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The differential linear variational inequality consists of a system of n ordinary differential equations
(ODEs) and a parametric linear variational inequality as the constraint. The right-hand side function in
the ODEs is not differentiable and cannot be evaluated exactly. Existing numerical methods provide only
approximate solutions. In this paper we present a reliable error bound for an approximate solution xh(t)
delivered by the time-stepping method, which takes all discretization and roundoff errors into account.
In particular, we compute two trajectories xh

j (t) ± εh
j (t) to determine the existence region of the exact

solution x j (t), i.e., xh
j (t) − εh

j (t) � x j (t) � xh
j (t) + εh

j (t) for each j ∈ {1, . . . , n}. Moreover, we

have εh
j (t) = O(h). Numerical examples of bridge collapse, earthquake-induced structural pounding and

circuit simulation are given to illustrate the efficiency of the error bound.

Keywords: ordinary differential equations; linear variational inequalities; time-stepping method; error
bounds.

1. Introduction

Given a nonempty, closed and convex set K ⊆ Rm and a function F : K → Rm , the variational inequal-
ity problem is to find a vector y∗ ∈ K such that

(y − y∗)T F(y∗) � 0 ∀ y ∈ K .

Here we restrict our study to the case where the subset K is a box and the mapping F is affine, that is,

K = {y ∈ Rm | l � y � u},
where l ∈ {R ∪ −∞}m and u ∈ {R ∪ ∞}m with l < u, and

F(y) = My + q,

where M ∈ Rm×m and q ∈ Rm . Such a problem is called a box-constrained linear variational inequality
problem or mixed linear complementarity problem (see Billups & Ferris, 1997; Ferris & Pang, 1997;
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Chen et al., 1998; Chen & Ye, 1999). We denote this variational inequality by VI(l, u, q, M) and its
solution set by SOL(l, u, q, M).

Consider the following autonomous differential linear variational inequality problem (DLVI):⎧⎪⎨
⎪⎩

ẋ(t) = Ax(t) + By(t),

y(t) ∈ SOL(l, u, Qx(t), M),

x(0) = x0 ∈ Rn, t ∈ [0, T ],

(1.1)

where A ∈ Rn×n , B ∈ Rn×m , Q ∈ Rm×n and M ∈ Rm×m . When li = 0 and ui = ∞, for i = 1, . . . , m,
(1.1) reduces to the differential linear complementarity system (see Han et al., 2008):⎧⎪⎨

⎪⎩
ẋ(t) = Ax(t) + By(t),

0 � y(t)⊥My(t) + Qx(t) � 0,

x(0) = x0 ∈ Rn, t ∈ [0, T ],

(1.2)

where ⊥ means orthogonal.
The DLVI provides a new and powerful modelling paradigm for many applications in engineering

and economics (see Chen & Mahmoud, 2008; Heemels et al., 2000; Schumacher, 2004). It is also closely
related to some existing mathematical models. For instance, it can be rewritten as an integral equation

x(t) = x(0) +
∫ t

0
[Ax(τ ) + By(τ )] dτ

with the variational inequality constraint

y(t) ∈ SOL(l, u, Qx(t), M).

For an integral equation with complementarity constraints we refer to Gauthier et al. (2007). Another
instance is that the differential linear complementarity system (1.2) can be reformulated into the convo-
lution complementarity problem (CCP): given k(·) and q(·), find u(·) satisfying

0 � u(t)⊥(k ∗ u)(t) + q(t) � 0,

where

(k ∗ u)(t) =
∫ t

0
k(τ )u(t − τ) dτ

is the convolution of k and u. For a comprehensive treatment of the P-matrix CCP we refer to Stewart
(2006).

In this paper we study the time-stepping method (see Pang & Stewart, 2008) for solving the DLVI,
which begins with the division of the time interval [0, T ] into Nh subintervals

0 = th,0 < th,1 < · · · < th,Nh = T,

where th,i+1 − th,i = h = T/Nh , i = 0, . . . , Nh − 1. Starting from a given vector xh,0 = x0 ∈ Rn we
compute yh,0 ∈ SOL(l, u, Qxh,0, M) and two finite families of vectors

{xh,1, xh,2, . . . , xh,Nh } ⊂ Rn and {yh,1, yh,2, . . . , yh,Nh } ⊂ Rm
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COMPUTATIONAL ERROR BOUNDS FOR DLVI

by the recursion: for i = 0, 1, . . . , Nh − 1,

xh,i+1 = xh,i + h
{

A[θxh,i + (1 − θ)xh,i+1] + Byh,i+1
}
,

yh,i+1 ∈ SOL(l, u, Qxh,i+1, M),
(1.3)

where θ ∈ [0, 1] is a scalar. The time-stepping method has been studied extensively (see Pang & Stewart,
2008). There are also some numerical methods for integral equations, for example the collocation meth-
ods (see Brunner, 2004). However, the question of how to tailor the methods for the complementarity or
variational inequality constrained case still remains open.

We are aware that an approximate solution of the ordinary differential equations (ODEs) is always
polluted by discretization and roundoff errors. For the DLVI (1.1) we have additional errors induced by
the numerical solution of variational inequalities. For an approximate solution to be of practical use, it
is imperative for us to have error bounds for it. For existing numerical methods no error bounds have
yet been given.

In this paper we suppose that M is a P-matrix, i.e., all principal minors of M are positive. The
P-matrix assumption is also imposed in Stewart (2006), but the paper was not concerned with error
bounds. Note that every positive definite matrix and every M-matrix belong to the class of P-matrices.
If M is a P-matrix, then the DLVI (1.1) has a unique solution x ∈ C1[0, T ] with y ∈ C0[0, T ], and
the solution set SOL(l, u, Qx(t), M) contains a unique vector y(t) for every t ∈ [0, T ]. Moreover, the
assumption guarantees that the solution set SOL(l, u, Qxh,i , M) contains a unique vector yh,i for every
h > 0 and every i = 0, . . . , Nh .

It is worth noting that the results presented in this paper can be extended to other classes of matrices
and the uniqueness of the solution in SOL(l, u, Qx(t), M) is not essential. For instance, we can extend
the results to the class of Z -matrices, i.e., all off-diagonal elements of M are nonpositive. It is known that
the least-element solution in SOL(l, u, q, M) is unique (see Chen & Xiang, 2010; Wang & Yuan, 2011)
and it is Lipschitz continuous (see Mangasarian & Shiau, 1987) with respect to q. Hence, the results in
this paper can be used to establish error bounds for the following least-element Z -matrix DLVI.

Least-element DLVI

ẋ(t) = Ax(t) + By(t),
y(t) = argmin eTv,

subject to v ∈ SOL(l, u, Qx(t), M),
x(0) = x0, t ∈ [0, T ],

(1.4)

where e is the vector in Rm all of whose elements are 1. The time-stepping method for (1.4) can be
tailored as follows:

xh,i+1 = xh,i + h
{

A[θxh,i + (1 − θ)xh,i+1] + Byh,i+1
}
,

yh,i+1 = argmin eTv,

subject to v ∈ SOL(l, u, Qxh,i+1, M),

where yh,i+1 can be computed by solving a linear programming problem (see Mangasarian & Shiau,
1987; Cottle et al., 1992; Chen & Xiang, 2010; Wang & Yuan, 2011).

We define a piecewise linear function by the interpolant

xh(t) := th,i+1 − t

h
xh,i + t − th,i

h
xh,i+1, t ∈ [th,i , th,i+1],

yh(t) ∈ SOL(l, u, Qxh(t), M),
(1.5)

where i = 0, . . . , Nh − 1.
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The aim of this paper is to present computable and sharp error bounds εh,i
x and εh,i

y for the approxi-
mate solution defined by the linear interpolant (1.5) with the time-stepping method (1.3), such that

‖x(t) − xh(t)‖∞ � εh,i
x (1.6)

and

‖y(t) − yh(t)‖∞ � εh,i
y (1.7)

for all t ∈ [th,i , th,i+1] and i = 0, . . . , Nh − 1.
Our numerical code was written in MATLAB 7 with the use of INTLAB, a toolbox for reliable

computation, which takes all roundoff errors into account (see Rump, 1999). Numerical examples of
bridge collapse, earthquake-induced structural pounding and circuit simulation are used to show the
efficiency of the error bounds.

Throughout this paper, ‖ · ‖ denotes the norm ‖ · ‖∞.

2. Estimation of Lipschitz constants

In this section we use the Euler method to estimate Lipschitz constants of the solution x(t), y(t) of DLVI
(1.1) over [th,i , th,i+1]. The Lipschitz constants will be used to compute the error bounds of approximate
solutions obtained by the time-stepping method.

The Euler method is the simplest numerical method for the initial value problem of ODEs. Starting
from a given vector xh,0 = x0 ∈ Rn and yh,0 ∈ SOL(l, u, Qxh,0, M), the Euler method computes two
families of vectors

{xh,1, xh,2, . . . , xh,Nh } ⊂ Rn and {yh,1, yh,2, . . . , yh,Nh } ⊂ Rm

by the recursion: for i = 0, 1, . . . , Nh − 1,

xh,i+1 = xh,i + h(Axh,i + Byh,i ),

yh,i+1 ∈ SOL(l, u, Qxh,i+1, M).
(2.1)

The piecewise linear function xh(t) defined by (1.5) with {xh,i } and {yh,i } generated by the Euler method
(2.1) satisfies

xh(t) = xh,i +
∫ t

th,i

(Axh,i + Byh,i ) ds. (2.2)

This equality is easily verified from the following calculation:

xh(t) = 1

h

[
(th,i+1 − t)xh,i + (t − th,i )xh,i+1

]
= 1

h

[
(th,i+1 − th,i )xh,i + (t − th,i )(xh,i+1 − xh,i )

]
= 1

h

[
hxh,i + h(t − th,i )(Axh,i + Byh,i )

]
= xh,i + (t − th,i )(Axh,i + Byh,i )

= xh,i +
∫ t

th,i

(Axh,i + Byh,i ) ds.
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It is known that for a fixed P-matrix M , the solution function z(q) of the P-matrix linear comple-
mentarity problem

0 � z ⊥ Mz + q � 0

is piecewise linear (see Luo et al., 1996). Using a similar argument we can show that the solution
function z(q) of the P-matrix linear variational inequality problem

(w − z(q))T(Mz(q) + q) � 0 for l � w � u,

is piecewise linear. Hence, we deduce that yh(t) defined by (1.5) is piecewise linear since xh(t) is
piecewise linear.

In our error analysis we need the following lemma on the perturbation bound for the variational
inequality problem VI(l, u, q, M).

LEMMA 2.1 Suppose that M ∈ Rm×m is a P-matrix. Then for any q ∈ Rm the VI(l, u, q, M) has a
unique solution. Let v ∈ SOL(l, u, q, M) and v ′ ∈ SOL(l, u, q ′, M) for q, q ′ ∈ Rm . Then we have

‖v − v ′‖ � βM‖q − q ′‖, (2.3)

where

βM = max
d∈[0,1]n

‖(I − D + DM)−1 D‖, (2.4)

and D = diag(d) with d = (di ) ∈ Rm , 0 � di � 1, i = 1, . . . , m.

Proof. It is known that if M is a P-matrix, then for any q ∈ Rm there is a unique vector v ∈
SOL(l, u, q, M) (see, e.g., Facchinei & Pang, 2003). It is easy to verify that v ∈ SOL(l, u, q, M) if
and only if v is a solution of the system of nonsmooth equations

Hq(v) := mid(v − l, v − u, Mv + q) = 0,

where ‘mid’ is the componentwise median operator. For v ∈ SOL(l, u, q, M) and v ′ ∈ SOL(l, u, q ′, M)
let z = Mv + q and z′ = Mv ′ + q ′. Note that v, v ′ ∈ [l, u] and

v − l > v − u and v ′ − l > v ′ − u.

It is easy to find that

0 = (Hq(v) − Hq ′(v ′))i = (1 − di )(vi − v ′
i ) + di (zi − z′

i ),

where

di =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if vi − ui � zi , v ′
i − ui � z′

i ,
0 if vi − li � zi , v ′

i − li � z′
i ,

1 if vi − ui < zi < vi − li , v ′
i − ui < z′

i < v ′
i − li ,

vi −v ′
i

vi −zi −(v ′
i −z′

i )
otherwise,

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if vi − zi , v
′
i − z′

i ∈ [ui , ∞),
0 if vi − zi , v

′
i − z′

i ∈ (−∞, li ],
1 if vi − zi , v

′ − z′
i ∈ (li , ui ),

vi −v ′
i

vi −zi −(v ′
i −z′

i )
otherwise.
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We can show that di ∈ [0, 1] by considering vi − zi and v ′
i − z′

i in the three intervals [ui , ∞), (−∞, li ]
and (li , ui ). For example, consider

vi − zi ∈ [ui , ∞) and v ′
i − z′

i ∈ (−∞, li ].

Then

vi − zi − (v ′
i − z′

i ) � ui − li

and

vi − ui � zi and v ′
i − li � z′

i .

Hence, from mid(v − l, v − u, z) = mid(v ′ − l, v ′ − u, z′) = 0, we have vi = ui and v ′
i = li . This

implies that

0 < ui − li = vi − v ′
i � vi − zi − (v ′

i − z′
i ),

and thus di ∈ [0, 1].
Let D = diag(d). We obtain

0 = (I − D)(v − v ′) + D[M(v − v ′) + q − q ′].

Rearranging the terms in the above equality we achieve

(I − D + DM)(v − v ′) = −D(q − q ′).

Since M is a P-matrix then I − D + DM is also a P-matrix and so is invertible (see Gabriel & Moré,
1997). Hence, we have

v − v ′ = −(I − D + DM)−1 D(q − q ′),

which yields the error estimate (2.3). �
Chen & Xiang (2007) showed that the constant βM can be estimated by the norm of M−1 for some

special matrices. In particular, we have

• βM � ‖M̃−1‖ if M is an H-matrix with positive diagonals, where M̃ is the comparison matrix of M ;

• βM = ‖M−1‖ if M is an M-matrix and

• βM �
√

m‖M−1‖2 if M is a symmetric positive definite matrix.

The following theorem shows that the system (1.1) has a unique solution and provides an a posteriori
error estimate with a computable Lipschitz constant L for any step size h < 1/L . This result is useful
for practical applications and reliable computation.

THEOREM 2.2 Suppose that M is a P-matrix. Then for any T > 0, (1.1) has a unique solution (x, y) in
[0, T ], where x is continuously differentiable and y is Lipschitz continuous. Moreover, for any positive
number h < 1/L , L = ‖A‖ + βM‖B‖‖Q‖, the sequence (xk,i (t), yk,i (t)) defined by setting x0,i (t) =
x(th,i ) and y0,i (t) ∈ SOL(l, u, Qx0,i (t), M) for t ∈ [th,i , th,i+1] and by the recursion,

xk+1,i (t) = x(th,i ) +
∫ t

th,i

(Axk,i (s) + Byk,i (s)) ds,

yk+1,i (t) ∈ SOL(l, u, Qxk+1,i (t), M),

(2.5)
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converges uniformly on [th,i , th,i+1] to the unique solution (x, y) of (1.1) as k → ∞. Moreover, we
have the following a posteriori error estimate for t ∈ [th,i , th,i+1]

‖x(t) − xk+1,i (t)‖ � Lh

1 − Lh
‖xk+1,i (t) − xk,i (t)‖. (2.6)

Proof. The assumption that M is a P-matrix ensures that there is a unique y(t) ∈ SOL(l, u, Qx(t), M)
for any x(t) ∈ Rn . Hence, we can write y as an implicit function of x ,

y(t) = y(x(t)).

From Lemma 2.1 we find for any x̃(t) ∈ Rn ,

‖y(x(t)) − y(x̃(t))‖ � βM‖Q‖‖x(t) − x̃(t)‖.
Let

G(x, t) = Ax(t) + By(t).

Then we have

‖G(x, t) − G(x̃, t)‖ � (‖A‖ + βM‖B‖‖Q‖)‖x(t) − x̃(t)‖ = L‖x(t) − x̃(t)‖.
By the Picard–Lindelöf theorem we know that (1.1) has a unique solution (x, y) in [−h, h] and x is
continuously differentiable and y is Lipschitz continuous.

Note that h is determined by the Lipschitz constant L , which is independent of the initial point
(x(0), 0) and T . Hence, we can repeat the argument on each interval [th,i , th,i+1] and claim that for
any T > 0 (1.1) has a unique solution (x, y) in [0, T ], where x is continuously differentiable and y is
Lipschitz continuous.

Now we show the convergence of {xk,i } and the a posteriori error estimate (2.6). Since G is Lip-
schitz continuous we can choose a bounded and closed domain D and a positive number Γ such that
(x(th,i ), th,i ) ∈ D and

‖G(x, t)‖ � Γ, (x, t) ∈ D.

Define an operator T : X → X

T (x)(t) = x(th,i ) +
∫ t

th,i

(Ax(s) + By(s)) ds,

where X is the closed subset

X := {x ∈ C[th,i−1, th,i+1]: ‖x − x(th,i )‖ � Γ h}
of the Banach space C[th,i−1, th,i+1]. It is clear that T maps X into itself since T is continuous and

‖T x(t) − x(th,i )‖ � Γ h.

Moreover, the following shows that the mapping T is contractive on X ,

‖(T (x) − T (x̃))(t)‖ =
∥∥∥∥∥
∫ t

th,i

(A[x(s) − x̃(s)] + B[y(s) − ỹ(s)]) ds

∥∥∥∥∥
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� (t − th,i )

[
‖A‖ max

s∈[0,t]
‖x(s) − x̃(s)‖ + ‖B‖ max

s∈[0,t]
‖y(s) − ỹ(s)‖

]
� h(‖A‖ + βM‖B‖‖Q‖) max

s∈[0,t]
‖x(s) − x̃(s)‖

� Lh‖x − x̃‖.
The convergence and the a posteriori error estimate (2.6) follow from the Banach fixed point theorem
(see Kress, 1998; Pang & Stewart, 2009). �
REMARK 2.3 In Kanat et al. (2006, Proposition 2.1) the existence of the solution of the differen-
tial linear complementarity system (1.2) is guaranteed by a more moderate assumption: {By: y ∈
SOL(l, u, Qx, M)} is a singleton for any x ∈ Rn . This is fulfilled in the setting that M is a P-matrix.
Here we use the assumption that M is a P-matrix to obtain a computable Lipschitz constant L in the
estimate (2.6). The constant L is necessary for deriving reliable error bounds.

Now we provide computable error bounds for xh(t) and yh(t) defined by the linear interpolation
(1.5) with the Euler method (2.1).

THEOREM 2.4 Suppose that M is a P-matrix. Let L = ‖A‖ + βM‖B‖‖Q‖, and h < 1/L . Assume that

‖x(th,i ) − xh,i‖ � bh,i
x .

Let

bh,i+1
x = 1

1 − Lh
bh,i

x + Lh2

1 − Lh
‖Axh,i + Byh,i‖.

Then we have for t ∈ [th,i , th,i+1],

‖x(t) − xh(t)‖ � bh,i+1
x (2.7)

and

‖y(t) − yh(t)‖ � βM‖Q‖bh,i+1
x . (2.8)

Proof. From the error estimate (2.6) of Theorem 2.2 we have that for any t ∈ [th,i , th,i+1],

‖x(t) − x1,i (t)‖� Lh

1 − Lh
‖x1,i (t) − x0,i (t)‖

� Lh

1 − Lh

∥∥∥∥∥
∫ t

th,i

[Ax0,i (s) + By0,i (s)] ds

∥∥∥∥∥
� Lh2

1 − Lh
‖Ax(th,i ) + By(th,i )‖

� Lh2

1 − Lh
‖A[x(th,i ) − xh,i ] + B[y(th,i ) − yh,i ] + Axh,i + Byh,i‖

� Lh2

1 − Lh
(Lbh,i

x + ‖Axh,i + Byh,i‖),

where the last inequality uses

‖A[x(th,i ) − xh,i ] + B[y(th,i ) − yh,i ]‖ � (‖A‖ + βM‖B‖‖Q‖)bh,i
x .
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From (2.5) and (2.2) we have

‖x1,i (t) − xh(t)‖�
∥∥∥∥∥x(th,i ) +

∫ t

th,i

[Ax0,i (s) + By0,i (s)] ds − xh,i −
∫ t

th,i

(Axh,i + Byh,i ) ds

∥∥∥∥∥
� ‖x(th,i ) − xh,i‖ +

∥∥∥∥∥
∫ t

th,i

[A(x(th,i ) − xh,i ) + B(y(th,i ) − yh,i )] ds

∥∥∥∥∥
� bh,i

x + hLbh,i
x .

We achieve the error bound (2.7) by adding the above two inequalities and by using

‖x(t) − xh(t)‖ � ‖x(t) − x1,i (t)‖ + ‖x1,i (t) − xh(t)‖.
The error bound (2.8) can be obtained by Lemma 2.1 with the relations

y(t) ∈ SOL(l, u, Qx(t), M) and yh(t) ∈ SOL(l, u, Qxh(t), M)

for t ∈ [th,i , th,i+1]. This completes the proof. �
As the Euler method starts from xh,0 = x(th,0), the initial error bh,0

x = 0 is available. Hence, the
error bounds (2.7) and (2.8) can be computed practically.

We end this section with an estimate of the Lipschitz constants of the solution x(t) and y(t) over
[th,i , th,i+1]. The Lipschitz constants will be used in the next section to derive the computable error
bounds for the time-stepping method.

THEOREM 2.5 In the setting of Theorem 2.4 the solution (x(t), y(t)) of (1.1) satisfies

‖x(s) − x(t)‖ � Lh,i
x |s − t |

and

‖y(s) − y(t)‖ � Lh,i
y |s − t |

for t ∈ [th,i , th,i+1], where the Lipschitz constants Lh,i
x and Lh,i

y are defined as follows:

Lh,i
x = Lbh,i+1

x + (1 + Lh)‖Axh,i + Byh,i‖
and

Lh,i
y = βM‖Q‖Lh,i

x .

Moreover, the Lipschitz constant Lh,i
x satisfies

Lh,i
x − ‖Axh,i + Byh,i‖ = O(h). (2.9)

Proof. First we estimate the bounds of ‖Axh(t) + Byh(t)‖ over [th,i , th,i+1]. It is clear that

‖xh(t) − xh,i‖ = t − th,i

h
‖xh,i+1 − xh,i‖ � ‖xh,i+1 − xh,i‖ = h‖Axh,i + Byh,i‖
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and

‖yh(t) − yh,i‖ � βM‖Q‖‖xh(t) − xh,i‖.
So we have

‖Axh(t) + Byh(t)‖ = ‖A(xh(t) − xh,i ) + B(yh(t) − yh,i ) + (Axh,i + Byh,i )‖
� (‖A‖ + βM‖B‖‖Q‖)h‖Axh,i + Byh,i‖ + ‖Axh,i + Byh,i‖
= (1 + Lh)‖Axh,i + Byh,i‖.

(2.10)

From (2.7), (2.8) and (2.10) we deduce

‖ẋ(t)‖ = ‖Ax(t) + By(t)‖
= ‖A(x(t) − xh(t)) + B(y(t) − yh(t)) + Axh(t) + Byh(t)‖
� Lbh,i+1

x + ‖Axh(t) + Byh(t)‖
� Lbh,i+1

x + (1 + Lh)‖Axh,i + Byh,i‖
=: Lh,i

x .

Using Lemma 2.1 with the relations y(t) ∈ SOL(l, u, Qx(t), M) and y(s) ∈ SOL(l, u, Qx(s), M), for
t, s ∈ [0, T ], we obtain

‖y(t) − y(s)‖ � βM‖Q‖‖x(t) − x(s)‖ � βM‖Q‖Lh,i
x |t − s|.

Now we show (2.9). By the Lipschitz continuity of Ax(t) + By(t) and the convergence of the Euler
method, there are positive scalars c and h̄ such that for all h ∈ (0, h̄] and all i = 0, 1, . . . , Nh ,

‖Axh,i + Byh,i‖ � c.

Let us set

α0 = 1

1 − Lh
and α1 = Lh2

1 − Lh
.

Then from the definition of bh,i+1
x and bh,0

x = 0 we have

bh,i
x � α0bh,i−1

x + α1c
� αi

0bh,0
x + (1 + α0 + · · · + αi−1

0 )α1c

= (αi
0 − 1)α1c

α0 − 1
= h(αi

0 − 1)c.

It is easy to see that

αi
0 = (α0 − 1 + 1)i � ei(α0−1) = e

iLh
1−Lh � e

T L
1−Lh .

Hence, bh,i
x = O(h). From the definition of Lh,i

x we obtain (2.9). �

3. Error bounds for time-stepping method

In this section we present computable error bounds for approximate solutions generated by the time-
stepping method (1.3) with a given parameter θ ∈ [0, 1].
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Let L = ‖A‖ + βM‖B‖‖Q‖, and let h̄ be a positive constant satisfying

h̄ <
1

L − θ‖A‖ = 1

(1 − θ)‖A‖ + βM‖B‖‖Q‖ .

Let {xh,1, . . . , xh,Nh } and {yh,1, . . . , yh,Nh } be generated by the time-stepping method (1.3) with the
step size h = T/Nh ∈ (0, h̄].

Similarly to (2.2) we can show that the piecewise linear function xh(t) defined by the linear interpo-
lation (1.5) with the time-stepping method (1.3) satisfies

xh(t) = xh,i +
∫ t

th,i

{
A[θxh,i + (1 − θ)xh,i+1] + Byh,i+1} ds. (3.1)

The following theorem presents computable error bounds for xh(t) and yh(t).

THEOREM 3.1 Suppose that M is a P-matrix. Assume that

‖x(th,i ) − xh,i‖ � εh,i
x .

Let

εh,i+1
x = 1 + hθ‖A‖

1 + hθ‖A‖ − Lh
εh,i

x + 1

2

L Lh,i
x

1 + hθ‖A‖ − Lh
h2,

where Lh,i
x is the Lipschitz constant of x(t) over [th,i , th,i+1]. Then we have for t ∈ [th,i , th,i+1]

‖x(t) − xh(t)‖ � εh,i+1
x (3.2)

and

‖y(t) − yh(t)‖ � βM‖Q‖εh,i+1
x . (3.3)

Moreover, we have

εh,0
x � · · · � εh,i

x � εh,i+1
x � · · · � εh,Nh

x = O(h). (3.4)

Proof. Subtracting (3.1) from

x(t) = x(th,i ) +
∫ t

th,i

[Ax(s) + By(s)] ds,

= x(th,i ) +
∫ t

th,i

[θ Ax(s) + (1 − θ)Ax(s) + By(s)] ds,

we have

x(t) − xh(t) = x(th,i ) − xh,i +
∫ t

th,i

θ A[x(s) − xh,i ] ds +
∫ t

th,i

(1 − θ)A[x(s) − xh,i+1] ds

+
∫ t

th,i

B[y(s) − yh,i+1] ds,
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= x(th,i ) − xh,i +
∫ t

th,i

θ A[x(s) − x(th,i ) + x(th,i ) − xh,i ] ds

+
∫ t

th,i

(1 − θ)A[x(s) − x(th,i+1) + x(th,i+1) − xh,i+1] ds

+
∫ t

th,i

B[y(s) − y(th,i+1) + y(th,i+1) − yh,i+1)] ds.

Using the Lipschitz continuity of x(t) and y(t) with the Lipschitz constants Lh,i
x and Lh,i

y =βM‖Q‖Lh,i
x ,

we obtain

‖x(t) − xh(t)‖� ‖x(th,i ) − xh,i‖ +
∫ t

th,i

θ‖A‖[Lh,i
x (s − th,i ) + ‖x(th,i ) − xh,i‖] ds

+
∫ t

th,i

(1 − θ)‖A‖[Lh,i
x (th,i+1 − s) + ‖x(th,i+1) − xh,i+1‖] ds

+
∫ t

th,i

‖B‖βM‖Q‖[Lh,i
x (th,i+1 − s) + ‖x(th,i+1) − xh,i+1‖] ds,

for t ∈ [th,i , th,i+1], where we use

‖y(th,i+1) − yh,i+1‖ � βM‖Q‖‖x(th,i+1) − xh,i+1‖.
Taking the maximum of the two sides of the above inequality and noting that

‖x(th,i+1) − xh,i+1‖ � max
t∈[th,i ,th,i+1]

‖x(t) − xh(t)‖,
we get

max
t∈[th,i ,th,i+1]

‖x(t) − xh(t)‖� h[(1 − θ)‖A‖ + βM‖B‖‖Q‖] max
t∈[th,i ,th,i+1]

‖x(t) − xh(t)‖

+ (1 + hθ‖A‖)εh,i
x + 1

2
h2L Lh,i

x .

Arranging the terms, we obtain

max
t∈[th,i ,th,i+1]

‖x(t) − xh(t)‖� 1 + hθ‖A‖
1 + hθ‖A‖ − Lh

εh,i
x + 1

2

L Lh,i
x

1 + hθ‖A‖ − Lh
h2 = εh,i+1

x .

This delivers the estimate (3.2). The estimate (3.3) follows from Lemma 2.1.
Now we show (3.4). It is obvious that εh,i

x � εh,i+1
x for i = 0, . . . , Nh . To show ε

h,Nh
x = O(h) we

note from (2.9) and the Lipschitz continuity of (x, y), and from the convergence of the Euler method,
that there is a positive constant Lx , which is independent of h, such that

max
1�i�Nh−1

Lh,i
x � Lx .

Denote

α0 = 1 + hθ‖A‖
1 + hθ‖A‖ − Lh

and

α1 = 1

2

L Lx

1 + hθ‖A‖ − Lh
.
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Then we can write εh,i+1
x � α0ε

h,i
x + α1h2. Using this inequality repeatedly and noting that

εh,0
x = ‖x(th,0) − xh,0‖ = 0,

we obtain the estimate

εh,i
x � αi−1

0 εh,0
x + α1h2(1 + α0 + · · · + αi

0) = αi
0 − 1

α0 − 1
α1h2 = 1

2
Lx (α

i
0 − 1)h.

It is easy to see

α0 − 1 = Lh

1 + hθ‖A‖ − Lh
and

α1

α0 − 1
= 1

2

(Lx )

h
.

In a similar way to the proof of Theorem 2.5, we obtain (3.4). �
We conclude this section by showing that the error bound

εh,i+1
x = 1 + hθ‖A‖

1 + hθ‖A‖ − Lh
εh,i

x + 1

2

L Lh,i
x

1 + hθ‖A‖ − Lh
h2

given in Theorem 3.1 (for the time-stepping method) is tighter than the error bound

bh,i+1
x = 1

1 − Lh
bh,i

x + Lh2

1 − Lh
‖Axh,i + Byh,i‖

given in Theorem 2.4 (for the Euler method). This is the novelty of our verification method. We first use
the Euler method to define bh,i+1

x and use it to get a Lipschitz constant

Lh,i
x = Lbh,i+1

x + (1 + Lh)‖Axh,i + Byh,i‖.
Next we present a sharp error bound εh,i+1

x by using the time-stepping method and the Lipschitz constant
Lh,i

x .

THEOREM 3.2 For a given small positive number c, let Tc = {t | ‖Ax(t) + By(t)‖ � c, t ∈ [0, T ]}.
Then there is an ĥ � h̄ such that for all h ∈ (0, ĥ], we have

εh,i+1
x < bh,i+1

x ,

if εh,i
x � bh,i

x , and [ih, (i + 1)h] ⊆ Tc.

Proof. By (2.9), there is an ĥ < h̄ such that for all h ∈ (0, ĥ], we have

Lh,i
x < 2‖Axh,i + Byh,i‖ if [ih, (i + 1)h] ⊆ Tc.

This, together with εh,i
x � bh,i

x , implies that

εh,i+1
x = 1 + hθ‖A‖

1 + hθ‖A‖ − Lh
εh,i

x + 1

2

L Lh,i
x

1 + hθ‖A‖ − Lh
h2

� 1

1 − Lh
εh,i

x + 1

2

L Lh,i
x

1 − Lh
h2

� 1

1 − Lh
bh,i

x + 1

2

L Lh,i
x

1 − Lh
h2

<
1

1 − Lh
bh,i

x + Lh2

1 − Lh
‖Axh,i + Byh,i‖ = bh,i+1

x . �
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REMARK 3.3 Note that εh,0
x = bh,0

x = 0. If at the initial point Ax(0) + By(0) = 0, then it is easy
to find that the unique solution x(t) of (1.1) satisfies Ax(t) + By(t) = 0, for t ∈ [0, T ], and bh,i

x ≡
0, Axh,i + Byh,i ≡ 0, Lh,i

x ≡ 0, εh,i
x ≡ 0. Suppose that Ax(0) + By(0) �= 0 then from Theorem 3.2,

there are tc � T and hc > 0, such that εh,i
x < bh,i

x for all small ih ∈ (0, tc) and h ∈ (0, hc).

REMARK 3.4 The error bounds increase with respect to t (see Fig. 1). This is normal for the validated
solution of the ODE and could be tightened by using a Taylor model of high order (see Berz & Makino,
2004), and in this case a piecewise integration technique must be adopted (see Wang & Wu, 2009).

4. Validated solution for DLVI

In this section we use the error bounds given in the last two sections to present an algorithm for delivering
the validated solution for the nonautonomous system⎧⎪⎨

⎪⎩
ẋ(t) = Ax(t) + By(t) + f (t),

y(t) ∈ SOL(l, u, Qx(t) + g(t), M),

x(0) = x0 ∈ Rn, t ∈ [0, T ],

(4.1)

where f : [0, T ] → Rn and g: [0, T ] → Rm .
The Euler method for the nonautonomous system (4.1) is defined by

xh,i+1 = xh,i + h[Axh,i + Byh,i + f (th,i )],

yh,i+1 ∈ SOL(l, u, Qxh,i+1 + g(th,i+1), M).

The time-stepping method (1.3) for the nonautonomous system (4.1) is defined by

xh,i+1 = xh,i + h{A[θxh,i + (1 − θ)xh,i+1] + Byh,i+1 + f (th,i+1)},
yh,i+1 ∈ SOL(l, u, Qxh,i+1 + g(th,i+1), M).

(4.2)

It is easy to extend error bounds for the Euler method, the Lipschitz constants Lh,i
x and error bounds

for the time-stepping method for the autonomous system (1.1) to the nonautonomous system (4.1). We
summarize these results in the following theorem.

THEOREM 4.1 Suppose that M is a P-matrix. Let L = ‖A‖ + βM‖B‖‖Q‖, let θ ∈ [0, 1] be a given
parameter and let h̄ be given such that

h̄ <
1

L − θ‖A‖ .

Let {xh,1, . . . , xh,Nh } and {yh,1, . . . , yh,Nh } be generated by the time-stepping method (4.2) with the
step size h ∈ (0, h̄] and the parameter θ . Assume that

‖x(th,i ) − xh,i‖ � εh,i
x .

Let

bh,i+1
x = 1

1 − Lh
εh,i

x + Lh2

1 − Lh
‖Axh,i + Byh,i + f (th,i )‖,

Lh,i
x = Lbh,i+1

x + (1 + Lh)‖Axh,i + Byh,i + f (th,i )‖,
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and

εh,i+1
x = 1 + hθ‖A‖

1 + hθ‖A‖ − Lh
εh,i

x + 1

2

L Lh,i
x + Lh,i

f

1 + hθ‖A‖ − Lh
h2,

where Lh,i
f is the Lipschitz constant of f over [th,i , th,i+1]. Then we have for t ∈ [th,i , th,i+1],

‖x(t) − xh(t)‖ � εh,i+1
x (4.3)

and

‖y(t) − yh(t)‖ � βM‖Q‖εh,i+1
x , (4.4)

where (x(t), y(t)) is the exact solution of (1.1) and (xh(t), yh(t)) is defined by (1.5).

Theorem 4.1 provides a method to compute the error bound for (xh(t), yh(t)) delivered by (4.2).
This method can be implemented in two steps.

(i) Make use of the error bounds (2.7) based on the Euler method to estimate the Lipschitz constant
Lh,i

x of x over the interval [th,i , th,i+1]:

Lh,i
x = Lbh,i+1

x + (1 + Lh)‖Axh,i + Byh,i + f (th,i )‖ + Lh,i
f ,

where Lh,i
f is the Lipschitz constant of f over [th,i , th,i+1].

(ii) Compute the error bounds (4.3) and (4.4) by using these Lipschitz constants Lh,i
x and Lh,i

f .

An algorithm for numerical implementation can be given as follows.

ALGORITHM 4.2 (Computing validated solution via time-stepping method). Compute ‖A‖, ‖B‖, ‖Q‖
and βM , where βM is defined by (2.4). Choose a step size 0 < h < 1/L , where L = ‖A‖+βM‖B‖‖Q‖.
Set xh,0 = x0, yh,0 ∈ SOL(l, u, Qxh,0, M) and bh,0

x = εh,0
x = εh,0

y = 0.

We compute the approximate solutions xh,i+1 and yh,i+1 and their error bounds εh,i+1
x and εh,i+1

y
by the following recursion for i = 0, . . . , Nh − 1:

bh,i+1
x := 1

1 − Lh
εh,i

x + Lh2

1 − Lh
‖Axh,i + Byh,i + f (th,i )‖,

Lh,i
x := Lbh,i+1

x + (1 + Lh)‖Axh,i + Byh,i + f (th,i )‖,
xh,i+1 := xh,i + h

{
A[θxh,i + (1 − θ)xh,i+1] + Byh,i+1 + f (th,i+1)

}
,

yh,i+1 ∈ SOL(l, u, Qxh,i+1 + g(th,i+1), M),

εh,i+1
x := 1 + hθ‖A‖

1 + hθ‖A‖ − Lh
εh,i

x + 1

2

L Lh,i
x + Lh,i

f

1 + hθ‖A‖ − Lh
h2,

εh,i+1
y := βM‖Q‖εh,i+1

x .

The output of Algorithm 4.2 consists of four piecewise linear functions

xh(t) − εh(t), yh(t) − εh
y (t) and xh(t) + εh(t), yh(t) + εh

y (t),
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which bound the exact solution (x(t), y(t)) of (4.1) over the interval [0, T ] as

xh(t) − εh(t) � x(t) � xh(t) + εh(t)

and

yh(t) − εh
y (t) � y(t) � yh(t) + εh

y (t).

Here εh(t) and εh
y (t) are the piecewise linear functions defined, with e = (1, . . . , 1)T ∈ Rn and ey =

(1, . . . , 1)T ∈ Rm , by

εh
j (t) = 1

h

(
(th,i+1 − t)εh,i+1

x + (t − th,i )ε
h,i+2
x

)
e

and

εh
y (t) = 1

h

(
(th,i+1 − t)εh,i+1

y + (t − th,i )ε
h,i+2
y

)
ey

for t ∈ [th,i , th,i+1), respectively. Here we use

‖x(t) − xh(t)‖ � εh,i+1
x � εh,i+2

x

to get

|x j (t) − xh
j (t)| � εh,i+1

x � εh
j (t)

for t ∈ [th,i , th,i+1) and j ∈ {1, . . . , n}.
REMARK 4.3 An important issue that we have to mention is the solution’s dependence on the initial
value x0. Under the P-matrix assumption the solution (x(t), y(t)) of the DLVI (1.1) is continuously
dependent on the initial value x0 and so are the error bounds proposed here. However, the error bounds
could be much tighter for some special initial value. Let y0 ∈ SOL(l, u, Qx0, M) satisfy the so-called
strict complementarity condition: for any i ∈ {1, . . . , m}

(y0 − l)i �= (Qx0 + My0 + g(0))i and (y0 − u)i �= (Qx0 + My0 + g(0))i .

Denote

τ = {i : (y0 − l)i < (Qx0 + My0 + g(0))i },
σ = {i : (y0 − u)i < (Qx0 + My0 + g(0))i < (y0 − l)i },
ς = {i : (y0 − u)i > (Qx0 + My0 + g(0))i }.

Then there must be a t̄ > 0 such that (x(t), y(t)) ∈ D for any t ∈ [0, t̄], where

D =
⎧⎨
⎩(x, y):

(y − l)i < (Qx + My + g(t))i , i ∈ τ
(y − u)i < (Qx + My + g(t))i < (y − l)i , i ∈ σ
(y − u)i > (Qx + My + g(t))i , i ∈ ς

⎫⎬
⎭ .

In this case our error bounds can be sharpened by replacing the constant βM by ‖K −1‖, which could be
much smaller, where

K =
⎛
⎝ I|τ | 0 0

Mστ Mσσ Mσς

0 0 I|ς |

⎞
⎠ ,
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and |τ | and |ς | denote the cardinality of the index sets τ and ς , respectively. For a time point t ∈
(th,i , th,i+1], from Theorem 2.5, we know

‖y(t) − y(0)‖ �
i∑

j=0

Lh, j
y t.

Therefore, by this means, it can be known how many steps ‖K −1‖ can be used.
As an example consider the DLVI (4.1), where l = 0, u = ∞, f (t) ≡ −2, g(t) ≡ 0 and

A = −1, B = (2, −1), Q =
(−1

1

)
, M =

(
1 0
μ 1

)
.

For the choice of the initial value x(0) = 1, the DLVI has the solution (x(t), y(t)) ∈ D for t ∈ [0, log 2),
where x(t) = y1(t) = 2 − et , y2(t) = 0 and

D = {(x, y): y1 > (Qx + My)1, y2 < (Qx + My)2}.
It is easy to compute that βM = 1 + |μ| and ‖K −1‖ = 1. And obviously βM >> ‖K −1‖ when |μ| is
large. By using ‖K −1‖ instead of βM we can obtain much tighter error bounds over the time interval
[0, log 2). However, for the initial value x(0) = 0, the strict complementarity condition is not fulfilled,
and in this case we have the solution (x(t), y(t)) ∈ D, where

D = {(x, y): y1 < (Qx + My)1, y2 > (Qx + My)2}.
We can compute ‖K −1‖ = βM = 1 + |μ| and therefore have to adopt the worst error estimate:

εh,i+1
x = 1 + hθ‖A‖

1 + hθ‖A‖ − Lh
εh,i

x + 1

2

L Lh,i
x + Lh,i

f

1 + hθ‖A‖ − Lh
h2,

εh,i+1
y = βM‖Q‖εh,i+1

x

by using βM (where L = ‖A‖ + βM‖B‖‖Q‖), which gives a safe bound for any initial value.

5. Numerical examples

In this section we apply Algorithm 4.2 to three examples to illustrate the efficiency of our error bounds.
We use the semismooth-Newton method (see Kanzow & Fukushima, 1998) to solve variational in-
equalities. The algorithm is coded in MATLAB 7. The roundoff errors are taken into account by using
INTLAB, a MATLAB toolbox for self-validating algorithms (see Rump, 1999; Alefeld & Mayer, 2000).

EXAMPLE 5.1 The collapse of the Tacoma Narrows suspension bridge in 1940 has attracted consider-
able attention from engineers and mathematicians. Lazer & McKenna (1990) contended that nonlinear
effects were the main factors leading to the large oscillations of the bridge. We consider a simple version
of their model (see Zill, 2001):

mẍ + q(x) = g(t),

where

q(x) =
{

αx if x � 0,
βx if x < 0.
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Here m is the mass of the section of the roadway, g is the applied force, q is an upward restoring force
when u � 0 and a downward restoring force when u < 0 and α and β are the Hooke’s constants for the
tension and compression, respectively. Note that if α � β, then we can write

q(x) = αx + max{0, (β − α)x}.
Let y = max{0, (β − α)x}. It is easy to see that

0 � y ⊥ y + (α − β)x � 0.

Introducing x1 = x and x2 = ẋ1, we obtain the following DLVI:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ1(t) = x2(t),

ẋ2(t) = − α

m
x1(t) − 1

m
y(t) + 1

m
g(t),

0 � y(t) ⊥ y + (α − β)x1 � 0,
x1(0) = 0, x2(0) = γ, t ∈ [0, T ].

In our numerical experiments we adopt the choices from Zill (2001)

α = 4, β = 1, g(t) = sin(4t).

We report in Table 1 the error bounds εh,N+1
x at the endpoint of the time interval for different choices of

the parameter γ , θ and the step size h. The numerical results indicate that the error bounds increase with
respect to θ . Moreover, Algorithm 4.2 delivers tight error bounds for a suitable step size. To illustrate
this we plot in the first row of Fig. 1 the approximate solutions xh

1 (t) and xh
2 (t), accompanied by the

trajectories xh
1 (t)±εh

1 (t) and xh
2 (t)±εh

2 (t), which bound from above and from below the exact solutions
x1(t) and x2(t), respectively. We plot in second row the error bounds at the endpoint with reference to
the parameter θ and to the step size h, respectively. We set h = 0.002 when θ is varying, and set θ = 1
when h is varying. The results for y are omitted as they are completely dependent of those for x .

EXAMPLE 5.2 (Maison & Kasai, 1992). We consider the linear spring model of seismic pounding be-
tween two adjacent structures. For i = 1, 2, let mi be the masses, ri be the viscous damping coefficients
and ki be the initial stiffness for the two structures, respectively. The coupling equation of motion for
the two adjacent structures subjected to horizontal ground motion üg has the form:⎧⎨

⎩
m1 ẍ1(t) + r1 ẋ1 + k1x1 + f (x1, x2) = −m1üg,
m2 ẍ2(t) + r2 ẋ2 + k2x2 − f (x1, x2) = −m2üg,
x1(0) = x2(0) = ẋ1(0) = ẋ2(0) = 0, t ∈ [0, T ],

(5.1)

where for i = 1, 2, ẍi , ẋi and xi , are, respectively, the acceleration, velocity and displacement of the
structures relative to the ground, f is the pounding force and has the form

f (x1, x2, ẋ1, ẋ2) =
{

α(x1 − x2 − d) if x1 − x2 > d,
0 if x1 − x2 � d.

Here d is the initial separation distance between the two structures and α > 0. Introducing x3(t) = ẋ1(t),
x4(t) = ẋ2(t) and y = f (x1, x2), and considering the expression of the pounding force f , we can write
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TABLE 1 Values of εh,N+1
x for Example 5.1 with T = 1

h 10−4 5 × 10−4 10−3 5 × 10−3 10−2

γ = 0.2 θ = 0 1.0492 × 10−1 5.3416 × 10−1 1.0929 × 10+0 6.5869 × 10+0 1.6871 × 10+1

θ = 0.3 1.0483 × 10−1 5.3198 × 10−1 1.0839 × 10+0 6.3108 × 10+0 1.5421 × 10+1

θ = 0.5 1.0478 × 10−1 5.3052 × 10−1 1.0780 × 10+0 6.1349 × 10+0 1.4542 × 10+1

θ = 0.7 1.0472 × 10−1 5.2908 × 10−1 1.0721 × 10+0 5.9654 × 10+0 1.3726 × 10+1

θ = 1 1.0464 × 10−1 5.2692 × 10−1 1.0633 × 10+0 5.7222 × 10+0 1.2609 × 10+1

θ = 0 1.3726 × 10−1 6.9913 × 10−1 1.4312 × 10+0 8.6687 × 10+0 2.2348 × 10+1

θ = 0.3 1.3715 × 10−1 6.9625 × 10−1 1.4194 × 10+0 8.3027 × 10+0 2.0413 × 10+1

γ = 0.5 θ = 0.5 1.3707 × 10−1 6.9433 × 10−1 1.4116 × 10+0 8.0698 × 10+0 1.9241 × 10+1

θ = 0.7 1.3700 × 10−1 6.9243 × 10−1 1.4038 × 10+0 7.8452 × 10+0 1.8154 × 10+1

θ = 1 1.3688 × 10−1 6.8958 × 10−1 1.3923 × 10+0 7.5232 × 10+0 1.6667 × 10+1

θ = 0 1.9662 × 10−1 9.9848 × 10−1 2.0651 × 10+0 1.2897 × 10+1 3.4359 × 10+1

θ = 0.3 1.9646 × 10−1 9.9805 × 10−1 2.0476 × 10+0 1.2343 × 10+1 3.1333 × 10+1

γ = 1.0 θ = 0.5 1.9635 × 10−1 9.9772 × 10−1 2.0361 × 10+0 1.1989 × 10+1 2.9503 × 10+1

θ = 0.7 1.9624 × 10−1 9.9492 × 10−1 2.0247 × 10+0 1.1649 × 10+1 2.7806 × 10+1

θ = 1 1.9607 × 10−1 9.9074 × 10−1 2.0077 × 10+0 1.1162 × 10+1 2.5487 × 10+1

θ = 0 2.4641 × 10−1 1.2565 × 10+0 2.5759 × 10+0 1.5781 × 10+1 4.1278 × 10+1

θ = 0.3 2.4621 × 10−1 1.2513 × 10+0 2.5545 × 10+0 1.5110 × 10+1 3.7680 × 10+1

γ = 1.5 θ = 0.5 2.4607 × 10−1 1.2478 × 10+0 2.5403 × 10+0 1.4683 × 10+1 1.4683 × 10+1

θ = 0.7 2.4594 × 10−1 1.2444 × 10+0 2.5262 × 10+0 1.4271 × 10+1 3.3482 × 10+1

θ = 1 2.4573 × 10−1 1.2392 × 10+0 2.5053 × 10+0 1.3682 × 10+1 3.0720 × 10+1

θ = 0 3.0216 × 10−1 1.5411 × 10+0 3.1603 × 10+0 1.9406 × 10+1 5.0910 × 10+1

θ = 0.3 3.0191 × 10−1 1.5347 × 10+0 3.1340 × 10+0 1.8581 × 10+1 4.6472 × 10+1

γ = 2.0 θ = 0.5 3.0174 × 10−1 1.5305 × 10+0 3.1166 × 10+0 1.8056 × 10+1 4.3785 × 10+1

θ = 0.7 3.0157 × 10−1 1.5263 × 10+0 3.0993 × 10+0 1.7550 × 10+1 4.1294 × 10+1

θ = 1 3.0132 × 10−1 1.5199 × 10+0 3.0737 × 10+0 1.6825 × 10+1 3.7887 × 10+1

the seismic motion equation (5.1) as the following DLVI:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = x3(t),
ẋ2(t) = x4(t),

ẋ3(t) = − r1

m1
x3 − k1

m1
x1 − 1

m1
y − üg,

ẋ4(t) = − r2

m2
x4 − k2

m2
x2 + 1

m2
y − üg,

0 � y(t) ⊥ y(t) − α(x1(t) − x2(t) − d) � 0,
x1(0) = x2(0) = x3(0) = x4(0) = 0, t ∈ [0, T ].

In our numerical experiment for Example 5.2 we set

m1 = m2 = 7.8,
r1 = 16.34, r2 = 8.17,
k1 = 3.4215, k2 = 0.8554,
d = 0.1, α = 6.
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FIG. 1. Numerical results for Example 5.1 (h = 0.002, θ = 1).

From the PEER Strong Database (http://peer.berkeley.edu/smcat/) we choose 27 ground motion records,
with different what is PGA? The records are divided into three groups: I, II and III, according to their
PGA levels. We report in Table 2 the error bound εh,i

x . In our setting the error bounds are tight. As
an illustration, of the record ‘Chichi Taiwan 1999’ (PGA = 0.821), we plot in Fig. 2 the displacement
approximation xh

1 (t) and xh
2 (t), and the approximate pounding force yh(t); these are also accompanied,

respectively, by the trajectories xh
1 (t) ± εh

1 (t), xh
2 (t) ± εh

2 (t) and yh(t) ± εh
y (t). Moreover, since the

pounding force y is crucial in our model we enlarge the plot in order to show what it looks like.

EXAMPLE 5.3 (van Bokhoven, 1981). Consider an electrical network with (ideal) diodes (see Fig. 3
for its layout). This circuit is widely applied in the maximum gauge of AC voltage (see Pregla, 1998).
We denote by VCi the voltage drop at the i th capacitor (with the capacity Ci ), denote by zi the current
intensity and by yi the voltage drop; denote z = (zi ), y = (yi ) and VC = (VCi ), where i = 1, 2, 3, 4.
Denote by U and I the voltage and the current intensity of the voltage and current source, respectively.
By Kirchhoff’s voltage and current law we write the state–space equations as

{
y = Gz + VC + g,

V̇c = Dz,

along with the constraints for i = 3, 4,

yi � 0, zi � 0, yi zi = 0.
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FIG. 2. Numerical results for Example 5.2 (h = 0.006, θ = 1).

This complementarity condition arises from the appearance of the diodes (see van Bokhoven, 1981).
On the general approach for deriving the state–space equations we refer to Anderson & Vongpanitlerd
(1973), for example. Here

G =

⎛
⎜⎜⎝

R1 R1 0 −R1
R1 R1 + R3 + R4 R2 −R1
0 R3 R3 0

−R1 −R1 0 R1 + R2

⎞
⎟⎟⎠ , g =

⎛
⎜⎜⎝

0
−I R3
−I R3

U

⎞
⎟⎟⎠

and D = diag(1/Ci ). G is called the impedance matrix. Rewriting the state-space equation and impos-
ing the lower and upper bounds li and ui on yi for i = 1, 2, we can use the DLVI

{
V̇C (t) = −DG−1VC (t) + DG−1 y(t) − DG−1g,

y(t) ∈ SOL(l, u, −G−1VC (t) − G−1g, G−1)

to simulate the circuit, where l = (li ) and u = (ui ), i = 1, 2, 3, 4, and l3 = l4 = 0, u3 = u4 = ∞. The
bounds l1, l2, u1 and u2 are determined by the physical parameters of the electrical elements.

In our numerical experiment for Example 5.3 we adopt the choices in van Bokhoven (1981, p. 42)

R1 = 50, R2 = R3 = R4 = 100,
C1 = 20, C2 = 10, C3 = 30, C4 = 20,
U (t) = cos(5t), I (t) = sin(3t).

These choices deliver a symmetric positive definite impedance matrix G, and so we have the estimate
βG−1 � 2‖G‖2 (see Chen & Xiang, 2007). The bounds l and u relate to the appearance of the diodes and
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FIG. 3. Layout of circuit for Example 5.3.

to the disruption potential of the capacitors. We set l = (−10, −10, 0, 0)T and u = (10, 10, +∞, ∞)T.
We choose the time span [0, 2] and the initial value condition VC (0) = 0. Here the voltage drop y and
the current intensity z are of real interest, so we report yh(t) and zh(t) = G−1(yh(t) − V h

C (t) − g). It is
clear that in [th,i , th,i+1] we have the estimate

‖z(t) − zh(t)‖ � εh,i
z := ‖G−1‖(εh,i

VC
+ εh,i

y ).

Since the numerical results (yh
1 (t), zh

1(t)) and (yh
3 (t), zh

3(t)) are, respectively, very similar to (yh
2 (t),

zh
2(t)) and (yh

4 (t), zh
4(t)), we plot the approximate solutions yh

1 (t) and yh
3 (t) in the first row of Fig. 4 and

plot zh
1(t) and zh

3(t) in the first row of Fig. 5; they are all accompanied by the trajectories yh
1 (t)±(εh

y (t))1

and yh
3 (t) ± (εh

y (t))3, zh
1(t) ± εh

1 (t) and zh
3(t) ± εh

3 (t), respectively. In the second row of Figs 4 and 5
we enlarge the plots to show what they look like.
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FIG. 4. Numerical results for Example 5.3 (h = 0.002, θ = 1).

FIG. 5. Numerical results for Example 5.3 (h = 0.002, θ = 1).

6. Final remarks

This paper first gives a numerical verification method for computing error bounds of approximate
solutions generated by the time-stepping method. The novelty of this method is the use of computable
error bounds for the variational inequality and the Euler method to define computable Lipschitz
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constants for the solution of the DLVI. The Lipschitz constants are necessary to derive computable
and sharper error bounds for the approximate solutions generated by the time-stepping method. In many
applications we cannot find an exact solution of the DLVI. Using this verification method we can deter-
mine the existence region of the exact solution. Moreover, the existence region tightly contains the exact
solution and the error bounds go to zero as the step size h goes to zero.
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Baden-Württemburg (to Z.W.).

REFERENCES

ALEFELD, G. E. & MAYER, G. (2000) Interval analysis: theory and applications. J. Comput. Appl. Math., 121,
421–464.

ANDERSON, B. D. O. & VONGPANITLERD, S. (1973) Network Analysis and Synthesis: A Modern Systems Theory
Approach. Englewood Cliffs, NJ: Prentice-Hall.

BERZ, M. & MAKINO, K. (2004) Suppression of the wrapping effect by Taylor model-based validated integrators.
MSU Report MSUHEP, vol. 40910. East Lansing, MI: Michigan State University.

BILLUPS, S. C. & FERRIS, M. C. (1997) QPCOMP: a quadratic programming based solver for mixed comple-
mentarity problems. Math. Prog. Ser. B, 76, 533–562.

BRUNNER, H. (2004) Collocation Methods for Volterra Integral and Related Functional Differential Equations.
Cambridge Monographs on Applied and Computational Mathematics 15, Cambridge: Cambridge University
Press.

CHEN, X. & MAHMOUD, S. (2008) Implicit Runge-Kutta methods for Lipschitz continuous ordinary differential
equations. SIAM J. Numer. Anal., 46, 1266–1280.

CHEN, X., QI, L. & SUN, D. (1998) Global and superlinear convergence of the smoothing Newton method and its
application to general box constrained variational inequalities. Math. Comput., 67, 519–540.

CHEN, X. & XIANG, S. (2007) Perturbation bounds of P-matrix linear complementarity problems. SIAM J. Optim.,
18, 1250–1265.

CHEN, X. & XIANG, S. (2010) Implicit solution function of P0 and Z matrix complementarity constraints. Math.
Program. Ser. A, 128, 1–18.

CHEN, X. & YE, Y. (1999) On homotopy-smoothing methods for box-constrained variational inequalities. SIAM
J. Control Optim., 37, 589–616.

COTTLE, R. W., PANG, J. S. & STONE, R. E. (1992) The Linear Complementarity Problem. Boston: Academic
Press.

FACCHINEI, F. & PANG, J. S. (2003) Finite-Dimensional Variational Inequalities and Complementarity Problems.
Springer Series in Operations Research. New York: Springer.

FERRIS, M. C. & PANG, J. S. (1997) Engineering and economic applications of complementarity problems. SIAM
Rev., 39, 669–713.

981

 at Pao Y
ue-K

ong L
ibrary on A

ugust 8, 2012
http://im

ajna.oxfordjournals.org/
D

ow
nloaded from

 

http://imajna.oxfordjournals.org/


X. CHEN AND Z. WANG
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