·α

∗−α
◦
l·) = 0, ∀ l ∈ L,

νg(α∗) = 0, g(α∗)⩽ 0, ν ⩾ 0.
(4.4)

Since α = 0 is not a feasible point, thus ν ̸= 0. Hence, replacing λ by ν in Theorem 4.3, we can obtain
a lower bound for the ℓ2 norm of nonzero groups of the scaled KKT point of problem (2.10).

THEOREM 4.4 If α∗ is a local minimizer of problem (2.10), then α∗ is a scaled KKT point of (2.10)
with g(α∗) = 0.

Proof. Let α∗ be a local minimizer of problem (2.10). Since g(α∗) = gγ(α
∗
γ ) and ∑

L
l=0 βl∥α∗

l·∥p =

∑l∈γ βl∥α∗
l·∥p, following the proof of Theorem 3.1, α∗

γ is a local minimizer of (3.1). Using Wirtinger
gradient, we know that ∂ᾱγ

gγ(α
∗
γ ) = Ŷγ α∗

γ − α̂◦
γ .

From Theorem 3.1 and Theorem 4.2, there is λ > 0 such that (4.1) holds, which implies that if
Ŷl·α

∗ − α̂◦
l· = 0, then α∗

l· = 0. Hence Ŷγ α∗
γ − α̂◦

γ ̸= 0, and the LICQ (linear independence constraint
qualification) holds at α∗

γ for problem (3.1).
Note that, the objective function of problem (3.1) and gγ are continuously differentiable at α∗

γ and
∂ᾱγ

gγ(α
∗
γ ) = Ŷγ α∗

γ − α̂◦
γ . Hence α∗

γ is a KKT point of (3.1), that is, there exists ν such that

pβl∥α
∗
l·∥p−2

α
∗
l·+2ν(Ŷγ α

∗
γ −α

◦
γ )l· = 0, ∀ l ∈ γ,

νgγ(α
∗
γ ) = 0, gγ(α

∗
γ )⩽ 0, ν ⩾ 0.

(4.5)

Multiplying ∥α∗
l·∥2 on both sides of the first equality in (4.5), we obtain

pβl∥α
∗
l·∥p

α
∗
l·+2ν∥α

∗
l·∥2(Ŷγ α

∗
γ −α

◦
γ )l· = 0, ∀ l ∈ γ.

Since α∗
l· = 0 for l ∈ τ , we obtain

pβl∥α
∗
l·∥p

α
∗
l·+2ν∥α

∗
l·∥2(Ŷl·α

∗−α
◦
l·) = 0, ∀ l ∈ L.

Combining this with (4.5) and g(α∗) = gγ(α
∗
γ ), we find that α∗ is a scaled KKT point of (2.10).

Now we show g(α∗) = 0. Assume on contradiction that g(α∗) < 0. Then for sufficiently small
δ > 0, we have g((1−δ )α∗)< 0 and ∑

L
l=0 βl∥(1−δ )α∗

l·∥p = (1−δ )p
∑

L
l=0 βl∥α∗

l·∥p < ∑
L
l=0 βl∥α∗

l·∥p,
which implies that α∗ cannot be a local minimizer of (2.10). Hence g(α∗) = 0. The proof is completed.
□

From the definitions we can see that for some λ > 0, any scaled KKT point of problem (2.10) is a
scaled first order stationary point of (2.11). Moreover, any scaled first order stationary point of problem
(2.11) which belongs to the feasible set Fe is a scaled KKT point of problem (2.10).

4.2 A smoothing penalty algorithm for problem (2.10)

We define a smoothing function of the nonsmooth function λ (g(α))+ as follows

fλ ,µ(α) = ψλ ,µ(g(α))
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with ψλ ,µ(s) := λ max
0⩽t⩽1

{st− µ

2 t2} and µ > 0 is a smoothing parameter. It is easy to verify that ψ ′
λ ,µ(s)=

λ min{max{ s
µ
,0},1}⩾ 0 and |ψ ′

λ ,µ(s1)−ψ ′
λ ,µ(s2)|⩽ λ

µ
|s1−s2|, ∀s1,s2 ∈R. It is not hard to show that

fλ ,µ(α) =


0 ifg(α)⩽ 0
λ

2µ
(g(α))2 if0 ⩽ g(α)⩽ µ

λg(α)− λ µ

2 ifg(α)⩾ µ

and
0 ⩽ λ (g(α))+− fλ ,µ(α)⩽ λ µ

2 . (4.6)

By Wirtinger calculus, we obtain ∇ fλ ,µ(α) =

[
∂α fλ ,µ (α)

∂ᾱ fλ ,µ (α)

]
, where ∂ᾱ fλ ,µ(α) = ∂α fλ ,µ(α) and

∂ᾱ fλ ,µ(α) =


0 ifg(α)⩽ 0
λ

µ
g(α)(Ŷ α − α̂◦) if0 ⩽ g(α)⩽ µ

λ (Ŷ α − α̂◦) ifg(α)⩾ µ.

More details about the smoothing function can be found in Chen (2012) and references therein.
We consider the following optimization problem

min
α∈Cd

Fλ ,µ(α) := Φ(α)+ fλ ,µ(α). (4.7)

For fixed positive parameters λ and µ , Fλ ,µ is continuous and level-bounded since Φ is level-bounded
and fλ ,µ is nonnegative. Moreover, the gradient of fλ ,µ is Lipschitz continuous.

Now, we propose a smoothing penalty algorithm for solving problem (2.10).

Algorithm 4.5 A smoothing penalty algorithm for problem (2.10)
Choose λ 0 > 0, µ0 > 0, ε0 > 0, ς1 > 1, and 0 < ς2 < 1. Set k = 0 and α0 = α̃ := Ŷ−1α◦.
(1) If F

λ k,µk(αk)> F
λ k,µk(α̃), set αk = α̃; otherwise αk = αk.

(2) Solve problem (4.7) with initial point αk, λ = λ k, µ = µk, and find an αk+1 satisfying

∥pβl∥α
k+1
l· ∥p

α
k+1
l· +2∥α

k+1
l· ∥2(∂ᾱ f

λ k,µk(αk+1))l·∥⩽ ε
k, ∀ l ∈ L. (4.8)

(3) Set λ k+1 = ς1λ k, µk+1 = ς2µk+1, εk+1 = ς2εk.
(4) Set k = k+1 and go to (1).

We give the convergence of Algorithm 4.5 in the following theorem.

THEOREM 4.6 Let {αk} be generated by Algorithm 4.5. Then, the following statements hold.

(i) {αk} is bounded.

(ii) Any accumulation point α∗ of {αk} is a scaled KKT point of problem (2.10).

Proof. (i) We can see that

Φ(αk+1)⩽ F
λ k,µk(αk+1)⩽ F

λ k,µk(α̃) = Φ(α̃),
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where the first inequality follows from that f
λ k,µk(αk+1) ⩾ 0, the second inequality follows from step

(1) of Algorithm 4.5, and the equality is from α̃ = Ŷ−1α◦ ∈ Fe and f
λ k,µk(α̃) = 0. Since Φ is level-

bounded, {αk} is bounded.
(ii) Let α∗ be an accumulation point of {αk} and {αk}k∈K be a subsequence of {αk} such that

{αk}→ α∗ as k → ∞, k ∈ K . Note that

λ
k−1(g(αk))+− λ k−1µk−1

2 ⩽ f
λ k−1,µk−1(αk)⩽ F

λ k−1,µk−1(αk)⩽ F
λ k−1,µk−1(α̃)⩽ Φ(α̃),

where the first inequality follows from (4.6). Then, we have

(g(αk))+ ⩽
Φ(α̃)

λ k−1 +
µk−1

2
. (4.9)

From step (3) in Algorithm 4.5, λ k−1 → ∞ and µk−1 → 0, as k → ∞, k ∈ K . Taking limits in (4.9) as
k → ∞, k ∈ K , we obtain that (g(α∗))+ ⩽ 0. Hence, α∗ ∈ Fe.

From (4.8), we have

∥pβl∥α
k
l·∥p

α
k
l·+2∥α

k
l·∥2(∂ᾱ f

λ k,µk(αk))l·∥⩽ ε
k−1, ∀ l ∈ L. (4.10)

We first assume that g(α∗)< 0. For all sufficiently large k, we obtain g(αk)< 0 and (4.10) becomes

pβl∥α
k
l·∥p+1 ⩽ ε

k−1, ∀ l ∈ L.

Taking limits on both sides of the above relation, we obtain α∗ = 0 which contradicts to Assumption
2.1. Thus, g(α∗) = 0.

Let tk := ψ ′
λ k,εk(g(αk)) for notational simplicity, we have tk ⩾ 0. Then (4.10) reduces to

∥pβl∥α
k
l·∥p

α
k
l·+2tk∥α

k
l·∥2(Ŷl·α

k −α
◦
l·)∥⩽ ε

k−1, ∀ l ∈ L. (4.11)

Now, we prove that {tk}K is bounded. On the contrary, we assume {tk}K is unbounded and {tk}K →
∞, then, ∥∥∥ pβl

tk ∥α
k
l·∥p

α
k
l·+2∥α

k
l·∥2(Ŷl·α

k −α
◦
l·)
∥∥∥⩽ εk−1

tk , ∀ l ∈ L.

Passing to the limit in the above relation gives

∥α
∗
l·∥2(Ŷl·α

∗−α
◦
l·) = 0, ∀ l ∈ L.

Since g(α∗) = 0 implies α∗ is in Fe, but is not a minimizer of g, we have α∗ ̸= 0 and Ŷ α∗− α̂◦ ̸= 0.
Moreover, g(α∗) = gγ([α

∗
γ ;0τ ]) = 0 implies that α∗

l· ̸= 0, ∀l ∈ γ and (Ŷ α∗− α̂◦)γ ̸= 0. Thus, {tk}K is
bounded. Let {tk}K → t∗. Taking limits on both sides of (4.11) gives

∥pβl∥α
∗
l·∥p

α
∗
l·+2t∗∥α

∗
l·∥2(Ŷl·α

∗−α
◦
l·)∥= 0, ∀ l ∈ L.

Therefore, α∗ is a scaled KKT point of (2.10). □
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5. Approximation error

In Gia et al. (2019), the authors gave the approximation error for random field using regularized ℓ2,1
model based on the observed random field T ◦(ω,x) ∈ L2(Ω × S2). In this section, we estimate the
approximation error of the inpainted random field in the space L2(Ω ×S2) based on the observed random
field T ◦(ω,x) ∈ L2(Ω ×S2).

For any fixed ω ∈ Ω , let α̂∗(ω) := (α∗
0,0(ω), . . . ,α∗

Lω ,Lω
(ω))T ∈ C(Lω+1)2

with the group support
set γω be a scaled KKT point of problem (2.10). By our results in the previous sections, Lω is a finite
number. Moreover, α∗(ω) := ((α̂∗(ω))T ,0, . . .)T is a scaled KKT point of problem (2.2) with ρ(ω) in
the infinite-dimensional space ℓp

β
.

Let the random field defined by a scaled KKT point α∗ ∈ ℓp
β

of problem (2.2) be

T ∗(ω,x) =
∞

∑
l=0

l

∑
m=−l

α
∗
l,m(ω)Yl,m(x), (5.1)

where α∗
l,m(ω) = 0, l = Lω +1, . . ., and m =−l, . . . , l.

LEMMA 5.1 If the random variable ω ∈Ω has finite second order moment that is E[∥ω∥2]<∞ and there
is κ such that ∥T ∗(ω1,x)−T ∗(ω2,x)∥L2(S2) ⩽ κ∥ω1 −ω2∥, ∀ω1,ω2 ∈ Ω , then T ∗(ω,x) ∈ L2(Ω ×S2).

Proof. Let ω̃ ∈ Ω be fixed. Since for any ω ∈ Ω ,

∥T ∗(ω,x)∥L2(S2)−∥T ∗(ω̃,x)∥L2(S2) ⩽ ∥T ∗(ω,x)−T ∗(ω̃,x)∥L2(S2) ⩽ κ∥ω − ω̃∥,

we have

∥T ∗(ω,x)∥2
L2(S2) ⩽

(
κ∥ω − ω̃∥+∥T ∗(ω̃,x)∥L2(S2)

)2
⩽ 2κ

2∥ω − ω̃∥2 +2∥T ∗(ω̃,x)∥2
L2(S2).

Hence, we obtain

E[∥T ∗(ω,x)∥2
L2(S2)]⩽ 2∥T ∗(ω̃,x)∥2

L2(S2)+2κ
2E[∥ω − ω̃∥2]< ∞,

where the last inequality follows from E[∥ω∥2]< ∞. Thus, T ∗(ω,x) ∈ L2(Ω ×S2). □

THEOREM 5.1 Let T ◦(ω,x) ∈ L2(Ω × S2) be the observed random field. Then for any ε > 0 there
exists L such that

−ε

2
⩽ ∥A (T ∗

L (ω,x))−T ◦(ω,x)∥2
L2(Ω×S2)−ρ < ε,

where T ∗
L (ω,x) = ∑

L
l=0 ∑

l
m=−l α∗

l,m(ω)Yl,m(x) and ρ = E[ρ(ω)].

Proof. Since T ◦(ω,x) ∈ L2(Ω ×S2), by Fubini’s theorem, for ω ∈ Ω , T ◦(ω,x) ∈ L2(S2), P-a.s., in
which case T ◦(ω,x) admits an expansion in terms of spherical harmonics, P-a.s., that is, T ◦(ω,x) =
∑

∞
l=0 ∑

l
m=−l αobs

l,m (ω)Yl,m(x), P-a.s., where αobs(ω) = (αobs
0,0 (ω),αobs

1,−1(ω), . . .)T is the Fourier coeffi-
cient vector of T ◦(ω,x).

By Definition 2.2 for any ω ∈ Ω , α∗(ω) ̸= 0, we have νω > 0. Now, we prove that there exists a
positive scalar ν̄ such that νω ⩾ ν̄ for any ω ∈ Ω . On the contrary, if there exists a ω ∈ Ω such that
νω → 0, then from

∥α
∗(ω)∥p

2,p = ∑
{l∈N0:∥α∗

l·(ω)∥≠0}
βl∥α

∗
l·(ω)∥p ⩾

(
p

2νω c̃

) p
1−p

∑
{l∈N0:∥α∗

l·(ω)∥≠0}
(η l lp)

1
1−p ,
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we have ∥α∗(ω)∥p
2,p → ∞ which is a contradiction with α∗(ω) ∈ ℓp

β
. Thus, from α∗(ω) ∈ ℓp

β
and (2.9),

there exists a positive scalar ν̄ such that νω ⩾ ν̄ for any ω ∈ Ω . Thus, for any ε1 > 0 there exists L1
such that p

ν̄ ∑
∞
l=L1+1 βl∥α∗

l·(ω)∥p < ε1
2 for any ω ∈ Ω , which implies that

E

[
p

νω

∞

∑
l=L1+1

βl∥α
∗
l·(ω)∥p

]
<

p
ν̄
E

[
∞

∑
l=L1+1

βl∥α
∗
l·(ω)∥p

]
<

ε1

2
.

By Lemma 5.1, for any ε2 > 0 there exists L2 such that ∑
∞
l=L2+1E[∥α∗

l·(ω)∥2]< ε2
2 . Let ε =max{ε1,ε2},

L = max{L1,L2} and d = (L+1)2.
For notational simplicity, let α∗(ω) = ((α̂∗(ω))T ,(α̃∗(ω))T )T ∈ ℓp

β
, where α̂∗(ω) ∈ Cd , ω ∈ Ω

and Y =
[

Ŷ X
XH Ỹ

]
, where Ŷ ∈ Cd×d . Let T̃ ∗

L (ω,x) = ∑
∞
l=L+1 ∑

l
m=−l α∗

l,m(ω)Yl,m(x), we have

ρ = ∥A (T ∗(ω,x))−T ◦(ω,x)∥2
L2(Ω×S2) = ∥A (T ∗

L (ω,x)+ T̃ ∗
L (ω,x))−T ◦(ω,x)∥2

L2(Ω×S2)

= ∥A (T ∗
L (ω,x))−T ◦(ω,x)∥2

L2(Ω×S2)

+E
[∫

S2
|A (T̃ ∗

L (ω,x))|2dσ(x)+2
∫
S2
(A (T ∗

L (ω,x))−T ◦(ω,x))A (T̃ ∗
L (ω,x))dσ(x)

]
= ∥A (T ∗

L (ω,x))−T ◦(ω,x)∥2
L2(Ω×S2)

+E
[∫

Γ

|T̃ ∗
L (ω,x)|2dσ(x)+2

∫
Γ

(T ∗
L (ω,x)−T ◦(ω,x))T̃ ∗

L (ω,x)dσ(x)
]

= ∥A (T ∗
L (ω,x))−T ◦(ω,x)∥2

L2(Ω×S2)+E[(α̃∗(ω))HỸ α̃
∗(ω)]

+E[2(α̃∗(ω))HXH
α̂
∗(ω)−2(α̃∗(ω))H [ XH Ỹ ]αobs(ω)],

(5.2)

where the first equality follows from the second equality in (2.3) with νω > 0 for any ω ∈ Ω . For any
fixed ω ∈ Ω , by Definition 2.2 for a scaled KKT point α∗ ∈ ℓp

β
of problem (2.2), there is νω > 0 such

that

pβl∥α
∗
l·(ω)∥p−2

α
∗
l·(ω)+2νω(Yl·α

∗(ω)−α
◦
l·(ω)) = 0, l ∈ γω .

Using α◦(ω) = Y αobs(ω), for any fixed ω ∈ Ω , we obtain

pβl∥α
∗
l·(ω)∥p +2νω(α

∗
l·(ω))H(Yl·α

∗(ω)−Yl·α
obs(ω)) = 0, l ∈ γω , (5.3)

and

∞

∑
l=L+1

pβl∥α
∗
l·(ω)∥p +2νω(α̃

∗(ω))H [ XH Ỹ ](α∗(ω)−α
obs(ω)) = 0, ω ∈ Ω . (5.4)
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Thus,

E[(α̃∗(ω))HỸ α̃
∗(ω)]+E[2(α̃∗(ω))HXH

α̂
∗(ω)−2(α̃∗(ω))H [ XH Ỹ ]αobs(ω)]

= E
[
(α̃∗(ω))HỸ α̃

∗(ω)+2(α̃∗(ω))HXH
α̂
∗(ω)−2(α̃∗(ω))H [ XH Ỹ ]α∗(ω)

]
−E

[
p

νω

∞

∑
l=L+1

βl∥α
∗
l·(ω)∥p

]

= E

[
−(α̃∗(ω))HỸ α̃

∗(ω)− p
νω

∞

∑
l=L+1

βl∥α
∗
l·(ω)∥p

]

⩾ E

[
−

∞

∑
l=L+1

∥α
∗
l·(ω)∥2 − p

νω

∞

∑
l=L+1

βl∥α
∗
l·(ω)∥p

]
>−ε,

(5.5)

where the first equality follows from (5.4) and the first inequality follows from that ∥Ỹ∥⩽ 1. And

E[(α̃∗(ω))HỸ α̃
∗(ω)]+E[2(α̃∗(ω))HXH

α̂
∗(ω)−2(α̃∗(ω))H [ XH Ỹ ]αobs(ω)]

= E

[
−(α̃∗(ω))HỸ α̃

∗(ω)− p
νω

∞

∑
l=L+1

βl∥α
∗
l·(ω)∥p

]

⩽ E

[
∞

∑
l=L+1

∥α
∗
l·(ω)∥2

]
⩽

ε

2
.

(5.6)

Combining (5.2), (5.5) and (5.6), we obtain

−ε

2
⩽ ∥A (T ∗

L (ω,x))−T ◦(ω,x)∥2
L2(Ω×S2)−ρ < ε.

The proof is completed. □

6. Numerical experiments

In this section, we conduct numerical experiments to compare the ℓp-ℓ2 optimization model (2.10) with
the ℓ1 optimization model (31) in Wallis et al. (2017) on the inpainting of band-limited random fields
and images from CMB data to show the efficiency of problem (2.10) and Algorithm 4.5.

Following Chen et al. (2016), we adapt the nonmonotone proximal gradient (NPG) method to solve
subproblem (4.7) in Algorithm 4.5. For completeness, we present the NPG method as follows.

Algorithm 6.1 NPG method for problem (4.7)
Given α0 ∈ Fe. Choose Mmax ⩾ Mmin > 0, η̃ > 1, b > 0 and an integer N ⩾ 0. Set n = 0.
(1) Choose M0

n ∈ [Mmin,Mmax]. Set Mn = M0
n .

(a) Solve the subproblem

y ∈ arg min
α∈Cd

{
Φ(α)+2Re⟨∂ᾱ fλ ,µ(α

n),α −α
n⟩+Mn∥α −α

n∥2} .
(b) If Fλ ,µ(y)⩽ max

[n−N]+⩽ j⩽n
Fλ ,µ(α

j)−b∥y−αn∥2 is satisfied, go to (2). Otherwise set Mn = η̃Mn,

and go to step (a).
(2) Set αn+1 = y, n = n+1 and go to (1).
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For the NPG method to solve (4.7) in Algorithm 4.5 at λ = λk µ = µk, we set Mmin = 1, Mmax = 106,
η̃ = 2, b = 10−4, N = 4, M0

0 = 1, and for any n ⩾ 1,

M0
n = min

{
max

{
|(αn −αn−1)H(∂ᾱ Fλ ,µ(α

n)−∂ᾱ Fλ ,µ(α
n−1))|

∥αn −αn−1∥2 ,1

}
,106

}
.

Algorithm 6.1 is terminated when

∥α
n −α

n−1∥∞ ⩽
√

εk and
|Fλ ,µ(α

n)−Fλ ,µ(α
n−1)|

max{1, |Fλ ,µ(αn)|}
⩽ min{(εk)2.2,10−4}.

In Algorithm 4.5, we set λ 0 = 20, µ0 = ε0 = 1, ς1 = 2, ς2 = 1
2 , α0 = Ŷ−1α̂◦. The smoothing

penalty algorithm is terminated when max{g(αk)+,0.01εk} ⩽ 10−6, where εk is updated by εk+1 =
max{ς2εk,10−6} instead of ς2εk in the experiments. All codes were written in MATLAB and the real-
izations were implemented in Python.

6.1 Random data

In this subsection, we consider synthetic experiments. We randomly generated instances as follows.
First, we randomly choose a subset D ⊂ {0,1, . . . ,L−1} and generate a group sparse coefficient vector
α true

L ∈ C(L+1)2×(L+1)2
such that α true

l· = 0 if l ∈ D and α true
l· = αcmb

l· /∥αcmb
L ∥1.5 if l ∈ Dc, where αcmb

L
is the coefficient vector with maximum degree L of the CMB 2018 map computed by the HEALPy
package. Note that the generated complex coefficients α true are group sparse and the field defined by
α true is real-valued.

Next we generate the data for the noise ∆ on the HEALPix points with Nside = 2048 by the MATLAB
command: δ randn(Npix,1), where Npix = 12×N2

side and δ > 0 is a scaling parameter. Then we use the
Python HEALPy package to compute the coefficients α∆ of the noise from δ randn(Npix,1) and obtain
that ∆ = ∑

L
l=0 ∑

l
m=−l α∆

l,mYl,m. We consider the instances in an idealistic scenario and set ρ = ∥∆∥2
L2(S2)

.

For δ = 1 and 0.1, the values of ρ are around 10−3 and 10−5, respectively.
The masks denoted by Γ c = S2\Γ are shown in Figure 1.

(a) Γ c
1 (b) Γ c

2

(c) Γ c
3 (d) Γ c

4

FIG. 1. Masks (grey part).
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In the experiments, we set p = 0.5, βl = (1+10−4)l lp for l ⩾ 1 and β0 = 1 for Algorithm 4.5. We
compare the ℓp-ℓ2 optimization model (2.10) by using Algorithm 4.5 with the following ℓ1 optimization
model (31) in Wallis et al. (2017) using the YALL1 method (Yang & Zhang, 2011) under the KKM
sampling scheme (Khalid et al., 2014),

min
α∈Cd

∥α∥1 s.t. ∥MAα −b∥2 ⩽ ρ, (6.1)

and the group SPGl1 method (https://friedlander.io/spgl1/) for solving the following problem

min
α∈Cd

∑
L
l=0 βl∥αl·∥ s.t. ∥MAα −b∥2 ⩽ ρ, (6.2)

where M is a diagonal matrix with elements being 1 or 0, A ∈ Cn×d is the measurement matrix, b =
MAα true+ ∆̃ is the observed signal with noise ∆̃ and ρ > 0. Problem (6.2) with ρ = 0 is a group version
of the weighted ℓ2 model in Starck et al. (2013). Since in the numerical test of Algorithm 4.5 with
p = 0.5, we set βl = (1+10−4)l lp, for l ⩾ 1 and β0 = 1, in the experiments of SPGl1 with p = 1, we set
βl = 2l +1 for comparison, which satisfies β0 = 1 and l ⩽ (1+10−4)l l ⩽ 2l +1 for 1 ⩽ l < 7000. We
set the noise ∆̃ = MAα∆ , where α∆ is the coefficient vector of noise ∆ and ρ = ∥∆̃∥2. Following Wallis
et al. (2017), we set n = d. We present the results in Tables 1 and 2. Following Chen & Womersley
(2018), nnz := ∥α∗

L &α true
L ∥2,0 denotes the number of nonzero groups that α∗

L and α true
L have in common

and false := ∥α∗
L∥2,0 −∥α∗

L &α true
L ∥2,0 denotes the number of “false positives” where α true

l· is a zero
vector, but α∗

l· is a nonzero vector. The signal-to-noise ratio (SNR) and relative error are defined by

SNR = 20× log10
∥xtrue∥

∥xtrue−x∗∥ , RelErr := ∥α∗
L−α true

L ∥
∥α true

L ∥ ,

respectively, where xtrue = (T true(x1), . . . ,T true(xn))
T and x∗ = (T ∗(x1), . . . ,T ∗(xn))

T are estimated on
the HEALPix points with n = 12×20482 and α∗

L is the terminating solution,.
From Tables 1 and 2, we can see that our optimization model (2.10) using Algorithm 4.5 achieves

smaller relative errors and higher SNR values than the ℓ1 optimization model (31) in Wallis et al. (2017).
Although the group SPGl1 method archives small relative errors for some experiments, the SNR val-
ues is smaller than ours. Moreover, compared with the ℓ1 optimization model and group SPGl1, our
optimization model (2.10) can exactly recover the number and positions of nonzero groups of α∗

L .
We select some numerical results from Table 1 with L = 50 and ∥α true

L ∥2,0 = 26 to show the inpaint-
ing quality in Figures 2-8. We observe that our model using Algorithm 4.5 achieves smaller pointwise
errors than the ℓ1 optimization model (31) in Wallis et al. (2017) and group SPGl1 method.
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Table 1. Numerical results for the inpainting of band-limited random fields with δ = 1.
Algorithm 4.5 YALL1 Group SPGl1

Mask ∥α true
L ∥2,0 RelErr ∥α∗

L∥2,0 nnz false SNR RelErr ∥α∗
L∥2,0 nnz false SNR RelErr ∥α∗

L∥2,0 nnz false SNR
L = 35

Γ c
1 7 0.0032 7 7 0 49.95 0.541 21 7 14 5.28 0.0058 17 7 10 44.73

11 0.0016 11 11 0 56.18 0.270 13 11 2 11.24 0.0103 28 11 17 39.74
19 0.0032 19 19 0 49.76 0.238 24 19 5 12.44 0.2033 35 19 16 13.83

Γ c
2 7 0.0023 7 7 0 52.47 0.668 19 7 12 3.08 0.0043 17 7 10 47.29

11 0.0022 11 11 0 53.19 0.651 25 11 14 2.67 0.0788 32 11 21 22.07
19 0.0059 19 19 0 44.54 0.683 26 19 7 1.87 0.3965 33 19 14 8.03

Γ c
3 7 0.0019 7 7 0 54.60 0.378 21 7 14 8.50 0.0035 16 7 9 49.01

11 0.0014 11 11 0 57.30 0.357 13 11 2 8.89 0.0024 26 11 15 52.57
19 0.0015 19 19 0 56.28 0.321 25 19 6 9.70 0.1195 34 19 15 18.45

Γ c
4 7 0.0017 7 7 0 55.33 0.351 16 6 10 8.91 0.0022 12 7 5 52.65

11 0.0013 11 11 0 57.72 0.321 11 9 2 10.78 0.0019 23 11 12 54.29
19 0.0014 19 19 0 56.84 0.273 22 17 5 11.25 0.0073 32 19 13 42.76

L = 50
Γ c

1 6 0.0035 6 6 0 49.02 0.354 35 6 29 9.00 0.0048 17 6 11 46.41
16 0.0033 16 16 0 49.52 0.320 41 16 25 9.87 0.0673 43 16 27 27.32
26 0.0215 26 26 0 33.34 0.304 40 26 14 9.18 0.0975 49 26 23 20.22

Γ c
2 6 0.0032 6 6 0 49.84 0.676 39 6 33 2.83 0.0044 15 6 9 47.04

16 0.0044 16 16 0 47.15 0.643 43 16 27 2.68 0.0729 45 16 29 22.74
26 0.0090 26 26 0 40.93 0.664 42 26 16 2.73 0.3549 47 26 21 8.99

Γ c
3 6 0.0027 6 6 0 51.43 0.212 41 6 35 13.21 0.0036 14 6 8 48.89

16 0.0024 16 16 0 52.43 0.191 37 16 21 14.61 0.0041 38 16 22 47.72
26 0.0031 26 26 0 50.21 0.298 38 26 12 10.50 0.1393 48 26 22 17.11

Γ c
4 6 0.0027 6 6 0 51.25 0.197 37 6 31 16.42 0.0031 14 6 8 50.14

16 0.0023 16 16 0 52.47 0.193 37 16 21 14.21 0.0030 32 16 16 50.51
26 0.0030 26 26 0 50.55 0.239 37 25 12 13.05 0.0078 44 26 18 42.21

Table 2. Numerical results for the inpainting of band-limited random fields with δ = 0.1.
Algorithm 4.5 YALL1 Group SPGl1

Mask ∥α true
L ∥2,0 RelErr ∥α∗

L∥2,0 nnz false SNR RelErr ∥α∗
L∥2,0 nnz false SNR RelErr ∥α∗

L∥2,0 nnz false SNR
L = 35

Γ c
1 7 3.42e-4 7 7 0 69.29 0.541 16 7 9 5.28 0.0011 12 7 5 39.22

11 1.51e-4 11 11 0 76.39 0.271 12 11 1 11.24 9.63e-4 27 11 16 60.31
19 3.39e-4 19 19 0 69.38 0.239 20 19 1 12.44 0.1537 36 19 17 16.26

Γ c
2 7 2.58e-4 7 7 0 71.73 0.676 19 19 0 3.08 5.24e-4 17 7 10 65.60

11 2.35e-4 11 11 0 72.57 0.643 21 11 10 2.67 0.0859 34 11 23 21.32
19 6.89e-4 19 19 0 63.22 0.664 10 7 3 1.87 0.3949 33 19 14 8.06

Γ c
3 7 2.08e-4 7 7 0 73.60 0.212 16 7 9 8.50 4.05e-4 15 7 8 67.84

11 1.40e-4 11 11 0 77.05 0.191 14 11 3 8.89 2.54e-4 25 11 14 71.89
19 1.70e-4 19 19 0 75.37 0.298 21 19 2 9.70 0.1172 35 19 16 18.62

Γ c
4 7 1.97e-4 7 7 0 74.09 0.197 11 6 5 8.91 2.65e-4 11 7 4 71.50

11 1.28e-4 11 11 0 77.83 0.193 9 9 0 10.78 1.93e-4 22 11 11 74.25
19 1.56e-4 19 19 0 76.13 0.239 20 17 3 11.26 0.0046 35 19 16 46.66

L = 50
Γ c

1 6 3.55e-4 6 6 0 68.98 0.353 15 6 9 9.01 5.43e-4 13 6 7 66.47
16 3.82e-4 16 16 0 68.35 0.330 17 16 1 9.87 0.0479 27 16 11 23.43
26 0.0034 26 26 0 49.28 0.346 34 26 8 9.18 0.0994 50 26 24 20.23

Γ c
2 6 3.18e-4 6 6 0 69.92 0.676 16 6 10 2.83 4.48e-4 16 6 10 66.96

16 5.09e-4 16 16 0 65.85 0.643 36 16 20 2.68 0.0829 45 16 29 21.63
26 9.97e-4 26 26 0 60.01 0.664 32 26 6 2.73 0.3562 47 26 21 8.98

Γ c
3 6 2.97e-4 6 6 0 70.52 0.212 30 6 24 13.21 3.84e-4 13 6 7 68.31

16 2.70e-4 16 16 0 71.34 0.191 24 16 8 14.61 4.59e-4 34 16 18 66.75
26 3.28e-4 26 26 0 69.65 0.298 31 26 5 10.50 0.1387 50 26 24 17.15

Γ c
4 6 2.86e-4 6 6 0 70.85 0.197 23 6 17 16.42 3.43e-4 11 6 5 69.29

16 2.56e-4 16 16 0 71.82 0.193 24 16 8 14.21 3.27e-4 28 16 12 69.69
26 3.09e-4 26 26 0 70.19 0.239 29 25 4 13.05 8.06e-4 43 26 17 61.86
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FIG. 2. Observed fields with L = 50, ∥α true
L ∥2,0 = 6 and δ = 1 (masked by Γ c

1 , Γ c
2 , Γ c

3 and Γ c
4 from left to right).

FIG. 3. Inpainted fields by Algorithm 4.5

FIG. 4. Pointwise error of inpainted fields in Fig.3 by Algorithm 4.5.

FIG. 5. Inpainted fields by YALL1

FIG. 6. Pointwise error of inpainted fields in Fig.5 by YALL1.

FIG. 7. Inpainted fields by group SPGl1

FIG. 8. Pointwise error of inpainted fields in Fig.7 by group SPGl1.
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To give some insight for the choice of L of the truncated space, we conduct experiments on a random
field with different L under the noiseless case. We choose the mask Γ4 and the observed field T ◦ with
degree 50. In Figure 9(a) we show the approximation error ∥A (T ∗

L )−T ◦∥2
L2(S2)

on a logarithmic scale.
We can see that the error decreases as L increases and the errors are same for L = 48,49,50. Moreover,
α∗

49· and α∗
50· are zero groups of α∗

L for L = 50. From our discussion in section 2 and Theorem 5.1, we
can guess that the value of L for (a) is 48. We plot the error ∥T ∗

50 −T ∗
L ∥2

L2(S2)
for different L in Figure

9(b). We can observe that the error decreases as L increases and the errors are zero for L = 48,49,50
due to α∗

49· = 0 and α∗
50· = 0.

(a) ∥A (T ∗
L )−T ◦∥2

L2(S2)
(b) ∥T ∗

50 −T ∗
L ∥2

L2(S2)

(c) values of ∥α∗
l·∥

FIG. 9. Approximation errors and values of ∥α∗
l·∥.

6.2 Real image

In this section, we conduct experiments on the CMB data which is assumed to be an isotropic random
field. We compare our model using Algorithm 4.5 with model (6.2) using the group SPGl1 method.
Since the coefficients of the CMB data are not sparse both in elements and groups, we show that our
optimization model by using the K-L expansion without discretization of the sphere has good perfor-
mance. For more detailed study of CMB map, we refer readers to Starck et al. (2013); Bucher & Louis
(2012); Gruetjen et al. (2017); Kim et al. (2012) and references therein. We consider the noiseless case
(set ρ = 0 for both models) and choose the maximum degree of the simulated CMB data to be L = 50.
The parameters are the same as that in section 6.1. The simulation results are shown in Figure 10. We
can see our model achieves small pointwise errors.
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(a) Simulated CMB with L = 50 (b) Masked

(c) Inpainted by Algorithm 4.5 (d) Pointwise error of (c)

(e) Inpainted by group SPGl1 (f) Pointwise error of (e)

FIG. 10. Inpainting results of the simulated CMB data with maximum degree L = 50

7. Conclusion

In this paper, we propose a constrained group optimization model (1.6) for the inpainting of random
fields on the unit sphere with unique continuation property. Based on the K-L expansion, we rewrite
(1.6) in a discrete form and derive an equivalence formulation (2.1) of problem (1.6). Based on problem
(2.1), we propose a group sparse optimization model (2.2), and derive a lower bound (2.9) for the ℓ2
norm of nonzero groups of its scaled KKT points. Using this lower bound, we show that problem (2.2)
can be solved via the finite-dimensional problem (2.10). For this finite-dimensional problem (2.10)
and its penalty problem (2.11), we prove the exact penalization in terms of local minimizers and ε-
minimizers. Moreover, we propose a smoothing penalty algorithm for solving problem (2.10) and prove
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its convergence. We also present the approximation error of the inpainted random field represented by
the scaled KKT point in the space L2(Ω ×S2). Finally, we present numerical results on band-limited
random fields on the sphere and the images from CMB data to show the promising performance of our
model by using the smoothing penalty algorithm.
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Appendix A. Unique continuation property

In this Appendix, we give details about the unique continuation property of a class of fields with spher-
ical harmonic representations.

Let r̂ ∈ (1,η) be a positive constant for some η > 1, B(0; r̂) := {(r,θ ,φ) : r ∈ [0, r̂),θ ∈ [0,π],φ ∈
[0,2π]} ⊂ R3 be an open ball centered at 0 of radius r̂. Let

T =

{
T (θ ,φ) ∈ L2(S2) : T (θ ,φ) =

∞

∑
l=0

l

∑
m=−l

αl,mYl,m(θ ,φ) and α ∈ ℓp
β

}
1 (A.1)

be a class of fields with spherical harmonic representations and coefficients belong to ℓp
β

. Then we show
that any T ∈ T has the unique continuation property. Let H : B(0; r̂)→ R be given by

H(r,θ ,φ) =
∞

∑
l=0

rl
l

∑
m=−l

αl,mYl,m(θ ,φ),

where α ∈ ℓp
β

.

LEMMA A.1 If α ∈ ℓp
β

, then ∑
∞
l=0 η l l∥αl·∥< ∞.

Proof. Since α ∈ ℓp
β

and βl = η l lp, for any ε > 0 there is a positive integer N such that for any l > N,

η l lp∥αl·∥p < ε. Thus, l∥αl·∥< ( ε

η l )
1
p , ∀l > N, which implies that η l l∥αl·∥< ε

1
p η

l(p−1)
p , ∀l > N. Thus,

for any integers N1 ⩾ N2 ⩾ N, we have ∑
N2
l=N1

η l l∥αl·∥ < ε
1
p ∑

N2
l=N1

η
l(p−1)

p ⩽ ε
1
p ∑

∞
l=0 η

l(p−1)
p ⩽ Cε

1
p ,

where C = ∑
∞
l=0 η

l(p−1)
p < ∞. Since ε is arbitrary, we obtain ∑

∞
l=0 η l l∥αl·∥< ∞. □

LEMMA A.2 H is real analytic in B(0; r̂).

Proof. Let HL(r,θ ,φ) = ∑
L
l=0 Hl(r,θ ,φ), where Hl(r,θ ,φ) = rl

∑
l
m=−l αl,mYl,m(θ ,φ). By definition

of harmonic functions (Axler et al., 2013), rlYl,m(θ ,φ), l ∈ N0, m = −l, . . . , l are harmonic functions
on B(0; r̂). Then we obtain that HL, L ∈ N0 are harmonics functions on B(0; r̂). Moreover, for any
(r,θ ,φ) ∈ B(0; r̂) and l > 0,

|Hl(r,θ ,φ)| =

∣∣∣∣∣ l

∑
m=−l

rl
αl,mYl,m(θ ,φ)

∣∣∣∣∣⩽
∣∣∣∣∣∣
(

l

∑
m=−l

(rl
αl,m)

2

) 1
2
(

l

∑
m=−l

(Yl,m(θ ,φ))
2

) 1
2
∣∣∣∣∣∣

= rl∥αl·∥
√

2l+1
4π

< η
l l∥αl·∥,

where the first inequality follows from Cauchy-Schwarz inequality, the second equality follows from
addition theorem of spherical harmonics and the last inequality follows from r ∈ [0, r̂) and r̂ < η .

By Lemma A.1, ∑
∞
l=0 η l l∥αl·∥< ∞, then for any ε > 0, there exists N such that for any L′ > L > N,

we have that for any (r,θ ,φ) ∈ B(0; r̂),

|HL′(r,θ ,φ)−HL(r,θ ,φ)| =

∣∣∣∣∣ L′

∑
l=L+1

Hl(r,θ ,φ)

∣∣∣∣∣⩽ L′

∑
l=L+1

|Hl(r,θ ,φ)|<
L′

∑
l=L+1

η
l l∥αl·∥< ε.

1With a slight abuse of notation, in this subsection, T (θ ,φ) ≡ T (x) and Yl,m(θ ,φ) ≡ Yl,m(x), where x =

(sinθ cosφ ,sinθ sinφ ,cosθ)T ∈ S2.
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Thus, the sequence of harmonic functions {HL} converges uniformly to H on B(0; r̂).
By Axler et al. (2013, Theorem 1.23), H is harmonic on B(0; r̂). Moreover, by Axler et al. (2013,

Theorem 1.28), H is real analytic in B(0; r̂). This completes the proof. □

LEMMA A.3 For any T ∈ T , if there exists a sequence of distinct points {(θn,φn)} ⊆ S2, with at least
one limit point in S2, and if T (θn,φn) = 0, n = 1,2, . . ., then T ≡ 0 on S2.

Proof. It is obvious that H(1,θ ,φ)=T (θ ,φ), then T (θn,φn)= 0, n= 1,2, . . . implies that H(1,θn,φn)=
0, n = 1,2, . . . By Lemma A.2, H is real analytic in B(0; r̂). Then by Hille (2005, Theorem 8.1.3), we
obtain H ≡ 0 in B(0; r̂) which implies that T ≡ 0 on S2. This completes the proof. □

Now we present the unique continuation property of any T ∈ T .

THEOREM A.1 For any T ∈ T , if T = 0 on Γ , then T ≡ 0 on S2.

Proof. Since the coefficients α ∈ ℓp
β

and Γ has an open subset, we know from Lemma A.3 that if T = 0
on Γ then T ≡ 0 on S2. □

By Parseval’s theorem, for any T ∈ L2(S2), we have ∥T∥2
L2(S2)

= ∥α∥2, which implies that T ≡ 0 if
and only if α = 0. Hence, we can claim that for any T ∈ T , A (T )≡ 0 if and only if α = 0.

Appendix B. Wirtinger gradient

In this appendix, we briefly introduce the Wirtinger gradient of real-valued functions with complex vari-
ables over the finite-dimensional space Cn and the infinite-dimensional space ℓ2. For more details about
Wirtinger’s calculus, we refer to Brandwood (1983); Kreutz-Delgado (2009); Bouboulis & Theodoridis
(2010); Li & Chen (2022); Sorber et al. (2012); Sun et al. (2018).

We first introduce the Wirtinger gradient in ℓ2. Let f : ℓ2 → R be a real-valued function of a vector
of complex variables z ∈ ℓ2. Let z = x+ iy, where x,y are the real and image parts of z, respectively.
We write f (z) = f1(x+ iy) = f r

1(x,y)+ i f i
1(x,y), where f r

1 and f i
1 are the real and image parts of f1,

respectively. Since f1 is real-valued, we have f i
1 ≡ 0. We say f is Wirtinger differentiable, if f r

1 is
Fréchet differentiable with respect to x and y, respectively. Following Bouboulis & Theodoridis (2010),
under the conjugate coordinates (zT , z̄T )T ∈ ℓ2 × ℓ2, the Wirtinger gradient of a Wirtinger differentiable
function f at z ∈ ℓ2 is

∇ f (z) =

(
∂z f (z)
∂z̄ f (z)

)

where ∂z f (z) := 1
2

(
∂ f r

1 (x,y)
∂x − i ∂ f r

1 (x,y)
∂y

)
, ∂z̄ f (z) := 1

2

(
∂ f r

1 (x,y)
∂x + i ∂ f r

1 (x,y)
∂y

)
. Since f is real-valued, ∂z f =

∂z̄ f . Thus,
∇ f (z) = 0 ⇔ ∂z̄ f (z) = 0.

We say z∗ ∈ ℓ2 is a stationary point of f if it satisfies ∂z̄ f (z∗) = 0.
Following Brandwood (1983); Kreutz-Delgado (2009), the Wirtinger gradient of a function g :Cn →

R can be defined in the same way as above. In particular, we say g is Fréchet differentiable, if its real
part gr

1 is Fréchet differentiable, and the Wirtinger gradient of g is

∇g(z) =

(
∂zg(z)
∂z̄g(z)

)
=

1
2

 ∂gr
1(x,y)
∂x − i ∂gr

1(x,y)
∂y

∂gr
1(x,y)
∂x + i ∂gr

1(x,y)
∂y

 .


