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CONVERGENCE OF THE EDIIS ALGORITHM FOR NONLINEAR EQUATIONS

XIAOJUN CHEN* AND C. T. KELLEYT

Abstract. The EDIIS (Energy Direct Iteration on the Iterative Subspace) algorithm was designed to globalize Anderson
acceleration, a method for improving the performance of fixed point iteration. The motivating application is electronic structure
computations. In this paper we prove a convergence result for that algorithm and illustrate the theory with a computational
example.
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1. Introduction. The purpose of this paper is to analyze the convergence of the EDIIS (Energy Direct
Inversion on the Iterative Subspace) algorithm [21]. EDIIS is a modification of Anderson acceleration [1] or
the DIIS (Direct Inversion on the Iterative Subspace) method [21,22,34,37]. EDIIS relaxes the need for a
sufficiently accurate initial iterate. EDIIS is the default solver for the SCF (self consistent field) iteration in
the widely-used Gaussian [12] quantum chemistry code. We prove convergence from any starting point in
a convex set in which the fixed point map is a contraction and then analyze local convergence. Our local
convergence is an improvement of the result in [41] and applies to both EDIIS and Anderson acceleration.

We will begin this introductory section with a review of Anderson acceleration and some of the recent
convergence results. We will then describe the EDIIS algorithm. In § 2 we prove our convergence results.
Finally, in § 3 we will report on a computation which both illustrates the theory and, as is also done in [21],
shows how the convergence speeds for EDIIS and Anderson acceleration, while identical in theory, can differ
significantly in practice.

Our notational convention is that vectors and vector-valued functions in R are in bold. Scalars and
elements of infinite dimensional spaces (eg integral operators and the functions acted upon by those operators)
are in the usual italic math font.

Anderson acceleration [1] is an iterative method for fixed point problems of the form

(1.1) u = G(u),

where u € RN and G : RV — R"™. The method was designed to accelerate Picard or fixed point iteration i.
e.

(1.2) 1 = G(ug).

Anderson acceleration was originally designed for integral equations and has been widely used in electronic
structure computations (see [9] and many references since then) and is now very common in that field.
Anderson acceleration is essentially the same as Pulay mixing [32,33], DIIS [21,22,34,37], nonlinear GMRES
[4,25,30,45]. Other applications include nuclear reactor design [16,42], stiff dynamics [13], hydrology [24],
and fluid-structure interaction [10,15,23] where the method is called interface quasi-Newton.

The analysis of Anderson acceleration is far from complete. In this paper we assume, as do all theoretical
results about this algorithm, that the map G is a contraction. In practice, however, Anderson acceleration
does very well for problems in which G is either definitely not a contraction [41] or not provably a contraction.
The results here do not explain those cases.

Anderson acceleration was designed for a problem where Newton’s method is not practical because
obtaining approximate Jacobians or Jacobian-vector products is too costly. One should expect that Newton’s
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2 Chen et al

method would perform better when derivative information can be had at reasonable cost and we have
certainly found that to be the case in our own recent work [16]. Anderson iteration maintains a history of
residuals
F(u)=G(u) —u

of size at most m + 1, where the depth m is an algorithmic parameter. When m is important, we will call
the iteration Anderson(m). Anderson(0) is Picard iteration by definition.

The formal description in Algorithm 1 is most convenient for analysis and exposition, but not for
implementation. We refer to [7,38,39,41,43,44] for examples of efficient implementations.

Algorithm 1 Anderson Acceleration

anderson(ug, G, m)

u; = G(UO); Fo = G(ll()) — Up

for k=1,... do
Choose my, < min(m, k)
Fk = G(uk) — U
Minimize || >, Q?Fk—'ﬁ’Lle‘jH subject to >, O‘? =1
Up41 = Zj:kO aj‘?G(uk,mﬁj)

end for

The iteration uses the most recent m + 1 residuals F(u;) for k — my < j < k where my < min(k, m).
The key step in the iteration is solving the optimization problem

mi mi
(1.3) Minimize Za?F(uk_mkﬂ») subject to Za? =1,
j=0 =0

for the coefficients {a}.

Any vector norm can be used in the optimization problem with no change in the convergence theory [41].
In particular the optimization problem for the coefficients in either the ¢! or /> norms can be formulated as
a linear programming problem [8]. The optimization problem is easier to solve if one uses the £ norm and
that is standard practice. In this case optimization problem for the coefficients can be expressed as a linear
least squares problem and solved very inexpensively. One way to do this is to solve the linear least squares
problem

my—1

(1.4) Minimize||F(uy) + ) o (F(—m+;) — F(w)) |3,
j=0

for {af ;-":"‘071. Then one recovers o, by

mk—l

ko1 _ k
O, =1 g a;.
=0

The choice of my, is, in the original form, simply min(m, k). One can adapt my as the iteration progresses
to, for example, enforce well-conditioning of the linear least squares problem (1.4) [39,44].

One can also [11,31,34,35,44] show that Anderson acceleration is related to multisecant quasi-Newton
methods or, in the case of linear problems, GMRES. None of these results lead to a convergence proof, even in
the linear case, unless the available storage is large enough to allow GMRES to take a number of iterations
equal to the dimension of the problem. The recent work of one of the authors and his students [39-41]
contains the first convergence theory for Anderson acceleration as it is applied in practice.

1.1. Convergence Theory. Theorem 1.1 is one of the convergence results from [41]. That paper also
has results for several special cases. We assume that G is a contraction with contractivity constant ¢ € (0, 1)
in a closed set D C RV,

(1.5) [G(u) = G(V)[ < cllu—v]|
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EDIIS 3

for all u,v € D. The contraction mapping theorem implies that G has a unique fixed point u* € D. As is
standard, we let € = u — u* and make the assumption from [41] on the smoothness of G and the Anderson
iteration coefficients.

The convergence of the Picard iteration for a contraction map is g-linear [19] with g-factor ¢ i. e.

lexll < cller—1ll-
We will show in this paper that Anderson acceleration is r-linear with r-factor ¢, which means
lexl| = O(ch).
AssuMPTION 1.1. G is a Lipschitz continuously differentiable in the ball
B(#) = {ul|e] <7} C D,

for some 7 > 0.
There is M,, such that for all k > 0

mp
> laj] < M.
=0

The differentiabilty assumption is needed in the analysis, but not in the formulation or implementation
of the algorithm. Our convergence result in § 2.2 relaxes the assumption to continuous differentiability.

THEOREM 1.1. [/1] Let Assumption 1.1 hold and let ¢ < 7 < 1. Then if ug is sufficiently close to u*,
the Anderson iteration converges to u*. In fact, for all k > 0,

N 1+c) .,
(16) P ()] < IR and fei] < (155 el

The interpretation of this result is that if the initial data are sufficiently good, then the r-factor for Anderson
iteration is no worse than the g-factor of Picard iteration as predicted by the contractivity constant ¢. While
r-linear convergence is weaker than g-linear, Anderson acceleration is often faster than Picard iteration in
practice. The requirement that the initial iterate be near the solution is also meaningful in practice [36,46,47]
and motivated the EDIIS algorithm [21] which is the subject of this paper.

Both Picard iteration and Anderson acceleration can perform better than the prediction (see § 3). In
practice, Anderson acceleration is often significantly better than Picard iteration, but there is no theory that
explains this under practical (i. e. very limited storage) operating conditions.

1.2. The EDIIS Algorithm. Anderson acceleration performs poorly for some applications. One
example is electronic structure computations for metallic systems where the HOMO-LUMO gap is small
and a good initial iterate is difficult to obtain. In this case both Picard iteration and Anderson acceleration
perform poorly [21]. In such cases one can sometimes use a small mixing parameter to ensure convergence,
especially when the initial iterate is poor. However, a small mixing parameter may degrade the performance
of the iteration especially when near the solution. The role of the damping parameter § in Picard iteration
is simple damping

i1 = (1= B)ug + BG(uy).

If one applies EDIIS or Anderson acceleration to
Gs(u) = (1 - B)u+ BG(u).
then [40] one obtains

mi mMi
Wer = (1= B) Y af oty + 6 ) Gk,
j=0 §=0

which is how damping is done in Anderson acceleration [1].



110
111
112
113
114

115

116
117
118
119
120
121
122
123
124

131
132

134
135
136
137

138

139

140

4 Chen et al

One attempt to solve these problems for small systems is the EDIIS algorithm from [21]. In [21] the
authors also formulated the fixed point problem to directly minimize energy, hence the name of the method,
but that does not affect the convergence analysis in this paper.

EDIIS differs from Anderson acceleration by imposing a nonnegativity constraint on the coefficients. So,
the optimization problem becomes

mp M
(1.7) Minimize || afFy_m, ;| subject to > af =1,0% > 0.
7=0 =0

In [21] the authors present an example where EDIIS does well and both Picard and Anderson acceleration
fail and another example where Anderson acceleration is successful and EDIIS, while converging, does not
perform as well. We present another such example in § 3. One reason why EDIIS might perform worse than
Anderson acceleration could be that the optimization problem (1.7) for EDIIS has a more restricted feasible
set and therefore a larger optimal value.

2. Convergence Results. Our global convergence is Theorem 2.1. The proof does not require differ-
entiability, but the convergence speed estimate is very pessimistic with an r-factor of ¢!/(™+1)  We follow
the global theorem with a local theorem that shows how the convergence behavior becomes locally r-linear
with r-factor ¢, improving on the local results in [41].

2.1. Global Convergence.

THEOREM 2.1. Let G be a contraction on a convex set D C RN with contractivity constant c. Let u* be
the unique fized point of G in D. Then for any uy € D, EDIIS(m) converges to u* r-linearly with r-factor

o= M/ mt1)
In fact,
(2.1) llexll < [leo]|-

Proof. The proof does not use the optimality properties of the coefficients and only requires that the
iteration {uy} have the form

my
(2.2) Upy1 = Za;?G(ukfmk+j)a
§=0

where my < m, aj >0, andz_oaj 1.

We induct on k. Clearly (2.1) holds for both my = 0, by definition, and & = 1,m; = 0 because the
iteration in that case is a single Picard iteration (i. e. one step of Anderson(0)). Assume that the result
holds for £ < K. Then (2.2) and me K = 1 imply that

ert1 =Y af (G ;) —u’).

Note that since a >0, YK =1, ¢ <1, and mg < m, we have

JOJ'

EaKKmK+j<AKm
7=0

Hence

lersll < 327 af |Gk —mty) — u|
< Y egtellug ety —u

< ey iy agtelt Tt legl| < et leg]| < R (e |leol| = &K leol. 0
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EDIIS 5

Theorem 2.1 implies that for any ¢ > 0 there is K such that all iterations {uy }r>x are in the set
B(6) ={u|[u—u*| <d}.

Hence, starting an Anderson acceleration iteration after sufficiently many EDIIS iterations will result in
local convergence at the rate predicted by Theorem 1.1, which is better than (2.1) since 7 can be arbitriarly
near ¢ and does not depend on m. However, it is not clear how to decide when to restart. The main result
in § 2.2, Theorem 2.2, applies to both EDIIS and Anderson acceleration, generalizes the local convergence
result from [41] (Theorem 1.1), and says that one can simply continue with the EDIIS iteration and the local
convergence estimate for Anderson acceleration will hold.

2.2. Local Convergence. Theorem 2.2 is the local convergence result. The theorem generalizes the
result in [41] by both weakening the assumptions and improving the r-factor.

We will assume that an iteration begins with a history that lies in B(d) for ¢ sufficiently small. This
history could be either from the EDIIS iteration or from the Anderson acceleration iteration itself. Hence
the assumption covers not only EDIIS but also allows us to improve the convergence theory from [41]. We
will show that the residuals converge r-linearly to zero with an r-factor of ¢. Formally our assumption is

ASSUMPTION 2.1. G is a continuously differentiable contraction on D C RN with contractivity constant
c and u* is the unique fixed point of G in D.

The iteration begins with {w}[~y C B(8) C D. There are real {af}™, with 0 < my, < min(m, k) such
that

my
k
D=1,
§=0
my,
(2.3) W1 = Y af Gy tj),
3=0
and
my
(2.4) 1D &S F (a5l < IF ()]l
3=0
Finally, there is ¢ € (c,1) so that
(2.5) IF ()| < &[|F(uo)ll, for0<i<m.

Theorem 2.1 implies that Assumption 2.1 will hold after sufficiently many EDIIS iterations. In the
theorem there is no history if m = 0 and in that case the iteration is Picard iteration. While we are
motivated by a local iteration from the EDIIS algorithm, the local theory does not require that the coefficients
be nonnegative.

Assumption 2.1 weakens the ones in [41] in two ways. The first is that we no longer assume that G is
Lipschitz continuously differentiable. The second is that we do not assume that the coefficients {a?} come
from any particular optimization problem, only that the linear combination of residuals has norm no larger
than that of the most recent residual.

The idea of the analysis is that as the iteration converges, the upper bound for the r-factor will approach
c and therefore the r-factor is no larger than c. In the case where there is no history, this fact was implicit in
the results from [41]. Adding the history makes the bookkeeping more difficult and the proof of Theorem 2.2
must account for that.

THEOREM 2.2. Let Assumption 2.1 hold. Assume that there is M, such that

(2.6) > o] < My,
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6 Chen et al
for all k > 0. Then if § is sufficiently small, the iteration given by (2.3) and (2.4) converges to u* and
. [F ()l
(2.7 lim sup < <c
k—oo \[[F(uo)
Proof. Let 0 < € < ¢ — c. We will show that for ||eg] sufficiently small,

. I (i) [\
(2.8) lim sup < <c+e
k—o00 ”F(UO)H

This will complete the proof since € is arbitrary and we can restart the proof once we have m vectors in the
history which are near enough to u* to reduce e further.
We induct on k. Define L = (¢/é)™. We will show that

(2.9) I (u)|| < Le+ e)F||F(uo)],

for all k. Our assumption on the history that ||F(w)|| < ¢&||F(ug)|| implies that (2.9) holds for 0 < k < m.
Now suppose that (2.9) holds for all 0 <[ < k with k > m.

We will establish the bound for k 4+ 1. The analysis has three steps. We first set § small enough for the
iteration to remain in D. We then derive an estimate for F(ux41) and finally use that estimate to continue
the induction.

Step 1, initialization of : Since G’ is continuous in D, there is a nondecreasing function p € C[0, 00)
with p(0) = 0 so that

(2.10) IG'(0) = G"(u")]| < p(llell)

for all u € D. This implies that for all u € D,
1
(2.11) G(u) = G(u*) +/ G/(u + te)edt = u* + G/ (u*)e + Ae),
0

where

1A(e)]l < p(llel])lle]]-
Contractivity of G implies that
IF)[[/(1+¢) < lef| < [F(u)ll/(1 = c).

Assumption 2.1 implies that
B(6) N{u[[F(u)| < [[F(uo)ll} € D.

Reduce ¢ if necessary so that

kemel € ™1 —¢) o
(2.12) p (MaL(c—F €) 51 — < A 1 .

This implies that
s

(2.13) Wy = Zafuk_mkﬂ eD
§=0

for sufficiently small § because

[wi =l < S Job lenrm ]
(2.14)
< Mo L(e+ e/ ™||[F(uo)||/(1 - ) < MuL(c+ €/ 5(1 +¢) /(1 - o).
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212 Step 2, estimation of F(uy1): We may write for k > m — 1,
Fupt1) = G(ups1) — e

= G(ug41) — G(ZT:)CO afuk*mkﬂ) + G(Zj =0 ?ukfmkﬂ') — Uk+1-

214 We will estimate the two parts of the sum

215 Ak = uk+1 Za up— mk"r]
216 and
mp
217 B = G( Fu ) —u
7 k= 04] k—mp+j k+1
j=0

218 separately.

219 Using only contractivity of G and (2.4) we have
Akl = [1G (1) = GOZT) af 1) |
< cllugr = 2T abug g, 1l
220 (2.15)

= || Zj 0 _]( (Wemmp+j) = Q)|

= | X720 &S F (p—my4) | < cl[F(un)])-

221 We now estimate By. Using (2.12) we have for all u € D with
222 lell < MyL(c+e)*"™6(1+¢)/(1—c)
223
Al < p(lleDIF @)/ = c)
221 (2.16) < p(MaL(c+e)* (1 +¢)/(1 = c))[F(w)]|/(1 - c)
C7n+1
<5 (1- 25 ) IF@)]).
225 The final stage in the proof is to show that, reducing ¢ if needed,
206 (2.17) IBi]l < L{c+ e)¥ T (1 — ——)[|F(uy)].
c+e

227 Recall that

B, = G( j= 0 guk mai) = Wt
228

(E] oa Wk—mtj) — j ) ?G(ukfmk+j)~

229 We use (2.11) to obtain
G o Wmmtj) = G(wyi) = u" + G'(u) 37 afer—m,+j + A(wi —u)
230 =Y af(ut + G (0 )eg—my ;) + A(wy, — u*)

= 21 A G (g mmtg) + T AFA(Ck—my ) + AWy —u”).
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Hence

mi
1Bill < D a1l A(er—mr1)| + [A(we —u)].
§=0

We will estimate terms separately. First

cm+1 c m
S A k)| < G (1= %) S Lok | P (Wh )l
cm+1 c m _ ) .
< (1 2) T | L(e 4 € [ F (ug)|
(2.18)
< (1 - ) Lle+ oF e [F(w) |

< (L/2)(e+ )" (1= 25 ) [F (uo)ll.
Finally, using (2.14) and (2.16),
[A(wWe —u”)|| < p([lwi — w*[DIIF (we)l]/(1 = c)
(2.19) < p(MaL(c+e)*™6(1+¢)/(1 — ¢))MaL(c + €)*™|[F(uo)|| /(1 — c)
< (L/2)(c+ ) (1= 25 IF (o).
Adding the two estimates (2.18) and (2.19) leads to (2.17).

Step 3, continuation of the induction: Combining (2.15), (2.17), (2.9), and the induction hypothe-
ses, we have

IF ()l < ellF(ue)ll + Lie+ €)1 = 25 [F(uo)
(2.20) < <Lc(c +e)f + Llc+e)ft(1- c+€)> [|F (uo)|

< L(c+ )" |F(u)].

This implies (2.8), which in turn implies (2.7) because € is arbitrary. |

Theorem 2.2 and nonsingularity of F/(u*) also imply r-linear convergence of the errors with r-factor c.
This extends and sharpens (1.6).

COROLLARY 2.3. Let the assumptions of Theorem 2.2 hold. If F'(u*) is nonsingular then

k
. lexll )/
(2.21) lim sup <ec

k—oo \ €0l

Proof. We will use Lemma 5.2.1 from [19], which states that if u is sufficiently near u* and F’(u*) is
nonsingular, then

el

leoll —

< 4[| () ||| F' (u*) 1”HFF(( ))|||

Hence

k k
nmsup(”ek”)” < Tim (4F () /)~ ))) hmsup('”“”')” <e
E o) =% [F (o)

which is (2.21). |
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3. Numerical Example. We will use an example [41] to show how the actual performance of EDIIS
and Anderson acceleration can differ, even though the theoretical limiting convergence estimates are identical.
Another point of this section is that the solver for the optimization problem can significantly affect the results.

The results in [21] also illustrate this point. Our example is simple enough to directly compare the
iteration histories for Picard iteration, EDIIS, and Anderson with the worst-case prediction given by the
contractivity constant. We find that when Anderson acceleration performs well, as it does in this exam-
ple, EDIIS offers no advantage. Moreover, the additional constraint on the optimization problem for the
coeflicients leads to slower convergence, exactly matching Picard iteration in this case.

The optimization problem for EDIIS requires more care than the linear least squares problem one must
solve for Anderson acceleration. The reason for this is that one cannot simply use a QR factorization
to solve (1.4). Instead one must apply a more sophisticated iterative solver. The approach of [21] is a
direct examination of the boundary of the feasible simplex, which is not practical for a depth much greater
than m = 3. Since m is small in practice, expressing the optimization problem as a bound-constrained
quadratic program is an efficient alternative. [26,27] survey the literature on this topic. For example a
bound-constrained quadratic programming code such as the MINQ [29] code is a reasonable choice. However
this approach squares the condition number and can (and did in our testing) result in a singular or nearly
singular KKT system and failure of the optimization code’s internal linear solvers. The method of [6], while
still squaring the condition number, is more robust and terminated without error for this example. The
classic method from [14] uses an active set method and the QR factorization to avoid using the normal
equations. The approach in [14] performed better in the example here, where the least squares coefficient
matrix for the optimization problem is ill-conditioned [41].

The example is the midpoint rule discretization of the Chandrasekhar H-equation [3, 5].

(3.1) HHmo=mm—O—§/?T?fj 0.

We seek a solution H* € C[0,1]. When the parameter w is important we will write H* as a function H*(u,w)
of both y and w.
The integral equation and its midpoint discretization share the properties that the fixed point map

gwmozg_g/wﬂwdq

0o MtV

-1

is a contraction for 0 < w < 1, but not for w = 1. The Fréchet derivative (and the Jacobian for the discrete
case) is singular at the solution for w = 1, which is a simple fold singularity [17,28].

In this section we will compare the performance of Picard iteration, Anderson acceleration, and EDIIS
for the case w = .5 on an NV = 100 point mesh. We terminated the iteration when the residual had decreased
by a factor of 107'2.

One interesting result from [41] is that Anderson(m) is more efficient than Newton’s method for this
example, even in the singular case. In the context of this paper it is important to note that Picard iteration
converges faster than one would expect from estimating the contractivity parameter by the spectral radius
of the Fréchet derivative of G at the solution, which is a lower bound for the operator norm of G. From [41]

p(G'(H*))=1—-+1—w =~ .293.

However [2,18,20], the solution is analytic in w and Picard iteration exploits that property to obtain g-linear
convergence with g-factor < p(G’(H*)) and much less for small w. In fact, if

H(pw) = > w™am(p)
m=0

is the Taylor expansion of H* in w then the coefficient functions {a.,(u)} are nonnegative for 0 < p < 1.
Moreover the series converges for w = 1. Hence, if Hy is the kth Picard iteration and Hy = 0, then for all
k>0 and w,p € 0,1],

Hk(:u’v w) < Hk-i-l(:u‘vw) < H*(uﬂw)'
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All of the above statements about the singularity at w = 1, the spectral radius of the Fréchet derivative,
and the performance of Picard iteration apply to the discrete problem

-1
N
(3.2) Gy = [1- 2§ ks

In (3.2) p; = (i — 1/2)/N is the ith quadrature node for the N point composite midpoint rule, the vector
h* is the solution of the discrete problem h = G(h), G(h*); is the ith component of G(h*), and the ith
component of h* is A} ~ H*(u;).

As noted above, the optimization problem (1.7) for EDIIS is harder than the one for Anderson accelera-
tion and the choice of solver can be important. We compare the method of [14], as implemented in the Matlab
1sqlin code with the ‘active-set’ option, with the method from [6], as implemented with ‘interior-point’ op-
tion in 1sqlin. The method of [6] uses the normal equations and did exhibit problems with ill-conditioning.
The computations were done on an Apple Macintosh running MAC OS 10.13.6 with Matlab 2017a. The
‘active-set’ option was removed with Matlab 2017b. The codes that generated Table 3.1 and Figure 3.1 are
supplementary materials for this paper.

In the left plot of Figure 3.1 we compare Picard iteration, Anderson acceleration, and EDIIS with the
active-set option (EDIIS-A) and the interior-point option (EDIIS-I). The depth was m = 3 for the Anderson
and EDIIS computations. Picard iteration and EDIIS-A are identical. The optimization problem for EDIIS
cannot match the results from Anderson acceleration, which has fairly large negative coefficients. Rather,
EDIIS-A finds that the coefficients for Picard iteration are optimal.

Table 3.1 compares p(G'(H*)) to the r-factors of the residuals for Anderson acceleration, Picard iteration,
and EDIIS. We estimate the r-factors by

<||F<hk>|| ) v
[IF(ho) |

where the final iteration upon termination is hy. Note that, as discussed above, the g-factor for Picard
iteration is smaller than the spectral radius. Anderson acceleration also does better than the theory predicts
and, in fact, is more efficient than Newton-GMRES [41].

EDIIS-T is the only one of the methods which is sensitive to the ill-conditioning of the optimization
problem. We examined this sensitivity by solving the problem twice, once with no limit on the condition
number and again by reducing my if necessary to limit the condition number to 10°. This has no effect
on EDIIS-A and slightly slows Anderson acceleration down. We show the residual histories in Figure 3.1,
where one can clearly see the effect of limiting the condition number. As reported in [41], the optimization
problem becomes more ill-conditioned as the iteration progresses. The figures show that the convergence of
EDIIS-I degrades at the 6th iteration, but to a lesser degree when the condition number is limited. Note
that the estimated r-factor seems to stabilize near the end and is, in the condition number limited case, back
to Picard iteration for the final three iterations, albeit from a worse starting point.

TABLE 3.1
Convergence r-Factors

Anderson Picard EDIIS-A EDIIS-I p(G'(H™))
No condition limit

1.06e-02 1.72e-01  1.72e-01  2.62e-01  2.93e-01
Condition limit 10°

2.59e-02 1.72e-01  1.72e-01  2.62e-01  2.93e-01

4. Conclusions. The EDIIS algorithm was designed to improve the global convergence properties of
the DIIS algorithm, which is also known as Anderson acceleration. We prove global convergence of the
iteration and prove a local convergence result that applies to both EDIIS and Anderson acceleration and
improves the results in [41]. We observe, as did the inventors of the method [21], that the unmodified version
of Anderson acceleration can have better local convergence in practice.
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