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Abstract We formulate pure characteristics demand models under uncertain-
ties of probability distributions as distributionally robust mathematical pro-
grams with stochastic complementarity constraints (DRMP-SCC). For any
fixed first-stage variable and a random realization, the second-stage problem
of DRMP-SCC is a monotone linear complementarity problem (LCP). To deal
with ambiguity of probability distributions of the involved random variables
in the stochastic LCP, we use the distributionally robust approach. Moreover,
we propose an approximation problem with regularization and discretization
to solve DRMP-SCC, which is a two-stage nonconvex-nonconcave minimax
optimization problem. We prove the convergence of the approximation prob-
lem to DRMP-SCC regarding the optimal solution sets, optimal values and
stationary points as the regularization parameter goes to zero and the sample
size goes to infinity. Finally, preliminary numerical results for investigating
distributional robustness of pure characteristics demand models are reported
to illustrate the effectiveness and efficiency of our approaches.
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1 Introduction

Pure characteristics demand models are widely used in microeconometrics to
estimate parameters in utility functions of agents for given prices and pro-
duction decisions [2,36]. Such models have advantages in inferring consumers’
preference and behavior, but face computational challenges to solve the opti-
mization problem with set-valued stochastic equilibrium constraints as follows:

min
x∈X

1
2 〈x,Hx〉+ 〈c, x〉

s.t. AtEP [St(x, ξ)] 3 bt for t = 1, 2, · · · , T,
(1)

where X ⊆ Rn is a compact and convex set, H ∈ Rn×n is a positive semidef-
inite matrix, c ∈ Rn, ξ : Ω → Ξ ⊆ Rν is a random vector defined on a
probability space (Ω,F ,P) and supported on Ξ, P = P ◦ ξ−1, At ∈ Rl×r,
bt ∈ Rl, St : Rn × Ξ ⇒ Rr, T ≥ 1 is the number of markets, EP [St(x, ξ)]
is a Aumann’s (set-valued) expectation [1] for multifunction and for given
(x, ξ) ∈ X ×Ξ,

St(x, ξ) := arg max
s
{〈s, ut(x, ξ)〉 : 〈e, s〉 ≤ 1, s ≥ 0}. (2)

Here ut : Rn × Ξ → Rr is the consumers’ utility function in market t and
e ∈ Rr is the vector with all elements being 1. Obviously, St(x, ξ) is bounded.
Furthermore, we know from [32, Theorem 14.37] that St(x, ξ) is closed-valued
and measurable. Thus its Aumann’s expectation is well-defined.

To efficiently solve problem (1), Pang, Su and Lee [29] characterized con-
sumers’ purchase decision in the constraints of problem (1) by linear com-
plementarity problems and proposed the following quadratic program with
stochastic complementarity constraints (QP-SCC):

min
x∈X

1
2 〈x,Hx〉+ 〈c, x〉

s.t. AtEP [st(x, ξ)] = bt for t = 1, 2, · · · , T,
0 ≤ zt(x, ξ)⊥Mzt(x, ξ) + qt(x, ξ) ≥ 0 for a.e. ξ ∈ Ξ,

(3)

where

M =

(
0 e
−e> 0

)
∈ R(r+1)×(r+1), qt(x, ξ) =

(
−ut(x, ξ)

1

)
∈ Rr+1,

st(x, ξ) ∈ Rr, zt(x, ξ) =

(
st(x, ξ)
γt(x, ξ)

)
∈ Rr+1

and a.e. is the short for almost everywhere. The pioneered QP-SCC formula-
tion opened a way to develop optimization algorithms for solving pure char-
acteristics demand models. In [4], Chen, Sun and Wets proposed a penalty
approach:

min
x∈X

1
2 〈x,Hx〉+ 〈c, x〉+ %

∑T
t=1 ‖AtEP [st(x, ξ)]− bt‖2

s.t. 0 ≤ zt(x, ξ)⊥Mzt(x, ξ) + qt(x, ξ) ≥ 0
for a.e. ξ ∈ Ξ and t = 1, 2, · · · , T,

(4)
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where % > 0 is a penalty parameter.
In problems (1)-(4), the probability distribution P is supposed to be known

exactly. However, in practice the true probability distribution can hardly be
acquired. This observation motivates us to use the distributionally robust ap-
proach [9,10,38,39] to introduce a class of distributionally robust stochastic
mathematical programs with complementarity constraints (DRMP-SCC) as
follows:

min
x,y

Φ(x, y) := θ(x) + sup
P∈P

h(EP [f(x, y(ξ), ξ)])

s.t. x ∈ X, 0 ≤ y(ξ)⊥M(ξ)y(ξ) + q(x, ξ) ≥ 0 for a.e. ξ ∈ Ξ,
(P)

where y : Ξ → Rm is a measurable mapping, θ : Rn → R, f : Rn×Rm×Ξ →
Rl, h : Rl → R, P ⊆ P(Ξ) is an ambiguity set with P(Ξ) denoting the
collection of all probability distributions supported on Ξ, q : Rn × Ξ → Rm,
M : Ξ → Rm×m and M(ξ) is positive semidefinite for a.e. ξ ∈ Ξ. For fixed
x and ξ, a feasible vector y(ξ) of problem (P) is a solution of the monotone
LCP. The error bounds for the monotone LCP and exact penalty theory for
mathematical programms with linear complementarity constraints established
by Mangasarian et al. in [21–26] have inspired us to solve problem (P).

Throughout this paper, we assume that θ, h and f(·, ·, ξ) are continuously
differentiable. Moreover, θ, h, M , q and f(·, ·, ξ) are Lipschitz continuous with
Lipschitz moduli Lθ, Lh, LM , Lq and Lf (ξ) satisfying maxP∈P EP [L2

f (ξ)] <
∞, respectively. We also assume that problem (P) satisfies the relatively com-
plete recourse condition, that is, for every x ∈ X and a.e. ξ ∈ Ξ, the solution
set SOL(M(ξ), q(x, ξ)) of LCP(M(ξ), q(x, ξ)) in the constraints of problem (P)
is nonempty.

Moreover, we assume that EP [f(x, y(ξ), ξ)] is well-defined for all P ∈ P
and y(ξ) ∈ SOL(M(ξ), q(x, ξ)), and the ambiguity set P is defined by a general
moment form as follows:

P = {P ∈ P(Ξ) : EP [Ψ(ξ)] ∈ Γ} , (5)

where Ψ is a continuous random mapping consisting of vectors and/or matri-
ces with measurable random components, and Γ is a closed convex cone in
the Cartesian product of some finite dimensional vector and/or matrix spaces,
which is first considered in [40] and then in [18,45]. The ambiguity set defined
in (5) is a very general form and includes many commonly-used moment am-
biguity sets, such as the moment ambiguity set in [9]. For more examples, we
refer to [18, Examples 3-5].

Let Ξk = {ξ1, · · · , ξk} be a set of k samples of ξ and define the discrete
approximation of P by

Pk =

{
p ∈ Rk+ :

k∑
i=1

pi = 1,

k∑
i=1

piΨ(ξi) ∈ Γ

}
.

We consider the discrete approximation problem of (P) as follows:

min
x,y

Φk(x,y) := θ(x) + max
p∈Pk

h(F (x,y)p)

s.t. x ∈ X, 0 ≤ y⊥My + q(x) ≥ 0,
(Pk)
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where F (x,y) = (f(x, y(ξ1), ξ1), f(x, y(ξ2), ξ2), · · · , f(x, y(ξk), ξk)),

y =


y(ξ1)
y(ξ2)

...
y(ξk)

 , M =


M(ξ1) 0 · · · 0

0 M(ξ2) · · · 0
...

...
. . .

...
0 0 · · · M(ξk)

 and q(x) =


q(x, ξ1)
q(x, ξ2)

...
q(x, ξk)

 .

Moreover, to develop numerical methods and convergence analysis, we consider
the following regularized problems of (P) and (Pk), respectively,

min
x,y

Φε(x, y) := θ(x) + sup
P∈P

h(EP [f(x, y(ξ), ξ)])

s.t. x ∈ X, 0 ≤ y(ξ)⊥(M(ξ) + εI)y(ξ) + q(x, ξ) ≥ 0 for a.e. ξ ∈ Ξ
(Pε)

and

min
x,y

Φε,k(x,y) := θ(x) + max
p∈Pk

h(F (x,y)p)

s.t. x ∈ X, 0 ≤ y⊥(M + εI)y + q(x) ≥ 0,
(Pε,k)

where ε > 0 is the regularization parameter and I is the identity matrix with
proper dimension.

Since M(ξ) is positive semidefinite for fixed ξ, the complementarity prob-
lem LCP(M(ξ) + εI, q(x, ξ)) has a unique solution [7], denoted by ŷε(x, ξ).
Moreover, from the Lipschitz continuity of q(·, ξ), ŷε(·, ξ) is Lipschitz continu-
ous [5]. Analogously, LCP(M + εI,q(x)) has also a unique solution, denoted
by ŷε(x), which is also Lipschitz continuous with respect to (w.r.t.) x.

Mathematical programming with equilibrium constraints (MPEC) has been
extensively studied [13,20,24]. Structural properties, discrete approximation
based on sampling and numerical methods of stochastic MPEC with deter-
ministic probability distribution have been investigated [16,17,19,35,41]. To
the best of our knowledge, there is little discussion on distributionally robust
MPEC. Moreover, due to the complementarity constraints and the composite
structure of the objective function, the minimax problems (P), (Pε) and (Pε,k)
are generally nonconvex-nonconcave and their saddle points may not exist. We
will focus on their minimax points, minimizers in x-space and corresponding
optimality conditions.

The main contributions of the paper are summarized as follows.

– Inspired by the constructive reformulations of pure characteristics demand
models in [29], we propose a DRMP-SCC model (P) under ambiguity of
probability distributions. We give the definitions of global and local mini-
max points to capture the optima of the nonconvex-nonconcave minimax
problem (P). Some sufficient conditions for the existence of solutions are
derived.

– Under certain conditions, we prove the convergence of problem (Pε,k) to
problem (P) regarding optimal solution sets and optimal values as the
regularization parameter ε ↓ 0 and the sample size k →∞.
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– We define stationary points of problems (P), (Pk) and (Pε,k) in the block
coordinatewise sense and establish the convergence of stationary points of
problem (Pε,k) to those of problem (P) as the regularization parameter
ε ↓ 0 and the sample size k →∞.

Notations. B denotes the closed unit ball centered at original point in the
corresponding space. Rn+ denotes the set of nonnegative vectors in Rn. ‖·‖ de-
notes the Euclidean norm of vectors or the induced matrix norm. diam(X) :=
supx,z∈X ‖x− z‖ denotes the diameter of X. d(x, Z) = infz∈Z ‖x − z‖ and
d(X,Z) = supx∈X infz∈Z ‖x−z‖ for x, z ∈ Rn and X,Z ⊆ Rn. int(X) denotes
the interior of X.

This paper is organized as follows. In Section 2, we give some preliminaries
on the ambiguity set P and its approximation Pk. In Section 3, we give defini-
tions of global and local minimax points of problems (P), (Pε) and (Pε,k), and
some existence results. After that, we prove the convergence of the solution
set and optimal value of problem (Pε,k) to those of problem (P) as ε ↓ 0 and
k →∞. In Section 4, we first give definitions of stationary points of problems
(P), (Pk) and (Pε,k) and then study convergence assertions on the stationary
points of problem (Pε,k) to those of problem (P). In Section 5, we report nu-
merical results on the pure characteristics demand model under uncertainties
of probability distributions. In Section 6, we give concluding remarks.

2 Preliminaries

Note that for each p ∈ Pk, it uniquely determines a discrete probability distri-
bution

∑k
i=1 pi1ξi , where 1ξi(·) is the indicator function, namely, 1ξi(ξ) = 1

if ξ = ξi; 0 otherwise. Thus, in what follows, we will not distinguish p and the
corresponding probability distribution. In other words, we can write

Pk =
{
P ∈ P(Ξk) : EP [Ψ(ξ)] ∈ Γ

}
.

Based on the set Ξk = {ξ1, · · · , ξk}, we have the corresponding Voronoi
tessellation of Ξ,

Ξi :=

{
ξ ∈ Ξ :

∥∥ξ − ξi∥∥ = min
1≤j≤k

∥∥ξ − ξj∥∥} , i = 1, · · · , k.

Obviously, Ξ =
⋃k
i=1Ξi and int(Ξi) ∩ int(Ξj) = ∅ for any i 6= j.

In this paper, we make a commonly employed Slater type assumption for
ambiguity set (5) as follows (see e.g. [18,40]).

Assumption 1 There exist P0 ∈ P(Ξ) and α > 0 such that

EP0 [Ψ(ξ)] + αB ⊆ Γ.

Proposition 1 Under Assumption 1, there exists k̄ > 0 such that Pk is
nonempty for any k ≥ k̄.
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The proof of Proposition 1 mainly follows from [18, Corollary 11]. For
completeness, we put the proof in Appendix.

To measure the distance between two probability distributions (and thus
two ambiguity sets), we use the well-known Wasserstein metric.

Definition 1 ([15]) Let H := {~ : Ξ → R : |~(ξ1)− ~(ξ2)| ≤ ‖ξ1 − ξ2‖}. The
Wasserstein metric between P,Q ∈ P(Ξ) is defined as

DW (P,Q) = sup
~∈H
|EP [~(ξ)]− EQ[~(ξ)]| .

Notice that Definition 1 gives the definition of Wasserstein metric by using
the Kantorovich-Rubinstein theorem. Another definition of Wasserstein metric
is based on the joint probability distributions with marginal distributions P
and Q, see e.g. [37] for more details.

The deviation distance between P,Q ⊆ P(Ξ) induced by Wasserstein met-
ric is denoted by DW (P,Q), namely,

DW (P,Q) := sup
P∈P

inf
Q∈Q

DW (P,Q).

Obviously, Pk ⊆ P, which implies that the deviation distance between
Pk and P is always zero, i.e. DW (Pk,P) = 0. To derive the estimation of
DW (P,Pk), we assume in the rest of this section that Ξ is bounded and
denote

∆ := sup
P∈P(Ξ)

DW (P, P0) ≤ diam(Ξ) < +∞, (6)

where P0 is defined in Assumption 1.
The following Hoffman’s type lemma is from [18, Theorem 2].

Lemma 1 ([18]) Let Assumption 1 hold. Then, for any Q ∈ P(Ξ),

DW (Q,P) ≤ ∆

α
d(EQ[Ψ(ξ)], Γ ),

where α is defined in Assumption 1 and ∆ is defined in (6).

For a sample set Ξk = {ξ1, · · · , ξk} and the resulting Voronoi tessellation
Ξ1, · · · , Ξk, we call the following probability distribution

Pk :=

k∑
i=1

P (Ξi)1ξi

the Voronoi projection of P . Denote by

βk = max
ξ∈Ξ

min
1≤i≤k

∥∥ξ − ξi∥∥ (7)

the Hausdorff distance between Ξ and Ξk.
The following lemma gives an estimation of Wasserstein distance between

P and its Voronoi projection.
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Lemma 2 ([30, Lemma 4.9]) Let P ∈ P(Ξ) and Pk be the Voronoi projec-
tion of P . Then DW (P, Pk) ≤ βk.

Then, we have an estimation of DW (P,Pk) from [18].

Proposition 2 ([18, Theorem 12]) Suppose that: (i) Assumption 1 holds;
(ii) Ψ is Lipschitz continuous; (iii) the sample set Ξk satisfies βk → 0 as
k →∞. Then, for sufficiently large k, we have

DW (P,Pk) ≤ Lβk
for some L > 0.

It is noteworthy that [18, Theorem 12] uses Hausdorff distance to quantify
the discrepancy of two ambiguity sets. Since Pk ⊆ P, we have DW (Pk,P) = 0.
Therefore, HW (Pk,P) := max{DW (Pk,P),DW (P,Pk)} = DW (P,Pk).

In the remaining paper, we tacitly assume that both P and Pk are nonempty.

3 Optimal values and solutions of problems (P) and (Pε,k)

Problem (P) can be rewritten as

min
(x,y)∈D

max
P∈P

g(x, y, P ) := θ(x) + h(EP [f(x, y(ξ), ξ)]),

where D = {(x, y) : x ∈ X, y(ξ) ∈ SOL(M(ξ), q(x, ξ)), ξ ∈ Ξ}.
Note that the function g(·, ·, P ) is not convex for a fixed P ∈ P, and

g(x, y, ·) is not concave for a fixed tuple (x, y) ∈ D. This usually implies that

min
(x,y)∈D

max
P∈P

g(x, y, P ) 6= max
P∈P

min
(x,y)∈D

g(x, y, P ).

By the saddle point existence theorem [8], g does not have a saddle point
(x∗, y∗, P ∗) ∈ D × P that satisfies

g(x∗, y∗, P ) ≤ g(x∗, y∗, P ∗) ≤ g(x, y, P ∗)

for any (x, y, P ) ∈ D × P. Hence, we define global and local minimax points
of problem (P) by using the idea in [14].

Definition 2 We call (x∗, y∗, P ∗) ∈ D×P a global minimax point of problem
(P), if it satisfies

g(x∗, y∗, P ) ≤ g(x∗, y∗, P ∗) ≤ max
Q∈P

g(x, y,Q)

for any (x, y, P ) ∈ D × P.
We call (x∗, y∗, P ∗) ∈ D×P a local minimax point of problem (P), if there

exist δ0 > 0 and ς : R+ → R+ satisfying ς(δ)→ 0 as δ → 0, such that

g(x∗, y∗, P ) ≤ g(x∗, y∗, P ∗) ≤ max
Q∈P,DW (Q,P∗)≤ς(δ)

g(x, y,Q),

for any δ ∈ (0, δ0], (x, y) ∈ D satisfying ‖y − y∗‖L2
:=
(∫

Ξ
‖y(ξ)− y∗(ξ)‖2 dξ

) 1
2 ≤

δ and ‖x− x∗‖ ≤ δ, and P ∈ P satisfying DW (P, P ∗) ≤ δ.
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Similarly, we can define global minimax points and local minimax points of
problems (Pε), (Pk) and (Pε,k), respectively.

Using the notation D, problem (P) can be written as

v∗ := min
(x,y)∈D

Φ(x, y). (8)

By substituting the unique solution of LCP(M(ξ) + εI, q(x, ξ)) (denoted by
ŷε(x, ξ)) into the objective function, problem (Pε) can be written as

v∗ε := min
x∈X

Φε(x, ŷε(x, ·)). (9)

Then its discrete approximation problem (Pε,k) can be written as

v∗ε,k := min
x∈X

Φε,k(x, ŷε(x)), (10)

where ŷε(x) := (ŷε(x, ξ
1)>, · · · , ŷε(x, ξk)>)>.

Denote D∗, X∗ε and X∗ε,k the optimal solution sets of problems (8), (9) and
(10), respectively. Let X∗ = ProjxD∗ be the projection of D∗ onto x-space. In
this section, we provide conditions for the existence of minimizers of problems
(P), (Pε) and (Pε,k), and prove the convergence of optimal values and optimal
solution sets of problem (Pε,k) to those of problem (P) as ε ↓ 0 and k → ∞.
The convergence analysis is divided into two parts: the convergence of (Pε) to
(P) as ε ↓ 0 and the convergence of (Pε,k) to (Pε) as k →∞ for a fixed ε > 0.

3.1 Existence of solutions

In this subsection, we provide some sufficient conditions for the existence of
global minimax points of problems (P), (Pε) and (Pε,k), respectively.

Let Lf (ξi) be the Lipschitz modulus of f(·, ·, ξi) and Lε(ξ
i) be the Lipschitz

modulus of ŷε(·, ξi). For a fixed ε > 0 and k > 0, we have∣∣∣∣max
p∈Pk

h(F (x, ŷε(x))p)− max
p∈Pk

h(F (x′, ŷε(x
′))p)

∣∣∣∣
≤ max
p∈Pk

|h(F (x, ŷε(x))p)− h(F (x′, ŷε(x
′))p)|

≤ Lh max
p∈Pk

∥∥∥∥∥
k∑
i=1

pif(x, ŷε(x, ξ
i), ξi)−

k∑
i=1

pif(x′, ŷε(x
′, ξi), ξi)

∥∥∥∥∥
≤ Lh max

p∈Pk

k∑
i=1

pi
∥∥f(x, ŷε(x, ξ

i), ξi)− f(x′, ŷε(x
′, ξi), ξi)

∥∥
≤ Lh max

p∈Pk

k∑
i=1

piLf (ξi)(‖x− x′‖+ Lε(ξ
i) ‖x− x′‖)

≤ Lh max
1≤i≤k

Lf (ξi)

(
1 + max

1≤i≤k
Lε(ξ

i)

)
‖x− x′‖
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for any x, x′ ∈ X, where the third inequality follows from Jensen’s inequality.
Therefore, Φε,k(x, ŷε(x)) is Lipschitz continuous over the compact and convex
set X, and it has a minimizer x∗ ∈ X. Moreover, Pk is closed and bounded
due to the continuity of Ψ and h(F (x∗, ŷε(x

∗))p) is continuous w.r.t. p. Hence,
there is a maximizer p∗ such that (x∗, p∗) is a global minimax point of problem
(Pε,k).

In what follows, we provide sufficient conditions for the existence of solu-
tions to problems (P) and (Pε).

Recall that a sequentially compact set means that any sequence contained
in this set has a convergent subsequence. We say that a sequence of probability
distribution {Pj} ⊆ P(Ξ) weakly converges to P ∈ P(Ξ) if EPj [g(ξ)] →
EP [g(ξ)] as j → ∞ for any continuous and bounded function g : Ξ → R. A
subset of P(Ξ) is weakly compact if any sequence in this subset has a weakly
convergent subsequence with a weak limit point contained in this subset.

Assumption 2

(i) There exists κ : Ξ → R+ with maxP∈P EP [κ(ξ)2] <∞ such that

max
(x,y)∈D

‖y(ξ)‖ < κ(ξ), ξ ∈ Ξ.

(ii) There exists a tuple (x0, y0) ∈ D such that Φ(x0, y0) <∞.

The following theorem provides sufficient conditions for the existence of
minimizers of problem (P).

Theorem 1 Under Assumption 2, if D is a sequentially compact set, then the
objective function of problem (P) satisfies |Φ(x, y)| < ∞ for any (x, y) ∈ D
and problem (P) has a minimizer (x∗, y∗).

Proof By Assumption 2, we have

|Φ(x, y)− Φ(x0, y0)|
≤ |θ(x)− θ(x0)|+ Lh max

P∈P
|EP [‖f(x, y(ξ), ξ)‖]− EP [‖f(x0, y0(ξ), ξ)‖]|

≤ Lθdiam(X) + Lh max
P∈P

EP [Lf (ξ)(diam(X) + 2κ(ξ))] <∞.

Hence |Φ(x, y)| < ∞ for any (x, y) ∈ D, which means that there is v∗ ∈ R
such that v∗ = inf(x,y)∈D Φ(x, y). To prove that problem (P) has a minimizer
(x∗, y∗) under Assumption 2, we only need to show that Φ is lower semicon-
tinuous (lsc) due to the sequential compactness of D [32, Theorem 1.9].

First, we show that for a fixed x ∈ X, maxP∈P h(EP [f(x, ·, ξ)]) is lsc. By
the Lipschitz continuity of h and f , we know that

|h(EP [f(x, y′(ξ), ξ)])− h(EP [f(x, y(ξ), ξ)])|
≤ LhEP [Lf (ξ) ‖y′(ξ)− y(ξ)‖]

≤ Lh
(
EP [L2

f (ξ)]
) 1

2

(
EP [‖y′(ξ)− y(ξ)‖2]

) 1
2 → 0
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if
(
EP [‖y′(ξ)− y(ξ)‖2]

) 1
2 → 0. Hence h(EP [f(x, ·, ξ)]) is continuous for fixed

x ∈ X and P ∈ P, which implies that maxP∈P h(EP [f(x, ·, ξ)]) is lsc.
Similarly, we can show that maxP∈P h(EP [f(·, ·, ξ)]) is lsc over D. Since θ

is a Lipchitz continuous function of x, we derive that Φ is lsc. ut

The following theorem establishes the existence of minimizers and global
minimax points of problem (Pε).

Theorem 2 Suppose that Ξ is bounded. Then for any ε > 0, problem (Pε) has
a minimizer (x∗, ŷε(x

∗, ·)). In addition, if P is weakly compact, then problem
(Pε) has a global minimax point (x∗, ŷε(x

∗, ·), P ∗).

Proof For the existence of a minimizer (x∗, ŷε(x
∗, ·)), we only need to show

Assumption 2 holds with Φε and

Dε = {(x, y) : x ∈ X, y(ξ) ∈ SOL(M(ξ) + εI, q(x, ξ)), ξ ∈ Ξ}

for any ε > 0.
Since M(ξ)+ εI is a positive definite matrix for any ξ ∈ Ξ, the solution set

SOL(M(ξ) + εI, q(x, ξ)) has a unique vector ŷε(x, ξ) for any x ∈ X and ξ ∈ Ξ.
Moreover, from Lipschitz continuity of q and M and boundedness of X and
Ξ, there is a positive number Λε > 0 such that

Λε ≥ max
x∈X,ξ∈Ξ

max
d∈[0,1]n

‖(I −D +D(M(ξ) + εI))−1‖‖min(0, q(x, ξ))‖,

which implies ‖ŷε(x, ξ)‖ ≤ Λε, for x ∈ X, ξ ∈ Ξ. See error bounds for the LCP
in [5,7]. Hence, Assumption 2 holds with Φε and Dε. Using a similar proof of
Theorem 1, we can show that problem (Pε) has a minimizer (x∗, ŷε(x

∗, ·)).
Moreover, if P is weakly compact, due to the continuity and boundedness

of f(x∗, ŷε(x
∗, ξ), ξ) w.r.t. ξ, the following maximization problem

max
P∈P

h(EP [f(x∗, ŷε(x
∗, ξ), ξ)])

has a maximizer P ∗. Hence (x∗, ŷε(x
∗, ·), P ∗) is a global minimax point of

problem (Pε). ut

3.2 Convergence analysis between problems (P) and (Pε)

We use that LCP(M(ξ)+εI, q(x, ξ)) has a unique solution ŷε(x, ξ) to introduce
the following auxiliary problem with fixed ε > 0 and rε > 0,

min
x,y

Φ(x, y) s.t. x ∈ X, y ∈Mε(x) :=

{
y : sup

P∈P
EP [‖ŷε(x, ξ)− y(ξ)‖2] ≤ rε

}
.

(11)
Since ŷε(x, ·) is a measurable function for any x ∈ X and X is bounded, y ∈
Mε(x) is a measurable function for any x ∈ X. By assumptions of Theorems 1
and 2, problems (P), (Pε) and (11) have minimizers. Denote by ϑε the optimal
value of problem (11). We make the following technical assumption.
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Assumption 3 |ϑε − v∗| → 0 as ε ↓ 0.

Remark 1 Assumption 3 is a standard assumption and has been used in the
perturbation analysis for parametric programming [3, Chapter 4]. In [4], a
stronger assumption is used for problem (1) (cf. [4, Assumption 1]), that is,
for any δ > 0 there exists an ε0 such that for any ε ∈ [0, ε0],

Dε ∩ (X∗ + B(0, δ)) 6= ∅ (12)

holds, where Dε := {x ∈ X : ‖AtEP [st,ε(x, ξ)]− bt‖ ≤ r(ε), t = 1, · · · , T},
st,ε(x, ξ) is the unique regularization solution of problem (1) for fixed t, x and
ξ, r(ε) ↓ 0 as ε ↓ 0, X∗ is the optimal solution set of problem (1). Assumption
on the optimal solution set of perturbation problem (11) of problem (P) in the
way (12) implies Assumption 3 on their optimal values. However, the converse
is not true.

The following theorem provides the relationship between optimal values of
problems (P) and (Pε) as ε ↓ 0.

Theorem 3 Under Assumption 3, if rε → 0 as ε ↓ 0, then we have

|v∗ε − v∗| → 0 as ε ↓ 0.

Proof Using the Lipschitz continuity conditions on θ, h, f(·, ·, ξ), we have

|v∗ε − ϑε| =
∣∣∣∣min
x∈X

(
θ(x) + max

P∈P
h(EP [f(x, ŷε(x, ξ), ξ)])

)
−min
x∈X

(
θ(x) + min

y∈Mε(x)
max
P∈P

h(EP [f(x, y(ξ), ξ)])

) ∣∣∣∣
≤ max

x∈X

(
max
P∈P

h(EP [f(x, ŷε(x, ξ), ξ)])− min
y∈Mε(x)

max
P∈P

h(EP [f(x, y(ξ), ξ)])

)
= max

x∈X
max

y∈Mε(x)

(
max
P∈P

h(EP [f(x, ŷε(x, ξ), ξ)])−max
P∈P

h(EP [f(x, y(ξ), ξ)])

)
≤ Lh sup

x∈X,y∈Mε(x),P∈P
EP [Lf (ξ)‖ŷε(x, ξ)− y(ξ)‖],

where the first inequality follows from the fact that

ŷε(x, ξ) ∈Mε(x) :=

{
y : sup

P∈P
EP [‖ŷε(x, ξ)− y(ξ)‖2] ≤ rε

}
.

By Hölder’s inequality, we have that

sup
x∈X,y∈Mε(x),P∈P

EP [Lf (ξ)‖ŷε(x, ξ)− y(ξ)‖] ≤
√
rε

(
sup
P∈P

EP [L2
f (ξ)]

) 1
2

→ 0

as ε ↓ 0 due to supP∈P EP [L2
f (ξ)] < ∞ and rε → 0 as ε ↓ 0. Thus, we obtain

|v∗ε − ϑε| → 0. This together with Assumption 3 implies that |v∗ε − v∗| → 0 as
ε ↓ 0. ut
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SinceM(ξ) is positive semidefinite and the solution set of LCP(M(ξ), q(x, ξ))
is nonempty for any x ∈ X and ξ ∈ Ξ by the assumption of relatively com-
plete recourse, the unique solution ŷε(x, ξ) converges to the least norm solution
ȳ(x, ξ) of LCP(M(ξ), q(x, ξ)) as ε ↓ 0 [7, Theorem 5.6.2], which is defined as

ȳ(x, ξ) = arg min {‖y(x, ξ)‖ : y(x, ξ) ∈ SOL(M(ξ), q(x, ξ))}.

The following proposition gives a sufficient condition for the convergence
of optimal values of problem (Pε) to that of problem (P) as ε ↓ 0.

Proposition 3 Suppose that supP∈P EP [‖ŷε(x, ξ)− ȳ(x, ξ)‖2]→ 0 uniformly
as ε ↓ 0 in X and v∗ = minx∈X (θ(x) + maxP∈P h(EP [f(x, ȳ(x, ξ), ξ)])). Then

|v∗ε − v∗| → 0 and d(X∗ε , X
∗)→ 0 as ε ↓ 0.

Proof By assumptions and the boundedness of X, we have

|v∗ε − v∗| =
∣∣∣∣min
x∈X

(
θ(x) + max

P∈P
h(EP [f(x, ŷε(x, ξ), ξ)])

)
−min
x∈X

(
θ(x) + max

P∈P
h(EP [f(x, ȳ(x, ξ), ξ)])

) ∣∣∣∣
≤ max

x∈X

∣∣∣∣max
P∈P

h(EP [f(x, ŷε(x, ξ), ξ)])−max
P∈P

h(EP [f(x, ȳ(x, ξ), ξ)])

∣∣∣∣
≤ Lh max

x∈X
max
P∈P

EP [‖f(x, ŷε(x, ξ), ξ)]− EP [f(x, ȳ(x, ξ), ξ)‖]

≤ Lh max
x∈X

max
P∈P

EP [Lf (ξ) ‖ŷε(x, ξ)− ȳ(x, ξ)‖]

≤ Lh max
x∈X

(
sup
P∈P

EP [L2
f (ξ)]

) 1
2
(

sup
P∈P

EP [‖ŷε(x, ξ)− ȳ(x, ξ)‖2]

) 1
2

→ 0

as ε ↓ 0, where the second inequality follows from Jensen’s inequality and
the last inequality follows from Hölder’s inequality. Moreover, from the above
inequalities, we find that Φε(x, ŷε(x, ·)) converges to Φ(x, ȳ(x, ·)) uniformly
w.r.t. x over X as ε ↓ 0. By [34, Theorem 5.3], we derive the convergence of
d(X∗ε , X

∗). ut

3.3 Convergence analysis between problems (Pε) and (Pε,k)

In this subsection, for a fixed ε > 0, we consider the convergence between
problems (Pε) and (Pε,k) as k → ∞. Let the support set Ξ be bounded
throughout this subsection.

By [5, Theorem 2.8], there exists an α > 0 such that for any ξ1, ξ2 ∈ Ξ,

max
x∈X
‖ŷε(x, ξ1)− ŷε(x, ξ2)‖ ≤ α

ε
max

x∈X,ξ∈Ξ
‖q(x, ξ)‖‖ξ1 − ξ2‖ =: L̂‖ξ1 − ξ2‖,
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where the existence of a constant L̂ > 0 employs the boundedness of X and
Ξ and Lipschitz continuity of q. Moreover, if f is Lipschitz continuous, there
exists an L̄f > 0 such that for any x ∈ X,

‖f(x, ŷε(x, ξ1), ξ1)− f(x, ŷε(x, ξ2), ξ2)‖ ≤ L̄f ‖ξ1 − ξ2‖ . (13)

We give the following quantitative stability results between problems (9)
and (10) based on Wasserstein metric.

Theorem 4 Let f be Lipschitz continuous. There exists an L > 0 such that∣∣v∗ε,k − v∗ε ∣∣ ≤ LDW (P,Pk), (14)

d(X∗ε,k, X
∗
ε ) ≤ R−1(2LDW (P,Pk)), (15)

where R : R+ → R+ is the growth function of problem (Pε), i.e.,

R(τ) := min

{
θ(x) + max

P∈P
h(EP [f(x, ŷε(x, ξ), ξ)])− v∗ε : d(x,X∗ε ) ≥ τ, x ∈ X

}
and its inverse

R−1(t) := sup{τ ∈ R+ : R(τ) ≤ t}.

Proof Using (13), we have∣∣v∗ε − v∗ε,k∣∣
=

∣∣∣∣min
x∈X

(
θ(x) + max

P∈P
h(EP [f(x, ŷε(x, ξ), ξ)])

)
−min
x∈X

(
θ(x) + max

Q∈Pk
h(EQ[f(x, ŷε(x, ξ), ξ)])

) ∣∣∣∣
≤ max

x∈X

∣∣∣∣max
P∈P

h(EP [f(x, ŷε(x, ξ), ξ)])− max
Q∈Pk

h(EQ[f(x, ŷε(x, ξ), ξ)])

∣∣∣∣
= max

x∈X

(
max
P∈P

h(EP [f(x, ŷε(x, ξ), ξ)])− max
Q∈Pk

h(EQ[f(x, ŷε(x, ξ), ξ)])

)
(16)

= max
x∈X

max
P∈P

min
Q∈Pk

(h(EP [f(x, ŷε(x, ξ), ξ)])− h(EQ[f(x, ŷε(x, ξ), ξ)])

≤ max
x∈X

Lh max
P∈P

min
Q∈Pk

‖EP [f(x, ŷε(x, ξ), ξ)]− EQ[f(x, ŷε(x, ξ), ξ)]‖

≤ LhL̄fDW (P,Pk), (17)

where the second equality follows from Pk ⊆ P, and the last inequality follows
from Definition 1. We obtain (14) by setting L := LhL̄f .

From (16) and (17), for any x̃ ∈ X∗ε,k, we have

LDW (P,Pk)

≥ max
x∈X

(
max
P∈P

h(EP [f(x, ŷε(x, ξ), ξ)])− max
Q∈Pk

h(EQ[f(x, ŷε(x, ξ), ξ)])

)
≥ max

P∈P
h(EP [f(x̃, ŷε(x̃, ξ), ξ)])− max

Q∈Pk
h(EQ[f(x̃, ŷε(x̃, ξ), ξ)])

= θ(x̃) + max
P∈P

h(EP [f(x̃, ŷε(x̃, ξ), ξ)])−
(
θ(x̃) + max

Q∈Pk
h(EQ[f(x̃, ŷε(x̃, ξ), ξ)])

)
.
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By using the above estimation, we obtain

2LDW (P,Pk) ≥ LDW (P,Pk) +
∣∣v∗ε − v∗ε,k∣∣

≥ LDW (P,Pk) + v∗ε,k − v∗ε
≥ θ(x̃) + max

P∈P
h(EP [f(x̃, ŷε(x̃, ξ), ξ)])

−
(
θ(x̃) + max

Q∈Pk
h(EQ[f(x̃, ŷε(x̃, ξ), ξ)])

)
+ v∗ε,k − v∗ε

= θ(x̃) + sup
P∈P

h(EP [f(x̃, ŷε(x̃, ξ), ξ)])− v∗ε

≥ R(d(x̃, X∗ε )),

which implies that

d(x̃, X∗ε ) ≤ R−1 (2LDW (P,Pk)) .

Due to the arbitrariness of x̃ ∈ X∗ε,k, we derive (15). ut

Since HW (Pk,P) := max{DW (Pk,P),DW (P,Pk)} = DW (P,Pk) due to
Pk ⊆ P, we use DW (P,Pk) in Theorem 4 instead of HW (Pk,P).

From the quantitative results in Theorem 4 and Proposition 2, we have the
following convergence theorem.

Theorem 5 Under the conditions of Proposition 2 and Theorem 4, we have∣∣v∗ε,k − v∗ε ∣∣→ 0 and d(X∗ε,k, X
∗
ε )→ 0 as k →∞.

Finally, Theorem 3 together with Theorem 5 entails the following conver-
gence results from (Pε,k) to (P).

Theorem 6 Suppose that the conditions of Theorems 3 and 5 hold. Then

lim
ε↓0

lim
k→∞

v∗ε,k = v∗.

If, moreover, the conditions of Proposition 3 hold, then

lim
ε↓0

lim
k→∞

d(X∗ε,k, X
∗) = 0.

4 Stationarity of problems (P) and (Pε,k)

In this section, we consider the convergence of stationary points of problem
(Pε,k) to these of problem (P) as ε ↓ 0 and k → ∞. We first consider the
stationary points defined by the regular normal cone in [32].

The regular normal cone to a closed set Ω at x̄ ∈ Ω, denoted by N̂Ω(x̄), is

N̂Ω(x̄) := {d : d>(x− x̄) ≤ o(‖x− x̄‖), ∀x ∈ Ω},
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where o(·) means that o(a)/a → 0 as a ↓ 0. The (limiting) normal cone to a
closed set Ω at x̄ ∈ Ω, denoted by NΩ(x̄), is

NΩ(x̄) := {d : ∃xk ∈ Ω, xk → x̄, dk → dwith dk ∈ N̂Ω(xk)}.

N̂Ω(x̄) is a closed and convex cone and N̂Ω(·) is outer semicontinuous over

Ω. NΩ(x̄) is a closed cone. Generally, we have N̂Ω(x̄) ⊆ NΩ(x̄). They are
consistent when Ω is convex, namely,

N̂Ω(x̄) = NΩ(x̄) = {d : d>(x− x̄) ≤ 0, ∀x ∈ Ω}.

A necessary condition for x̄ to be a local minimizer of minx∈Ω φ(x), where
φ is a differentiable function over Ω, is (see [32, Theorem 6.12])

0 ∈ ∇φ(x̄) + N̂Ω(x̄).

In Section 4.1, we focus on the concepts of stationary points of problems
(P), (Pk) and (Pε,k). In Section 4.2, we give convergence results regarding the
stationary points between problems (Pε,k) and (P) as ε ↓ 0 and k →∞.

4.1 Concepts of stationarity

We first consider the concepts of stationary points of the discrete problems
(Pk) and (Pε,k). To simplify the notation, we denote

G(x,y, p) = θ(x) + h(F (x,y)p),

Z = {(x,y) : x ∈ X, y ∈ SOL(M,q(x))},
Z(x) = {y : (x,y) ∈ Z}, Z(y) = {x : (x,y) ∈ Z},
Zε = {(x,y) : x ∈ X, y ∈ SOL(M + εI,q(x))},
Zε(x) = {y : (x,y) ∈ Zε}, Zε(y) = {x : (x,y) ∈ Zε}.

Then problems (Pk) and (Pε,k) can be rewritten, respectively, as

min
(x,y)∈Z

max
p∈Pk

G(x,y, p) (18)

and
min

(x,y)∈Zε
max
p∈Pk

G(x,y, p). (19)

Note that the set Pk is convex and bounded. We have the following optimality
condition for a local minimax point.

Proposition 4 (optimality condition for a local minimax point) If
(x̄, ȳ, p̄) ∈ Z × Pk is a local minimax point of problem (18), then it satisfies{

0 ∈ ∇(x,y)G(x̄, ȳ, p̄) + N̂Z(x̄, ȳ),

0 ∈ −∇pG(x̄, ȳ, p̄) +NPk(p̄).
(20)
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Proof Let (x̄, ȳ, p̄) be a local minimax point. To simplify the notation, denote
z̄ = (x̄, ȳ). According to the definition of local minimax points, there exist a
δ0 > 0 and a function ς : R+ → R+ satisfying ς(δ) → 0 as δ → 0, such that
for any δ ∈ (0, δ0] and (z, p) ∈ Z ×Pk satisfying ‖z − z̄‖ ≤ δ and ‖p− p̄‖ ≤ δ,
we have

G(z̄, p) ≤ G(z̄, p̄) ≤ max
p′∈{p∈Pk:‖p−p̄‖≤ς(δ)}

G(z, p′). (21)

Obviously, the first inequality in (21) implies the second assertion in (20).

Next, we verify the first assertion in (20). For any z ∈ Z, let TZ(z) be the
tangent cone of Z at z (see [32, Definition 6.1]) and

p̃(z) ∈ arg max
p′∈{p∈Pk:‖p−p̄‖≤ς(δ)}

G(z, p′).

From the second inequality in (21), we have, for any w ∈ TZ(z) with
‖w‖ = δ and z̄ + w ∈ Z, that

0 ≤ G(z̄ + w, p̃(z̄ + w))−G(z̄, p̄)

≤ G(z̄ + w, p̃(z̄ + w))−G(z̄, p̃(z̄ + w)) +G(z̄, p̃(z̄ + w))−G(z̄, p̄)

≤ G(z̄ + w, p̃(z̄ + w))−G(z̄, p̃(z̄ + w))

= ∇zG(z̄, p̃(z̄ + w))>w + o(‖w‖)
= ∇zG(z̄, p̄)>w + (∇zG(z̄, p̃(z̄ + w))−∇zG(z̄, p̄))>w + o(‖w‖)
= ∇zG(z̄, p̄)>w + o(‖w‖),

where the last equality follows from ‖p̃(z̄ + w)− p̄‖ ≤ ς(δ) → 0 as δ → 0,
which implies

(∇zG(z̄, p̃(z̄ + w))−∇zG(z̄, p̄))>w = o(‖w‖).

Thus, ∇zG(z̄, p̄)>w ≥ 0 for any w ∈ TZ(z), which indicates (see [32, Proposi-
tion 6.5]) the first assertion in (20). ut

It is noteworthy that the necessary condition for local minimax points in
Proposition 4 is also a necessary condition for saddle points, see e.g. [31,28,
27]. Z(x̄) is a convex set because of the positive semidefiniteness of M. If we
consider (x,y) individually, it then leads to the concept of block coordinatewise
stationarity (see e.g. [42]) as follows:

0 ∈ ∇xG(x̄, ȳ, p̄) + N̂Z(ȳ)(x̄),

0 ∈ ∇yG(x̄, ȳ, p̄) +NZ(x̄)(ȳ),

0 ∈ −∇pG(x̄, ȳ, p̄) +NPk(p̄).

(22)

Condition (22) is a weaker necessary condition than (20) for local optimal-
ity of problem (18) (see e.g. [42, Remark 2.2]). The second assertion in (22)
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corresponds to a necessary condition for local optimality of the mathematical
programming with linear complementarity constraint (MPLCC). Consider

min
y

G(x̄,y, p̄)

s.t. 0 ≤ y⊥(M + εI)y + q(x̄) ≥ 0.
(23)

To characterize optimality conditions of MPLCC, we define the following
index sets:

I+0(y) = {i : yi > 0, ((M + εI)y + q(x̄))i = 0},
I0+(y) = {i : yi = 0, ((M + εI)y + q(x̄))i > 0},
I00(y) = {i : yi = 0, ((M + εI)y + q(x̄))i = 0}.

Definition 3 (stationary points for MPLCC, [6]) (i) We say that y∗ is a
(weak stationary) W-stationary point of problem (23) if there exist multipliers
(λ, µ) ∈ Rmk × Rmk such that

∇yG(x̄,y∗, p̄)− λ− (M> + εI)µ = 0,

λi = 0 for i ∈ I+0(y∗), µi = 0 for i ∈ I0+(y∗).
(24)

(ii) We say that y∗ is a (Clarke stationary) C-stationary point of problem
(23) if there exist (λ, µ) ∈ Rmk × Rmk satisfying (24) and

λiµi ≥ 0 for i ∈ I00(y∗).

(iii) We say that y∗ is an (Mordukhovich stationary) M-stationary point
of problem (23) if there exist (λ, µ) ∈ Rmk × Rmk satisfying (24) and

λi > 0, µi > 0 or λiµi = 0 for i ∈ I00(y∗).

(iv) We say that y∗ is an (strong stationary) S-stationary point of problem
(23) if there exist (λ, µ) ∈ Rmk × Rmk satisfying (24) and

λi ≥ 0, µi ≥ 0 for i ∈ I00(y∗).

Obviously, we have the following observation:

S-stationarity⇒ M-stationarity⇒ C-stationarity⇒W-stationarity.

For more details about the optimality conditions of the mathematical pro-
gramming with equilibrium constraints (MPEC), we refer to monograph [20,
Chapter 3].

Combining (22) with Definition 3, we give the following concepts of block
coordinatewise stationary points of problem (Pk).
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Definition 4 (block coordinatewise •-stationary points of (Pk)) Let
(x̄, ȳ, p̄) ∈ Z ×Pk. We say that it is a block coordinatewise •-stationary point
of problem (18) if it satisfies

0 ∈ ∇xG(x̄, ȳ, p̄) + N̂Z(ȳ)(x̄),

ȳ is a •-stationary point of problem (23) with ε = 0,

0 ∈ −∇pG(x̄, ȳ, p̄) +NPk(p̄),

where “•” can be W, C, M and S.

Analogously, we give the block coordinatewise stationary point of the reg-
ularized problem (Pε,k). Since there is a unique solution of LCP(M+ εI,q(x̄))
for any x̄ ∈ X, we use the following definition of block coordinatewise station-
ary points for problem (Pε,k).

Definition 5 (block coordinatewise stationary points of (Pε,k)) We
call (x̄, ȳ, p̄) ∈ Zε × Pk a block coordinatewise stationary point of problem
(19), if it satisfies 

0 ∈ ∇xG(x̄, ȳ, p̄) + N̂Zε(ȳ)(x̄),

ȳ ∈ SOL(M + εI,q(x̄)),

0 ∈ −∇pG(x̄, ȳ, p̄) +NPk(p̄).

(25)

The following lemma shows that a point satisfying (25) must be a block
coordinatewise S-stationary point of problem (Pε,k).

Lemma 3 For fixed x̄ ∈ X and p̄ ∈ Pk, ŷε(x̄) is an S-stationary point of the
MPLCC (23).

Proof The feasible set of (23) with ε > 0 has a unique vector ŷε(x̄). From [11,
Proposition 2.2, (ii) and (iii)], ŷε(x̄) is an S-stationary point since both y and
(M + εI)y + q(x̄) are linear functions of y. ut

Remark 2 Note that Zε(ȳ) ⊆ X and thus NX(x̄) ⊆ N̂Zε(ȳ)(x̄). Hence, if
(x̄, ȳ, p̄) ∈ Zε × Pk satisfies

0 ∈ ∇xG(x̄, ȳ, p̄) +NX(x̄),

ȳ ∈ SOL(M + εI,q(x̄)),

0 ∈ −∇pG(x̄, ȳ, p̄) +NPk(p̄),

(26)

then (x̄, ȳ, p̄) satisfies (25). The main considerations for (26) are that Zε(ȳ) is
not convex for given ȳ if q is a nonlinear function, and Zε(·) is not Lipschitz
continuous in the sense of Hausdorff distance, which can lead to failing the
following convergence analysis (see e.g. [42]). In view of these, we use in the

sequel NX(x̄) rather than N̂Zε(ȳ)(x̄).
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MPEC is generally difficult to deal with because its constraints fail to sat-
isfy the standard Mangasarian-Fromovitz constraint qualification (originated
from [23]) at any feasible point [43, Proposition 1.1]. We recall the definition
of MPEC linear independence constraint qualification (MPEC-LICQ).

Definition 6 ([33]) We say that MPEC-LICQ holds at y for problem (23) if

{ei : i ∈ I0+(y) ∪ I00(y)} ∪
{
M>

i + ei : i ∈ I+0(y) ∪ I00(y)
}

is linearly independent, where ei is the ith column of the mk ×mk identify
matrix and Mi is the ith row of the matrix M.

In what follows, we give the stationarity of problem (P). To this end, we
assume that for arbitrary probability distribution/measure P ∈ P there exists
a corresponding density function p : Ξ → R+ such that P (dξ) = p(ξ)dξ1.
Denote by P the collection of all density functions of P ∈ P.

To define the block coordinatewise stationarity of problem (P), we first
give the definition of stationary points for stochastic MPEC (see Definition 3
for the discrete version).

For fixed (x̄, P̄ ), we consider the following stochastic MPEC problem

min
y

θ(x̄) + h(EP̄ [f(x̄, y(ξ), ξ)])

s.t. 0 ≤ y(ξ)⊥M(ξ)y(ξ) + q(x̄, ξ) ≥ 0 for a.e. ξ ∈ Ξ.
(27)

Define the following index sets:

I+0(y; ξ) = {i : yi(ξ) > 0, (M(ξ)y(ξ) + q(x̄, ξ))i = 0},
I0+(y; ξ) = {i : yi(ξ) = 0, (M(ξ)y(ξ) + q(x̄, ξ))i > 0},
I00(y; ξ) = {i : yi(ξ) = 0, (M(ξ)y(ξ) + q(x̄, ξ))i = 0}.

(28)

Denote by L(Rm) the collection of all measurable mappings from Ξ to Rm.

Definition 7 (stationary points of problem (27)) (i) We say that ȳ is a
W-stationary point of problem (27) if there exist multipliers (λ, µ) ∈ L(Rm)×
L(Rm) such that for a.e. ξ ∈ Ξ,

∇h(EP̄ [f(x̄, ȳ(ξ), ξ)])∇yf(x̄, ȳ(ξ), ξ)− λ(ξ)−M(ξ)>µ(ξ) = 0,

λi(ξ) = 0 for i ∈ I+0(ȳ; ξ), µi(ξ) = 0 for i ∈ I0+(ȳ; ξ).
(29)

(ii) We say that ȳ is a C-stationary point of problem (27) if there exist
(λ, µ) ∈ L(Rm)× L(Rm) satisfying (29) and for a.e. ξ ∈ Ξ,

λi(ξ)µi(ξ) ≥ 0 for i ∈ I00(ȳ; ξ).

1 We can generally assume that P (dξ) = p(ξ)Q(dξ) for some nominal probability distri-
bution Q. We know from Radon-Nikodym theorem (see e.g. [34, Theorem 7.32]) that there
exists such a density function p(ξ) if and only if P is absolutely continuous w.r.t. Q. Here
we neglect Q to simplify the notation.
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(iii) We say that ȳ is an M-stationary point of problem (27) if there exist
(λ, µ) ∈ L(Rm)× L(Rm) satisfying (29) and for a.e. ξ ∈ Ξ,

λi(ξ) > 0, µi(ξ) > 0 or λi(ξ)µi(ξ) = 0 for i ∈ I00(ȳ; ξ).

(iv) We say that ȳ is an S-stationary point of problem (27) if there exist
(λ, µ) ∈ L(Rm)× L(Rm) satisfying (29) and for a.e. ξ ∈ Ξ,

λi(ξ) ≥ 0, µi(ξ) ≥ 0 for i ∈ I00(ȳ; ξ).

Note that when Ξ has a finite number of elements, Definition 7 reduces to
Definition 3.

Definition 8 (block coordinatewise •-stationary points of (P)) (x̄, ȳ, P̄ )
is called a block coordinatewise •-stationary point of problem (P) if it satisfies

0 ∈ ∇xθ(x̄) +∇h(EP̄ [f(x̄, ȳ(ξ), ξ)])EP̄ [∇xf(x̄, ȳ(ξ), ξ)] +NX(x̄),

ȳ is a •-stationary point of problem (27),

0 ∈ −∇h(EP̄ [f(x̄, ȳ(ξ), ξ)])f(x̄, ȳ(·), ·) +NP(p̄),

where “•” can be W, C, M and S, p̄ is the density function of P̄ and NP(p̄) :=
{v ∈ L(R) :

∫
Ξ
v(ξ)(p(ξ)− p̄)dξ ≤ 0,∀p ∈ P}.

4.2 Convergence analysis

In this subsection, we study the convergence of block coordinatewise stationary
points of (Pε,k) defined by (26). We first consider the convergence of the block
coordinatewise stationary points as ε ↓ 0 for a fixed k in the following theorem.

Theorem 7 Let (xkε ,y
k
ε , p

k
ε ) be a block coordinatewise stationary point of prob-

lem (Pε,k) defined by (26) and (xk∗,yk∗, pk∗) be an accumulation point of
(xkε ,y

k
ε , p

k
ε ) as ε ↓ 0. Suppose further that MPEC-LICQ holds at yk∗ for prob-

lem (23) with (x̄, p̄) = (xk∗, pk∗) and ε = 0. Then (xk∗,yk∗, pk∗) is a block
coordinatewise C-stationary point of problem (Pk).

The proof of Theorem 7 is given in Appendix.
Let Ξk := {ξ1, · · · , ξk} and its Voronoi tessellation be Ξ1, · · · , Ξk. For any

feasible point of (Pk), denoted by (xk,yk, pk), we make the following notations.
Define the following density function:

pk(ξ) =

k∑
i=1

pki∫
Ξi

1dξ
1Ξi(ξ) for ξ ∈ Ξ,

where pk = (pk1 , · · · , pkk)>, and denote

Pk =

{
pk(·) =

k∑
i=1

pki∫
Ξi

1dξ
1Ξi(·) : pk ∈ Pk

}
.
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Denote by

yk(·) =

k∑
i=1

yk(ξi)1Ξi(·),

where yk(ξi) is the ith block of yk = (yk(ξ1)>, · · · , yk(ξk)>)> for i = 1, · · · , k.
Denote by

Mk(·) =

k∑
i=1

M(ξi)1Ξi(·) and qk(x, ·) =

k∑
i=1

q(x, ξi)1Ξi(·).

If, further, (xk,yk, pk) is a block coordinatewise C-stationary point of prob-
lem (Pk), according to the definition of block coordinatewise C-stationary
point, we have

0 ∈ ∇xG(xk,yk, pk) +NX(xk),
∇yG(xk,yk, pk)− λk −M>µk = 0,

λki = 0 for i ∈ I+0(yk), µki = 0 for i ∈ I0+(yk),

λki µ
k
i ≥ 0 for i ∈ I00(yk),

0 ∈ −∇pG(xk,yk, pk) +NPk(pk),

(30)

where

I+0(yk) = {i : yki > 0, (Myk + q(xk))i = 0},
I0+(yk) = {i : yki = 0, (Myk + q(xk))i > 0},
I00(yk) = {i : yki = 0, (Myk + q(xk))i = 0}.

Denote by

λk(·) =

k∑
i=1

λk(ξi)1Ξi(·) and µk(·) =

k∑
i=1

µk(ξi)1Ξi(·),

where λk(ξi) is the ith block of λk = (λk(ξ1)>, · · · , λk(ξk)>)> and µk(ξi) is
the ith block of µk = (µk(ξ1)>, · · · , µk(ξk)>)> for i = 1, · · · , k.

Then, we have the reformulation of (30) as follows: for every ξ ∈ Ξ,

0 ∈ ∇xθ(xk) +∇h(EPk [f(xk, yk(ξ), ξ)])EPk [∇xf(xk, yk(ξ), ξ)] +NX(xk),
∇h(EPk [f(xk, yk(ξ), ξ)])∇yf(xk, yk(ξ), ξ)− λk(ξ)−Mk(ξ)>µk(ξ) = 0,

λki (ξ) = 0 for i ∈ I+0(yk; ξ), µki (ξ) = 0 for i ∈ I0+(yk; ξ),

λki (ξ)µki (ξ) ≥ 0 for i ∈ I00(yk; ξ),

0 ∈ −∇h(EPk [f(xk, yk(ξ), ξ)])f(xk, yk(·), ·) +NPk(pk),

(31)
where P k is the probability distribution of density function pk and

I+0(yk; ξ) = {i : yki (ξ) > 0, (Mk(ξ)yk(ξ) + qk(xk, ξ))i = 0},
I0+(yk; ξ) = {i : yki (ξ) = 0, (Mk(ξ)yk(ξ) + qk(xk, ξ))i > 0},
I00(yk; ξ) = {i : yki (ξ) = 0, (Mk(ξ)yk(ξ) + qk(xk, ξ))i = 0}.
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For y1, y2 ∈ L(Rm), define the inner product and its induced norm by

〈y1, y2〉 =

∫
Ξ

y1(ξ)>y2(ξ)dξ

and

‖y1 − y2‖L2
=

(∫
Ξ

‖y1(ξ)− y2(ξ)‖2 dξ

) 1
2

.

Based on L2-norm, we can define the convergence relationship, denoted by
L2→,

and the deviation distance, denoted by dL2
(·, ·).

The following theorem claims that: under certain conditions, a sequence
of C-stationary points of problem (Pk) converges to block coordinatewise C-
stationary points of problem (P) as k →∞.

Theorem 8 Let {(xk,yk, pk)} be a sequence of block coordinatewise C-stationary

points of problem (Pk). Suppose that: (i) xk → x̄, yk
L2→ ȳ, pk

L2→ p̄ and µk
L2→ µ̄

as k →∞; (ii) there exists κ : Ξ → R+ satisfying
∫
Ξ
κ(ξ)2dξ <∞, such that∥∥f(xk, yk(ξ), ξ)

∥∥ ≤ κ(ξ), ‖f(x̄, ȳ(ξ), ξ)‖ ≤ κ(ξ),
∥∥∇xf(xk, yk(ξ), ξ)

∥∥ ≤ κ(ξ),

‖∇xf(x̄, ȳ(ξ), ξ)‖ ≤ κ(ξ),
∣∣pk(ξ)

∣∣ ≤ κ(ξ) and |p̄(ξ)| ≤ κ(ξ) for a.e. ξ ∈ Ξ;
(iii) βk → 0 as k → ∞ where βk is defined in (7); (iv) dL2(P,Pk) → 0 as
k →∞. Then (x̄, ȳ, p̄) is a block coordinatewise C-stationary point of problem
(P).

Proof Note that∥∥EPk [f(xk, yk(ξ), ξ)]− EP̄ [f(x̄, ȳ(ξ), ξ)]
∥∥

=

∥∥∥∥∫
Ξ

f(xk, yk(ξ), ξ)pk(ξ)dξ −
∫
Ξ

f(x̄, ȳ(ξ), ξ)p̄(ξ)dξ

∥∥∥∥
≤
∥∥∥∥∫

Ξ

(f(xk, yk(ξ), ξ)− f(x̄, ȳ(ξ), ξ))pk(ξ)dξ

∥∥∥∥
+

∥∥∥∥∫
Ξ

f(x̄, ȳ(ξ), ξ)(pk(ξ)− p̄(ξ))dξ

∥∥∥∥ .
Since yk

L2→ ȳ and pk
L2→ p̄, we have yk(ξ) → ȳ(ξ) and pk(ξ) → p̄(ξ) for a.e.

ξ ∈ Ξ as k →∞. By the continuity of f , we have∥∥f(xk, yk(ξ), ξ)− f(x̄, ȳ(ξ), ξ)
∥∥ ∣∣pk(ξ)

∣∣→ 0

for a.e. ξ ∈ Ξ as k →∞. Moreover,∥∥f(xk, yk(ξ), ξ)− f(x̄, ȳ(ξ), ξ)
∥∥ ∣∣pk(ξ)

∣∣ ≤ 2κ2(ξ).

By Lebesgue’s dominated convergence theorem, we have∥∥∥∥∫
Ξ

(f(xk, yk(ξ), ξ)− f(x̄, ȳ(ξ), ξ))pk(ξ)dξ

∥∥∥∥
≤
∫
Ξ

∥∥f(xk, yk(ξ), ξ)− f(x̄, ȳ(ξ), ξ)
∥∥ ∣∣pk(ξ)

∣∣dξ → 0
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as k →∞, and similarly∥∥∥∥∫
Ξ

f(x̄, ȳ(ξ), ξ)(pk(ξ)− p̄(ξ))dξ

∥∥∥∥ ≤ ∫
Ξ

‖f(x̄, ȳ(ξ), ξ)‖
∣∣pk(ξ)− p̄(ξ)

∣∣dξ
→ 0

as k →∞. Therefore, EPk [f(xk, yk(ξ), ξ)]→ EP̄ [f(x̄, ȳ(ξ), ξ)] as k →∞. Due
to the continuous differentiability of h, we obtain

∇h(EPk [f(xk, yk(ξ), ξ)])→ ∇h(EP̄ [f(x̄, ȳ(ξ), ξ)]) as k →∞. (32)

Analogously, we have∥∥EPk [∇xf(xk, yk(ξ), ξ)]− EP̄ [∇xf(x̄, ȳ(ξ), ξ)]
∥∥

=

∥∥∥∥∫
Ξ

∇xf(xk, yk(ξ), ξ)pk(ξ)dξ −
∫
Ξ

∇xf(x̄, ȳ(ξ), ξ)p̄(ξ)dξ

∥∥∥∥
≤
∥∥∥∥∫

Ξ

(∇xf(xk, yk(ξ), ξ)−∇xf(x̄, ȳ(ξ), ξ))pk(ξ)dξ

∥∥∥∥
+

∥∥∥∥∫
Ξ

∇xf(x̄, ȳ(ξ), ξ)(pk(ξ)− p̄(ξ))dξ

∥∥∥∥
→ 0

as k →∞. We obtain

EPk [∇xf(xk, yk(ξ), ξ)]→ EP̄ [∇xf(x̄, ȳ(ξ), ξ)] as k →∞. (33)

Thus, by letting k → ∞, we obtain from (32), (33) and the first equation
of (31) that

0 ∈ ∇xθ(x̄) +∇h(EP̄ [f(x̄, ȳ(ξ), ξ)])EP̄ [∇xf(x̄, ȳ(ξ), ξ)] +NX(x̄). (34)

Since M(·), q(·, ·) are continuous and βk → 0 as k → ∞, Mk(ξ) → M(ξ)
and qk(xk, ξ)→ q(x̄, ξ) as k →∞. By directly letting k →∞, we obtain from
the second part of (31) that

∇h(EP̄ [f(x̄, ȳ(ξ), ξ)])∇yf(x̄, ȳ(ξ), ξ)− λ̄(ξ)−M(ξ)>µ̄(ξ) = 0

for a.e. ξ ∈ Ξ. Here λ̄(ξ) is the limit of {λk(ξ)} in the sense of L2-norm as k →
∞. Its existence is due to the convergence of sequences {xk}, {yk} and {µk} as
k → ∞. Let I+0(ȳ; ξ), I0+(ȳ; ξ) and I00(ȳ; ξ) be denoted in (28). Obviously,
we have that for a.e. ξ ∈ Ξ, I+0(ȳ; ξ) ⊆ I+0(yk; ξ) and I0+(ȳ; ξ) ⊆ I0+(yk; ξ)
for sufficiently large k. Thus, we have

λ̄i(ξ) = 0 for i ∈ I+0(ȳ; ξ) and µ̄i(ξ) = 0 for i ∈ I0+(ȳ; ξ).

By a similar discussion as the proof of Theorem 7, we obtain λ̄i(ξ)µ̄i(ξ) ≥
0 for i ∈ I00(ȳ; ξ). To sum up, we obtain

∇h(EP̄ [f(x̄, ȳ(ξ), ξ)])∇yf(x̄, ȳ(ξ), ξ)− λ̄(ξ)−M(ξ)>µ̄(ξ) = 0,

λ̄i(ξ) = 0 for i ∈ I+0(ȳ; ξ), µ̄i(ξ) = 0 for i ∈ I0+(ȳ; ξ),

λ̄i(ξ)µ̄i(ξ) ≥ 0 for i ∈ I00(ȳ(ξ); ξ).

(35)
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Since dL2(P,Pk)→ 0 as k →∞, for any ρ ∈ P, there exists ρk ∈ Pk such

that ρk
L2→ ρ as k →∞. Thus, we have

ρk − pk
L2→ ρ− p̄ and f(xk, yk(·), ·) L2→ f(x̄, ȳ(·), ·) (36)

as k →∞. Due to

0 ∈ −∇h(EPk [f(xk, yk(ξ), ξ)])f(xk, yk(·), ·) +NPk(pk),

we have
〈
∇h(EPk [f(xk, yk(ξ), ξ)])f(xk, yk(·), ·), ρk − pk

〉
≤ 0. Based on (32)

and (36), by letting k →∞, we obtain

〈∇h(EP̄ [f(x̄, ȳ(ξ), ξ)])f(x̄, ȳ(·), ·), ρ− p̄〉 ≤ 0

for any ρ ∈ P, which is equivalent to

0 ∈ −∇h(EP̄ [f(x̄, ȳ(ξ), ξ)])f(x̄, ȳ(·), ·) +NP(p̄). (37)

Finally, combining (34) and (35) with (37), we complete the proof. ut

Remark 3 Assumption (iv) in Theorem 8 is used to derive (37). In fact, to
have (37), we only need that for any ρ ∈ P, there is a sequence {ρk} ⊆ Pk

such that ρk
L2→ ρ as k → ∞. If Γ is an open set and βk → 0 (defined in (7))

as k → ∞, then we can always find such ρk due to the integrability of ρ and
the definition of Riemann integral. In this case, (37) holds automatically.

The limit of NPk(pk) is unclear because the dimension of Pk is different

with different sample size k. On the other hand, if dL2(P,Pk)→ 0 and pk
L2→ p̄

as k →∞, we know from the proof of Theorem 8 that lim supk→∞NPk(pk) ⊆
NP(p̄).

At the end of this section, we provide a diagram in Figure 1 that sum-
marizes the convergence relationships between problems (P), (Pε), (Pk) and
(Pε,k) as ε ↓ 0 and k →∞.

Problem (P)

Problem (Pε)

Problem (Pk)

Problem (Pε,k)

Theorem
s 4, 5

Theorem
7 Theorem

8

Proposition 3

Theorem
3

Theorem 6

Fig. 1 Convergence relationships between problems (P), (Pε), (Pk) and (Pε,k) as ε ↓ 0 and
k →∞
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5 Pure characteristics demand models

In this section, we apply our results in the previous sections to the pure charac-
teristics demand model when the underlying probability distribution is uncer-
tain. In subsection 5.1, we present an alternating algorithm to solve problem
(Pε,k) under a general setting. In subsection 5.2, we report numerical results
for some concrete examples.

5.1 An alternating algorithm for problem (Pε,k)

Problem (Pε,k) can be rewritten as (see (10))

min
x∈X

θ(x) + max
p∈Pk

h(F (x, ŷε(x))p). (38)

The following algorithm gives an alternating algorithm to solve (38).

Algorithm 1 Choose an initial point p0 ∈ Pk. Let j = 0.
Step 1: Generate xj by solving

min
x∈X

θ(x) + h(F (x, ŷε(x))pj).

Step 2: Generate pj+1 by solving

max
p∈Pk

h(F (xj , ŷε(x
j))p).

Let j = j + 1 and go to Step 1.

Alternating algorithms are widely-used to solve minimax problems (see
e.g. [14,40] and the references therein). Suppose the feasible set X is bounded.
The minimization problem in Step 1 of Algorithm 1 has a minimizer for any
pj ∈ Pk, since ŷε(x) is well-defined for any x ∈ X and the objective function is
Lipschitz continuous. Moreover, ŷε(x) can be written explicitly as a function of
x in a closed form [4]. We can use existing continuous optimization methods or
codes to solve the minimization problem. The maximization problem in Step
2 has a maximizer for any xj , since h is a continuous function w.r.t. p and the
feasible set Pk is compact and convex. If h is convex (see the specific settings in
numerical parts), we can use some existing algorithms for difference-of-convex
optimization problems to solve the maximization problem.

It is noteworthy that the Wasserstein metric can be used to construct
a data-driven ambiguity set [10]. However, the data-driven Wasserstein ball
ambiguity set in [10] cannot be directly applied to solve problem (P). In this
paper, we adopt a general moment information ambiguity set, and then use
its discrete approximation to approximately solve the original problem. Our
discrete approximation problem (38) of the ambiguity set has a finite support
set. The data-driven Wasserstein ball ambiguity set in [10] still has the same
support set as the original Wasserstein ball, which just replaces the nominal
probability distribution P by its data-driven counterpart PN , i.e., P := {Q ∈
P(Ξ) : DW (Q,P ) ≤ r} and PN := {Q ∈ P(Ξ) : DW (Q,PN ) ≤ r} for some
r > 0.



26 Jie Jiang, Xiaojun Chen

5.2 Numerical results

In particular, we consider the distributionally robust counterpart of problem
(4):

min
x∈X,st

1
2 〈x,Hx〉+ 〈c, x〉+ %max

P∈P

∑T
t=1 ‖AtEP [st(ξ)]− bt‖2

s.t. 0 ≤ zt(ξ)⊥Mzt(ξ) + qt(x, ξ) ≥ 0, t = 1, 2, · · · , T,
(39)

where P := {P ∈ P(Ξ) : (EP [ξ] − µ0)>(EP [ξ] − µ0) ≤ η}, µ0 ∈ Rν and
η > 0, which assumes that the mean of ξ lies in a ball of size η centered at the
estimate µ0 (see e.g. [9, (1a)]). By employing the Schur complement, we can
reformulate P as the form (5):

P :=

{
P ∈ P(Ξ) : EP

[(
I ξ − µ0

(ξ − µ0)> η

)]
∈ Γ

}
,

where the cone Γ denotes the set of positive semidefinite (ν + 1) × (ν + 1)
matrices. Here, we use the first-moment information as an ambiguity set, which
can be captured intuitively in practice and its modeling motivation is natural
(see e.g. [12]). Moreover, we can use the first-moment information ambiguity
set to illustrate our theoretical results with numerical examples clearly.

The discretization problem of (39) is

min
x∈X,st

1
2 〈x,Hx〉+ 〈c, x〉+ %max

p∈Pk

∑T
t=1

∥∥∥At∑k
i=1 st(ξ

i)pi − bt
∥∥∥2

s.t. 0 ≤ zt(ξi)⊥Mzt(ξ
i) + qt(x, ξ

i) ≥ 0, t = 1, 2, · · · , T, i = 1, 2 · · · , k,
(40)

where {ξ1, · · · , ξk} ⊆ Ξ and

Pk :=

p ∈ Rk+ :

k∑
i=1

pi = 1,

∥∥∥∥∥
k∑
i=1

piξ
i − µ0

∥∥∥∥∥
2

≤ η

 .

Then the regularization and discretization problem is

min
x∈X

1

2
〈x,Hx〉+ 〈c, x〉+ %max

p∈Pk

T∑
t=1

∥∥∥∥∥At
k∑
i=1

st,ε(x, ξ
i)pi − bt

∥∥∥∥∥
2

,

where zt,ε(x, ξ
i) ∈ SOL(M+εI, qt(x, ξ

i)), zt,ε(x, ξ
i) := (st,ε(x, ξ

i)>, γt,ε(x, ξ
i))>

for i = 1, · · · , k, t = 1, · · · , T .
We adopt the following settings, which follow from [4, Example 4.1]. The

utility function in market t is given by

ut(x, ξ) = Ctχ1(x2, x3, ξ1)− χ2(x4, ξ2)σt + x1t,

where Ct = (C1t, · · · , Cτt) ∈ Rm×τ , Cjt ∈ Rm, x1t ∈ Rm, x2, x3 ∈ Rτ ,
x4 ∈ R. Let x1 = (x>11, · · · , x>1T )> ∈ RmT , x2 = (x>2 , x

>
3 , x4)> and x =

(x>1 ,x
>
2 )> ∈ Rn with n = mT + 2τ + 1, ξ = (ξ1, ξ2)> : Ω → Ξ ⊆ R2,

χ1(x2, x3, ξ1) = x2 + x3ξ1, χ2(x4, ξ2) = exp(x4ξ2), σt ∈ Rm.
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To numerically present these convergence results in Section 3, we make the
following specific settings. Set T = 1, m = 2, τ = 1, n = 5, b1 = (0.5, 0.5)>,
C1 = (2, 3)>, σ1 = (1, 2)> and X = [0, 2]5, Ξ = [−1, 1]2, µ0 = (0, 0)>.
Consider

min
x∈X

max
p∈Pk

G(x, ẑε(x), p) := 1
2 〈x1,x1〉+

∥∥∥∑k
i=1 s1,ε(x, ξ

i)pi − b1
∥∥∥2

. (41)

Here (s1,ε(x, ξ
i)>, γ1,ε(x, ξ

i))> = z1,ε(x, ξ
i) ∈ SOL(M + εI, q1(x, ξi)), i =

1, · · · , k and ẑε(x) := (z1,ε(x, ξ
1)>, · · · , z1,ε(x, ξ

k)>)>.
It is easy to check that x∗ = (0, 0, 1, 0, 0)> is an optimal solution of problem

(41) and the corresponding optimal value is 0. To see this, we have

χ1(x∗2, x
∗
3, ξ1) = x∗2 + x∗3ξ1 = 1 and χ2(x∗4, ξ2) = exp(x∗4ξ2) = 1.

Therefore, u1(x∗, ξ) = C1χ1(x∗2, x
∗
3, ξ1)−χ2(x∗4, ξ2)σ1+x∗1 = (1, 1)>. According

to (2), we know that the solution set of s1(ξ) is {(ς, 1 − ς)> : 0 ≤ ς ≤ 1},
where the least norm solution is (0.5, 0.5)> for every ξ ∈ Ξ. This implies that
EP [s1,ε(x

∗, ξ)] = 1
2+ε (1 + ε, 1 + ε)> → (0.5, 0.5)> as ε ↓ 0. Thus, the conditions

in Proposition 3 hold.

Under the above settings, Ψ(ξ) =

(
I ξ
ξ> η

)
and Γ is the set of positive

semidefinite 3 × 3 matrices. Assumption 1 holds with P0 being the uniform
distribution over [−1, 1]2 and α being any positive scalar less than or equal to
η. Moreover, Assumption 2 holds with κ(ξ) = 1. Therefore, the convergence
results in Section 3 hold.

We use Algorithm 1 to report some numerical results of problem (41). That
is, select an arbitrary initial point p0 ∈ Pk. For j = 0, 1, 2, · · · , do

xj ∈ arg min
x∈X

G(x, ẑε(x), pj) (42)

and
pj+1 ∈ arg max

p∈Pk
G(xj , ẑε(x

j), p). (43)

Due to the special structure of matrix M , we adopt the closed-form so-
lution in [4] to compute ẑε(x

j). The function G(xj , ẑε(x
j), ·) is a quadratic

convex function. We can use algorithm in [44] to find a maximizer of pj in
(43) on the bounded convex set Pk. Since Pk and X are bounded, the se-
quence {(xj , pj)} generated by Algorithm 1 has at least one accumulation
point. We employ (26) as the stopping criterion. Actually, we only need to
verify 0 ∈ ∇xG(xj , ẑε(x

j), pj) +NX(xj). Due to the box structure of X, the
projection onto X can be computed easily. Thus, we stop the iteration when∥∥xj − ProjX(xj −∇xG(xj , ẑε(x

j), pj))
∥∥ ≤ 10−4. (44)

We chose an initial point p0 ∈ Pk with p0
i = 1

k , i = 1, . . . , k. First, for fixed
η = 0.1, 0.2, 0.5, 1 and sample size k = 25, 2500, we compute optimal values
of problem (41) w.r.t. ε = 0.5, 0.2, 0.1, 0.05, 0.01. We present these results in
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Figure 2. It shows the tendency that the optimal value of problem (41) tends
to zero as ε goes to zero. Meanwhile, for fixed each ε = 0.5, 0.2, 0.1, 0.05, 0.01,
we can observe from Figure 2 that the optimal value of problem (41) increases
as η increases, which shows that the distributionally robust model (41) works
as expected.
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Fig. 2 Convergence of optimal values as ε decreases

Furthermore, for fixed η = 0.1, 0.2, 0.5, 1 and ε = 0.5, 0.2, we compute
optimal values of problem (41) with different sample sizes, see Figure 3. It
shows that, for each fixed ε, the optimal values converge as sample size goes to
infinity. Moreover, we present in Table 1 the distances between xj satisfying
(44) and the true solution (0, 0, 1, 0, 0)> with different ε and k for fixed η = 0.5.
It shows the convergence of optimal solutions as sample size goes to infinity
for fixed ε.
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Fig. 3 Optimal values w.r.t. different sample sizes
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Table 1
∥∥xj − x∗∥∥ with different ε and k for fixed η = 0.5 where xj satisfies (44) and

x∗ = (0, 0, 1, 0, 0)>

ε
k

4 25 100 225 625 2500

0.5 0.5688 0.5210 0.6791 0.6887 0.7091 0.7202
0.2 0.7851 0.4422 0.3195 0.2215 0.2119 0.2102
0.1 0.6649 0.1079 0.0851 0.0853 0.0867 0.0856

6 Concluding remarks

This paper considers a class of distributionally robust mathematical programs
with stochastic complementarity constraints (DRMP-SCC) in the form of
problem (P), which arise from pure characteristics demand models under un-
certainties of probability distributions of the involved random variables. Since
problem (P) is a nonconvex-nonconcave minimax problem, minimax is not
equal to maximin and thus a saddle point does not exist in general. We de-
fine global and local optimality and stationary points of problem (P), and its
discretization and/or regularization approximation problems (Pε), (Pk) and
(Pε,k). We provide sufficient conditions for the convergence of optimal solu-
tions and stationary points of problem (Pε,k) as ε goes to zero and k goes to
infinity. We show that all those conditions hold for pure characteristics de-
mand models under uncertainties. Moreover, we use numerical results to show
the effectiveness of our theoretical results.
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Appendix

Proof (The proof of Proposition 1)
Denote p̄i = P0(Ξi) for i = 1, · · · , k. We verify that p̄ = (p̄1, · · · , p̄k)> ∈ Pk

for all sufficiently large k in the following. Since Ψ is continuous, we know from
mean value theorem of integrals that

EP0
[Ψ(ξ)] =

k∑
i=1

∫
Ξi

Ψ(ξ)P0(dξ) =

k∑
i=1

Ψ(ξ̃i)P0(Ξi)

for some ξ̃i ∈ Ξi, i = 1, · · · , k. Then∥∥∥∥∥EP0 [Ψ(ξ)]−
k∑
i=1

p̄iΨ(ξi)

∥∥∥∥∥ ≤
k∑
i=1

p̄i

∥∥∥Ψ(ξi)− Ψ(ξ̃i)
∥∥∥ . (45)

We first consider the case that Ξ is bounded. For α > 0, there exists δ > 0
such that if max1≤i≤k diam(Ξi) < δ, then

max
1≤i≤k

∥∥∥Ψ(ξi)− Ψ(ξ̃i)
∥∥∥ ≤ α.
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Since Ξ is bounded, we can find a sequence {ξk}∞k=1 such that the correspond-
ing Voronoi tessellation Ξ1, · · · , Ξk, · · · satisfying

lim
k→∞

max
1≤i≤k

diam(Ξi) = 0.

Hence there is k̄ > 0 such that max1≤i≤k diam(Ξi) < δ for any k ≥ k̄.
Then, it knows from (45) that∥∥∥∥∥EP0

[Ψ(ξ)]−
k∑
i=1

p̄iΨ(ξi)

∥∥∥∥∥ ≤ α.
This, together with Assumption 1, indicates that

∑k
i=1 p̄iΨ(ξi) ∈ Γ, which

implies the nonemptiness of Pk.
Now we consider the case that Ξ is unbounded. LetΞb := {ξ ∈ Ξ : ‖ξ‖ ≤ b}

for b > 0. Denote a probability distribution P̄0 supported on Ξb by

P̄0(Ξa) =
P0(Ξa ∩Ξb)
P0(Ξb)

for any measurable Ξa ⊆ Ξ, where P0 is defined in Assumption 1. Note that

lim
b→∞

1

P0(Ξb)
= 1 and lim

b→∞

∫
Ξb

Ψ(ξ)P0(dξ) =

∫
Ξ

Ψ(ξ)P0(dξ) = EP0 [Ψ(ξ)].

We have

lim
b→∞

∫
Ξb

Ψ(ξ)P̄0(dξ) = lim
b→∞

1

P0(Ξb)

∫
Ξb

Ψ(ξ)P0(dξ) = EP0
[Ψ(ξ)].

Therefore, there exists b0 > 0 such that, for any b ≥ b0,∥∥EP̄0
[Ψ(ξ)]− EP0

[Ψ(ξ)]
∥∥ ≤ α

2
.

From Assumption 1, we obtain

EP̄0
[Ψ(ξ)] +

α

2
B ⊆ Γ. (46)

Due to the boundedness of Ξb and (46), by the same proof for the case that
Ξ is bounded, there exists a k̄ > 0 such that Pk is nonempty for k ≥ k̄. ut

Proof (The proof of Theorem 7) Since (xk∗,yk∗, pk∗) is an accumulation point
of (xkε ,y

k
ε , p

k
ε ) as ε ↓ 0, there exists a sequence {εj}∞j=1 with εj ↓ 0 as j →∞,

such that (xkεj ,y
k
εj , p

k
εj )→ (xk∗,yk∗, pk∗) as j →∞. Based on (26), we have
0 ∈ ∇xG(xkεj ,y

k
εj , p

k
εj ) +NX(xkεj ),

ykεj = ŷεj (x
k
εj ),

0 ∈ −∇pG(xkεj ,y
k
εj , p

k
εj ) +NPk(pkεj ).
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We know from Definitions 3, 4 and Lemma 3 that

0 ∈ ∇xG(xkεj ,y
k
εj , p

k
εj ) +NX(xkεj ),

∇yG(xkεj ,y
k
εj , p

k
εj )− λ

k,j − (M> + εjI)µk,j = 0,

λk,ji = 0 for i ∈ Ik,j+0 (ykεj ), µ
k,j
i = 0 for i ∈ Ik,j0+ (ykεj ),

λk,ji ≥ 0, µk,ji ≥ 0 for i ∈ Ik,j00 (ykεj ),

0 ∈ −∇pG(xkεj ,y
k
εj , p

k
εj ) +NPk(pkεj ),

where {λk,j}∞j=1 and {µk,j}∞j=1 are two sequences of multipliers, and

Ik,j+0 (ykεj ) = {i : (ykεj )i > 0, ((M + εjI)ykεj + q(xkεj ))i = 0},

Ik,j0+ (ykεj ) = {i : (ykεj )i = 0, ((M + εjI)ykεj + q(xkεj ))i > 0},

Ik,j00 (ykεj ) = {i : (ykεj )i = 0, ((M + εjI)ykεj + q(xkεj ))i = 0}.

Thus, for sufficiently large j, we have
0 ∈ ∇xG(xkεj ,y

k
εj , p

k
εj ) +NX(xkεj ),{

∇yG(xkεj ,y
k
εj , p

k
εj )− λ

k,j − (M> + εjI)µk,j = 0,

λk,ji = 0 for i ∈ Ik+0(yk∗), µk,ji = 0 for i ∈ Ik0+(yk∗),

0 ∈ −∇pG(xkεj ,y
k
εj , p

k
εj ) +NPk(pkεj ),

(47)

where

I+0(yk∗) = {i : yk∗i > 0, (Myk∗ + q(xk∗))i = 0},
I0+(yk∗) = {i : yk∗i = 0, (Myk∗ + q(xk∗))i > 0}.

Next, we verify the boundedness of sequences {λk,j}∞j=1 and {µk,j}∞j=1. No-

tice that if {µk,j}∞j=1 is bounded, from the boundedness of {(xkεj ,y
k
εj , p

k
εj )}

∞
j=1

and continuous differentiability of G, {λk,j}∞j=1 is bounded. Now we assume

that {µk,j}∞j=1 is unbounded. Consider, by dividing
∥∥µk,j∥∥, that

∇yG(xkεj ,y
k
εj , p

k
εj )

‖µk,j‖
− λj

‖µk,j‖
− (M> + εjI)

µk,j

‖µk,j‖
= 0,

which can deduce, according to
∥∥µk,j∥∥→∞ as j →∞, that

λk,j

‖µk,j‖
+ M> µk,j

‖µk,j‖
→ 0 (48)

as j → ∞. Since λk,ji = 0 for i ∈ Ik+0(yk∗) and µk,ji = 0 for i ∈ Ik0+(yk∗), we
rewrite (48) as

∑
i∈Ik0+(yk∗)∪Ik00(yk∗)

λk,ji
‖µk,j‖

ei +
∑

i∈Ik+0(yk∗)∪Ik00(yk∗)

µk,ji
‖µk,j‖

M>
i → 0,
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where Ik00(yk∗) = {i : yk∗i = 0, (Myk∗ + q(xk∗))i = 0}.
Then, by MPEC-LICQ at yk∗ for problem (23) with (x̄, p̄) = (xk∗, pk∗)

and ε = 0, we obtain

λk,ji
‖µk,j‖

→ 0, i ∈ Ik0+(yk∗) ∪ Ik00(yk∗) and
µk,ji
‖µk,j‖

→ 0, i ∈ Ik+0(yk∗) ∪ Ik00(yk∗)

as k → ∞, which contradicts
µk,ji
‖µk,j‖ 9 0 for some i ∈ Ik+0(yk∗) ∪ Ik00(yk∗).

Therefore, both {λk,j}∞j=1 and {µk,j}∞j=1 are bounded. Without loss of gener-

ality, we assume that λk,j → λk∗ and µk,j → µk∗ as j → ∞. Therefore, by
letting j →∞, we have from (47) that

0 ∈ ∇xG(xk∗,yk∗, pk∗) +NX(xk∗),{
∇yG(xk∗,yk∗, pk∗)− λk∗ −M>µk∗ = 0,

λk∗i = 0 for i ∈ Ik+0(yk∗), µk∗i = 0 for i ∈ Ik0+(yk∗),

0 ∈ −∇pG(xk∗,yk∗, pk∗) +NPk(pk∗).

(49)

Moreover, for λk,ji µk,ji ≥ 0 for i = 1, . . . ,mk, we have λk∗i µ
k∗
i ≥ 0 for i ∈

Ik00(yk∗). This together with (49) means that (xk∗,yk∗, pk∗) is a block coordi-
natewise C-stationary point of problem (Pk). ut
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