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Nonsmooth, nonconvex minimization

min
x∈X

f(x),

where X ⊆ Rn is convex but f : Rn → R is

not convex

not differentiable

not locally Lipschitz in some applications

Outline
Mathematical models and applications:

Traffic assignment under uncertainty
Distribution of points on the sphere
Variable selection, signal reconstruction

Smoothing algorithms
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Part I: Mathematical models and applications

I. Stochastic complementarity problems
— Traffic assignment under uncertainty

M. Fukushima (Kyoto Univ.)
A. Sumalee (PolyU, Transportation engineering)

C. Zhang (Beijing Jiaotong Univ.), et al.

II. Optimization on the sphere
— Distribution of points on the sphere

I. Sloan, R. Womersley (Univ. New South Wales)
A. Frommer, B. Lang (Wuppertal Univ.)

J. Ye (Victoria Univ.), et al.

III. The ℓ2-ℓp (0 < p < 1) minimization
— Variable selection, signal reconstruction

Y. Ye (Stanford Univ.)

F. Xu (Xi’an Jiaotong Univ.), W. Zhou (PolyU), et al.
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I. Stochastic complementarity problems
Nonlinear complementarity problem (NCP): Given F : Rn → Rn,

x ≥ 0, F (x) ≥ 0, xTF (x) = 0.

The NCP can be reformulated as a system of nonlinear equations

Φ(x, F (x)) =









φ(x1, F1(x))
...

φ(xn, Fn(x))









= 0

or a minimization problem

min
x∈Rn

‖Φ(x, F (x))‖2

by using an NCP function φ.
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NCP functions

A function φ : R2 → R is called an NCP-function if

φ(a, b) = 0 ⇔ ab = 0, a ≥ 0, b ≥ 0.

Example of NCP functions

φNR(a, b) = min(a, b) natural residual
φFB(a, b) = a+ b−

√
a2 + b2 Fischer-Burmeister function

φCCK(a, b) = λφFB(a, b) + (1− λ)a+b+ penalized FB function

Smoothing Newton methods and semismooth Newton methods are
efficient to solve the NCP via the nonsmooth equations Φ(x, F (x)) = 0

or minimization problem min ‖Φ(x, F (x))‖2.
Cottle-Pang-Stone (1992), Facchinei-Pang (2000), Ferris-Pang (1997), B.Chen-Harker

(1997), C.Chen-Mangasarian (1996), Chen-Qi-Sun (1998), Chen-Ye (1999),

Chen-Chen-Kanzwo (2000), Luo-Tseng(1997), Yamashita-Fukushima (1997), Qi-Sun

(1993), Ralph (1994) et al.
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Stochastic NCP using an NCP function
Stochastic NCP: Given F : Rn × Ω→ Rn,

x ≥ 0, F (x, ω) ≥ 0, xTF (x, ω) = 0, for ω ∈ Ω.

Expected value (EV) formulation

x ≥ 0, E[F (x, ω)] ≥ 0, xTE[F (x, ω)] = 0

⇔ min
x∈Rn

‖Φ(x,E[F (x, ω)])‖2

Expected residual minimization (ERM) formulation

min
x≥0

E[‖Φ(x, F (x, ω))‖2]

Best worst case(BWC) formulation

min
x≥0

sup
ω∈Ω
‖Φ(x, F (x, ω))‖2
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Traffic assignment
Nguyen and Dupuis Network
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Sioux Falls network
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Wardrop’s user equilibrium
Wardrop’s user equilibrium At the equilibrium point no traveler
can change his route to reduce his travel cost.

For one scenario ω ∈ Ω, the static Wardrop’s user equilibrium is
equivalent to NCP

x ≥ 0, F (x, ω) ≥ 0, xTF (x, ω) = 0,

where

x =

(

y

u

)

, F (x, ω) =

(

G(y, ω)− ΓTu

Γy −Q(ω)

)

.

y : a path flow pattern, u : a travel cost vector.

G : path travel cost function
Γ : Origin-Destination(OD) route incidence matrix
Q : demand on each OD-pair
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ERM formulation
Expected residual minimization (ERM) formulation

min
x≥0

f(x) := E[‖min(x, F (x, ω))‖2] (ERM)

Chen-Fukushima(MOR2005),
Fang-Chen-Fukushima(SIOPT2007).

Error bounds

E[‖x− x∗ω‖] ≤ kE[‖min(x, F (x, ω))‖2]

E[dist(x−X∗
ω)] ≤ kE[‖min(x, F (x, ω))‖2]

Chen-Xiang (MP 2006, 2009, SIOPT 2007).

Smoothing algorithms for solving ERM
Chen-Zhang-Fukushima(MP2009), Zhang-Chen(SIOPT2009).

Applications in traffic assignment
Zhang-Chen-Sumalee (2009)

Nonsmooth, nonconvex Minimization Problems with Applications 9/47



II. Optimization on the sphere

S
2 = {z ∈ R3 : ‖z‖2 = 1 }, Area |S2| = 4π

Pt: the linear space of restrictions of polynomials

of degree ≤ t in 3 variables to S
2.

dim Pt= (t + 1)2
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Distribution of points on the sphere

Pt can be spanned by an orthonormal set of real spherical harmonics
with degree r and order k,

{ Yrk | k = 1, . . . , 2r + 1, r = 0, 1, . . . , t}.

Let XN = {z1, . . . , zN} ⊂ S2 be a set of N -points on the sphere.

The Gram matrix
Gt(XN ) = Y (XN )TY (XN ),

where Y (XN ) ∈ R(t+1)2×N and the j-th column of Y (XN ) is given by

Yrk(zj), k = 1, . . . , 2r + 1, r = 0, 1, . . . , t.
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Four sets of points on the sphere
Set of points XN = {z1, . . . , zN} ⊂ S2

minimum energy system argmin

N
∑

i 6=j

1

‖zi − zj‖
extremal system argmax det(Y (XN )Y (XN )T )

minimum cond points argmin
λmax(Y (XN )Y (XN )T )

λmin(Y (XN )Y (XN )T )

(Chen-Womersley-Ye 2010)

spherical t−design
∫

S2

p(z)dz =
4π

N

N
∑

i=1

p(zi), ∀p ∈ Pt

⇔ F (XN ) = 0 (Chen-Womersley, SINUM2006)

Well conditioned spherical t-design
(Chen-Frommer-Lang, 2009, An-Chen-Sloan-Womersley 2010)
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Spherical 100-design with N = 10201 points
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III. The ℓ2-ℓp (0 < p < 1) minimization

Given a matrix A ∈ Rm×n, a vector b ∈ Rm, a number λ > 0,

min
x∈Rn

‖Ax− b‖22 + λ‖x‖pp (ℓ2-ℓp)

Nonsmooth, nonconvex, non-Lipschitz minimization

Compressive sensing, sparse solutions of systems

Signal reconstruction, variable selection, image processing.

‖x‖0 =

n
∑

i=1

xi 6=0

|xi|0 ←− ‖x‖pp =

n
∑

i=1

|xi|p −→ ‖x‖1 =

n
∑

i=1

|xi|

Bruckstein-Donoho-Elad (2009), Candén-Wakin-Boyd (2008),
Chartrand-Staneva (2008), Chartrand-Yin (2009), Foucart-Lai (2009),
Ge-Jiang-Ye (2010), Lai-Wang (2009), Nikolova et al (2008), Xu et al
(2010).
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The lower bound theory I

Chen-Xu-Ye, 2009

Let ai be the ith column of A. Let

Li =

(

λp(1− p)
2‖ai‖2

)
1

2−p

, i = 1, · · · , n.

Theorem 1 For any local solution x∗ of (ℓ2-ℓp), the following
statements hold.

x∗i ∈ (−Li, Li) ⇒ x∗i = 0, i ∈ {1, · · · , n}.
The columns of the sub-matrix B := AΛ ∈ Rm×|Λ| of A are linearly
independent, where Λ = support {x∗}.
(ℓ2-ℓp) has a finite number of local minimizers.
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The lower bound theory II

Chen-Xu-Ye 2009

For an arbitrarily given point x0, let

L =

(

λp

2‖A‖
√

f(x0)

)
1

1−p

.

Theorem 2 Let x∗ be any local minimizer of (ℓ2-ℓp) satisfying
f(x∗) ≤ f(x0). Then we have

x∗i ∈ (−L,L) ⇒ x∗i = 0, i ∈ {1, · · · , n}.
The number of nonzero entries in x∗ is bounded by

‖x∗‖0 ≤ min

(

m,
f(x0)

λLp

)

.
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Reweighted ℓ1 minimization algorithm (RL1)

Chen-Zhou 2010

Given ε > 0. The Iterative RL1 (IRL1) for (ℓ2-ℓ1):

xk+1 = arg min
x∈Rn

‖Ax− b‖22 + λ‖W kx‖1

W k = diag(wk
i ), wk

i =
p

(|xk
i |+ ε)1−p

, i = 1, . . . , n.

Extensive numerical experiments (Candén-Wakin-Boyd(2008),
Chartrand-Staneva(2008), et al ) have shown that the IRL1 is very
efficient. However no convergence results have been given.

Theorem 3 Let {xk} be a sequence generated by the IRL1. Then the
sequence {xk} converges to a stationary point x∗ of

min
x∈Rn

‖Ax− b‖22 + λ

n
∑

i=1

(|xi|+ ε)p, 0 < p < 1.
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Part II: Smoothing algorithms

Definition 1: Let f : Rn → R be locally Lipschitz. We call
f̃ : Rn ×R+ → R a smoothing function of f , if f̃(·, µ) is
continuously differentiable in Rn for any fixed µ > 0, and

lim
µ↓0

f̃(x, µ) = f(x), for anyx ∈ Rn.

Subdifferential associated with f̃

Gf̃ (x) = {V : ∃N ∈ N ♯
∞, x

ν
−→
N
x, µν ↓ 0 with ∇xf̃(xν , µν) −→

N
V }.

Rockafellar and Wets (1998): Gf̃ (x) is nonempty and bounded,

∂f(x) = co{ lim
xi→ x

xi∈Df

∇f(xi)} ⊆ coGf̃ (x).

In many cases: ∂f(x) = coGf̃

Nonsmooth, nonconvex Minimization Problems with Applications 18/47



Smoothing algorithms

Choose a smoothing function f̃(x, µ) and an algorithm for smooth
problems

Use f̃(xk, µk) and its gradient ∇f̃(xk, µk) at each step of the
algorithm

Update the smoothing parameter µk at each step. The updating
scheme plays a key role in convergence analysis of the smoothing
method.

Challeges:

1 How to choose a smoothing function and an algorithm for the
problem ?

2 How to update the smoothing parameter µk ?

We develop efficient smoothing projected gradient method and
smoothing conjugate gradient method.
We prove global convergence of these methods to a stationary point.
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Smoothing gradient method

Step 1. Choose constants σ, ρ ∈ (0, 1), and an initial point x0. Set k = 0.

Step 2. Compute the gradient

gk = ∇f̃(xk, µk).

Step 3. Compute the step size νk by the Armijo line search, where
νk = max{ρ0, ρ1, · · · } and ρi satisfies

f̃(xk − ρigk, µk) ≤ f̃(xk, µk)− σρigT
k gk.

Set xk+1 = xk − νkgk.

Step 4. If ‖∇f̃(xk+1, µk)‖ ≥ nµk, then set µk+1 = µk; otherwise, choose
µk+1 = σµk.

Smoothing conjugate gradient method Chen-Zhou (SIIMS 2010).
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Smoothing model of the ℓ2-ℓp minimization

Let ψµ(x) = (sµ(x1), · · · , sµ(xn))T , and

sµ(t) =







|t| |t| > µ

t2

2µ
+
µ

2
|t| ≤ µ.

min
x∈Rn

f(x, µ) := ‖Ax− b‖2 + λ‖ψµ(x)‖pp.

For any µ > 0, the set of local minimizers X ∗
µ of the smoothing

model is nonempty and bounded, and fµ is continuously
differentiable.
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Smooth version of the lower bound theory

Let

L =

(

λp

2‖A‖
√

f(x0)

)
1

1−p

and Li =

(

λp(1− p)
2‖ai‖2

)
1

2−p

, i = 1, · · · , n.

Theorem 4

For any local minimizer x∗µ of the smoothing (ℓ2-ℓp),

(xµ)∗i ∈ (−Li, Li) ⇒ |(x∗µ)i| ≤ µ, i ∈ {1, · · · , n}.

For any local minimizer x∗µ of the smoothing (ℓ2-ℓp) satisfying
f(x∗µ) ≤ f(x0),

(xµ)∗i ∈ (−L, L) ⇒ |(x∗µ)i| ≤ µ, i ∈ {1, · · · , n}.
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Stationary Point
For x ∈ Rn, let X = diag(x).

(1) x is said to satisfy the first order necessary condition (KKT
condition) of the ℓ2-ℓp problem if

2XAT (Ax− b) + λp|x|p = 0.

(2) x is said to satisfy the second order necessary condition of the
ℓ2-ℓp problem if

2XATAX + λp(p− 1)diag(|x|p)

is positive semidefinite.

Let X be the set of KKT points of the ℓ2-ℓp problem and Xµ be the set
of KKT points of its smoothing problem.
Theorem 5 Let xµ ∈ Xµ. We have

lim
µ↓0

dist(xµ,X ) = 0.
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Properties of smoothing function
f(x, µ) is continuously differentiable and

| f(x, µ)− f(x) |≤ λn
(µ

2

)p

.

For any x̂ ∈ Rn, the level set

Sµ(x̂) = {x ∈ Rn
∣

∣f(x, µ) ≤ f(x̂, µ)}

is bounded;

The gradient of f(·, µ) is Lipschitz continuous.

Theorem 6 From any initial point x0, the sequence {xk} generated by
the SG method satisfies

µk ≡ ε, for all large k and lim
k→∞

inf‖∇f(xk, µk)‖ = 0.
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Error bound
Theorem 7 There is µ̄ > 0, such that for any µ ∈ (0, µ̄] and any
xµ ∈ Xµ, there is x∗ ∈ X such that

Γµ := {i
∣

∣|(x∗µ)i| ≤ µ, i ∈ N} = {i
∣

∣|x∗i | = 0, i ∈ N} =: Γ.

Define

(x̄∗µ)i =

{

0 i ∈ Γ

(xµ)i i ∈ N\Γ.

Let B be the submatrix of A whose columns are indexed by N\Γ.
Suppose λmin(BTB) >

λp(1− p)
2

Lp−2, then

∥

∥x̄∗µ − x∗
∥

∥ ≤
∥

∥G−1
∥

∥

∥

∥∇f(x̄∗µ, µ)
∥

∥.

where G = 2BTB + λp(p− 1)Lp−2I, and λmin(BTB) denotes the
smallest eigenvalue of BTB.
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Orthogonal Matching Pursuit (OMP)
Mallat-Zhang (1993), Chen-Donoho-Saunders (1998), Mruckstein-Donoho-Elad (2009)

Parameters: Given the error threshold β.
Initialization: Set the initial point x0 = 0, the initial residual

r0 = b− Ax0 = b, the initial solution support Λ0 = ∅.
Main Iteration: Increment k by 1 and perform the following steps:

• Find the index jk that solves the optimization problem

jk = arg max
‖(Ak−1xk−1 − b)Taj‖22

‖aj‖
for j ∈ N \ Λk−1.

• Let Λk = Λk−1

⋃

[jk].

• Find xk = arg min{ ‖Ax− b‖22 | support{x} = Λk }.
• Calculate the new residual rk = Axk − b.
• If ‖AT rk‖ < β, stop.

Output: A point xomp := xk, a set Λ=support(xomp)

and a matrix B = AΛ ∈ Rm×|Λ|.
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OMP-SCG hybrid method

Step 1. Using the OMP to get xomp, Λ =support(xomp), and
B = AΛ ∈ Rm×|Λ|.

Step 2. Using the SCG algorithm with the initial point x0 = xomp to find

y∗ = arg min ‖By − b‖22 + λ‖y‖pp.

Step 3. Output an numerical solution x∗, where

x∗j =

{

y∗j |yj | ≥ L and j ∈ Λ,

0 j 6∈ Λ.
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Other smoothing functions

min
x∈Rn

f(x) := ‖Ax− b‖22 + λ

n
∑

i=1

ϕ(xi),

ϕ is a potential function ( α ∈ (0, 1) is a parameter)

Convex Non Lipschitz

(f1) ϕ(t) = |t| ϕ(t) = |t|p
Non convex Non Lipschitz

(f2) ϕ(t) = |t|α ϕ(t) = (|t|α)p

(f3) ϕ(t) =
α|t|

1 + α|t| ϕ(t) =
α|t|p

1 + α|t|p
(f4) ϕ(t) = log(α|t|+ 1) ϕ(t) = log(α|t|p + 1)

|t| ⇒ sµ(t) =

{

|t| |t| > µ
t2

2µ
+ µ

2 |t| ≤ µ.
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Thank you

Note: The remainder of slides is for questions.
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Computational results

LASSO: Solve the ℓ2-ℓ1 problem by the least squares algorithm (2004).

IRL1: At kth iteration, use LASSO to solve the following ℓ2-ℓ1 problem

min ‖Ax− b‖22 + λ

n
∑

i=1

|xi|
√

|xi|k + ε
,

where ε > 0 is a parameter.

OMP-SCG
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Example 1: Variable selection

This example is artificially generated and is used firstly in
Tibshirani (1996).

True optimal solution x∗ = (3, 1.5, 0, 0, 2, 0, 0, 0)T .

We simulated 100 data sets consisting of m observations from the
model

Ax = b+ σǫ,

where ǫ is standard normal.

MSE: The mean squared errors over the test set;
ANZ: The average number of correctly identified zero coefficient;
NANZ: The average number of the coefficients erroneously set

to zero over test set.
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Results for variable selection

m σ Approach MSE ANZ NANZ

LASSO 0.4730 4.77 0.23

40 3 IRL1 0.4688 4.83 0.17

OMP-SCG 0.4755 4.88 0.12

LASSO 0.1595 4.77 0.23

40 1 IRL1 0.1541 4.86 0.14

OMP-SCG 0.1511 4.91 0.09

LASSO 0.3582 4.92 0.08

60 1 IRL1 0.3503 4.93 0.07

OMP-SCG 0.3464 4.95 0.05

The OMP-SCG performs the best, followed by LASSO and IRL1.
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Example 2: Prostate cancer

This data sets are from the UCI Standard database.

The data set consists of the medical records of 97 patients who
were about to receive a radical prostatectomy. The predictors are
eight clinical measures: lcavol, lweight, age, lbph, svi,lcp, gleason
and pgg45.

One of the main aims here is to identify which predictors are more
important in predicting the response.
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Results for prostate cancer

Parameter LASSO IRL1 OMP-SCG

x1(lcavol) 0.545 0.6187 0.6436

x2(lweight) 0.237 0.2362 0.2804

x3(lage) 0 0 0

x4(lbph) 0.098 0.1003 0

x5(svi) 0.165 0.1858 0.1857

x6(lcp) 0 0 0

x7(gleason) 0 0 0

x8(pgg45) 0.059 0 0

Number of nonzreo 5 4 3

Prediction error 0.478 0.468 0.4419

SCG and OMP-SCG succeed in finding three main factors and
have better prediction accuracy than IRL1 and LASSO.
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Error bound

For given ε,

∥

∥x̄∗µ − x∗
∥

∥ ≤
∥

∥G−1
∥

∥

∥

∥∇f(x̄∗µ, µ)
∥

∥

=: error bound

µ L λ error bound

0.001 0.015 0.1304 1.5793× 10−5

0.0001 0.0119 0.1164 5.7310× 10−6

0.00001 0.0119 0.1164 5.5721× 10−6
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Example 3: signal reconstruction

A real-valued, finite-length signal x ∈ Rn and x is T-sparse;

A ∈ Rm×n is a Gaussian random matrix.

Problem LASSO IRL1 OMP-SCG

(Error,Time) (Error,Time) L λ Error Time

n = 512

T = 60 (5.33 × 10−4, (1.29 × 10−5, 0.8 0.002 1.12 × 10−16 1.02

m = 184 0.653) 6.82)

n = 512

T = 60 (38.64, (2.41 × 10−5, 0.7 0.001 1.03 × 10−16 1.34

m = 182 0.43) 7.84)

n = 512

T = 130 (122.25, (119.43, 0.00001 0.00006 0.41 4.03

m = 225 0.69) 19.99)
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f1(t) = |t|, f2(t) = |t| 12 , f3(t) =
α|t|

1 + α|t| , f4(t) = log(α|t|+ 1)
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Results of prostate cancer by all the PFs

p (L, Number of nonzero, Prediction error)

f1 f2 f3 f4

0.9 (0.0001, 4, 0.4754) (0.011, 4, 0.473) (2.500, 4, 0.475) (2.040, 4, 0.474)

0.8 (0.0015, 4, 0.4740) (0.013, 4, 0.468) (1.990, 4, 0.474) (1.851, 4, 0.474)

0.7 (0.0050, 4, 0.4741) (0.012, 4, 0.465) (1.755, 4, 0.474) (1.550, 4, 0.474)

0.6 (0.0084, 4, 0.4661) (0.015, 3, 0.446) (1.545, 4, 0.475) (1.344, 4, 0.475)

0.5 (0.0119, 3, 0.4419) (0.016, 3, 0.445) (1.420, 3, 0.477) (1.200, 3, 0.483)

0.4 (0.0148, 3, 0.4456) (0.014, 3, 0.445) (1.480, 3, 0.477) (1.114, 3, 0.484)

0.3 (0.0176, 3, 0.4429) (0.012, 3, 0.443) (1.590, 3, 0.484) (1.190, 3, 0.483)

0.2 (0.0196, 3, 0.4359) (0.018, 3, 0.443) (1.955, 3, 0.483) (1.240, 3, 0.482)
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signal reconstruction
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Remarks on lower bound theory

The theory establishes a theoretical justification for “zeroing”
some small entries in an approximate solution.

The theory gives a theoretical explanation why using ‖x‖pp can
generate more sparse solutions.

The theory shows clearly the relationship between the sparsity of
the solution and the choice of the regularization parameter and
norm.

It provides a systematic mechanism for selecting the
regularization parameter.
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Notations
Qr(ω): demand on each OD-pair

Ca(ω): capacity on each link

K: link-route incidence matrix

Γ: OD-route incidence matrix

The generalized Bureau of public road (BPR) link cost function

Ta(v, ω) = t0a

(

1 + ba

( va

Ca(ω)

)na
)

,

where t0a, ba and na are given parameters and va is the link flow.

The nonadditive path travel cost function

G(y, ω) = η1K
TT (Ky, ω) + Ψ(KTT (Ky, ω)) + Λ(y, ω),

where y is the path flow, η1 > 0 is the time-based operating costs
factor, Ψ is the translation function converting time T to money,
and Λ is the perturbed financial cost function.
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Main Contribution for the ℓ2-ℓp minimization

joint work with F. Xu, Y. Ye, W. Zhou

We derive a lower bound theory for nonzero entries in every local
minimizer of the ℓ2-ℓp minimization problems. This theory shows
clearly the relationship between the sparsity of the solution and
the choice of parameters in the model.

We develop a hybrid orthogonal matching pursuit-smoothing
conjugate gradient method.

We prove global convergence of the ℓ1 reweighted minimization
algorithm.

We prove uniqueness of solution under the truncated null space
property which is weaker than the restricted isometry property
introduced by Candés and Tao (2005).
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Uniqueness

min
x∈Rn

‖xT ‖pp, s.t. Ax = b, (1)

where ‖xT ‖pp =
∑

i∈T

|xi|p and T is a subset of {1, . . . , n}.

F = {x |Ax = b}, S(x) = { i | xi 6= 0 }

Theorem 3 Let x∗ ∈ F and T be a subset of {1, . . . , n}. Let
S = T ∩ S(x∗). If S = ∅, then x∗ is a solution of (1). If S 6= ∅ and

‖ηS‖p ≤ γ‖η(T∩SC)‖p, γ < 1

for all η ∈ N(A), then x∗ is the unique solution of (1).

Ge-Jiang-Ye (2010) showed that for T = {1, . . . , n}, (1) is NP-hard.
The set of basic feasible solutions is the set of local minimizers.
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Truncated null space property

A satisfies the t-null space property(NSP) of order K for γ > 0,
0 < t ≤ n if

‖ηS‖p ≤ γ‖η(T∩SC)‖p
|T | = t, all subsets S ⊂ T with |S| ≤ K, and all η ∈ N(A).

Theorem 4 If A satisfies the restricted isometry property

αs‖x‖2 ≤ ‖Ax‖2 ≤ βs‖x‖2, ∀ ‖x‖0 ≤ s

β2
2t1

α2
2t1

− 1 < 4(
√

2− 1)
( t1

K

)
1

p
− 1

2

,

for some t1 ≥ K then A satisfies the t-NSP of order K for γ < 1 and
|T | = n.
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