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Abstract. This paper considers the use of spherical designs and non-convex minimization for
recovery of sparse signals on the unit sphere S2. The available information consists of low order,
potentially noisy, Fourier coefficients for S2. As Fourier coefficients are integrals of the product of
a function and spherical harmonics, a good cubature rule is essential for the recovery. A spherical
t-design is a set of points on S2, which are nodes of an equal weight cubature rule integrating exactly
all spherical polynomials of degree ≤ t. We will show that a spherical t-design provides a sharp error
bound for the approximation signals. Moreover, the resulting coefficient matrix has orthonormal
rows. In general the `1 minimization model for recovery of sparse signals on S2 using spherical
harmonics has infinitely many minimizers, which means that most existing sufficient conditions
for sparse recovery do not hold. To induce the sparsity, we replace the `1-norm by the `q-norm
(0 < q < 1) in the basis pursuit denoise model. Recovery properties and optimality conditions are
discussed. Moreover, we show that the penalty method with a starting point obtained from the re-
weighted `1 method is promising to solve the `q basis pursuit denoise model. Numerical performance
on nodes using spherical t-designs and tε-designs (extremal fundamental systems) are compared with
tensor product nodes. We also compare the basis pursuit denoise problem with q = 1 and 0 < q < 1.
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1. Introduction. Recovery of sparse signals on the unit sphere

S2 := {x ∈ R3 : ‖x‖2 = 1}

has many applications in astrophysics, gravitational sensing, geophysics, climate mo-
delling, global navigation, as the earth’s surface is an approximate unit sphere and
satellite signals affect our everyday life. See [2, 3] and their references for recovery of
signals on the sphere.

Let Pt(S2) denote the space of all spherical polynomials of degree at most t on the
unit sphere S2. The dimension of the space of homogeneous harmonic polynomials of
exact degree ` on S2 is 2` + 1, thus dimPt(S2) =

∑t
`=0(2` + 1) = (t + 1)2. In this

paper, we consider spherical polynomials of degree up to L and dimPL(S2) = (L+1)2.
Let Y`,k, ` = 0, . . . , L, k = 1, . . . , 2`+ 1 be an orthonormal basis for PL(S2).

Suppose that the signal F : S2 → R is observed via the Fourier coefficients

(1) c`,k =

∫
S2
F (x)Y`,k(x)dµ(x) + η`,k, ` = 0, . . . , L, k = 1, . . . , 2`+ 1,

with noise η`,k.
We are interested in discrete approximation of (1) using a cubature rule for S2

with weights wj > 0, j = 1, . . . , n and a set of n nodes

(2) Xn := {xj ∈ S2, j = 1, . . . , n},
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which is exact for all spherical polynomials of degree at most 2L. The nodes should
also respect the intrinsic rotational invariance of the sphere and have good separation.
For signal processing, Xn is a grid where the signals are located.

If F ∈ PL(S2) then a cubature rule which is exact for all spherical polynomials of
degree at most 2L gives

(3)

∫
S2
F (x)Y`,k(x)dµ(x) =

n∑
j=1

wjF (xj)Y`,k(xj), ` = 0, . . . , L, k = 1, . . . , 2`+1.

Applying such a cubature rule to (1), we have the discrete approximation

(4) c`,k =

n∑
j=1

wjF (xj)Y`,k(xj) + η`,k, ` = 0, . . . , L, k = 1, . . . , 2`+ 1.

In matrix notation, (4) is

(5) c = YWf + η,

where c ∈ Rm is the noisy Fourier coefficient vector, Y ∈ Rm×n is the spherical har-
monic basis matrix, W=diag(w) ∈ Rn×n is the diagonal matrix of cubature weights,
η ∈ Rm is the noise vector, and f = (F (x1), . . . , F (xn))T ∈ Rn is the signal vector
which we want to recovery. Here m = (L + 1)2 is the dimension of PL(S2) and n is
the number of nodes of the cubature rule.

The nodes of the cubature rule for P2L(S2) determine the coefficient matrix Y ,
while the weights determine W . Choosing a good cubature rule is essential for re-
covery. In Section 2, we discuss cubature rules with positive weights which are ex-
act for all spherical polynomials of degree at most 2L. They include spherical de-
signs [18, 35], spherical tε-designs [40] from extremal fundamental systems [29], ten-
sor product, equally spaced in spherical coordinates θ, φ, HealPix points [23], tensor
product, Gauss-Legendre in cos(θ) and equally spaced in φ [30]. Recovery of sparse
signals on the sphere has been investigated [2, 3] for tensor product grids, under the
assumption that the support set of the underlying signal is well-separated. Tensor
product grids on the sphere intrinsically do not respect the rotational invariance of
the sphere, making it harder to maintain good separation. In Section 2, we show that
the spherical t-design with equal weights and good separation [35, 36] provides good
grids.

To use a normalized matrix in the optimization model, we let

A = YW 1/2 and v = W 1/2f.

Then YWf = Av. The m by n matrix A is the spherical harmonic basis matrix with
the columns scaled by the square root of the cubature weights. Since the nodes Xn
and weights W form a positive weight cubature rule on the sphere that is exact for
all spherical polynomials of degree at most t ≥ 2L, the matrix A satisfies

(6) AAT = YWY T = I ∈ Rm×m

so its rows are orthonormal. See Section 2 for more details.
The underlying vector v ∈ Rn has vj associated with the node xj for j = 1, . . . , n.

In addition the signal is sparse and the weights are positive, so that its support set

J = supp(v) := {j ∈ {1, . . . , n} : vj 6= 0} = supp(f) := {j ∈ {1, . . . , n} : fj 6= 0}



RECOVERY OF SPARSE SIGNALS ON THE SPHERE 3

has few elements ‖v‖0 = ‖f‖0 = |J | � n.
Consider the following constrained optimization problem, known as basis pursuit

when σ = 0, so Av = c, and basis pursuit de-noising when σ > 0,

(7)
min ‖v‖1

s.t. ‖Av − c‖2 ≤ σ.

This has become a classical problem building on the work of Donoho and Huo [20] and
Candés and Tao [8], using sufficient conditions on A to guarantee that minimizing the
`1-norm, a convex problem, gives a solution to the `0–norm minimization problem.
See, for example, [6]. Such sufficient conditions guarantee that the `0-norm solution
is also the unique minimizer for a class of sparsity measures [25], including

‖v‖qq :=

n∑
i=1

|vi|q for 0 < q ≤ 1.

The sphere is invariant under rotations and problem (7) may have multiple so-
lutions, which means that these sufficient conditions do not hold or only hold for
unrealistically sparse solutions. In this paper, we use the optimization problem

(8)
min ‖v‖qq

s.t. ‖Av − c‖2 ≤ σ,

with 0 < q < 1 to recover sparse signals.

Example 1.1. This example, for degree L = 0, has infinitely many solutions of
problem (7) that have no zero components, while problem (8) has only two solutions
that are the sparsest feasible solutions. Let

A = 1√
2
[1 1], c = 1√

2
, 0 ≤ σ < 1√

2
.

For q = 1 the solution set of (7) is

(9) S1 =

{[
v1

1−
√

2σ − v1

]
, v1 ∈ [0, 1−

√
2σ]

}
.

For 0 < q < 1 the solution set of (8) is

(10) Sq =

{[
0

1−
√

2σ

]
,

[
1−
√

2σ
0

]}
.

For a regularization form: min ‖Av − c‖22 + λ‖v‖qq, see Example 2.1 in [11].

Using ‖v‖qq has advantages when seeking sparse solutions, see for example [13,
21, 17, 26, 34], but at the expense of making the minimization problem non-convex.
We show that to solve (8), the penalty approach in Chen, Lu and Pong [12] with
a starting point obtained from the re-weighted `1 minimization [9, 14, 16, 41, 39] is
promising.

Recovery of sparse signals on the sphere includes three key roles: cubature ru-
les, optimization models and optimization methods, in particular when the sufficient
conditions for sparse recovery by `1 minimization are not satisfied. The main contri-
bution of this paper is to show in theory and computation that using a cubature rule
with equal weights (spherical t-design) to build the optimization model (8) and then
using the penalty method with starting point from re-weighted `1 to solve (8) can find
better sparse solutions than other cubature rules and the `1 optimization model (7).
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The paper is organized as follows. In Section 2, we present properties of cubature
rules in building the optimization model (8), that is, matrices Y , A, vector c and
noise control σ. In Section 3, we prove that the quality of the recovery depends on
the condition number of the weight matrix W , so equal weights give the smallest
error bound for recovery. In Section 4, we give a new first order optimality conditions
for problem (8) and describe the penalty method with a starting point from the re-
weighted `1 method and its convergence. In Section 5, we present numerical results to
compare cubature rules using spherical t-designs and tε-designs (extremal fundamental
systems) with tensor product rules. We also compare solutions of problem (7) with
problem (8).

2. Cubature rules with positive weights for spherical signal recovery.
A cubature rule with positive weights for S2 is a set of nodes xj ∈ S2 and weights
wj > 0, j = 1, . . . , n such that

Qn(g) :=
n∑
j=1

wjg(xj) ≈ I(g) :=

∫
S2
g(x) dµ(x),

where g : S2 → R and dµ(x) denotes the surface (Lebesgue) measure on S2. The
cubature rule has degree of precision t if it is exact for all spherical polynomials of
degree at most t, (and is not exact for some polynomial of degree t+ 1), that is

Qn(p) = I(p), for all p ∈ Pt(S2), Qn(p̄) 6= I(p̄), for some p̄ ∈ Pt+1(S2).

A cubature rule which is exact for constant polynomials, so

n∑
j=1

wj = |S2| = 4π,

has degree of precision at least 0. Thus an equal weight (or average weight if degree
of precision is at least 0) rule has

(11) wj = wav :=
|S2|
n

=
4π

n
, j = 1, . . . , n.

Given a set Xn = {x1, . . . ,xn} ⊂ S2 of points, the spherical harmonic basis matrix

for degree t ≥ 0 is Y ∈ R(t+1)2×n defined by

(12) Yij = Y`,k(xj), i = `2 + k, k = 1, . . . , 2`+ 1, ` = 0, . . . , t, j = 1, . . . , n.

When given scattered data, so the nodes are fixed, one would like to find positive
weights wj > 0, j = 1, . . . , n so that polynomials of degree at most t are integrated
exactly, giving

(13) Y w = e1, where e1 =
√
|S2| (1, 0, 0, . . . , 0)T ∈ R(t+1)2 .

These conditions come from the orthonormality of the spherical harmonics Y`,k, as∫
S2
Y`,k(x) dµ(x) = 0, k = 1, . . . , 2`+ 1, ` ≥ 1.
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Ideally the weights are chosen to be as close to equal as possible, while still having
degree of precision t. This can be achieved by solving the convex optimization problem

(14)
min

∥∥∥∥ w

wav
− e
∥∥∥∥
∞

s.t. Y w = e1,

where e ∈ Rn is the vector with all elements equal to 1 and e1 is defined in (13). If
the resulting weights are not positive, then the requested degree of precision must be
reduced, so there are fewer constraints. How difficult it is to solve (14) depends on
the point set Xn and hence the conditioning of the matrix Y . We find that problem
(14) has positive solutions, all be it with varying degrees of precision for the same
number of points, for the following sets of points on the sphere.

• SF spherical designs
• MD maximum determinant
• TP tensor product point with equally spaced points in polar angle and azi-

muthal angle
• GL Gauss-Legendre points with Gauss points in cos(polar angle) and equally

spaced points in azimuthal angle
• HealPix points
• minimum energy points

We give a brief introduction for the first four sets of points.
SF A spherical t-design, introduced in [18], is a set of n points Xn = {xj , j =

1, . . . , n} on S2 such that equal weight cubature has degree of precision t, that is

(15) wav

n∑
j=1

p(xj) =

∫
S2
p(x) dµ(x), for all p ∈ Pt(S2).

A lower bound [18] n ≥ n∗(t) on the number of points is

(16) n∗(t) :=


(t+1)(t+3)

4 if t odd,

(t+2)2

4 if t even,

but it is known that these lower bounds are not achievable except in a few special cases.
Although the existence of spherical t-designs for n sufficiently large has be known for
some time, it was only recently established [4] that spherical t-designs on Sd exist for all
n ≥ cdt

d, the optimal order, and moreover [5] that well-separated spherical t-designs
also exist. Interval methods [10] have established the existence of spherical t-designs
on S2 with n = (t+ 1)2 points. If Xn is a spherical t-design, so is the set {Xn, HXn}
of 2n points for any orthogonal matrix H ∈ R3×3. Thus spherical t-designs with more
than twice the minimum number of points may have poor separation. Computed
spherical t-designs with n = t2/2 + O(t) and good geometric properties (including
separation) are available for t ≤ 325 [35, 36].

MD Maximum determinant points, also called extremal fundamental systems [29],
are sets of n ≤ (t+ 1)2 points Xn = {xj , j = 1, . . . , n} on S2 maximizing the determi-
nant of the Gram matrix

det Y TY,

where the spherical harmonic basis matrix Y ∈ R(t+1)2×n is defined in (12). The
extremal fundamental systems of Sloan and Womersley [29] which have n = (t+ 1)2
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belong to the class of tε-designs studied in Zhou and Chen [40], which provide cubature
rules that are exact for all spherical polynomials of degree at most t, but where
flexibility is allowed in the choice of weights,

wav(1− ε) ≤ wi ≤ wav(1− ε)−1, j = 1, . . . , n, ε ∈ [0, 1).

A spherical t-design corresponds to ε = 0, so the weights are all equal.
TP and GL use the standard spherical parametrization of x ∈ S2, which is, for

polar angle θ ∈ [0, π] and azimuthal angle φ ∈ [0, 2π),

(17) x = (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ))T .

If TP uses equally spaced points θi = πi/nθ, i = 0, . . . , nθ−1 and φj = 2πj/nφ, j =
0, . . . , nφ − 1, then there are nφ points at the north pole. Shifting the polar angles
away from the poles, so that

θi =
π(2i+ 1)

2nθ
, i = 0, . . . , nθ − 1, φj =

j2π

nφ
, j = 0, . . . , nφ − 1,

gives n = nθnφ distinct points.
GL uses the Gauss-Legendre nodes zj ∈ (−1, 1) with cos(θj) = zj for j = 1, . . . , nz,

and still produces sets with points too close together near the poles. Such tensor
product nodes fail to respect the rotational invariance of the sphere as illustrated in
the first plots in Figures 5 and 6.

The natural distance on the sphere is the geodesic distance

(18) dist (x,y) = arccos(x · y), x,y ∈ S2,

where x · y is the standard Euclidean inner product and |x|2 = x · x. The Euclidean
distance

|x− y|2 = 2(1− x · y), x,y ∈ S2

is related to the geodesic distance by

|x− y| = 2 sin(dist (x,y) /2),

illustrating the fact that the geodesic and Euclidean distances are very similar when
the distances are small.

A key factor in the quality of nodes Xn = {xj , j = 1, . . . , n} is its separation
δ(Xn) defined by

δ(Xn) := min
i 6=j

dist (xi,xj) ,

where the (geodesic) distance between two points on the sphere is defined by (18). A
sequence of point sets {Xn} is well-separated if there exists a constant c2, independent
of n, such that all the point sets satisfy

(19) δ(Xn) ≥ c2 n−
1
2 .

The problem of choosing n points on S2 to maximize their separation, see [28, 15]
for example, is also known as the best packing problem as the separation is twice the
packing radius. The best possible separation for a set of n points on S2 is

δn := max
Xn⊂S2

δ(Xn) ≈ csep n
−1/2.
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Fig. 1. Separation distance of two classes of point sets on S2

Using the Euclidean distance, csep = (8π/
√

3)1/2. Figure 1 shows the minimal sepa-
ration δn as a function of the number of points n, for two classes of point sets on S2.
The first class, which are well-separated as δn has the optimal order n−1/2, include
the MD and SF points. The second class are tensor product point sets including GL

and TP. The minimal separation for the GL and TP points decays as n−1, reflecting the
poor separation near the poles for tensor-product point sets. A separation condition

δ(Xn) ≥ ν

L
,

where ν > 0 is independent of n and L as in [2], implies that L = O(n
1
2 ) for well-

separated point sets, but for tensor product nodes L = O(n). Note that good separa-
tion of the grid points Xn is not sufficient to guarantee that they form a fundamental
system, as on S2 two points may be interchanged, hence changing the sign of the
determinant of Y , whilst keeping separation.

If the cubature rule with nodes Xn and weights wj , j = 1, . . . , n has degree of
precision t ≥ 2L, the orthonormality of the spherical harmonics implies (6) for a
spherical harmonic basis matrix Y of degree L. In particular, if the points Xn form a
spherical t-design, so W = wavIn, with t ≥ 2L, then

(20) Y Y T = (wav)
−1 Im,

for m = (L+ 1)2. The requirement that t ≥ 2L and the lower bounds (16) imply that
n > n∗(2L) ≈ L2.

For n ≥ m = (L+1)2, the singular values of Y are σi = (wav)
− 1

2 for i = 1, . . . , (L+
1)2, so Y has the ideal condition number 1. The Gram matrix G = Y TY ∈ Rn×n,
is symmetric and positive semi-definite with singular values σi(G) = (wav)

−1 for
i = 1, . . . ,m and σi = 0 for i = m + 1, . . . , n. Thus maximising the determinant or
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minimizing the condition number of G only makes sense when the points do not form
a 2L-design, for example n = (L+ 1)2 as in [1].

3. Conditions for recovery. Problem (7) is a convex optimization problem,
and widely used in signals processing. However, from our numerical experiments,
problem (8) with the folded concave objective function is more efficient for recovering
sparse signals on the sphere than problem (7). We also find that several sufficient con-
ditions which guarantee that the solution of a convex `1-norm minimization problem
will give the solution to the `0-norm problem fail. For example, sufficient conditions1

on spark(A), mutual incoherence M(A), RIP and null space of A ensure that

argmin{‖v‖1 : Av = c} = argmin{‖v‖0 : Av = c}.

In this section, we consider sufficient conditions on local minimizers of the non-
convex non-Lipschitz `q minimization problem (8) for recovery of sparse signals on
the sphere.

Denote the feasible set of problem (8) by

Ω = {v : ‖Av − c‖2 ≤ σ}.

Assumption 3.1. Ω has an interior point ṽ such that ‖Aṽ − c‖2 < σ.

Let Sq be the set of local minimizers of problem (8).
For a given set J ⊂ {1, 2, . . . ,m}, consider the convex optimization problem

(21)
min ‖v‖22
s.t. ‖Av − c‖2 ≤ σ, vJc = 0,

where vJc is the vector of the elements vi, i 6∈ J . Let vo be the unique solution of
(21).

If J is the support set of a true signal, we call vo an oracle solution. In what
follows, we estimate the error between an oracle solution and a local minimizer of
problem (8), that is on upper bound for ‖vo − v̂‖qq for v̂ ∈ Sq.

Let

(22) Q = ATA and P = I −Q,

which are projection matrices for the range space of AT and the null space of A
respectively, so QQ = Q, PP = P and PQ = 0. From (6), the matrix A has full row
rank.

Let

ΩJ(v̂) = {v ∈ Ω : ‖v̂‖qq ≤ ‖v‖qq, vJc = 0 }.

For any v̂ ∈ Sq, from the continuity of ‖v‖qq and Assumption 3.1, ΩJ(v̂) is nonempty.

1

• Spark: Donoho, Elad [19], spark(A) = min{‖v‖0 : Av = 0, v 6= 0}
• Mutual incoherence: Donoho, Huo [20], M(A) = maxi6=j |ATi Aj |/(‖Ai‖2‖Aj‖2)
• RIP: Candes, Romberg, Tao [7] Smallest δs s.t.

(1− δs)‖v‖22 ≤ ‖Av‖22 ≤ (1 + δs)‖v‖22, ∀v : ‖v‖0 ≤ s

• Null space: Zhang [38], (‖v‖0)
1
2 < 1

2
min {‖v‖1/‖v‖2 : Av = 0, v 6= 0}
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Lemma 3.1. Given v̂ ∈ Sq and v∗ ∈ ΩJ(v̂), let r = (I −Q)(v̂ − v∗). If

(23) ‖rJ‖q ≤ γ‖rJc‖q,

for some γ ∈ [0, 1), then

(24) ‖v̂ − v∗‖qq ≤
2(2βσ)q

1− γq
,

where β = n
2−q
2q .

Proof. As QQ = Q = ATA, the feasibility of v̂ and v∗ implies

‖Q(v̂ − v∗)‖22 = ‖A(v̂ − v∗)‖22 ≤ (‖Av̂ − c‖2 + ‖Av∗ − c‖2)2 ≤ 4σ2.

Using this bound and v∗Jc = 0 with the inequality

|‖v‖qq − ‖u‖qq| ≤ ‖v − u‖qq,

from Lemma 2.4 in [12], we have

‖v̂‖qq = ‖v∗ + (I −Q)(v̂ − v∗) +Q(v̂ − v∗)‖qq
≥ ‖v∗ + (I −Q)(v̂ − v∗)‖qq − ‖Q(v̂ − v∗)‖qq
= ‖(v∗ + r)J‖qq + ‖rJc‖qq − ‖Q(v̂ − v∗)‖qq
≥ ‖v∗‖qq − ‖rJ‖qq + ‖rJc‖qq − ‖Q(v̂ − v∗)‖qq
= ‖v∗‖qq + (1− γq)‖rJc‖qq − ‖Q(v̂ − v∗)‖qq
≥ ‖v̂‖qq + (1− γq)‖rJc‖qq − ‖Q(v̂ − v∗)‖qq,

where the last inequality uses ‖v̂‖qq ≤ ‖v∗‖qq. This gives

(25) (1− γq)‖rJc‖qq ≤ ‖Q(v̂ − v∗)‖qq.

Using Hölder’s inequality2 and the definition of β, we have

‖Q(v̂ − v∗)‖q ≤ β‖Q(v̂ − v∗)‖2 ≤ 2βσ.

Hence, we can derive the error bound (24) as follows.

‖(I −Q)(v̂ − v∗)‖qq = ‖rJ‖qq + ‖rJc‖qq
≤ (1 + γq)‖rJc‖qq

≤ 1 + γq

1− γq
‖Q(v̂ − v∗)‖qq

≤ 1 + γq

1− γq
(2βσ)q,

and

‖v̂ − v∗‖qq ≤ ‖(I −Q)(v̂ − v∗)‖qq + ‖Q(v̂ − v∗)‖qq ≤
2(2βσ)q

1− γq
.

2

‖v‖qq =

n∑
i=1

|vi|q · 1 ≤
(

n∑
i=1

(|vi|q)
2
q

) q
2
(

n∑
i=1

1
2

2−q

) 2−q
2

= n
2−q
2 ‖v‖q2.
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We now show how the weights for the cubature rule affect the recovery error. Let
A = YW

1
2 and maxi wi = κ 4π

n , with κ ≥ 1. Consider the following problem

(26)
min ‖u‖qq
s.t ‖Y u− c‖2 ≤ σ.

Let

ν =
max1≤i≤n wi
min1≤i≤n wi

.

Theorem 3.2. Given v̂ ∈ Sq and v∗ ∈ ΩJ(v̂) satisfying (23), the vectors of

û = W
1
2 v̂ and u∗ = W

1
2 v∗ are feasible points of (26), and

(27) ‖û‖q ≤
√
νmin{‖u‖q : ‖Y u− c‖2 ≤ σ}.

Moreover, we have

(28) ‖û− u∗‖qq ≤
2(4β1

√
κπσ)q

1− γq
,

where β1 = n
1−q
q .

Proof. From A = YW
1
2 , û and u∗ are feasible solutions of (26). Moreover, for

any feasible solution ũ of (26), there is a feasible solution ṽ of (8) such that ũ = W
1
2 ṽ.

Hence, we can obtain (27) from the following

‖û‖qq = ‖W 1
2 v̂‖qq =

n∑
i=1

w
q
2
i |v̂i|

q ≤ maxw
q
2
i

n∑
i=1

|v̂i|q

≤ maxw
q
2
i

n∑
i=1

|ṽi|q

≤ maxw
q
2
i

minw
q
2
i

n∑
i=1

w
q
2
i |ṽi|

q

= ν
q
2 ‖W 1

2 ṽ‖qq
= ν

q
2 ‖ũ‖qq.

Using β = β1
√
n and

‖v̂ − v∗‖qq ≤
2(2β1σ

√
n)q

1− γq
,

together with maxi wi = κ 4π
n , we find

‖û− u∗‖qq = ‖W 1
2 (v̂ − v∗)‖qq ≤ max

i
w

q
2
i ‖v̂ − v

∗‖qq

≤

(√
κ

4π

n

)q
2(2βσ)q

1− γq
=

2(4β1
√
κπσ)q

1− γq
.



RECOVERY OF SPARSE SIGNALS ON THE SPHERE 11

Remark 3.1. If we choose a spherical t-design with t ≥ 2L, we have κ = 1 and
ν = 1. Hence, û = 4π

n v̂ is a local minimizer of problem (26), u∗ = 4π
n v
∗ and

(29) ‖û− u∗‖q ≤
2(4β1

√
πσ)q

1− γq
.

Moreover, for q = 1, we have β1 = 1 and û = 4π
n v̂ is a minimizer of problem (26).

The error bound in (29) reduces to

(30) ‖û− u∗‖1 ≤
8
√
πσ

1− γ
.

Remark 3.2. The set Sq of local minimizers of problem (8) with σ = 0 has only
a finite number of elements. See Corollary 2.1 in [13] and Theorem 3 in [22]. This
implies that the probability of getting a v̂ ∈ Sq satisfying ‖v̂‖q ≤ ‖vo‖q and condition
(23) is positive for q ∈ (0, 1). However, the probability of getting a v̂ ∈ Sq satisfying
condition (23) may be 0 for q = 1. Consider Example 1.1, for which

I −Q =
1

2

[
1 −1
−1 1

]
.

For J = {1} the oracle solution is vo = (1−
√

2σ, 0). For q ∈ (0, 1), Sq is given in (10)
which has only two minimizers, while for q = 1, S1 is given in (9) which has infinitely
many minimizers. Moreover, vo ∈ Sq, for (0 < q < 1). However, for q = 1,

r = (I −Q)(v̂ − vo) =

[
v̂1 +

√
2σ − 1

1− v̂1 −
√

2σ

]
.

Hence, the probability of getting a v̂ ∈ Sq satisfying condition (23) is 1
2 for q ∈ (0, 1).

However, the probability of getting a v̂ ∈ S1 satisfying condition (23) is 0 for q = 1.
The conclusion also holds for Example 1.1 with J = {2}. Figure 1 shows the solution
set of Example 1.1 with q = 1 and q ∈ (0, 1).

4. Optimality conditions and algorithms. Problem (8) minimizes a non-
Lipschitz function over a convex set. Due to the separability of the objective function
ϕ(v) := ‖v‖qq from [27, Definition 8.3] and [12, Lemma 2.5], the (limiting) subdiffe-
rential and horizon subdifferential of ϕ(v) can be given respectively as

∂ϕ(v) :=

{
u : ∃vk ϕ→ v, uk → u with lim inf

z→vk
ϕ(z)− ϕ(vk)− 〈uk, z − vk〉

‖z − vk‖
≥ 0 ∀k

}
= ∂|v1|q × . . .× ∂|vn|q

∂
∞
ϕ(v) :=

{
u : ∃vk ϕ→ v, λku

k → u, λk ↓ 0 with

lim inf
z→vk

ϕ(z)− ϕ(vk)− 〈uk, z − vk〉
‖z − vk‖

≥ 0 ∀k
}

= ∂
∞
|v1|q × . . .× ∂

∞
|vn|q

where λk ↓ 0 means λk > 0 and λk → 0, and vk
ϕ→ v means both vk → v and ϕ(vk)→

ϕ(v). By the definition of the (limiting) subdifferential and horizon subdifferential,
we have

∂|vi|q = {q|vi|q−1sign(vi)}, ∂
∞
|vi|q = {0}, if vi 6= 0

∂|vi|q = ∂
∞
|vi|q = (−∞,∞), if vi = 0.
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Fig. 2. Example with multiple solutions for q = 1 and q ∈ (0, 1)

Definition 4.1 (KKT point of problem (8)). We say that v is a KKT point
of (8) if v ∈ Ω and

(31) 0 ∈ NΩ(v) + ∂‖v‖qq,

where NΩ(v) is the normal cone at v ∈ Ω defined as

NΩ(v) := {y : yT (u− v) ≤ 0 ∀u ∈ Ω}.

From [27, Theorem 8.15], any locally optimal solution v̄ of (8) is a KKT point
assuming the following constraint qualification holds:

(32) − ∂
∞

(‖v̄‖qq) ∩NΩ(v̄) = {0}.

If int(Ω) 6= ∅, then

NΩ(v) =

{
{τAT (Av − c) : τ ≥ 0} if ‖Av − c‖ = σ
{0} if ‖Av − c‖ < σ.

In this case, condition (31) can be written as

(33) 0 = τ(AT (Av − c))i + q|vi|q−1, if vi 6= 0, for some τ ≥ 0

and the constraint qualification (32) can be written as

(34) (AT (Av − c))i 6= 0, if vi 6= 0.

Now we propose a new first order optimality condition for problem (8) without a
constraint qualification via the approximate problem

(35)
min ‖|v|+ µe‖qq :=

n∑
i=1

(|vi|+ µ)q

s.t. ‖Av − c‖2 ≤ σ,
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where µ > 0 and e ∈ Rn is the vector with all its entries being one.
For v ∈ Rn and µ > 0, the subdifferential of ‖|v|+µe‖qq is the set-valued function

W(v, µ) =

q
 (|v1|+ µ)q−1α1

...
(|vn|+ µ)q−1αn

 : αi ∈

 {1} if vi > 0
{−1} if vi < 0
[−1, 1] if vi = 0

 .

Lemma 4.2. If v is a local minimizer of (35), then

(36) 0 ∈ (I −Q)W(v, µ) := {y : y = (I −Q)u, u ∈ W(v, µ)}.

Proof. Since Q = ATA and QQ = Q, I −Q is a symmetric positive semi-definite
matrix and (I −Q)(I −Q) = (I −Q). This implies

(37) ((I −Q)u, u) = ((I −Q)u, (I −Q)u) ≥ 0, for u ∈ Rn.

For a fixed positive number ξ > 0, (|t| + ξ)q is a folded concave function. Thus
we have

(|t+|+ ξ)q ≤ (|t|+ ξ)q + q(|t|+ ξ)q−1sign(t)(t+ − t), for tt+ ≥ 0, t 6= 0.

Moreover, there is αt ∈ [−1, 1] such that

(|t+|+ ξ)q ≤ ξq + qξq−1αtt
+, for t = 0.

Let
v+ = v − η

‖(I −Q)ω∗(v, µ)‖2
(I −Q)ω∗(v, µ),

where
0 < η ≤ min

vi 6=0
|vi|

and ω∗(v, µ) is a solution of the following problem

‖(I −Q)ω∗(v, µ)‖2 = min ‖(I −Q)ω‖2
s.t. ω ∈ W(v, µ).

(38)

Then we have viv
+
i ≥ 0. Hence, from (37) we obtain

‖|v+|+ µe‖qq ≤ ‖|v|+ µe‖qq + (ω∗(v, µ), v+ − v)

= ‖|v|+ µe‖qq −
η

‖(I −Q)ω∗(v, µ)‖2
((I −Q)ω∗(v, µ), (I −Q)ω∗(v, µ))

≤ ‖|v|+ µe‖qq − η‖(I −Q)ω∗(v, µ)‖2.

Moreover, from ‖Av − c‖2 ≤ σ and AAT = I, we have

A(v+ − v) = −A η

‖(I −Q)ω∗(v, µ)‖2
(I −Q)ω∗(v, µ)

=
η

‖(I −Q)ω∗(v, µ)‖2
A(I −ATA)ω∗(v, µ) = 0,

which implies

‖Av+ − c‖2 = ‖Av +A(v+ − v)− c‖2 = ‖Av − c‖2 ≤ σ.

Hence, if 0 6∈ (I −Q)W(v, µ), then ‖(I −Q)ω∗(v, µ)‖2 6= 0, and for all sufficiently
small η, v+ is in a neighborhood of v, ‖|v+|+µe‖qq < ‖|v|+µe‖qq and ‖Av+− c‖2 ≤ σ.
This means that v is not a local minimizer of (35).
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Now we present the relation between problems (8) and (35) regarding global
minimizers, and a new first order optimality condition for problem (8) using (35).

Theorem 4.3. (i) Let v∗ and vµ be global minimizers of problems (8) and (35),
respectively. Then v∗ and vµ are nµq-global minimizers of (35) and (8),
respectively, that is,

‖|v∗|+ µe‖qq ≤ min
v∈Ω
‖|v|+ µe‖qq + nµq

and
‖vµ‖qq ≤ min

v∈Ω
‖v‖qq + nµq.

(ii) Let v̂ be a local minimizer of problem (8). Then there is µ̄ > 0, such that for
any µ ∈ (0, µ̄),

(39) 0 ∈ (I −Q)W(v̂, µ).

(iii) Let v̂ be a local minimizer of problem (8) with J = {i : v̂i 6= 0}. Suppose that
there is v0

J ∈ R|J| such that ‖AJv0
J − c‖ < σ. Then there is λ∗ > 0 such that

whenever λ ≥ λ∗, v̂ is a local minimizer of the penalty problem

(40) min Fλ(v) := ‖v‖qq + λ(‖Av − c‖22 − σ2)+

and for i ∈ J ,

(41) |v̂i| ≥ CL :=

(
q

2
√
λ
√
Fλ(v�) + λσ2

) 1
1−q

,

where v� is chosen such that Fλ(v̂) ≤ Fλ(v�).

Proof. (i) Note that problems (8) and (35) have the same feasible set. Let v∗ and
vµ be global minimizers of problems (8) and (35), respectively. Then from

‖|v∗|+µe‖qq ≤ ‖v∗‖qq+‖µe‖qq ≤ ‖vµ‖qq+nµq ≤ ‖|vµ|+µe‖qq+nµq = min
v∈Ω
‖|v|+µe‖q+nµq

and

‖vµ‖qq ≤ ‖|vµ|+ µe‖qq ≤ ‖|v∗|+ µe‖qq ≤ ‖v∗‖qq + ‖µe‖qq = min
v∈Ω
‖v‖q + nµq

we find that v∗ is a nµq-global minimizer of (35) and vµ is a nµq-global minimizer of
(8).

(ii) Since v̂ is a local minimizer of problem (8), which is an isolated local minimizer
by the folded concavity of ‖·‖qq, there is neighborhood Nv̂ = {v : ‖v−v̂‖2 ≤ η} of v̂ for
some η ∈ (0, minv̂i 6=0 |v̂i|) such that for any v ∈ Nv̂ ∩ Ω, v 6= v̂, we have ‖v̂‖qq < ‖v‖qq.
Specially, we have min{‖v‖qq : ‖v − v̂‖2 = η, v ∈ Ω} − ‖v̂‖qq > ε for some ε > 0.

By the same argument as in the proof of Lemma 4.2, if 0 6∈ (I −Q)W(v̂, µ), then
‖(I −Q)ω∗(v̂, µ)‖2 6= 0. Let

v+ = v̂ − η

‖(I −Q)ω∗(v̂, µ)‖2
(I −Q)ω∗(v̂, µ).

Then v+ ∈ Nv̂ ∩ Ω, v+
i v̂i ≥ 0 and η = ‖v+ − v̂‖2, which implies ‖v+‖qq − ‖v̂‖qq > ε.

Hence using the same argument as in the proof of Lemma 4.2 again, we have

‖v+‖qq ≤ ‖|v+|+ µe‖qq ≤ ‖|v̂|+ µe‖qq − η‖(I −Q)ω∗(v̂, µ)‖2 < ‖v̂‖qq + nµq.

This cannot hold for µ ≤ (ε/n)
1
q . Thus we derive (ii).

(iii) This part is from Theorem 3.2 in [12].
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Berg and Friedlander developed an efficient package SPGL1 [31, 32, 33] (Version
1.9) for solving the `1 basis pursuit de-noising problem (7). Chen, Lu and Pong
developed a penalty method [12] for solving the `q problem (8) using (40). Motivated
by Theorem 4.3, we propose the following algorithm.

Algorithm 4.1. Choose k∗ > 1 and µ > 0. Let α0
i = 1, i = 1, . . . , n and k = 0.

1. Using SPGL1 solve

(42)
vk ∈ Argmin

n∑
i=1

αki |vi|

s.t. ‖Av − c‖2 ≤ σ.

2. If k + 1 = k∗, go to Step 3. Otherwise let αk+1
i = q(|vki |+ µ)q−1, i = 1, . . . , n

and go to Step 1.
3. Using vk

∗
as an initial point solve problem (8) by the penalty method with

(40) in [12].

Algorithm 4.1 is the penalty method in [12] for solving problem (8) with a starting
point generated by the re-weighted `1 method. By Theorem 4.2 in [12], the sequence
generated by Algorithm 4.1 is bounded and any accumulation point of the sequence
is a KKT point of (8) which satisfies (31).

In Section 5, we show that the performance of Algorithm 4.1 for solving problem
(8) is better than SPGL1 for problem (7) and the penalty method for problem (8)
with other initial points.

5. Experimental results. In this section, we present numerical results for re-
covery of sparse signals on the sphere. We use four cubature rules on S2 to generate
the matrix A and the vector c in problem (8) and three methods to solve problems
(8) generated by the four cubature rules.

The four cubature rules, as detailed in Section 2, are
SF Spherical designs [18, 35, 36]
MD Spherical tε-designs [40] from extremal fundamental systems [29]
GL Tensor product, Gauss-Legendre points in z ∈ (−1, 1) and equally spaced

points in φ [30]
TP Tensor product, equally spaced in spherical coordinates θ, φ

The three methods:
SPGL1 Solve the `1 basis pursuit de-noising problem (7) [31, 32, 33]
RWL1-8 Steps 1-2 in Algorithm 4.1 with k∗ = 8

penalty (`q, ones), (`q, SPGL1) and (`q, RWL1-8) solve the `q problem (8) using pen-
alty method (40) with ones, solution from SPGL1 and solution from RWL1-8
as starting points, respectively

All codes are written in MATLAB, and the experiments were performed in MAT-
LAB version R2016b.

5.1. Four cubature rules. The properties of the node sets (grids) of the four
cubature rules for n ≈ 1024 are summarized in Table 1

In Figures 3-6, we show the distribution of these nodes on the sphere and the
corresponding cubature weights.

Examples of spherical tε-designs include the extremal fundamental systems of
Sloan and Womersley [29], with ε = 0.5 up to degree t = 165, see the first plot in
Figure 7. The extremal systems of points have the additional advantage of having a
provable lower bound on the separation, as illustrated in the second plot in Figure 7. If
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Code n t δ(Xn) δ(Xn)n
1
2 cond(Y ) minwi/wav maxwi/wav

SF 1014 44 9.8e-2 3.12 1.9 1.000 1.000
MD 1024 31 1.0e-1 3.24 5.9 0.705 1.350
GL 1058 45 1.4e-2 0.453 4.0e+16 0.154 1.537
TP 1024 30 9.6e-3 0.308 3.7e+17 0.067 1.569

Table 1
Characteristics of node sets
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Fig. 3. SF points and cubature weights

the solution to the optimization problem (14) is feasible and satisfies ‖ w
wav
− e‖∞ ≤ ε,

for ε ∈ [0, 1), then the points and weights form a tε-design (as (1 + ε) ≤ (1− ε)−1 for
ε ∈ [0, 1)).

5.2. Three algorithms. The `1 basis pursuit de-noising problem (7) is a convex
problem, and could be solved by a variety of other methods, including CVX [24] a
package for disciplined convex programming based on interior point solvers. However
for problem (7) the specialized package SPGL1 was much faster than the general
purpose package. Also as CVX uses an interior point solver, it will not produce
sparse solutions, so a tolerance must be used in counting the number of elements in
the support of v.

For 0 < q < 1, problem (40) is solved using the penalty method proposed in [12],
whose subproblems are solved via a nonmonotone proximal gradient (NPG) met-
hod [37] with a suitable update scheme for the penalty parameters.

The penalty method in particular is sensitive to the choices of initial points.
We use a variety of starting points, including the vector of all ones, the `1 solution
produced by SPGL1, and the solution produced by the RWL1 process with µ = 10−6.
RWL1-8 means that Steps 1-2 of Algorithm 4.1 were performed k∗ = 8 times. This is
indicated immediately after the method name in Tables 2, 3, 4, 5. Other parameters
are same as those in [12, 32].

We chose an index set J of size |J | at random. We generate a vector u ∈ R|J|
with i.i.d. standard Gaussian entries, and define a vector u∗ ∈ Rn by setting u∗J = u

and u∗Jc = 0. The measurement c is then set to be AWu∗ + δξ, so v∗ = W
1
2u∗ where

W is the diagonal matrix of weights. The noise uses a δ > 0, with each entry of ξ
following the standard Gaussian distribution. This corresponds to an additive noise
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Fig. 4. MD points and cubature weights
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Fig. 5. GL points and cubature weights

model for the Fourier coefficients. Finally, we set σ = δ‖ξ‖2 so that the resulting
feasible set will contain the sparse vector v∗.

Tables 2, 3, 4, 5 summarize the performance of different methods for recovery
of a sparse signal v∗. The quantity ϕ(v) := ‖Av − c‖22 − σ2 satisfies ϕ(v) ≤ 0 for a
feasible solution v. While ‖v̂‖0 is the number of non-zeros in the calculated solution,
‖v∗ & v̂‖0 is the number of non-zero values that v∗ and v̂ have in common, so the
number of “false positives” where v̂ is non-zero, but v∗ is zero, is ‖v̂‖0 − ‖v∗ & v̂‖0.
Figure 8 illustrates the performance of the different solution methods over 100 trials
with noise η`,k = δN(0, 1). The behaviour on individual trials is consistent with the
sample mean data in Table 2.

In Figures 9, 10, 11 and 12 the first plot illustrates the function obtained from
the noisy Fourier coefficient c ∈ Rm up to degree L by

f(xj) =

L∑
`=0

2`+1∑
k=1

c`,kY`,k(xj), j = 1, . . . , n

or f = Y c using the degree L spherical harmonic basis matrix. The second plot in
these figures is the true signal F . The third plot is the approximation

f̂ = W−
1
2 v̂
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where v̂ is obtained using Algorithm 4.1 with k∗ = 8, which is the penalty method
starting from the solution after using 8 iterations of the iteratively re-weighted `1 algo-
rithm. The last plot is the errors f̂−F at the nodes of the cubature rule. The recovery
of the underlying function values f̂ depends critically on the condition number of the
diagonal scaling matrix W−

1
2 coming from the cubature weights. As illustrated in Ta-

ble 1, cond
(
W−

1
2

)
= 1 for nodes based on spherical designs, cond

(
W−

1
2

)
≤ (1−ε)−1

for nodes based on spherical tε-designs. For nodes based on tensor product point sets

cond
(
W−

1
2

)
may be large, especially the TP nodes based on equally spaced points in

θ and φ. This accounts for the significantly larger errors in Figure 12.

6. Conclusion remarks. Numerical integration and optimization methods are
two important factors in signal processing. In this paper, we give comprehensive
investigation on four spherical cubature rules and three optimization methods for
recovery of sparse signals on the unit sphere S2. In theory and numerical computation,
we find that using an equal weight cubature rule (spherical t-design) to build the
optimization model (8) and then using Algorithm 4.1 to solve (8) can find better
sparse solutions than other cubature rules and other optimization methods for the `1
optimization model (7) and the `q optimization model (8).
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Method ‖v̂‖qq ϕ(v̂) ||v∗ − v̂‖2 ‖v̂‖0 ‖v∗ & v̂‖0
SPGL1 99.688 -1.1e-08 3.21 217.4 101.7
`q, ones 94.715 2.1e-17 7.65 150.7 42.8
`q, SPGL1 92.315 -1.0e-17 6.91 143.9 50.3
RWL1-8 85.262 -1.2e-11 3.16 125.3 89.5
`q, RWL1-8 83.999 5.9e-19 3.19 119.9 87.7

Table 2
SF nodes: m = 256, n = 1014, q = 0.5, |J∗| = 120, ‖v∗‖qq = 84.639, averages of 100 trials with

δ = 0.01, σ = 0.1604,
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Fig. 8. SF nodes: m = 256, n = 1014, q = 0.5, |J∗| = 120, ‖v∗‖qq = 84.639, 100 trials with
δ = 0.01
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Fig. 11. GL nodes: function from noisy Fourier coefficients, true signal, signal minimizing ‖v‖qq
from solution of Algorithm 4.1 k∗ = 8, and error

Fig. 12. TP nodes: function from noisy Fourier coefficients, true signal, signal minimizing ‖v‖qq
from solution of Algorithm 4.1 k∗ = 8, and error
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