Distributionally Robust Stochastic Variational Inequalities

Hailin Sun* Alexander Shapirof Xiaojun Chen?

October 31, 2020

Abstract: We propose a formulation of Distributionally Robust Variational Inequalities
(DRVI) to deal with uncertainties of distributions of the involved random variables in varia-
tional inequalities. Examples of the DRVI are provided, including the optimality conditions
for distributionally robust optimization and distributionally robust games. The existence of
solutions and monotonicity of the DRVI are discussed. Moreover, we propose a sample average
approximation (SAA) approach to the DRVI and study its convergence properties. Numerical
examples of distributionally robust games are presented to illustrate solutions of the DRVI and
convergence properties of the SAA approach.
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1 Introduction

Let X C R™ be a nonempty closed convex set and Nx (z) be the normal cone to X at € R™ (note
that Nx(z) = 0 ifz ¢ X). Let & € R be a random vector with support set Z C R’ equipped with
its Borel sigma algebra B and probability distribution P. We consider the stochastic variational
inequalities (SVI)

0 € Bp[d(z, )] + N (2), (1.1)
where ® : X x = — R" is such that the corresponding expectation is well defined. By writing

Ep we emphasize that the expectation is taken with respect to a considered probability measure

(distribution) P on (£, B). With some abuse of the notation we use £ to denote random vector
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whose probability distribution is supported on the set =, and also a point (an element) of the
set =, specific meaning will be clear from the context.

The SVI provide a unified form of the first order optimality conditions of stochastic op-
timization and model numerous equilibrium problems in economic, finance, management and
engineering [25, 27, 29]. In the recent two decades, the SVI have been studied extensively and
many new algorithms for solving the SVI have been developed [5, 7, 11]. Moreover, the two-
stage SVI and multi-stage SVI have been introduced and investigated actively in the last few
years [6, 8, 9, 22, 23, 29]. In the SVI, the probability distribution of ¢ is supposed to be known
(specified) exactly. However, unlike well-studied distributionally robust optimization (DRO),
the theory and algorithms of distributionally robust variational inequalities (DRVI) are very
limited. In practice the “true” distribution P of random variables is not known and could be
estimated at best from historical data. The uncertainty of the “true” distribution in itself mo-
tivates the distributionally robust approach. We suggest the following formulation of the DRVI

as a counterpart of (1.1):

0 € Ep[®(,£)] + Nx(x), (1.2)
P ¢ arg glégEQ[cb(:v,é)], (1.3)

where ¢ : X x Z — R and 9 is a specified set of probability measures (distributions) on (=, B).
Note that by solving the above DRVI we mean to find a pair Z € X and P € 9 satisfying
(1.2)-(1.3). We give examples of such DRVT in section 2.

Our main contributions in this paper are threefold.

e Based on (1.2)-(1.3), we propose a comprehensive formulation of the DRVI to deal with
the uncertain distribution in the SVI. We show that the first order optimality conditions
of distributionally robust optimization and distributionally robust games are special cases

of this formulation of the DRVI.

e We define the monotonicity of the DRVI and show that there is a pair of a decision vector

T € X and a distribution P € 90 such that (z, P) solves the DRVI under certain conditions.

e We propose a SAA approach to the DRVI and investigate its convergence properties.
Moreover, we use numerical examples of distributionally robust games to illustrate the

formulation of the DRVI and the convergence of the SAA approach.

In section 2, we review three fundamental examples that are special cases of the DRVI. The
first two examples are the first order optimality conditions of two types of DRO problems. The
last example is an equivalent formulation of distributionally robust games (DRG) with convex
objective functions of players and share constraints among players. In section 3, we define the

monotonicity of the DRVI and prove the existence of solutions to the DRVI. In section 4, we



propose a SAA approach for the DRVI with the corresponding convergence analysis. In section

5, we use numerical examples to illustrate the DRVI and the convergence of the SAA.

2 Formulation of the DRVI

In this section we give an extended (multivariate) definition of the DRVI and consider three

relevant examples.

Definition 2.1 (DRVI) Let M;, i = 1,...,r, be sets of probability measures on the sample space
(E,B), X CR" be a nonempty closed convex set, ® : X xE - R", ¢, : X xE—-R,i=1,...,r,
be continuous functions in x € X, ®(z,-) and ¢;(x,-) are measurable. The DRVI is to find a

pair (x, P) € X x M satisfying

0 € Ep[®(z,&)] + Nx(z), (2.1)
Pi earg&zsj}éEQ[¢l($a§)]a 1= 1a"'a’r, (22)

where M:={Py X ... x P, : P,eM;, i =1,....1},
T '
Ep(@(z,6)] = (Bp [@1(2, )], - Ep[@r(z,6)] ")
with ®(x,&) = (O] (2,&),--- , 0] (2,6))7, ®i(x,€) € R™ and doi_in; =n.
Example 2.1 Consider the following distributionally robust stochastic program

min SE%EP[¢(x’E)]’ (2.3)

where ¢ : X x Z — R. A point (z,P) € X x M is a saddle point of the minimax problem (2.3)
if and only if
T inEp d P Ep[p(Z, )] 2.4
# € argmipEp[o(r, )] and P € argmax Bpl(7, ) (2.4)

Assuming that ¢ is differentiable in x and the differentiation and expectation operators can be
interchanged, we can write the optimality conditions for the first problem in (2.4) in the form
(2.1) with ®(x,&) := Vyé(x,§). This leads to the DRVI of the form (2.1) - (2.2) with r = 1.

Example 2.2 Consider the following distributionally robust stochastic program

min  sup Ep,[¢o(z, )]
zeX  pyem

s.t. sup Ep [¢1(2,£)] <0,
Piem

(2.5)

where ¢;(x,€), i = 0,1, are conver and twice continuously differentiable w.r.t. x.

The corresponding Largrange function is

L(z,A) := sup Ep[¢o(z, )] + A sup Ep, [¢1(z, )],
PyeMm Piem



where A > 0. Suppose that the supremum in (2.5) is finite valued for every x € X and the Slater
constraint qualification holds [19], then DRO (2.5) is equivalent to

i E A E .
mig meax Psolg))ﬁ poldo(z, &)] + Pslléra)n plé1(, &)

Since ¢;,1 = 0,1 are convex, the above problem is equivalent to

min omax o Erléo(@ O+ ARR 6z, £)]

Then the corresponding DRVI is

0e ]EPO [vx¢0(wa 62)] + )‘EP1 [vxd’l(m? gz)] +NX(x)7
0e _EP1 [‘bl(x?gl)} +NR+ ()‘)7
P, € argmaxEglon(x. O], i =0,1.

Example 2.3 Consider the following distributionally robust formulation of Nash equilibrium
with r players: find (z7,...,x}) € R™ x --- x R™ such that
x; € arg min max Ep [¢i(z;, 2%;,8)], i =1,...,7 (2.6)

z, €X; PeMy

Here X; C R™ is a nonempty convex closed set, M; is a set of probability measures on (Z;, B;),
2 CRY, and ¢ : R™ x -« xR x Z; = R, i =1,...,r. Similar to (2.4), problem (2.6) leads
to the following DRVI formulation (under appropriate differentiability assumptions)

0€Ep[®i(z1,.c0, x, )] + Nx, (z4), i = 1,..., 7,

P e argQrfleaD;(Ii Eq,[¢i(z1, ...z, 8)], i =1,...,1,
with ®;(z1,...,xr, &) := Vg, 0i(x1, 0y, &), i =1, .., 7.

Remark 2.1 If X = R%, then (1.2)-(1.3) reduces to the formulation of the distributionally
robust complementarity problem (DRCP)

0<az LEp[®(x,£&)] >0, P e arg ggg}j{tEQ[gﬁ(az,f)]. (2.7)

Other formulation of the DRCP from [8] can be written as follows

0<z, maxEp[-®;(z,£)]<0,i=1,...,n (2.8)
Pem
Eplz' @ =0. 2.
maxEplz” &(z,£)] =0 (2.9)

Obviously, if (z*, P*) is a solution of (2.8)-(2.9), then it is a solution of (2.7) with ¢(x,&) =
' ®(x, ). Hence, (2.8)-(2.9) is a special case of (2.7).



3 Existence of solutions of the DRVI

In this section we investigate existence of solutions of the DRVI in three cases: discrete distri-
butions, continuous distributions and monotone setting.
3.1 Finite dimensional setting

Suppose that the random vector £ has a discrete distribution with a finite support = :=
{€Y...,€m} of cardinality m. Then a probability distribution on = can be identified with prob-
ability vector ¢ € A,,, where

Am::{qeRT:q1+...—|—qm:1}.

That is, each set 9M;, i = 1,...,r, can be viewed as a subset of A,,, and can be assumed to be

convex and closed. Condition (2.2) can be written then as 0 € —¢* + Non(p), where

07 = (¢1(2,€1), ey $1(2,€™), oy O (@, €)oo (2, €M) T R

and Non(p) is the normal cone to the set 9t := My x ... x M, C R"™ at p:= (p',--- ,p"). Thus

in that case the corresponding DRVI can be written as the following finite dimensional VI:

06> p'd(,&) + Nx(x), (3.1)
=1
0€ —¢" + Nm(p), (3.2)

in variables (z,p) € X x A, and p'®(z, &%) = (pi®1(z, &) 7, ..., pi®,(z, ) T)T.
In that setting existence of solution follows by the standard results, e.g. [15, Corollary 2.2.5].

Proposition 3.1 Suppose ®(x,&) and ¢(z, &) are continuous in x and the set X is bounded (and
hence the set X x M C R™ x R"™ is convex compact). Then finite dimensional VI (3.1)-(3.2)

has a nonempty and compact solution set.

3.2 Continuous distributions setting

Let us consider now settings with continuous distributions of the random vector £&. We assume
existence of a reference probability measure P on (=Z,B) and that the ambiguity set consists
of probability measures in some sense close to the reference measure P. To proceed consider
the space! Z = L,(E,B,P), p € [1,00), and its dual space Z* := L,(Z,B,P), ¢ € (1,0],

!Banach spaces Z and Z*, equipped with the respective weak and weak* topologies, are paired topological
vector spaces with respect to the bilinear form (scalar product) (¢, Z) = [ (ZdP, Z € Z, ( € Z*. Note that the
weak topology of Z and weak™ topology of Z*, restricted to respective bounded sets, are metrizable and hence
can be described in terms of convergent sequences. The weak convergence Zj — Z means that (¢, Zk) converges

to (¢, Z) for any ¢ € Z*. The weak* convergence (y, vy ¢ means that (Cx, Z) converges to (C, Z) for any Z € Z.



1/p+1/qg = 1. We assume p = ¢ = 2 in this section (Section 3). We also use notation
®7(-) := ®i(z, ) and ¢7 () == ¢i(x, ).

Assumption 3.1 Suppose that, for i =1,...,r, the set M; in (2.2) consists of probability mea-
sures that are absolutely continuous with respect to P and consider the set 2; := {¢ = dQ/dP :
Q € M} of the corresponding density functions. Suppose further that ; is a bounded, convex
and weakly* closed subset of Z*, and that ¢} € Z for everyx € X andi=1,...,r

Assumption 3.1 will hold for several setting of ambiguity sets, e.g., law invariant coherent risk
measure [26], ¢-divergence ball [20] and so on.

Since ¢f € Z, it follows that for any ¢ € 2; and d@Q = (dP the integral

Eql¢?] = / o7 CdP

is well defined and finitely valued. In what follows, we consider the ambiguity sets that satisfy

Assumption 3.1 and hence (2.1)-(2.2) can be rewritten as

OE/Q?CZ'CZP—I—NXZ.((EZ'), 1=1,...,r, (33)
G € argmax/ oindP, i=1,...,r. (3.4)
ned; Jz
Under Assumption 3.1, for ¢ = 1,--- ,r, the set 2l; is convex and closed in the weak™ topology

of Z', and hence is weakly” compact. It follows that the set

)] —argmax/ @7 ndP
neA;

is nonempty for any x € X (note that the set A? represents the set of densities of the “arg max”
probability measures in the right hand side of (2.2)) and 2;. Consider the mapping ¢ and
denote ®*(-) := ®(x,-). Suppose that for every x € X, every component of ®* belongs to the
space Z := Z! x ... x Z". Consider the multifunction § : X = R" defined as

3(2) = {yz/zwd]?:c@@},

where ¢ = ((1,..., () with ¢ € A%, i =1,...,7 and ®* ( := (®1(z,") G, ..o, P (2, ) ¢-)". In order
to show the existence of solutions of the DRVI we need to verify that the following generalized

equations have a solution

0 € J(x) + Nx(x). (3.5)

Proposition 3.2 Suppose that the set X is nonempty convez closed and bounded, and the map-
pings ¢* and ®* are weakly continuous with respect to x € X. Then generalized equations (3.5)

have a solution.



Proof. It suffices to verify that the multifunction § is closed, that is, for any sequences
xy, € X converging to T and yy € F(zx) converging to g, we have § € F(Z). Indeed, consider the
multifunction & : X = X defined as

& () i= arg min{dist(v, 3(2))},

where dist(x, A) denotes the Euclidean distance from = to a set A C R". Note that if the set
A is convex, then dist(-, A) is a convex function. We have that for every z € X, the set 2% is
convex and hence the set §(x) is convex, and thus &(z) is convex. Also if § is closed, then & is
closed. It follows by Kakutani’s fixed-point theorem that the multifunction & has a fixed point
T € X. Let g be the closest point of F(Z) to Z. Then § — T € Nx(Z).

In order to verify that § is closed we can proceed as follows. By the weak® compactness of 2
and the weak continuity of ¢*, we have that the multifunction X 3 z — A is weakly* closed?
(e.g., [4, Propsition 4.4 and discussion on page 264 |). By the weak continuity of ®* it follows
that § is closed. This follows from the fact that if Z;, — Z and N ¢, then (Cy, Z) — (¢, Z)
(e.g., [4, Theorem 2.23(iv)]). O

Remark 3.1 Recall that it is assumed that ¢* € Z for every x € X. The mapping ¢” is weakly
continuous if ¢(z, £) is continuous in x and there is n € Z such that |¢(x,&)| < n(€) for all z € X
and ¢ € E. Indeed then for any ¢ € Z* we have that |¢“¢| < n|¢| and [ n|¢|dP < co. Thus for a
sequence {z} C X converging to it follows by the Lebesgue dominated convergence theorem

that
lim | 67 (2) C(2)dP(2) = /

o Ja Eklggo ¢™*(2) ((2)dP(z) = /: ¢™(2) C(2)dP(z).

This shows that ¢” is weakly continuous. Similar conditions can be applied to every component

of the mapping ®* to guarantee its weak continuity.

Remark 3.2 For the set 2; C Z} of density functions, we consider functional R; : Z; — R
defined as

Ri(Z) ::ngg /_ ZC P, (3.6)

Since 2; is a bounded subset of Z7*, the value R;(Z) is finite for any Z € Z;. This functional
can be viewed as the dual representation of the corresponding so-called coherent risk measure.
Various examples of coherent risk measures, their dual representations and closed forms for the

corresponding sets A% are given in (e.g., [25, Section 6.3.2]).

The optimality condition (2.2) can be written in the VI form as follows. For each player i,
i =1,...,r, recall that Z; and Z; can be viewed as paired spaces with respect to the bilinear form
(i, Z) = [= ¢ ZdP. Consider the indicator function Iy, (-) of the set 2; C Z7, that is Iy, (¢;) = 0

2That is, if 2 € X converges to Z and ( € %A, is such that vy ¢, then ¢ € As.



for ¢; € 2A; and Iy, (¢;) = 400 for (; & 2A;. At a point (; € 2; the subdifferential Olly, (¢) is equal
to the normal cone
NQ{Z(Q) = {Z € Z;: <n — <i72> <0, V’I? € Q‘Z}

For (; ¢ 2; the normal cone Ny, ((;) = 0. For Z € Z; we have that (; € argming,eq, (G, —2Z)
iff (; € arg mingezx (G, —Z) + Ia; (¢;). Since the subdifferential of ((;, —Z) + Iy, ((;) at G is
equal to —Z + Ol (), it follows that (; € argming,eq, (¢, —Z) iff 0 € —Z + Ny, (), that is,
0 € —p(x,-) + Ny, (¢). Therefore the optimality condition (2.2) can be written here as

0 € =" + Nu(Q), (3.7)

where 21 := 2! x --- x A" and ¢ = (¢!, ...,¢"). Note that by pairing Z and Z*, the normal cone
Ny(Q) is a subset of the space Z.

This can be compared with the finite dimensional setting discussed in Section 3.1. Let P
be the probability measure on the corresponding finite set = = {¢!, ..., ™} assigning equal
probability 1/m to each elementary event. Then any probability measure @) on E is absolutely
continuous with respect to P and its density d@/dP is given by mq where ¢ € A,, is the respective
probability vector.

3.3 DMonotonicity property

By (3.7) in section 3.2, we can write DRVI (3.3)-(3.4) as follows:

0c / BCdP + Ny (z), (3.9)
0 € —¢" + Na(Q), (3.9)
where 0 : = — R” is a constant function with value 0, ¢* = (¢ (z,-),--- ,é,(z,-))" is a vector-

valued random function, Ny (¢) := Ny, (1) x -+ X Ny, (¢r)-
Note that R™ x Z and R™ x Z* are paired by the bilinear form (scalar product), that is, for
z,z € R", uw e Z and ( € Z*,

(@), (.0 =T+ 3 [ i
i=1v=

Consider mapping G : R® x Z* — R"™ x Z defined as

J= ®CdP
— T
and denote the DRVI (2.1)-(2.2) by DRVI(G, (X,2()). Monotonicity properties of this mapping
are defined in the usual way. In particular, the mapping G is said to be monotone if for any
(z,0),(z,n) € R™ x 2, we have

<g(w,é)—9(zm)7 (m_z>> >0, (3.10)
¢—n

8

g([E, C) = (



and @G is said to be strongly monotone if there is o > 0 such that

<G<x,<> ~g(zm). ( ) ) > > a(lle = 21 + 11 = nli3,). (3.11)
C—=n

where || — 7|z, is defined by function metric in Ly space. Moreover, it is easy to observe that,

G(z,Q)—G(z,n) = ((fc ®°CdP)" — (fz ®*ndP) T, O)T, G cannot be strongly monotone. However,

G can be monotone under some reasonable conditions.

To investigate the monotonicity of G, we use V, f(x,-) and Jf(z,-) to denote the partial
derivative and partial Jacobian of f with respect to . For j = 1,--- |1, éj Q) > Zis a
random vector with continuous distribution @Q; such that d@; = (;dP, let S;(&) T, Sj(gj)T e R,
£:= (&, ,&) €E, CRY,

SE€) = (51", 86T and S(E) = (51(6)T, LSO

Lemma 3.1 Suppose for any € € E,, 5(5) is a positive semidefinite matriz. Then [- S(€)¢dP

is positive semidefinite.

Proof. We consider a discrete approximation of |- S(£)(dP firstly. Let EN = g, M)
be a discrete approximation of Z with the weight vectors {pi,--- ,pN}, .-, {pL,--- ,pl} such
that fori=1,--- /N, j=1,--- ,r,p§- >0, Efilp; =1 and w.p.1

N

Jim ;pﬁsj (&) = ; S;(€)¢;dP. (3.12)

There are several ways to construct an approximation above. One way is construct i.i.d. samples
E;-V = {5}, e ,fjj.vj} of continuous distribution @; such that d@Q; = (;dP for j =1,--- ,7. Then

=N _,r =N _ |=N r i i 1 7 =N i :
EY =Ul 5, N = =N < ijlN and pj = N; if ' € E}' and pj = 0 otherwise.

Let P! := diag(p},--- ,pi) fori=1,---, N, then
N T
STPIS(E) = (SX pisie) . TN, pis, (E)T)
i=1

is an approximation of [= S(£)¢dP. We then prove SN | PIS(€7) is positive semidefinite.

To this end, we do the following procedure.

Step 0. Let k = 1. We reorder the weight vectors {p},--- , pV},--- , {pL,--- ,pN} to {pgl), e ,pgN)},

o '7{p'$“1)>"' 7p7("N)}SuChtha'tp(‘1) Zp§2) 2p§N) fOI’j = 17 , T Let gk = (5%1)7 ; ~7("1))

J
and Py, = min{pg»l),j =1,---,r}. We construct pyJ,P(z, ék) and reduce py, from pg»l), that
is new pg.l) = pg-l) — P, for j =1,--- ,r. Note that by the condition of the lemma, ;S (")
is positive semidefinite. Let & = k + 1.



Step 1. For j = 1,--- ,r, since we have reduced py_; from p}l)

.
j )
denote the newly reordered weight vectors as {pgl), e ,pgN)}, e ,{pgl), s ,pS*N)}. Note
that now Zf\il p}i) =1- Zi:ll D If Zf\;l pg.i) =0, for j = 1,---,r, stop. Note that

Zij\il pgi) = Zf\il pl(i) for all 5,1 € {1,--- ,r}. Otherwise, go to Step 2.

and pgl) may not be the largest

one of {p IR pg-N)}, we reorder the the weight vectors again. To easy notation, we still

Step 2. Let & = (él),-'- ,él)) and p, = min{pg-l),j = 1,---,r}. We construct PeS(E%) and

reduce p; from p§1), that is new p§-l) = p(-l) — pg, for 5 = 1,---,r. Note that by the
condition of the lemma, pS(€¥) is positive semidefinite. Let k = k 4+ 1. Go to Step 1.

Note that 5 € ZN and |Z| = N, the procedure above will stop at finite iterations, denote

by K, K < N”. Since S(&) is positive semidefinite for k= 1,--- , K and Zszl pr = 1, then
N K )
> PS(E) = mS(E")
i=1 k=1

is positive semidefinite, and by (3.12), [z S(£)CdP is positive semidefinite w.p.1. O
Let é::: (517' T 751”) € ET‘ C R’Ma and

J= Jo @ ¢ dP
/ J,®(x, €)CdP =

J= Jp ¢, dP

Proposition 3.3 Consider DRVI (3.8)-(3.9). Suppose (a) fori=1,---,r and £ € E, ®;(+,§)
and ¢i(-,€) are continuously differentiable, (b) for any € € " and z € X,

((qu)l(a:,él))T, .. 7(Jx<I>T(:c,§T))T>T

is a positive semidefinite matriz, (c) for P-a.e. £ € 2, ({(&)(Z, ®i(z,€) — Jutpi(2,€)T) > 0, for
allz € X,z € R" andée Z,i=1,---,r, then G is monotone over X x 2.

Proof. It is easy to observe that

[ Jo @GP By (z,) - 0 [z Jo®3¢1dPE + [ 3G dP
[e o®2GdP 0 - B(x,) i [e Jo®F¢dPE 4 [ ®FC,dP
9@y = | o JYeo | )= .
- x¢1(xa ) 0 0 C - mgbl(l" )1:
- z(br(xf) 0 0 - m(br(x,')i'
and

Jo®TCdPE + & / BT C;dP —

m\

Jm%éidPaé]) :

<(jv 5)7 ‘]g(m,g) (

IR
N——
\/

I
-
7N
S
|
i

10




By condition (b) and Lemma 3.1, [Z J,®(z,£)(dP is positive semidefinite. By condition (c),
for any Z € X and ¢ € Z,

T

> <5:Z/_<Df§idP—/_Jx¢f§idP§:) > 0. (3.13)

i=1

Then <(:§, 5), JGe ¢ (g) > > ( holds for any # € R" and ¢ € Z, and then by [12, Theorem 3.1],

G(x,¢) is monotone over X x 2. O

The above proposition shows the monotone properties of the DRVI in the continuous distri-
butions setting (section 3.2). Note that in the case of finite dimensional setting (section 3.1),

we can simply rewrite Proposition 3.3 as follows.

Corollary 3.1 Consider DRVI (3.1)-(3.2). Suppose (a) for i =1,---,r and £ € E™, ®;(-,§)
and ¢i(-, &) are continuously differentiable, (b) for any fe (2™ and z € X,

. N T
((Jx(bl(xv 51))T7 ) (J:L‘(I)T(xvér))—r>
is a positive semidefinite matriz, (c) for all{ € 2™, x € X, 2 € R", i =1,...,r, i:@l(x,f) —
J¢i(x,£)Z = 0. Then G corresponding to DRVI (3.1)-(3.2) is monotone over X x 9.

In what follows, we give the existence of solutions of the DRVI based on the monotone

properties.

Definition 3.1 ([16, Definition 12.1]) The mapping G : R™ x A — R™ x Z is hemicontinuous
on R™ x Z* if G is continuous on line segments in R™ x Z* i.e., for every pair of points

(2,0),(z,n) € R™ x Z*, the following function is continuous

¢—n

tr—><g(t$+(1t)z,tg+(1t)77), (m_z>>, 0<t<1.

Definition 3.2 ([16, Definition 12.3 (i)]) The mapping G : X x Z* — X x Z is weakly coercive
if there exists (x9,(%) € R™ x Z* such that

T — X0 0 «
G(z,Q), o — 00 as ||z — x|+ ]| = || & o0 and (z,() € X x Z*.
Theorem 3.1 Suppose the conditions of Proposition 3.3 hold. If X C R" is a closed and convex
set, A is conver and weakly™ compact in Z and G is weakly coercive, then DRVI(G,(X,2l)) has

a solution.

By Proposition 3.3, it is obvious that G is hemicontinuous and monotone on R"™ x &. Then
Theorem 3.1 is from [16, Theorem 12.1 and Corollary 12.2] directly.

Moreover, we can also have a finite dimension version of Theorem 3.1 as follows.

Corollary 3.2 Suppose the conditions of Corollary 3.1 hold. If X C R"™ is a closed and convex
set, M is compact in R™ and G is coercive, then DRVI(G,(X,0M)) (3.1)-(3.2) has a solution.
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3.4 Examples of monotone DRVI

We illustrate the monotone property and coerciveness of G in the DRVI by two examples from

the DRO and distributionally robust generalized Nash equilibrium.

Example 3.1 Consider the DRO (2.3), where ¢ is convex and twice continuously differentiable,
2= {1, 2}, M {(p,p?) :p' > 0,p' +p? =1,i = 1,2} is convex and compact.
Then the corresponding DRVI is

0 € p'Vag(w, &) + p*Vad(z, £) + Nx (), (3.14)
_gb(l‘?gl) 1,2

0 Nox((p*, p?)). 3.15

€ <—¢(x,§2)> + N((p", 7)) (3.15)

And the corresponding function is
P'Vao(2,6') + p*Vig(z, £2)
G(z,P) = —¢(x,€")
—¢(z,€)
Moreover,
P'Vaed(x,E") + *Vard(2,6)  Vao(a, ") Veo(x,?)
JG Py = —Veo(z, &7 0 0
~Vad(,€)7 0 0
is positive semidefinite over X x MM and then G is monotone.
Then we prove the coercive of G. Let X = Ra_ and zo = (0,0), P® = (1,0). Suppose for any
£ €E, ¢(x,€) is a strongly convex function of x with parameter m(£%) > 0, i = 1,2, we have

when x sufficiently large, ¢(x,£Y) >0, i=1,2 and

50.6) > (2. €) ~ Va(z,€) Tz + " a2
Then
o (1))
lim inf
220, [|z]| =00 [|z]]
_ 1
2T (p'Vao(2,€Y) + p*Vao(z,62) + (P — PO)T ( o 52)
= liminf —¢@¢)
220, || —>00 |||
— liminf p1(x Vad(x,E') — ¢(x,£Y) + pa(x " Vad(z, E2) — ¢z, €2)) + ¢(,£)
220, |[z]| =00 [|z]]
o L 2@ Ved(@, ) = 62, 8Y) + po(a Vad(x, &) — $(x,%))
= 220,z —o0 - Il
ol 2P Sl 0(0,€)
= 220, =00 &g '

Combining the monotonicity and coerciveness of G, by Corollary 3.2, the DRVI has a solution.
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We can also consider a distributionally robust generalized Nash equilibrium problem as

follows.

Example 3.2 Consider the distributionally robust generalized Nash equilibrium problem as fol-

lows:

i [ f; : t. < = ,
zrlrg}z Igine%;?(i Ep [fi(z,&)] + gi(z), s.t. bixy +boxy <e, =12, (3.16)

where x = (r1,z2), v; € R™, X; CR™ is a convez set, for Pi-a.e. w, VP; € M; fi(-,€) is convex
and twice continuously differentiable with respect to x, and g; is convexr and twice continuously
differentiable, = := {1, €2}, M; C {(p},p?) pf > 0,pi+p? = 1,5 = 1,2} is convex and compact,
1=1,2. Suppose J (Vxlgl(iﬂ)a VmgQ(xDT s positive semi-definite.

Then the corresponding DRVI is

0€c—bixs — bz +NR+ (1) (3.18)
_fl(1:7£1) .
0¢ <—fz(l',§2)> +meb((pzl7p7,2))v = 11 2. (319)

Let
Vay f2(2,€) + Va,92(x) + bapt —f2(z,€)
Then the DRVI (3.17)-(3.19) is corresponding to (3.1)-(3.2) with (3.18). Moreover,

p%vmfl(%fl) +p%vx1f1(l‘,§2) + Vmg1($) +bip
p%V@fg(m,fl) —i—p%V;ngQ(x,ﬁZ) + Vi, g2(x) + bap

Bz, €) = (Vzlfl(th)+V:v191(3?)+51u> ond oz, £) = (-fl(%f)) '

g(l‘,,u,P) = _fl(xa 1)

Fori,j=1,2, let

aij = P Vaw, [i(@i,§) + D}V, fi(2i,6) 4+ Va,z,9i(2),

a1 a12 b1 Va fi(z, ) Vi fi(z, %) 0 0

@21 a22 by 0 0 Vo fo(2,61) Vi, fa(z, €2)
—b1 —by 0 0 0 0 0
Vo fi(z, )T =V, filz, €T 0 0 0 0 0
Va fil@, €)1 =V, fi(z,6)7 0 0 0 0 0
Vo fo(, )T =V, fo(z, T 0 0 0 0 0
—Va fo(2, 62T =V, fo(z, )T 0 0 0 0 0
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It is obvious that in general, G is nonmonotone. Moreover, G can be monotone if f1 is only
w.r.t. (x1,€) and fa is only w.r.t. (x2,§), that is fi(x1,£) and fo(xe,§), then

(meﬁ(ﬂm, £") + Va, g(x) Vi, 9() )
Vg () Vagws f2(£2, ) + Ve, g(x)
is positive semidefinite for 1,7 =1,2.
Then we show the coerciveness of G. Similar as in Example 3.1, let X; = Ry and xjo = 0,
1o =0, P]Q = (1,0) for j = 1,2. Suppose f;(x,&") and g(z) are strongly convex with parameter
m;(€Y) > 0 and m? > 0 respectively, fori=1,2 and j = 1,2, ¢ > 0, we have

-

lim inf
(a,2) >0, (,p2) |00 , | (, 1, P)|
DO PV, £, €) + 25V, 9(x) — fi(25,6)) + Do fi(25,€1)) + pe
> lim inf ==l
(@,1) 20, ]| (,12) |00 . | (2, )|
SN (Ve fi(ws, 6 = fi(,6) + 23 Ve, g5(x)) + pe
> lim inf =1 451
(@) >0, [ () |00 [l (2, )|
- — S S P II%II2 £i(0,€) + ; 5]1* — g;(0)) + pe 0.
T (@) 20, (@) | 500 | (, )|

Combining the monotonicity and coerciveness of G, by Corollary 3.2, the DRVI has a solution.

4 Discretization of Probability Distributions

In this section, we consider the discretization of DRVI with the ambiguity sets formed from
continuous distributions in the setting specified in Assumption 3.1. There are several ways to
discretize the ambiguity set [10, 26, 30]. We propose a SAA approach to the DRVI. For the
sake of simplicity we assume here that » = 1 and drop the subscript i in ®7 and ¢7, etc. An
extension for r > 1 will be straightforward. Recall that P is the reference probability measure
(distribution) on (E,B), Z = L,(E,B,P), Z2* = Ly(E,B,P), 2 is a convex bounded weakly*
closed subset of Z* of densities associated with the ambiguity set 91, and
R(Z) = sup / Z(s)C(s)dP(s), Z € Z. (4.1)
eA J=
Let us introduce some definitions.
It is said that random variables Y,Y’ : £ — R are distributionally equivalent (with respect
P), denoted Y Ry, it PY <y) =PY’ <y) for all y € R. It is said that a functional
R : Z = R is law invariant if R(Z) = R(Z') for any distributionally equivalent Z, Z’ € Z. The
set 2 C Z* is said to be law invariant if ¢ € 2 and (’/ 2 ¢, then ¢’ € 2. Tt is known that the

functional R is law invariant iff the corresponding set 2 is law invariant (cf., [26, Theorem 2.3]).
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Assumption 4.1 The set U is law invariant.

By Assumption 4.1 we have that the functional R(Z) is law invariant, and hence can be
viewed as a function of the respective cumulative distribution function (CDF) of Z. It is possible
to proceed with the required discretization by making discretization of the corresponding CDF
of ¢*(§). However, such approach is indirect and inconvenient for applications. Therefore we
discuss below several important cases where this can be performed in a rather straightforward
way.

Consider an iid sample & € Z, j = 1,..., N, from the reference distribution P. With the law
invariant risk measure R is associated the corresponding empirical functional® Ry : RY - R.

The functional Ry has the dual representation

N
Rn(Z) = sup N1 " ¢2(8), (4.2)
cequAN =)
where AV is the respective convex closed set of densities* ¢ = ((1,...,(x). In the next section

we give examples of how the empirical functional can be constructed.

For the generated sample,

N

Rn(¢") = sup N™') " (&) (4.3)
ceanN j=1

can be considered as an empirical estimate of R(¢”). We have that under mild regularity

conditions, Ry (¢*) epiconverges w.p.1 to R(¢*) on X (cf. [24]). This suggests the following

discretization of problem (3.3) - (3.4):

N

06> G, &)+ Nx(x), (4.4)
=1
J N |

¢ € arg max J; nié(x, &), (4.5)

4.1 Construction of the empirical estimates

Here we discuss construction of the empirical estimates of the risk measure R defined in (4.1).
For a random variable Z we denote by Hz(z) := P(Z < z) its cumulative distribution function
(CDF) and by H,'(t) := inf{r : Hz(7) > t} the corresponding quantile function (also called
Value-at-Risk). Note that the subdifferential of R(Z) is given by

OR(Z) = arg I?gﬁ(ﬂZ(S)C(S)dP(S) (4.6)

(e.g., [25, eq. (6.49), page 284]). Let us consider the following example.

SAny Z : {¢',...,6"} — R can be identified with N-dimentional vector (Z(£1), ..., Z(€x)), and hence the
empirical risk measure can be viewed as defined on R,
“Note that ¢ is a density on {£',...,6V}if ¢ > 0 and N~* Zivzl ¢Gi=1,ie, N '¢ e Ap.
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Example 4.1 Consider the Average Value-at-Risk,

AVQR;_(Z) := : i . /1 H, (t)dt = Tirel]%{f +(1—a) 'Ep[Z —7]+}, a€(0,1).  (4.7)

Here Z = L;1(Z,B,P) and a minimizer in the right hand side of (4.7) is 7 = H,'(a). The
empirical estimate of AV@QR;_, (¢%) is then

N
N D TN g ac J _
AVAR(-a(¢") = Inf {7+ 7% ; " () -], ¢ (4.8)

We have that JAV@R;_,(Z) is a singleton iff P{Z = k} = 0, where r, := H,'(a). Suppose
that OAV@R;_,(Z) = {(} is a singleton. Then

(s) = { (1—-a)™t if Z(s)>k, s€Z, (4.9)

0 if Z(s) <k, s€ZE,

(cf. [25, eq. (6.80), page 292]). For x € X and Z := ¢® let {(*} be the corresponding
subdifferential. The subdifferential éz = (¢f, .-, C}) of the corresponding empirical estimate is
obtained by replacing rq with their empirical estimates. That is (7 = (1— ) Lif ¢7(&) > kan
and Cj’-” = 0if ¢*(¢’) < Kq, N, Where Ko v is the empirical estimate of k.. Note that because of
the assumption P{Z = k} = 0, the empirical estimate ko n converges w.p.l to Kq.

Consider the probability distribution P% on {¢1, ..., ¢V} associated with density (%, i.e., with
&7 is assigned probability 1/((1 — a)N) if ¢=(&7) > Ky n» and 0 otherwise. We view Py as the
empirical counterpart of P*, where P? is the probability measure absolutely continuous with

respect to P and having density (%, i.e
P = (*dP. (4.10)

Consider a continuous bounded function g : Z — R. Since g(+) is bounded and continuous,

KQN — k% w.p.1l and P{¢"(§) = kZ} = 0, we have that

Lo = =y X el

- ¢z(§j)>’fz,1\r

converges w.p.1 to
- 1
s = o [ gls)ar(s)
1 — z(§)>ﬁz

T

That is P}, converges weakly® to P®. Moreover, by Proposition 7.1 in the Appendix, we have if
{zn} is a sequence in X converging to x, then [ g(s)dPy" (s) converges to f¢z(§)>ﬁg(s)dP(s)

w.p.1, and hence Py converges weakly to P?.

5Recall that a sequence Py of probability measures converges weakly to a probability measure P if S gdPn —
J gdP for any bounded continuous function g : 2 — R, see e.g., Billingsley [3] for a discussion of weak convergence

of probability measures.
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Spectral risk measure. This can be extended to a general setting. Let us first consider

spectral risk measure R. That is®

R(H,") = /0 (O H ()t (4.11)

where o : [0,1) — Ry is monotonically nondecreasing, left side continuous function such that
fol o(t)dt = 1. The Average Value-at-Risk AV@R,, is a spectral risk measure with spectral
function o(t) =0 for t € [0,1 — ), and o(t) = 1/a for t € [1 — o, 1].

Let Hye(2) := P{¢"(§) < z} be the cumulative distribution function (CDF) of ¢*(£) and
Hye v be the CDF of ¢%(&7), j = 1,..,N. That is, function Hye y(-) is stepwise constant with
jumps 1/N at points qbfl), - ¢:(EN)7 where <b‘z*"1), ceey qﬁg(”N) are values ¢*(&1), ..., ¢"(¢V) arranged in

the increasing order, i.e.,

N
Hge n () = Nﬁlzl(foo,tbfj)](')' (4.12)
j=1
Then
1 N
R(ngl,zv) = /0 G(t)H(;xl,N(t)dt = ZQj¢%j)7 (4.13)
j=1
where
J/N
qj = / o(t)dt, j=1,...,N. (4.14)
(i-1)/N

Note that ¢; > 0, Z;VZI ¢ = fol o(t)dt = 1.

Remark 4.1 The corresponding set 2% is the convex hull of vectors (@r(1)s - @r(n))s ™ € 11,
where IT is the set of permutations of the set {1,..., N}. By Hardy - Littlewood inequality, we
have here
N ‘ N
sup > G (&) = q;0;), (4.15)
ceAN iy j=1
and the corresponding maximizer ¢ € arg max cqn Zﬁvzl Cjo™ (&%) is given by ¢ = (@n(1)s s Qr(N))
with the permutation 7 € II corresponding to the order g{)’(’“"l) <--- < qﬁ"(”N). Note that this per-

mutation and hence the maximizer ¢ depend on z.

We can also write this spectral risk measure in the form

1
R(6%) = /0 AVOR, o (6%)dpu(0), (4.16)

where 1 is the probability measure on the interval [0,1) associated with the spectral function
o(-), given by
(0%
pla) = (1 — a)o(a) +/ o(t)dt.
0

6By the law invariance of R(Z) it can be considered as a function of Hy.
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This is the so-called Kusuoka representation of the spectral risk measure (e.g., [25, p. 307]).
That is

1
R(¢") = /0 Ep{7(a) + (1~ a)"'[¢" — 7(a)]+ }du(a), (4.17)

where 7(a) := Hq;.l( «). The empirical estimate R(H <1>‘ ) can be written then as

[ @)+ (- )8 (@) — Al fdue), (419)
j=1

where 7n () is the empirical estimate of H;zl(a).

The subdifferential of R(¢") can be taken inside the integral in (4.16), i.e

1
R(¢") = /0 OAVER, o (6%)dpu(a). (4.19)

We have that OR(¢%) = {¢*} is a singleton iff DAVAQR; _,(¢?) is a singleton for p-almost every
a € [0,1), i.e., iff P{¢* = ko} = 0 for p-almost every a € [0,1), where ko = H,' (o). Then we
have by Example 4.1 that the subdifferential JAVAQR; _,(¢%) = {(,} is given by

_ { (1—a)™" if ¢%(s) > ka, s €E, (4.20)

ale) = 0 if #%°(s) < Ka, S € 2.

The subdifferential Ca = (¢

rs (2 y) of the corresponding empirical estimate is obtained by

replacing ko = H . (a) with their empirical estimates.

For a continuous and bounded function g : Z — R we have that

L ats)arzcs) - / o N Zg () - / . T 9(€7)dpu(a)

" (&) >k

converges w.p.1 to

Loee@e = [ [ oeGeEeme = [ g

Then we have that P& converges weakly to P, where P® has density (* (see (4.10)). Moreover,

by Proposition 7.1 in the Appendix, we have if {zx} is a sequence in X converging to z, then

J=9(s)dPyN (s) converges to f¢1(§)>n g(s)dP(s) w.p.1, and hence Py converges weakly to P*.

Law invariant coherent risk measure. By dual representation, any law invariant coherent

risk measure can be represented as follows

1 ! —1
e /: Z(5)C(s)aB(s) = R(Z) = R(H;") = sup /0 o (1) H (1)t (4.21)
with

S:={o=H ':Ce} (4.22)
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being a set of spectral functions.

Let Hye n denote the CDF of the empirical distribution corresponding to the i.i.d. samples
{o=(€Y), -+, ¢"(N)}. Note that Hye y is a function of the random sample, and hence is random.
We have

1 1
8R(H¢; ) = arg r;leaé(/ ot )Hdﬂ” (t)dt and OR (H N) = arg r;leaé(/ (t)H;z{N(t)dt. (4.23)

Lemma 4.1 Consider a point & € X and a sequence {xy} C X converging to T. Suppose that
Assumptions 3.1 and 4.1 hold, ¢(-,§) is continuous and IR( ¢>x) = {a} is a singleton. Then
any sequence oy € OR (H;;}N N) weakly® converges to ¢ w.p.1.

Proof. We first note that H e ! and H, ¢I NN belong to the space £,. We can apply a general
theory of sensitivity analysis applied to the optimization problem (4. 23) with viewing H, as
parameter in the space £,. We have that H Q;}N N converges w.p.1 to H_, o in the norm topology
of £, as N — oo. This can be proved by an extension of [24, Theorem 2.1] (see Theorem 7.1 in
the Appendix). Since the set & is weakly* compact and the maximizer & of the right hand side
of (4.23) is unique, it follows by [4, Lemma 4.3 and example 4.5] that if

1
ON € arg rnax/ a(t)Hq;lN N ()dt, (4.24)
ce6 Jg ’
then {on} is weak™ convergent w.p.1 to 7. O

For law invariant coherent risk measure, by the Kusuoka representation, (4.21) can also be

presented as

1 1
R(H) = s [ o()HE (0t = sup [ AVaRy-o(67)dn(o) (1.25)

and its SAA can be written as

R(H L) = sup / Z () + (1-0) [6%(&) — @]y Jdu(e),  (426)
where U := {p : p(a) = (1— @)+ [y o(t)dt,o € S}. Then we have that OR(¢*) = {("} is a

singleton (which implies 872( ) is a smgleton) if and only if OAV@R; _, (¢") is a singleton for
p-almost every a € [0,1), i.e., 1f and only if P{¢"” = ko } = 0 for p-almost every o € [0, 1), where
Ko = H (), u € B. Note that if P{¢® = ko } = 0 for every a € [0, 1), then the condition that
OR(H, )= {5} is a singleton holds.

Then we consider the convergence analysis between

3 h s ('S 1—a) g™ (¢) — 7 d 4.27
max S notan. &) = sup - [ ;{TN(O‘)” o) () — n o))y bdula)  (4.27)

N
neA =1 ney

and

1
max/ ¢*ndP = sup/ AVaR;_,(¢")du(a), (4.28)
nedl J= ney Jo
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where zy — Z. Let ((3, pn) and (¢*, i) denote the optimal solutions of (4.27) and (4.28),
respectively. Note that (3 corresponds to a discrete distribution Py and (* corresponds to a

continuous distribution P* = (*P.

Proposition 4.1 Consider a point T € X and a sequence {xn} C X converging to T and the
ambiguity set corresponding to a law invariant coherent risk measure. Suppose (i) Assumptions
3.1 and 4.1 hold, ¢(-,&) is Lipschitz continuous, (ii) 8R(H¢;—}) = {c} is a singleton, (iii) the CDF
of ¢ is strictly monotone, and (iv) there exists positive measure i such that for all N sufficiently
large, f[O,l} h(t)p(t) > f[o,l] h(t)un(t) for all bounded function h(t). Then PN converges weakly
to P*.

The proof of Proposition 4.1 is in the Appendix.

Example 4.2 Consider the 1-divergence approach to construction of the uncertainty sets. The
concept of -divergence is originated in Csiszdr [13] and Morimoto [17], and was extensively
discussed in Ben-Tal and Teboulle [2]. We also can refer to Bayraksan and Love [1] for a recent
survey of this approach. That is, consider a convexr lower semicontinuous function v : R —

R4 U {400} such that (1) = 0. For z < 0 we set (x) = +o00. For ¢ > 0 consider
A = {C €D : [L1p(¢(s))dP(s) < c} , (4.29)

where ® = {( € Z* : [(dP = 1, ( = 0} denotes the set of densities. If CRC’, then
J=¥(¢(s))dP(s) = [z(¢'(s))dP(s). Hence the set 2 and the corresponding functional R are
law invariant. Since 1-divergence is a law invariant coherent risk measure, it has Kusuoka rep-
resentation (Note that the representation is only for constructing the SAA and proving the weak

convergence).

Proposition 4.2 [14, Proposition 5.6] A ¢-divergence risk measure can be written in the form

1
R(Z) = sup /0 o (1) H; (t)dt, (4.30)

where & := {0 : [0,1] = [0,00] : o is non-decreasing ,fol o(t)dt =1, fol P(o(t))dt < c}.

Moreover, let p(a) = (1 — a)o(a) + [y o(t)dt (that is o(t) = fg Ldu()). By Kusuoka

representation, we have

1 1
R(Z) = sup/ AVQAR;_o(Z)du(a) = sup/ ]EP{T(CY) +(1- a)*l[Z — T(a)]+}du(oz), (4.31)
pneL Jo neV Jo

where ¥ := {p : [0,1) — [0,00] : fol du(a) = 1,f01 w(fg Ldu(a))dt < c}. Although the
structure of U looks complicated, the discretization way is exactly SAA and same as in the

paper. Then with the conditions of Proposition 4.1, we can show Py~ converges weakly to P*.

20



By discussion above, we have shown that for law invariant coherent risk measure and under
mild conditions, Py converges weakly to P7.
However, to prove the convergence between (3.3)-(3.4) and (4.4)-(4.5), we need stronger

convergence results between Py and P?. To this end, we need the following assumption.

Assumption 4.2 Let M and MY be nonempty and closed. Suppose

(a) there exists a weakly compact set M C A such that n,myN ¢ M holds for N sufficiently

large;

(b) sup pegy Ep[|[]]] s bounded.

Assumption 4.2 is used and discussed in [28]. One sufficient condition for Assumption 4.2
is the compactness of support set =. Then we prove the main convergence result for the case

when r = 1. It is straightforward to extend the result to the case when r > 1.

Theorem 4.1 Let (2y,(y) € X x AN be a solution of the SAA variational inequalities (4.4)
- (4.5). Suppose (a) Assumptions 3.1, 4.1 and 4.2 hold, (b) ¢(z,-) is Lipschitz continuous and
bounded on =, ®(-,£) and ®(x,-) are Lipschitz continuous with Lipschitz modulus k(§) and K
over X and = respectively, and sup g Ep[r(§)] < oo, (¢) &N converges w.p.1 to a point T, (d)
OR(¢*) = {C} is a singleton, (e) PT is probability measure on (Z,B) with density ¢, and PJQ\A‘}N
is the empirical measure associated with é N, and PJJ\},N weakly converges to P*. Then (,() is a
solution of the DRVI (3.3) - (3.4).

The proof of Theorem 4.1 is in the Appendix. Note that the sufficient conditions for as-

sumption (e) are given in Proposition 4.1.

5 Numerical examples

In this section, we use a continuous version of Example 3.2 of the distributionally robust gen-
eralized Nash equilibrium problem to illustrate the SAA approach and its convergence, where
fi and g; are quadratic convex functions, 9; is constructed by modified y?-distance, i = 1, 2.
Particularly, let

1
= §a:ZTMZa:Z + ciTxi + xiTR,-x_i,
X; = R%r, by = by = (1,1)T and ¢ = 10. Let P follow the uniform distribution over [—1, 1],

fi(z,§) = %fciTMi(f)CCi +&(8) i, gi(z) :

£ : Q — [—1,1], then the density function of P is a constant function with value 1 over [—1,1]

and the ambiguity set

M, ;=< PecP:
ge[-1,1]

2(p(¢) — 1)%d¢ < 0.05} :
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where & denotes all probability measures over [—1, 1], p(§) is the density function of P, i = 1, 2.
Note that this is a particular case of i-divergence. It is obvious that 91; is a weakly compact
subset in Ly over [—1,1]. Let E be the 2 x 2 matrix with all elements 1, R; = E, M;(€) = 51 +£1
and M; = I. Then for any ¢%,¢7 € [0, 1],

(vmmx,é) + Ve 91(2) Ve fi(2,€) +vmgl<x>> _ <M1(5i> + M Ry >
V3t72$1f2($7 Ej) + szxng(l') ngzgf2($, gj) + v$2w292($) Ry MQ(fj) + M>

is positive definite and then for any ¢, &7 € [0, 1],

M, (&%) + M,y Ry b1
Ry My(€9) + My by
b —by 0

is positive semi-definite. Since random variable ¢*(£) in (4.26) is fi(x,€) and fo(x,€&) and P
follows the uniform distribution over [—1, 1], fi(z, &) and fa(z, ) follow continuous distribution
and their a-quantiles, denote by sl and x2, are unique for all a € [0,1] when z # 0. In this
case, P(f1(z,&) = kL) = 0 and P(fo(x,€&) = £2) = 0 for all € [0,1], and then df, R(fi(z,&))
and 0, R(f2(z,§)) are singleton.

Let {€!,--- &N} be the i.i.d. sample of ¢ generated from P. Then we solve

N
06> pIVa, fila, &) + Va,gi(x) + bipt + Nx, (z:),  i=1,2 (5.1)

j=1
0€c—bizy — baxo —I—NR+ (1), (5.2)

where for i = 1,2, P, = (p},--- ,pY) is from
1

P, = gl J 5.3
;€ arg max, N;qzaﬁz(xl,xz,{ ), (5.3)

where ¢(z1,%2,€) = fi(z1,22,€) + gi(w1,22), Qi = (g}, ,¢)) and

N NN ] 0.05
m; = P€R+:Z(p7—ﬁ ng

j=1
We consider sample size N = (50,100, 300, 600,1200). For each sample size, we generate 20
group of samples and solve the corresponding DRVI (5.1) - (5.3) by Algorithm 1 with 7 = 0.2
and randomly generated 20 € [0,1]° using the uniform distribution in Matlab.
Since the two players are symmetric, then 1 = x9 and we only show z1 with 1 = (211, .7312)T
in Figures 1-2. From the two figures, we can observe the tendency of convergence as sample size

increases, which is consistent with our convergence results.
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Algorithm 1 Projection method for solving DRVI.

1: Choose a parameter 7 € (0,1) and an initial point 20 = ((29)7, (#3)7, u%) 7. Set k < 0.
2: Solve
P = arg max Eg,[¢;(2F,¢)], for i=1,2.
Q. emyN
3: Set

YN () Ve, fi(2,8) + Vi g1(x) + bips
Fk(z) = Zjvzl(pé)kvxzfé(xa{]) + Vmg?(x) + b2,u
c—biz1 — baxs
where ((pzl)kv T (pi\f>k> - Pz'k7 =12

4: Tf || min(2*, F¥(2%))|l2 < 1078, stop, otherwise find z**! such that
”Zk—H _ PrOjRi(zk—H _ TFk(Zk—H))H < 10—8‘

5: k< k+ 1, go to Step 2.

1.475 - + q +

+

+
| -

1.035

14| B N + 1 E % % %
x === R e *

T
|
|
|
|

le

I
!
1.465 - | | - I
! + !
a !
. !
a
i 1.025 i
1.46 L L L L L | L 1 1 1
50 100 300 600 1200 50 100 300 600 1200
Sample Size Sample Size
Figure 1: convergence of z Figure 2: convergence of x19
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6 Conclusion remarks

To deal with uncertainties of probability distributions P in the SVI (1.1), we propose a formu-
lation of the DRVI in Definition 2.1. This formulation provides a unified framework for the
research of many important problems including the optimality conditions for distributionally
robust optimization and distributionally robust games. We show the existence of solutions of
the DRVI under the conditions that the set X of decision variables is convex and bounded or
the operator in the DRVI is monotone and coercive. Moreover, under the condition that the set
of densities associated with the ambiguity set 91 is law invariant, we propose a SAA approach
to the DRVI by using the corresponding law invariant risk measure R and establish its conver-
gence properties as the sample size N goes to infinity. The formulation of the DRVI, solutions
of the DRVI, the monotone condition, the SAA approach and the convergence properties of the
SAA are illustrated by seven examples. Within this new DRVI framework, some new algorithms
can be developed for finding robust solutions of optimization and equilibrium problems under

uncertain environment.
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Appendix

In this appendix, we give some proofs and necessary results used in this paper.

Proposition 7.1 Suppose (i) ¢(-,§) is Lipschitz continuous in x € X with a uniform Lipschitz

modules kg, (i) the CDF of ¢* is strictly monotone, and (iii) {xn} is a sequence in X converging

to Z, (iv) |k% | is bounded by a constant number for all ' € B(x) N X, then for any bounded and

continuous function g, [z g(s)dPy" (s) converges to [yz o)z 9(s)dP(s).

Proof. For any continuous and bounded function g(s),

1 . 1
— - = s)dP(s
SN CEEY RO

PN (gj ) >’§z{VN

1 o : 1 1
Jy — J Jy — = P .
N E 9&) -5 E @)y E 9(&) a/z(g)w g(s)dP(s)
SN (67) >Ry $7(E)>RE, 7 (€9)>KE, a
(7.1)

We first prove that nszN converges to kX w.p.1. To see this, by condition (ii), we have
P{¢7(¢) =k} = 0, then

and

i _ .
Ko = argmin T+

L Ep[(67 —7)4]

N
TN : xN J _
KNEarngmT—i— Nz:l¢ (&) —1)
J:
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It is easy to observe that (¢%(£) — )4 is continuous w.r.t. z and dominated by an integrable

function, then by uniform law of large numbers [25, Theorem 7.48]

_ 1 X

Ep(6” = 7)4] = 5 D_(6™(6)) = 7)4| = 0
j=1
as N — co w.p.1. Then by conditions (i)-(iv) and [4, Proposition 4.4], we have x>, converges
to Kk w.p.1.

Then we prove the convergence of first part in the right side of (7.1). Let
Ay ={E€Z: 6™ (&) > gy, 07(6) < ra), AR ={E€E: 9™ (&) < rp'y, 07(€) > KT}

AN = {6 €21 ¢7(0) 2wy — kollz — an ], 67(€) < K3},
and

Ay ={6 €21 ¢7()) < mglly + kollz — an ], 67(€) = K3}
Then

=Y w@) - X a@)| < ABa(Ah U A max gls)]

alN , =
PN (&) >k % (&)>KE,

< éPN(AE?V ) Ajlv)| maxs 9(5)’7

where Py is an empirical estimation of P. Note that sy — w7 and zy — 7, Ay C A%
and A% C A%, and A3, and A} converge to singleton sets. Then by condition (i) and (ii),
Pn (AL U A%) < Py(A4%, U AY) — 0 as N — 0o w.p.1, which implies

D DI () B S (72)

¢"N () >k N PN (§7)>KG,
as N — oo w.p.1.

Then we consider the second part in the right side of (7.1). Since g is continuous and

bounded, by classical law of large numbers, as N — oo w.p.1,

! -1 s)dP(s
S (I /%%g( JdB(s)| > 0.

¢7(§7)>KE

Combining discussion above, we have the conclusion. O

Then we derive a kind of uniform Glivenko-Cantelli theorem which we need in the proof of
Lemma 4.1. Let f(z,{) be a random function and {zy} — x as N — co. Moreover, suppose
f(x,€&) is Lipschitz continuous w.r.t. x and &, and the Lipschitz modules k(&) of f(-,§) is
integrable. We use H, (t) and H,(t) to denote the CDF of f(zxn,§) and f(z,§) w.r.t. P and
HY (t) and HY(t) are used to denote the CDF of their empirical distributions i.i.d samples
{e- e}
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Lemma 7.1 Suppose f(x,&) is integrable and continuous w.r.t. x, and P is a continuous dis-
tribution. Then for each ¢ > 0, there exists a finite partition of the real line of the form
—o00 =ty <ty <--- <ty =00 such that for 0 < j <k —1, H(xn,tj+1) — H(zn,t;) < € for all
N sufficiently large.

Proof. Since P is a continuous distribution, H,(t) is a CDF of continuous distribution and

then, for any € > 0 there exists —oo =ty < t1 < -+ < t = oo such that for 0 < j < k — 1,

Hy(tj11) — Hy(t;) < §. Moreover, since f(x,§) is integrable and continuous w.r.t. z, by

Lebesgue’s dominated convergence theorem, for any continuous and bounded function h,

Jim E[h(f(2,€) = h(f(@x. €)] = E | lim (b(f(z,€) = h(/(wn,€))| = 0.

N—o00
Then f(x,-) converges to f(zy,-) weakly, which equivalents to lim, oo |Hg, (t) — Hy(t)| = 0 for
any t € R. Then there exists sufficiently large n such that sup;c.... ky [Hay (t5) — Hz(t5)] < 5.

Then we have

|Hyy (tj41) — Hay (25)] |Hoy (tj41) — Ho(tj10)| + [Ha(tjs1) — Ho ()] + [He(t) — Hay (85)]

<
€ € € __
S Z+§+Z_6' ]

Theorem 7.1 Suppose f(x,§) is Lipschitz continuous w.r.t. x and &, and the Lipschitz modules
k(&) of f(+,&) is integrable, f(x,-) € Lp(E,F,P) and P is a continuous distribution. Then w.p.1

lim sup ]H (t) — Hx(t)| =0, (7.3)

and (ngc\]fv)_1 converges w.p.1 to H ' in the norm topology of L, as N — oo.
Proof. Note that
[Hyy (8) = Ho ()] < [Hg) (1) = Hoy (8)] + [Hay (1) — He (1))

It is sufficiently to show that for any € > 0,

hmsupsup|H V() — Hyy(t)] <€ (7.4)
N—o00
and
hmsupsup |Hy (1) — Hy(t)] <e. (7.5)
N—o0

We consider (7.4) firstly. By Lemma 7.1, there exists —oo =ty < t; < -+ < t;, = 0o such that
for 0 <j<k—1, Hpy(tjr1) — Hyy(t;) < § for all n sufficiently large. For any ¢, there exists j
such that t; <t <t;,1. For such j,

HY (t5) < HY (8) < HY, (t11) and Hoy () < Hoy (8) < Hay (t41),
which implies
Hy (t)) = Hay (tj1) < Hpy () = Hoy (8) < Hpy (1) = Hay (t)-
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Then we have
Ha{:\lfv(t]') - HZN(tj) + HﬂcN (tj) - Hl‘N (thrl) < Hé\]fv(t) - HUDN (t)

and

Ha]:\lfv (tj—H) - HxN (tj—H) =+ Harzv (tj—I—l) - HxN (tj) > H:g\; (t) - HxN (t)
Note that by Lemma 7.1 and by uniform law of large numbers [25, Theorem 7.48], H (tj4+1) —
Hy\(tj) < § and [HY (tj+1) — Hay(t)] < § for all N sufficiently large and j = 0,--- , k, then
we have (7.4). Now we consider (7.5). Similar as the procedure above, For any ¢, there exists j

such that t; <t < ;1. For such j,
Hy(tj) < Ho(t) < Ha(tjy1) and Hyy(t)) < Hey(t) < H(zn, tj41)-

Then by continuous distribution of P, Lipschitz continuous of f(z,{) w.r.t.  and Lemma 7.1,

for any t € R,

|Hy(t) — Hyp (8))] + [Hay (t5) — Hy ()] + [Ha(t) — Ha ()]
|Hoy (tj41) — Hay (8)) + [Hay (8) — Ho(t5)| + [He(t5) — Ho(tj1)|

€.

IN AN IA

Combine (7.4) and (7.5), we have (7.3).
Moreover, (7.3) implies (Hg]c\jfv)_1 pointwise converges to H, ! on the set [0,1]. Then, if the

sequence {|(H2 )~!(s) — H,'(s)|P} is uniformly integrable, (H2 )~* converges w.p.1 to H, ! in

the norm topology of £, as N — oo, that is w.p.1

1 1
i Ny=(s) — HY(s)|[Pds = im NyHs) — H Y (s)|Pds =
hm/0|<HxN> (s) — H; \(s)Pd /0 lim [(HY) " (s) — Hy ' (s)Pds = 0,

N—oo N—oo

where the first equality comes from the Lebesgue’s dominated convergence theorem.

Let us show that the uniform integrability indeed holds. By triangle inequality,
((Hay )™ (s) = Hy '(s)P < [(Hzy )" ()P + [Hy ()P

T

Then we only need to show the uniform integrability of |[(H2 )~!(s)|P. Note that

1 - 1 X .
[ ) tords= [ 1 opan, = 5 3y 0P
= i=1
Since the Lipschitz continuity of f(z,&) with Lipschitz modules x(§),

& ity [ (an, € = Eellf (2, P < I Sl I (en, €)1 — 5 2ok £ (2,69

+ 5 SN (2, )P — Epl| f(=, )]
< |E SN R(E) (@ —ay)P
+ 5 SN (@, )P — Epl| f(=, E)IP]).
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Moreover, by the Law of Large Numbers and 2y — z, + SN R(E) = Eplk(€)], |+ SN R () (z—
zn)P — 0 and |4 Zf\il |f(z, &) P — Ep||f(x,€)|P]] — 0 as N — oo w.p.l. It follows that
|(Hgv)_1(s)\p converges w.p.1 to a finite limit, which implies that w.p.1 |(H3]3\1[V)_1(s) P is uni-
formly integrable. O

Proof of Proposition 4.1. For any continuous and bounded function g : = — R, we have that

Low@Eees = [ [ae@e@eae = [ 2o g,

where 1 is corresponding to . Moreover,

Lot = [ Nzgsﬂ i) = [ Gy D0 g@dnnte)

- [ PN (E1) >R,

Then
| o 9(8)AP3Y (5) = [ g()C7(s)dB(s)|
< / Ty Y e@d(@) - [ 9(3)dP(s)dpu (@)
1—a)N ; 1 —a Jszeysi
0,1) ( ) N R [0,1) $7(€)>Ra
1 1 _
A v [ gt - [ e gt
[071) - ¢Z(§)>K/a [071) - ¢z(€)>’$a
(7.6)
We first prove
1 1 _
[t [ epedae) - [ [ gsdeda) 20 @)
[0,1) + = @ Jg7 (&) >ka [0,1) + — @ JgZ(¢)>ka

as N — oo. From condition (iii), g(£) is continuous and bounded and ¢*(&) is continuous w.r.t.

&, then for any o/ — «, o/, € [0,1), we have

/  g(e)dP(s) - / C g(s)dP(s)
z(§)>ﬁa/ % (§)>Ka

where A, = {€: ¢%(€) > ko) and Ay = {€ : ¢*(€) > Ko }. Note that @ — a and the CDF
of ¢* is strictly monotone, A, — A, and P((Ay — Aa) U (Aq — Awr)) — 0. Then we have
g(s)dP(s) is continuous and bounded w.r.t. a, and (7.7) is from the fact that py

<P((Ay — Aa) U (Aq — Ay)) mgxg(s),

1 f
I—a J¢7 (§)>ka
weak™ converges to u. Indeed, by Lemma 4.1, on weak* converges to &, then for any continuous

and bounded function g(t f[o 3 t)on(t)dt — f[o 3 (t)a(t)dt as N — co. Then

| f[o,1) g(a)u f[o 1) a)dal = (1—a) f[OJ) gla)o f[o N a)da
+ f[m) J5 9(a)(on(t) ( ))dtda — 0

as N — oo, which implies un weak® converges to fi.
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Then we prove

/[01)(1—1(1)]\7 > e@dnte)— [ [ @) o

¢ZN(£j)>Kl]1V,xN [071)

Note that ¢*(¢) is Lipschitz continuous w.r.t. z, the given g is continuous and bounded func-

tion w.r.t. & and {fj}é\’:l is ii.d. samples from P, both mzdfw(&jbﬁ% g(&¢’) and
TN

e f¢>f(§)>na g(s)dP(s) are bounded by max,c[p,1)g(s) and by Proposition 7.1

, 1 . 1
NI AT N > 9@ - 1_@/%)% g(s)dP(s)| = 0.

6N ()>RS,

We then have

. 1 . 1
Jim. /[o,l)u—aw > o@dunte) - | e /z(gmg(s)dP(s)duN(a)

OV (E1)>RS 0

- 1 iy 1
< lim > e@) /Ma /w@)mg(s)clws) dpon ()

alN ,
[0,1) ¢IN(£J)>H%,1N

: 1 ; 1 .
<gm [ lw X e[ S )| die

[0.1) 6N (E) >R,

=0,

where the second inequality is from condition (iii) and the third equality is from Lebesgue’s

dominated convergence theorem.

Combining the above analysis, we have (7.6), that is then Py converges weakly to P*. [

Proof of Theorem 4.1. By conditions (c) - (e),
P* ¢ Eo[é(z, €)].
argmax Bq(o(7, &)
Then we only need to prove Z is a solution of (3.3), that is equivalent to
0 € Ep:[®(7,8)] + Nx(2).
Since Ty — T,

limsup Nx (Zn) C Nx(Z).

N—oo

Moreover,

B pen (22, €)] = Epa[®(2, Ol < [IBpen [2(2n,E)] — Epa[®(2, E)]]
+ |Epz[®(in,&)] — Ep:z[®(Z, O]
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(7.9)



Note that since P]f,” — P? weakly and by Assumption 4.2 (b), PJQ;“",N — P? under Wasserstein

metric [21]. Then by condition (b), we have for any N, ®(Zy, -) is Lipschitz continuous and

lim sup [[E oy [®(2,§)] — Ep=[®(2,)]]| = 0, (7.10)

N—oo 27 N
where Z := {#n, N = 1,2,--- }. Moreover,

i [[Eps[9(7, €)] ~ Eps[B(an, O < lim Bpe ()] — ]

< lim sup Ep[k(§)][|Z — 2n]| (7.11)
N—o0 Pesit
= 0.
Combining (7.10)-(7.11), we have
i [[E ey (22N, §)] — Epa[@(2, €] = 0, (7.12)
— 00 N
which implies (7.8). O
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