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Abstract The dynamic Nash equilibrium problem with shared constraints (NEPSC)
involves a dynamic decision process with multiple players, where not only the players’
cost functionals but also their admissible control sets depend on the rivals’ decision
variables through shared constraints. For a class of the dynamic NEPSC, we propose
a differential variational inequality formulation. Using this formulation, we show the
existence of solutions of the dynamic NEPSC, and develop a regularized smoothing
method to find a solution of it. We prove that the regularized smoothing method
converges to the least norm solution of the differential variational inequality, which
is a solution of the dynamic NEPSC as the regularization parameter λ and smoothing
parameter μ go to zero with the order μ = o(λ). Numerical examples are given to
illustrate the existence and convergence results.
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380 X. Chen, Z. Wang

1 Introduction

The dynamic Nash equilibrium problem involves a decision process with multiple
players, where each player solves an optimal control problem with his own cost func-
tion and strategy set. Each player’s cost function is dependent on all players’ variables
but the strategy set is only dependent on the player’s own variables described by the
state dynamic and admissible control set. However, in many real world problems,
each player’s cost function and strategy set are both dependent on his rivals’s vari-
ables, which yield a new model: the dynamic Nash equilibrium problem with shared
constraints (NEPSC). Pang and Stewart [29] use the differential quasi variational
inequality to study a class of dynamic NEPSC in which only control sets are coupled
and the state dynamics are uncoupled across players. Motivated by the work of Pang
and Stewart in [29], in this paper, we study such class of dynamic NEPSC that have
a common constraint function for all players’ control sets. To find certain solutions
of the dynamic NEPSC, we consider the following differential variational inequality
(DVI)

ẋ(t) = F(t, x(t), u(t))

u(t) ∈ SOL(U, Ψ (t, x(t), ·)) (1)

0 = Γ (x(0), x(T )),

where F : R × R2n × Rm → R2n,U ⊆ Rm, Ψ : R × R2n × U → Rm, Γ :
R2n × R2n → R2n , and

SOL(U, Ψ (t, x(t), ·)) := {u ∈ U | (v − u)TΨ (t, x, u) ≥ 0, ∀v ∈ U },

is the solution set of the VI associated with the set U and the parameterized mapping
Ψ (t, x(t), ·) : U → Rm and fixed t ∈ [0, T ] and x ∈ R2n .

The DVI is a new modeling paradigm for many important applications in engi-
neering and economics which presents dynamics, variational inequalities, equilibrium
conditions in a systematic way [3,19,21,25,29,35]. To the best of our knowledge, the
DVI formulation for the dynamic NEPSC has not yet been studied. Comparing with
the differential quasi variational inequality formulation in [29], the DVI formulation is
advantageous since it can be treated as a differential inclusion, or a system of differen-
tial algebraic equations (DAE), or more specifically as a system of ordinary differential
equations (ODE), for which there are abundant theory and algorithms available.

The static NEPSC can be regarded as a special case of the dynamic NEPSC when
the state variables are constant. Recently the static NEPSC has been intensively stud-
ied due to many important applications arising from engineering and economics, for
instance, liberalized energy markets, global environment, traffic assignment with side
constraints and oligopoly analysis [13,14,20,22,23,26,28,32]. It is known that a sta-
tic NEPSC can have (possibly infinitely) many solutions, and some solutions can be
found via a static variational inequality (VI) when the cost functions and the strategy
sets are convex [13,14,22,23,26,34]. The VI approach for finding a solution of a sta-
tic NEPSC has attracted growing attention because there are rich theory and efficient
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DVI approach to dynamic games 381

algorithms for solving VIs [16,31]. For instance, Wei and Smeers [34] formulated
an oligopolistic electricity model as a static NEPSC and found a solution via its VI
formulation, Facchinei et al. [14] proposed a semismooth Newton method for a static
NEPSC via its VI formulation, and Nabetani et al. [26] proposed two parameterized
VI approaches to solve a class of static NEPSC. Recently, Schiro et al. [33] presented
a modified Lemake’s method to solve a class of static affine NEPSC arising from a
breadth of applications including environmental pollution games, rate allocation in
communication networks and strategic behavior in power markets.

The dynamic NEPSC provides a fundamental generalization of the static NEPSC
to consider some parameters and circumstances varying in the players’ strategies.
The dynamic NEPSC appears frequently in realistic applications. For example, let us
consider a dynamic user equilibrium problem for traffic networks studied in [35]. In
a traffic network, the travelers choose their departure times and routes to minimize
their generalized travel costs under a traffic volume control scheme guaranteeing that
the traffic volumes on specified links do not exceed preferred levels. This problem can
be formulated as a special dynamic NEPSC: dynamic user equilibrium problem with
side constraints where the side constraints characterize the restrictions on the traffic
volumes.

Inspired by the VI approach for the static NEPSC, we apply the DVI approach to
dynamic NEPSC where the cost functions and the strategy sets are convex. A classic
solution of the DVI is a pair (x(t), u(t)) where x is continuously differentiable and u
is continuous on [0, T ] such that the differential equations and the constraints in the
DVI are fulfilled for all t ∈ [0, T ]. However, in most cases, the DVI does not have a
classic solution, and therefore we have to seek the weak solution (x(t), u(t)), where x
is absolutely continuous and u is integrable on [0, T ] such that for all 0 ≤ s ≤ t ≤ T ,

x(t)− x(s) =
t∫

s

F(τ, x(τ ), u(τ ))dτ,

and for almost all t ∈[0, T ], u(t)∈SOL(U, Ψ (t, x(t), ·)). The latter implies u(t)∈U
holds almost everywhere and for any continuous functions v : [0, T ] → U it holds

T∫

0

[v(τ)− u(τ )]T Ψ (τ, x(τ ), u(τ ))dτ ≥ 0.

Solving the DVI is a challenging problem because it involves at each grid a suitable
selection of a set-valued mapping defining the dynamic, which actually needs solving
a family of parameterized optimization problems without standard constraint qualifi-
cations. Another difficulty is that the solution of the DVI is usually non-smooth, and
because of this we can not expect a high order convergence if the ODE-integrators are
just extended to the DVI in a naive manner. Motivated by the availability of many pow-
erful solvers for the ODEs with smooth dynamics, we propose a regularized smoothing
method for solving the DVI. Namely, we use regularization and smoothing techniques
for the DVI, which give a standard ODE that has a unique classical solution and can
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be efficiently solved by the existing high-order solvers. We establish the convergence
of the solutions of the ODEs to a solution of the dynamic NEPSC when the regulariza-
tion parameter λ and the smoothing parameter μ go to zero with the order μ = o(λ).
Moreover, we present some desired properties of the limit solution.

The remaining of this paper is organized as follows. In Sect. 2, we present a detailed
formulation of the dynamic NEPSC and reformulate it as a DVI. In Sect. 3, we study
the solvability of the DVI. In Sect. 4, we introduce the regularized smoothing method
and give the convergence analysis. In Sect. 5, we use the dynamic two-player zero sum
game to illustrate the formulation and the convergence of the regularized smoothing
method.

2 Problem formulation

Consider a dynamic Nash equilibrium problem with N players. We denote by yν ∈ Rnν

and uν ∈ Rmν the ν-th player’s state and strategy variables, respectively. The strategy
is also called as action, decision or control. Collectively write y = (yν)N

ν=1 ∈ Rn, u =
(uν)N

ν=1 ∈ Rm, y−ν = (yν′)ν′ 	=ν ∈ Rn−nν and u−ν = (uν′)ν′ 	=ν ∈ Rm−mν , where
n = ∑N

ν=1 nν and m = ∑N
ν=1 mν . When we emphasize the ν-th player’s state and

strategy variables, we use y = (yν, y−ν) and u = (uν, u−ν) to represent y and u,
respectively. For the ν-th player, we denote

– The strategy set (admissible control set) by

Uν(u−ν) = {uν | hν(uν) ≤ 0, g(uν, u−ν) ≤ 0},

where hν(·) : Rnν → Rlν and g(·, u−ν) : Rnν → R�;
– The initial state by y0

ν ∈ Rnν ;
– The state dynamic by Θν(·, ·, ·) : R1+nν+mν → Rnν ;
– The cost functional by

θν(y, u) = ψν(y(T ))+
T∫

0

ϕν(t, y(t), u(t))dt,

where ψν(·) : Rn → R and ϕν(·, ·, ·) : R1+n+m → R, and T > 0 is the terminal
time.

Writing θν(y, u) = θν(yν, y−ν, uν, u−ν), the solution (or called the equilibrium point)
of the dynamic NEPSC is a state-control pair (y∗, u∗) satisfying: for fixed y∗−ν and
u∗−ν, (y∗

ν , u∗
ν) is a solution of the following optimal control problem

min θν(yν, y∗−ν, uν, u∗−ν)
s.t. ẏν(t) = Θν(t, yν, uν)

yν(0) = y0
ν

uν(t) ∈ Uν(u∗−ν(t)) for all most t ∈ [0, T ].
(2)
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Note that without the shared constraint g(uν, u−ν) ≤ 0 in Uν(u−ν), (2) reduces to the
standard dynamic NEP. Write ϕν(t, y, u) = ϕν(t, yν, y−ν, uν, u−ν). Here we make
the following blanket assumptions on the smoothness and convexity of functions in
(2), which are fulfilled for many dynamic NEPSCs.

Assumption 1 For any ν ∈ {1, . . . , N } suppose that ψν and each components of hν
and g(·, u−ν) are convex, and suppose that ϕν(t, ·, y−ν, ·, u−ν) and each component
ofΘν(t, yν, ·) are convex and continuously differentiable for any fixed t, y−ν and u−ν .

Define the Hamiltonian of player ν’s by

Hν(t, vν, y, u) = ϕν(t, y, u)+ (vν)
T Θν(t, yν, uν)

where vν is the adjoint variable of the ODE constraint in player ν’s control problem.
By Bellman’s principle of optimality, (2) yields the constrained Hamilton system

⎧⎪⎪⎨
⎪⎪⎩

v̇ν(t) = −∇yν Hν(t, vν(t), y(t), u(t))
ẏν(t) = Θν(t, yν(t), uν(t))
uν(t) ∈ arg minz Hν(t, vν(t), y(t), u−ν(t), z), s.t. z ∈ Uν(u−ν)
yν(0) = y0

ν and vν(T ) = ∇yνψν(y(T )).

(3)

Under Assumption 1, Hν(t, vν, y, u−ν, uν) is convex in uν and the set Uν(u−ν) is
convex, so the minimization problem in (3) is equivalent to the VI: find uν ∈ Uν(u−ν)
such that

(z − uν)
T ∇uν Hν(t, vν, y, u−ν, uν) ≥ 0 ∀z ∈ Uν(u−ν). (4)

We denote the solution set of (4) by SOL(Uν(u−ν),∇uν Hν(t, vν, y, u−ν, ·)). Collec-
tively write

Ψ (t, v, y, u) = (∇uν Hν(t, vν, y, u)
)N
ν=1

and

Γ (v(0), y(0), v(T ), y(T )) =
(

yν(0)− y0
ν

vν(T )− ∇yνψν(y(T ))

)N

ν=1
.

Concatenating (3) with (4) for ν = 1, . . . , N , we can formulate the dynamic NEPSC
(2) as the following differential quasi VI [29]

v̇(t) = (−∇yν Hν(t, vν(t), y(t), u(t))
)N
ν=1 ,

ẏ(t) = (Θν(t, yν(t), uν(t)))
N
ν=1 ,

u(t) ∈ SOL(Ũ (u(t)), Ψ (t, v(t), y(t), ·))
0 = Γ (v(0), y(0), v(T ), y(T )), (5)
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where Ũ (u) = ∏N
ν=1 Uν(u−ν). Because of the complex structure of Ũ , it is hard to

analyze the solvability and the convergence of numerical algorithms for solving (5).
Here we propose a DVI formulation of the dynamic NEPSC (2), instead of the quasi
one. Define

U := {u ∈ Rm | hν(uν) ≤ 0, ν = 1, . . . , N , g(u) ≤ 0},

where g(u) = g(uν, u−ν) for ν = 1, . . . , N .
The following lemma states that the solvability of the VI implies the solvability of

the quasi VI, and justifies the DVI formulation of dynamic NEPSC [13,14,34].

Lemma 1 ([13]) For any fixed t, v(t) and y(t), we have

SOL(U, Ψ (t, v(t), y(t)), ·)) ⊆ SOL(Ũ , Ψ (t, v(t), y(t), ·)).

In the remainder of this paper, we will study the DVI formulation (1) of the dynamic
NEPSC (2), where

F(t, x(t), u(t)) =
( (−∇yν Hν(t, vν, y, u)

)N
ν=1 ,

(Θν(t, yν, uν))N
ν=1

)
and x(t) =

(
v(t)
y(t)

)
.

Here we call (y, u) as a feasible pair of the dynamic NEPSC (2) if hν(uν) ≤ 0, g(u) ≤
0, and ẏν(t) = Θν(t, yν(t), uν(t)) for ν = 1, . . . , N . The following theorem charac-
terizes the relation between the DVI (1) and the dynamic NEPSC (2).

Theorem 1 Suppose that Assumption 1 holds. Let (v∗, y∗, u∗) be a weak solution of
(1), and letΘν(t, yν, uν) be linear with respect to (yν, uν). Then (y∗, u∗) is a solution
of the dynamic NEPSC (2) in the following sense: for any feasible pair (y, u) of (2),
we have

θν(yν, y∗−ν, uν, u∗−ν) ≥ θν(y
∗
ν , y∗−ν, u∗

ν, u∗−ν), ν = 1, . . . , N .

Proof Since ψν is convex and v∗
ν (T ) = ∇yνψν(y

∗(T )), we have

ψν(yν(T ), y∗−ν(T ))− ψν(y
∗
ν (T ), y∗−ν(T ))

≥ 〈∇yνψν(y
∗(T )), yν(T )− y∗

ν (T )〉 = 〈v∗
ν (T ), yν(T )− y∗

ν (T )〉. (6)

By the linearity of Θν we have

Θν(t, yν, uν)−Θν(t, y∗
ν , u∗

ν) = (∇yνΘν(t, y∗
ν , u∗

ν),∇uνΘν(t, y∗
ν , u∗

ν)
) (

yν − y∗
ν

uν − u∗
ν

)
,
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this yields

d

dt
〈v∗
ν , yν − y∗

ν 〉 = 〈v̇∗
ν , yν − y∗

ν 〉 + 〈v∗
ν , ẏν − ẏ∗

ν 〉
= 〈v̇∗

ν , yν − y∗
ν 〉 + 〈v∗

ν ,Θν(t, yν, uν)−Θν(t, y∗
ν , u∗

ν)〉
= 〈v̇∗

ν , yν − y∗
ν 〉 + 〈(v∗

ν )
T ∇yνΘν(t, y∗

ν , u∗
ν), yν − y∗

ν 〉
+〈(v∗

ν )
T ∇uνΘν(t, y∗

ν , u∗
ν), uν − u∗

ν〉. (7)

Noting

∇yν ϕν(t, y∗
ν , y∗−ν, u∗

ν, u∗−ν)
= ∇yν Hν(t, y∗

ν , y∗−ν, u∗
ν, u∗−ν)− (v∗

ν )
T ∇yνΘν(t, y∗

ν , u∗
ν)

= −v̇∗
ν − (v∗

ν )
T ∇yνΘν(t, y∗

ν , u∗
ν)

and

∇uν ϕν(t, y∗
ν , y∗−ν, u∗

ν, u∗−ν)
= ∇uν Hν(t, y∗

ν , y∗−ν, u∗
ν, u∗−ν)− (v∗

ν )
T ∇uνΘν(t, y∗

ν , u∗
ν),

and noting that

〈∇uν Hν(t, y∗
ν , y∗−ν, u∗

ν, u∗−ν), uν − u∗
ν〉 ≥ 0

holds for almost all t ∈ [0, T ] since (y, u) is feasible and (y∗, u∗) is a weak solution of
(1), by using (7) and considering that ϕν(t, ·, y−ν, ·, u−ν) is convex and continuously
differentiable, we have

ϕν(t, yν, y∗−ν, uν, u∗−ν)− ϕν(t, y∗
ν , y∗−ν, u∗

ν, u∗−ν)
≥ 〈∇yν ϕν(t, y∗

ν , y∗−ν, u∗
ν, u∗−ν), yν − y∗

ν 〉+〈∇uν ϕν(t, y∗
ν , y∗−ν, u∗

ν, u∗−ν), uν−u∗
ν〉

= −〈v̇∗
ν , yν − y∗

ν 〉 − 〈(v∗
ν )

T ∇yνΘν(t, y∗
ν , u∗

ν), yν − y∗
ν 〉

+〈∇uν Hν(t, y∗
ν , y∗−ν, u∗

ν, u∗−ν), uν − u∗
ν〉 − 〈(v∗

ν )
T ∇uνΘν(t, y∗

ν , u∗
ν), uν − u∗

ν〉
= − d

dt
〈v∗
ν , yν − y∗

ν 〉 + 〈∇uν Hν(t, y∗
ν , y∗−ν, u∗

ν, u∗−ν), uν − u∗
ν〉

≥ − d

dt
〈v∗
ν , yν − y∗

ν 〉,

and therefore

T∫

0

[
ϕν(t, yν, y∗−ν, uν, u∗−ν)− ϕν(t, y∗

ν , y∗−ν, u∗
ν, u∗−ν)

]
dt

≥ −〈v∗
ν (T ), yν(T )− y∗

ν (T )〉.
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Now, by this inequality and (6), we obtain

θν(yν, y∗−ν, uν, u∗−ν)− θν(y
∗
ν , y∗−ν, u∗

ν, u∗−ν)
= ψν(yν(T ), y∗−ν(T ))− ψν(y

∗
ν (T ), y∗−ν(T ))

+
T∫

0

[
ϕν(t, yν, y∗−ν, uν, u∗−ν)− ϕν(t, y∗

ν , y∗−ν, u∗
ν, u∗−ν)

]
dt ≥ 0.

This completes the proof. ��

3 Solvability of the DVI formulation

The DVI (1) is solvable if we can find an initial value x0 such that the initial value
problem of the differential inclusion

⎧⎨
⎩

ẋ(t) = F(t, x(t), u(t))
u(t) ∈ SOL(U, Ψ (t, x, ·))
x(0) = x0

has a solution (x(t), u(t)) fulfilling the boundary value condition of the DVI (1)
formulated from the dynamic NEPSC: Γ (x(0), x(T )) = 0. We can see that when
T = 0, this condition has the form

Γ (x, x) =
(

yν − y0
ν

vν − ∇yνψν(y)

)N

ν=1
= 0,

which has a unique solution

x̂0 =
(
(∇yνψν(y

0))N
ν=1

y0

)
,

where y0 = (y0
ν )

N
ν=1. Moreover, the Jacobian is of full rank:

∇xΓ (x̂
0, x̂0) =

(
0 I
I −(∇2

yν yν′ψν(y
0))N

ν,ν′=1

)
. (8)

Denote S(t, x) := SOL(U, Ψ (t, x, ·)). We impose the following assumption for guar-
anteeing the solvability of (1).

Assumption 2 (A1) The solution set S(0, x̂0) is nonempty and bounded.
(A2) The function Ψ (t, x, ·) is monotone.

Remark 1 Assumption (A1) is fulfilled in many practical settings. For instance, in a
mixed strategy game with shared constraints, the admissible control set often has the
form
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Uν(u−ν) = {uν ∈ Rmν | uν ≥ 0, eT u = 1},
where e = (1, . . . , 1)T , which gives U = {u ∈ Rm | u ≥ 0, eT u = 1}. In such a case,
S(0, x̂0) is nonempty, convex and bounded.

Notice that S(t, x) is closed and convex for any fixed (t, x) when Ψ (t, x, ·) is
monotone. See Theorem 2.3.5 [16].

Remark 2 Assumption (A2) means that the DVI (1) is a differential monotone varia-
tional inequality, which has been used for many applied problems, and is called linear
passive complementarity systems when the VI in (1) is a monotone linear complemen-
tarity problem [4,5,19,29]. An optimal control problem with joint control and state
constraints can be formulated as a differential monotone VI, for which Han et al. [18]
proposed a unified numerical scheme. For the dynamic NEPSC, Assumption 1 assumes
that each diagonal block ∇2

uνuν Hν(t, vν, y, u) of the Jacobian ∇uΨ (t, v, y, u) is pos-

itive semi-definite, since Ψ (t, x, u) = (∇uν Hν(t, vν, y, u)
)N
ν=1. Assumption (A2)

assumes the Jacobian ∇uΨ (t, v, y, u) is positive semi-definite. In general, Assump-
tion 1 does not imply Assumption (A2). However, in many applications of the dynamic
NEPSC, Assumption 1 implies Assumption (A2), that is, convexity of the objectives
of individual players in their decision variables implies monotonicity of the VI.

Below we give some sufficient conditions imposed on the original dynamic NEPSC
(2) for guaranteeing the monotonicity of the resulting DVI.

Proposition 1 Suppose that Assumption 1 holds. Then the function Ψ (t, x, ·) is
monotone if the state dynamic Θν(t, yν, uν) is linear with respect to uν for ν =
1, . . . , N and one of the following conditions on the cost functional θν holds:

(1) ∇2
uνui

ϕν(t, y, u) = −∇2
ui uν ϕi (t, y, u), for ν 	= i , and ν, i = 1, . . . , N.

(2) ϕν(t, y, u) = φν(t, y, uν) + uT
ν B

∑N
i=1 ui + qν(t, y) for ν = 1, . . . , N, where

uν ∈ Rm1 , φν : R1+n+m1 → R is convex, B ∈ Rm1×m1 is positive semi-definite,
and qν : R × Rn → R.

Proof (1) Assumption 1 implies that the matrices ∇2
uνuν ϕν(t, y, u), ν = 1, . . . , N

are positive semi-definite. From the linearity of Θν(t, yν, uν) with respect to uν
and condition (1), the Jacobian of Ψ (t, x, u) has the form

∇uΨ (t, x, u) =

⎛
⎜⎜⎜⎜⎝

∇2
u1u1

ϕ1 ∇2
u1u2

ϕ1 · · · ∇2
u1uN

ϕ1

−∇2
u1u2

ϕ1 ∇2
u2u2

ϕ2 · · · ∇2
u2uN

ϕ2
...

... · · · ...

−∇2
u1uN

ϕ1 −∇2
u2uN

ϕ2 · · · ∇2
uN uN

ϕN

⎞
⎟⎟⎟⎟⎠ (t, x, u)

which is positive semi-definite. Therefore, the mapping Ψ (t, x, ·) is monotone.
(2) By simple calculations, we can find

Ψ (t, x, ·) =
(

∇uν φν(uν)+ BT uν + B
N∑

i=1

ui + ∇uνΘν(t, yν, uν)
T vν

)N

ν=1

.
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From the linearity of Θν(t, yν, uν) with respect to uν , the Jacobian of Ψ (t, x, ·)
has the form

∇uΨ (t, x, u) = diag(∇2
uνuν φ(t, y, uν)+ BT )+ B ⊗ E,

where E ∈ RN×N with all entries 1, ⊗ is the Kronecker tensor product:

E ⊗ B =

⎛
⎜⎜⎜⎝

B B · · · B
B B · · · B
...

... · · · ...

B B · · · B

⎞
⎟⎟⎟⎠ .

The matrix E ⊗ B is positive semi-definite, since

zT (E ⊗ B)z =
N∑

j=1

(
N∑

i=1

zT
i B

)
z j =

(
N∑

i=1

zi

)T

B

⎛
⎝ N∑

j=1

z j

⎞
⎠ ≥ 0

for any z = (uT
1 , · · · , zT

N )
T ∈ Rm, zi ∈ Rm1 for i = 1, . . . , N . From the positive

semi-definite property of B and ∇2
uνuν φ(t, y, uν) for ν = 1, . . . , N ,∇uΨ (t, x, u)

is positive semi-definite, and hence Ψ (t, x, ·) is monotone.
��

The following three examples show that the two conditions of Proposition 1 are
from real applications. We assume the dynamic are linear in these examples.

Example 1 The two-player zero-sum game with shared constraints and linear dynam-
ics satisfies condition (1) of Proposition 1. In such a game, we have two cost functionals
ϕ1 = ϕ and ϕ2 = −ϕ, one player seeks to minimize ϕ and the other seeks to maximize
it. In this setting Assumption 1 is just the normal convex-concave assumption of ϕ, i.e.,
ϕ is assumed to be convex in u1 and concave in u2, which gives a monotone mapping
Ψ (t, x, ·) with the positive semi-definite Jacobian

∇uΨ (t, x, u) =
⎛
⎝ ∇2

u1u1
ϕ ∇2

u1u2
ϕ

−∇2
u1u2

ϕ −∇2
u2u2

ϕ

⎞
⎠ (t, x, u).

Example 2 The dynamic NEPSC (2) with a separable cost function

ϕν(t, y, u) = φν(t, y, uν)+ φ̂ν(t, y, u−ν), ν = 1, . . . , N

satisfies condition (1) of Proposition 1. It is easy to see that condition (1) of Proposition
1 holds with ∇2

uνui
ϕν(t, y, u) = 0 for ν 	= i , and ν, i = 1, . . . , N . By the definition

of Ψ , the Jacobian of Ψ (t, x, u) is a block diagonal matrix with the form

∇uΨ (t, x, u) = diag(∇2
u1u1

φ1(t, y, u1), . . . ,∇2
uN uN

φN (t, y, uN )).
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Assumption 1 implies that ∇2
uνuν φν(t, y, uν), ν = 1, . . . , N are positive semi-definite.

Hence Ψ (t, x, ·) is monotone. Such separable cost function includes linear functions
as a special case.

Example 3 Environmental pollution games with shared constraints, quadratic cost
functionals and linear dynamics can be formulated as a dynamic monotone VI. The
static river basin pollution game in [26,33] can be extended to a dynamic game. For
the ν-th player, let the dynamic be linear with respect to uν ∈ Rm1 , and let the cost
function be

ϕν(t, y, u) = uT
ν

(
Qνuν + B

N∑
i=1

ui + pν

)
+ qν(y, t),

where B, Qν ∈ Rm1×m1 are positive semi-definite, and pν ∈ Rm1 , ν = 1, . . . , N .
From (2) of Proposition 1 it follows that the function Ψ (t, x, ·) is monotone.

In the case Qν = 0, Assumption 1 implies Assumption (A2).

It is well known that the VI can be equivalently reformulated as a system of equa-
tions, namely, u ∈ SOL(U, Ψ (t, x, )̇) if and only if

G(t, x, u) := u −ΠU (u − Ψ (t, x, u)) = 0, (9)

whereΠU (·) is the projection taken onto U in �2 norm. Now we study the solvability
of the DVI (1) by equivalently rewriting it as a differential algebraic equation

ẋ(t) = F(t, x(t), u(t))

0 = G(t, x(t), u(t)) (10)

0 = Γ (x(0), x(T )).

From Assumption (A2) on the monotonicity of Ψ (t, x, ·), it follows that the mapping
Ĝ(u) := G(t, x, u) is weak univalent for any fixed t and x :

Definition 1 A mapping Ĝ : U ⊆ Rm → Rm is said to be weakly univalent on its
domain if it is continuous and there exists a sequence of univalent (i.e., continuous and
injective) functions {Gk} from U into Rm such that {Gk} converges to Ĝ uniformly
on bounded subsets of U .

Denote by N (x, r) the open ball centered by x with the radius of r in the �2 norm.
The weakly univalent functions have the following properties which are useful for
studying the solvability of the DVI. See Corollary 3.6.5 of [16].

Lemma 2 ([16]) Let Ĝ : Rm → Rm be weakly univalent. Suppose Ĝ−1(0) 	= ∅. If
Ĝ−1(0) is compact, then for every ε > 0 there exists δ > 0 such that for every weakly
univalent function G̃ : Rm → Rm satisfying

sup{‖Ĝ(u)− G̃(u)‖ | x ∈ cl(Ĝ−1(0)+ N (0, ε))} ≤ δ,
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where “cl” denotes the closure of a set, we have

G̃−1(0) ⊆ Ĝ−1(0)+ N (0, ε).

Denote

F(t, x) := {F(t, x, u) | u ∈ S(t, x)}

and

Ωε := {u| dist(u,S(0, x̂0)) < ε}, (11)

where dist(u,S(0, x̂0)) = minv∈S(0,x̂0) ‖u − v‖2 is well defined if S(0, x̂0) is non-
empty and bounded, and is closed because of the continuity of G(t, x, ·).

By extending Lemma 2 we give the following properties of the set-valued mappings
S(t, x) and F(t, x), serving as a preliminary of the solvability results for (10) and for
the DVI (1).

Lemma 3 Suppose that Assumption 2 holds, andΨ (·, ·, u) is Lipschitzian near (0, x̂0)

for any u ∈ Ωε with modular LΨ , where Ωε is defined by (11). Then the following
statements hold:

(i) ∃ T̄ , δ̄ > 0 such that S(t, x) and F(t, x) are nonempty and bounded for any
(t, x) ∈ [0, T̄ ] × N (x̂0, δ̄);

(ii) ∃ T̄ , δ̄ > 0 such that S(t, x) and F(t, x) are upper semi-continuous in (0, T̄ )×
N (x̂0; δ̄);

(iii) ∃ T0, δ0, ζ > 0 such that F(·, ·) maps [0, T0] × N (x̂0, δ0 + ζT0) into N (0, ζ ).

Remark 3 The proof for part (i) is similar to that of Theorem 2.4 in [9] for the
P0-function case. Here we give a simple proof for good readability.

Proof (i) From Lemma 2, it follows that there exists δ1 such that

sup
u∈Ωε

‖G(t, x, u)− G(0, x̂0, u)‖2 < δ1

implies

∅ 	= S(t, x) ⊆ Ωε. (12)

Choose δ̄ and T̄ such that LΨ (δ̄ + T̄ ) < δ1. Then for any (t, x) ∈ [0, T̄ ] ×
N (x̂0, δ̄), and any u ∈ S(0, x̂0)+ N (0, ε), we have

‖G(t, x, u)− G(0, x̂0, u)‖2

≤ ‖ΠU (u − Ψ (t, x, u))−ΠU (u − Ψ (0, x̂0, u))‖2

≤ ‖Ψ (t, x, u)− Ψ (0, x̂0, u)‖2

≤ LΨ (t + ‖x − x̂0‖2) < δ1. (13)
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Therefore, S(t, x) is nonempty and bounded, and so is F(t, x), which is due to
the continuity of F .

(ii) Let (t, x) ∈ (0, T̄ )×N (x̂0, δ̄)be given, letΔt andΔx such that (t+Δt, x+Δx) ∈
(0, T̄ )× N (x̂0, δ̄), and let ε′ > 0 be small enough. Denote

Ωε′ := {u| dist(u,S(t, x)) < ε′}.

Again from Lemma 2, it follows that there is δ2 such that ∅ 	= S(t, x) ⊆ Ωε′ if

sup
u∈Ωε′

‖G(t +Δt, x +Δx, u)− G(t, x, u)‖2 < δ2.

Choose δ̃ and T̃ such that LΨ (δ̃ + T̃ ) < δ2. Then if |Δt | ≤ T̃ and ‖Δx‖2 ≤ δ̃

we have for any u ∈ Ωε′

‖G(t +Δt, x +Δx, u)− G(t, x, u)‖2

≤ ‖ΠU (u − Ψ (t +Δt, x +Δx, u))−ΠU (u − Ψ (t, x, u))‖2

≤ ‖Ψ (t +Δt, x +Δx, u)− Ψ (t, x, u)‖2

≤ LΨ (Δt + ‖Δx‖2) < δ2.

Therefore, S(t +Δt, x +Δx) ⊆ Ωε′ , which gives the upper semi-continuity of
S at (t, x). The upper semi-continuity of F is a direct consequence from that of
S.

(iii) Denote

ζ0 = sup {‖u‖2 | u ∈ S(0, x̂0)+ N (0, ε)}. (14)

From (12), it follows S(t, x) ⊆ N (0, ζ0) for any (t, x) ∈ [0, T̄ ]×N (x̂0, δ̄), and
so F(t, x) ⊆ N (0, ζ ), where

ζ : = sup {‖F(t, x, u)‖2 | (t, x, u) ∈ [0, T̄ ] × N (x̂0, δ̄)× N (0, ζ0)}
≥ sup {‖z‖2 | z ∈ F(t, x)}. (15)

Taking δ0, T0 > 0 such that δ0 + ζT0 < δ̄, we draw the conclusion.
��

If Ψ (t, x, ·) is monotone and continuous, S(t, x) 	= ∅ implies it is convex and
closed. Therefore we can define the single-valued mapping

P(t, x) = ΠS(t,x)(0). (16)

Clearly, P(t, x) is the least norm element of S(t, x). Below we give a solvability result
of (1) by using the least norm solution.
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Theorem 2 Suppose that Assumption 2 holds, Ψ (·, ·, u) is Lipschitzian near (0, x̂0)

for any u ∈ Ωε with modular LΨ , and Γ (·, ·) is Lipschitzian near (x̂0, x̂0) with the
modular LΓ , where Ωε is defined by (11) with a fixed ε > 0. If S(t, x) is lower
semi-continuous near (0, x̂0) or F(t, x) is singleton, then there exist T, δ0, ζ > 0
such that the boundary value problem (1) has a solution (x, u) over [0, T ], where
x(t) is continuously differentiable, x(0) ∈ N (x̂0, δ0), x(t) ∈ N (x̂0, δ0 + ζT ) for any
t ∈ [0, T ], and u(t) is continuous and is the least norm element of S(t, x(t)).

Remark 4 The singleton assumption was imposed in [6].

Proof From Lemma 3 it follows that S(t, x) is upper semi-continuous in (0, T̄ ) ×
N (ξ, δ̄). If it is moreover lower semi-continuous, then S(t, x) is continuous in (0, T̄ )×
N (x̂0, δ̄). Assumption 2 (A2) implies S(t, x) is convex and P(t, x) is continuous.
Hence FP (t, x) := F(t, x,P(t, x)) is continuous, by the continuity of F(·, ·, ·).
Alternatively, if F(t, x) is singleton, then it is continuous because it is upper semi-
continuous in (0, T̄ )× N (x̂0, δ̄). Moreover, FP (t, x) = F(t, x) is continuous.

From (iii) of Lemma 3, and by noting FP (t, x) ∈ F(t, x), we conclude that there
exist T0, δ0 > 0 such that FP (·, ·) maps [0, T0] × N (x̂0, δ0 + ζT0) into N (0, ζ ).
Applying the Peano existence theorem to

{
ẋ(t) = FP (t, x)
x(0) = η,

we know that for any η ∈ N (x̂0, δ0),

⎧⎨
⎩

ẋ(t) = F(t, x(t), u(t))
u(t) ∈ SOL(U, Ψ (t, x(t), ·))
x(0) = η

(17)

has a solution (x, u) over [0, T0], where x(t) is continuously differentiable, and u(t)
is the least norm element of SOL(U, Ψ (t, x(t), ·)). Noting

x(t) = η +
t∫

0

F(s, x(s), u(s))ds,

clearly, we have x(t) ∈ N (x̂0, δ0 + ζT0) for any t ∈ [0, T0]. Therefore, for (t, η) ∈
[0, T0] × N (x̂0, δ0), we can define the operator

A(t, η) = {x(t)|ẋ(t) = FP (t, x) with x(0) = η}. (18)

From Theorem 2.2.1 [1, p. 104], it follows that A(t, ·) is continuous with A(0, ·) being
identity. And for any 0 ≤ t < T0 and η ∈ N (ξ, δ0) we have

‖A(t, η)− η‖2 = ‖x(t)− η‖2 ≤
t∫

0

‖F(s, x(s), u(s))‖2ds ≤ tζ,
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and so

‖Γ (η,A(t, η))− Γ (η, η)‖2 ≤ LΓ ‖A(t, η)− η‖2 ≤ LΓ ζ t.

We remind us that Γ (x, x) has a unique solution x̂0 with a nonsingular Jacobian,
so Γ (x̂0, x̂0) + ε∇xΓ (x̂0, x̂0)e j , j = 1, . . . , 2n will span a neighborhood NΓ of
Γ (x̂0, x̂0), where ε is a small positive number and e j is the j th column of the identity
matrix [27, p. 148]. Hence, there must be a sufficiently small 0 < T < T0 such that
Γ (η,A(η)) ∈ NΓ and Γ (η, η) ∈ NΓ share the same degree near x̂0 [27, Theorem
6.2.1], which implies that the boundary value condition in (1) is fulfilled in N (x̂0, δ0).
Obviously, we have x(t) ∈ N (x̂0, δ0 + ζT ) for any t ∈ [0, T ]. This completes the
proof. ��
Remark 5 In Theorem 2, the time span [0, T ] is required small enough. The locality
of the existence of the DVI is typical in the existing work, see [19,29]. For the dynamic
NEPSC with linear dynamics and quadratic cost functionals which are strictly convex,
we can show that the initial value problem (17) has a unique solution over any time
span [8]. However, for fulfilling the boundary value condition, additional assumptions
are needed. For example, assuming that F(t, x) is a singleton for a general DVI with
boundary value conditions in [30] and adding conditions on matrices involved in an
affine DVI coming from the optimal control problems in [18].

4 Regularization and smoothing approximation

The formulated DVI (10) is a dynamical system over the non-smooth manifold defined
by the system G(t, x, u) = 0, which may have no solution, or have multiple (possibly
infinitely many) solutions, where G(t, x, u) is defined in (9). Finding a solution of the
system involves solving optimization problems without standard constraint qualifica-
tions at each grid.

In this section, we propose a regularized smoothing method to find a solution of
(10). Our main idea is to replace G(t, x, u) in (10) by the following regularized and
smoothing function

Gλ,μ(t, x, u) =
∫

R

[u −ΠU (u − Ψ (t, x, u)− λu − μse)] ρ(s)ds, (19)

where λ > 0 and μ > 0 are the regularization and smoothing parameters. The
integration is performed componentwise with e = (1, 1, . . . , 1)T and ρ(·) is a density
function with

κ =
∫

R

|s|ρ(s)ds < ∞.

For any fixed (t, x), the system

Gλ,μ(t, x, u) = 0 (20)
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has a unique solution u, which is continuously dependent on (t, x). Namely, we approx-
imate (10) by the following differential algebraic system

ẋ(t) = F(t, x(t), u(t))

0 = Gλ,μ(t, x, u) (21)

0 = Γ (x(0), x(T )).

In the following we will show that the system (21) has a classic solution (xλ,μ(t),
uλ,μ(t)) and prove the convergence of the family of the classic solutions as λ,μ ↓ 0.

4.1 Regularization and smoothing for the static VI

When μ = 0, the regularized system

Gλ,0(t, x, u) := u −ΠU (u − Ψ (t, x, u)− λu) = 0

has a unique solution u for any fixed (t, x), but Gλ,0 and u may not be differentiable
with respect to (t, x). To overcome the non-smoothness of the projection operator, we
adopt the smoothing approximation. The regularized smoothing function Gλ,μ(t, x, u)
has the following properties

‖Gλ,0(t, x, u)− G(t, x, u)‖2 ≤ λ‖u‖2

and

‖Gλ,μ(t, x, u)− Gλ,0(t, x, u)‖2 ≤ κ
√

mμ. (22)

For fixed t ∈ R, x ∈ R2n, λ > 0 and μ > 0 the mapping Gλ,μ(t, x, ·) is continuously
differentiable and the system (20) has a unique solution uλ,μ(t, x). For the properties
of smoothing approximations, we refer to [7,16,17].

Smoothing approximation and regularization have been studied extensively in solv-
ing the static VI [16]. However, to the best of our knowledge, using both smoothing
approximation and regularization to find the least norm solution of the monotone VI
has not been studied. We derive sufficient conditions for the existence of the limit

S0(t, x) :=
{

lim
λ,μ↓0

uλ,μ(t, x)

}
. (23)

Moreover, we show that ifμ = o(λ), then the limit of (23) is the least norm element of
the solution set S(t, x) = SOL(U, Ψ (t, x, ·)). Note that finding the least norm solution
is significant since it can provide a stable solution path of the DVI [10,11,19].

First of all, we use the following example to show that the relation of the two
parameters λ,μ has a considerable impact on the behavior of the limit (23).
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Example 4 Let U = R2+, and for a fixed (t, x) let

Ψ (t, x, u) =
(

0 −1
1 0

)
u +

(
1
0

)
.

Obviously, we have S(t, x) = {0}×[0, 1]. Let us choose the following density function

ρ(s) = 2

(s2 + 4)
3
2

,

which has been used to define the so-called Chen-Harker-Kanzow-Smale smoothing
function of max(0, u). The regularized smoothing function can be given by

Gλ,μ(t, x, u) =
(
(1 + λ)u1 − u2 + 1 − √

((1 − λ)u1 + u2 − 1)2 + 4μ2

(1 + λ)u2 + u1 − √
((1 − λ)u2 − u1)2 + 4μ2

)
.

For any fixed λ > 0 and μ > 0, the solution of Gλ,μ(t, x, u) = 0 satisfies (λu1 −
u2 +1)u1 = μ2 and (u1 +λu2)u2 = μ2. Since the solution set S(t, x) is bounded, the
solution of Gλ,μ(t, x, u) = 0 is bounded when λ → 0 and μ → 0 [16]. Adding these
two equations gives λ(u2

2 +u2
1)+u1 = 2μ2,which, together with the boundedness of

the solution, implies (uλ,μ)1 → 0 as λ,μ ↓ 0. Moreover, from (u1 + λu2)u2 = μ2,

we have u2 = (−u1 +
√

u2
1 + 4λμ2)/(2λ) ≤ μ/

√
λ. Figure 1 shows the trajectories

of uλ,μ(t, x) when λ,μ → 0 from 1 with different order, where the limit points are
marked by “×”. We see that uλ,μ(t, x) converges to the least norm solution (0, 0)
as μ = λ2 → 0, and converges to (0, 0.1413), (0, 0.3445) and (0, 0.4534) as μ =
λ0.8 → 0, μ = λ0.5 → 0 and μ = λ0.01 → 0, respectively.

Now we study the system (20) where we take μ = o(λ). It is obvious that
Gλ,μ(t, x, ·) is continuously differentiable, univalent for any (t, x) and λ ∈ [0, λ̄),
and it holds

‖Gλ,μ(t, x, u)− G(t, x, u)‖2 ≤ λ‖u‖2 + κ
√

mμ ≤ (‖u‖2 + α)λ, (24)

where α > 0 is a constant independent of t, x, u and λ. We remind us that the system
Gλ,μ(t, x, u) = 0 has a unique solution uλ,μ(t, x) for fixed (t, x) and λ > 0 and
μ > 0. We will study the convergence of uλ,μ(t, x) to a certain element of the solution
set S(t, x). The solution uλ,μ(t, x) has the following properties.

Theorem 3 Suppose that (A2) of Assumption 2 holds. If S(t, x) is nonempty and
bounded and uλ,μ(t, x) ∈ U for λ small enough withμ = o(λ), then limλ↓0 uλ,μ(t, x)
exists and is the least norm element of S(t, x).

Proof Denote by uλ,μ the unique solution of (20) and let ũ be the least norm element
of S(t, x). Denoting u∗ = uλ,μ − Ψ (t, x, uλ,μ)− λuλ,μ, we have

‖uλ,μ −ΠU (u
∗)‖2 = ‖uλ,μ −ΠU (uλ,μ − Ψ (t, x, uλ,μ)− λuλ,μ)‖2

= ‖Gλ,μ(t, x, uλ,μ)− Gλ,0(t, x, uλ,μ)‖2 ≤ μ
√

mκ.
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Fig. 1 Example 1, convergence of uλ,μ(t, x) as λ,μ ↓ 0

Considering ũ ∈ U and the well-known property of the projection

(ΠU (u
∗)− ũ)T (u∗ −ΠU (u

∗)) ≥ 0,

and noting u∗ −ΠU (u∗) = Gλ,0(t, x, uλ,μ)− Ψ (t, x, uλ,μ)− λuλ,μ, we have

(uλ,μ − ũ)T (Gλ,0(t, x, uλ,μ)− Ψ (t, x, uλ,μ)− λuλ,μ)

≥ (uλ,μ −ΠU (u
∗))T (u∗ −ΠU (u

∗)) ≥ −μ√
mκ‖u∗ −ΠU (u

∗)‖2.

Moreover noting

(uλ,μ − ũ)T (Gλ,μ(t, x, uλ,μ)− Gλ,0(t, x, uλ,μ))

≥ −‖uλ,μ − ũ‖2‖Gλ,μ(t, x, uλ,μ)− Gλ,0(t, x, uλ,μ)‖2

≥ −‖uλ,μ − ũ‖2μ
√

mκ,

and from the monotonicity of Ψ (t, x, ·), we have

0 ≥ (uλ,μ − ũ)T (Gλ,μ(t, x, uλ,μ)− Ψ (t, x, ũ))

= (uλ,μ − ũ)T (Ψ (t, x, uλ,μ)− Ψ (t, x, ũ)+ Gλ,μ(t, x, uλ,μ)− Ψ (t, x, uλ,μ))

≥ (uλ,μ − ũ)T (Gλ,μ(t, x, uλ,μ)− Ψ (t, x, uλ,μ))

= (uλ,μ − ũ)T (λuλ,μ)+ (uλ,μ − ũ)T (Gλ,0(t, x, uλ,μ)− Ψ (t, x, uλ,μ)− λuλ,μ)

+ (uλ,μ − ũ)T (Gλ,μ(t, x, uλ,μ)− Gλ,0(t, x, uλ,μ))

≥ (uλ,μ − ũ)T (λuλ,μ)− μ
√

mκ‖u∗ −ΠU (u
∗)‖2 − ‖uλ,μ − ũ‖2μ

√
mκ,
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therefore,

(uλ,μ − ũ)T (λuλ,μ) ≤ μ
√

mκ
(‖u∗ −ΠU (u

∗)‖2 + ‖uλ,μ − ũ‖2
)
,

and

(uλ,μ, uλ,μ) ≤ (ũ, uλ,μ)+ μ

λ

√
mκ

(‖u∗ −ΠU (u
∗)‖2 + ‖uλ,μ − ũ‖2

)

≤ ‖ũ‖2‖uλ,μ‖2 + μ

λ

√
mκ

(‖u∗ −ΠU (u
∗)‖2 + ‖uλ,μ − ũ‖2

)
.

Let λk ↓ 0 and μk ↓ 0 when k → ∞. It can be readily shown that {uλk ,μk } is bounded
[16] as S(t, x) is nonempty and bounded. Let u be an accumulation point of {uλk ,μk }.
Considering that μ = o(λ), we know u = ũ is the least norm element of S(t, x). This
completes the proof. ��
Remark 6 For μ = 0, we have uλ,0(t, x) ∈ U . For μ 	= 0, we can choose a suit-
able smoothing approximation to ensure uλ,μ(t, x) ∈ U . For example, for U = Rm+
(the complementarity problem), if we use the Chen-Harker-Kanzow-Smale smooth-
ing function (See Example 4) to define the smoothing approximation, then we have
uλ,μ(t, x) ∈ Rm+ for any λ,μ ≥ 0.

As shown in Example 4, the condition μ = o(λ)may be loosened for guaranteeing
the convergence of uλ,μ(t, x) to a solution, which, however, may not be the least norm
solution.

4.2 Regularized smoothing DVI

Approximating G(t, x, u) by Gλ,μ(t, x, u) defined by (19), we get the regularized
smoothing system (21) of the DVI (1). In this section, we show that the system
(21) has a unique classic solution (xλ,μ(t), uλ,μ(t)) for any λ > 0, μ > 0 under
certain conditions. Moreover, we derive the convergence analysis of the family
{(xλ,μ(t), uλ,μ(t))}λ>0 when λ ↓ 0 and μ = o(λ).

Lemma 4 Suppose that Assumption 2 holds, andΨ (·, ·, u) is Lipschitzian near (0, x̂0)

for any u ∈ Ωε with modular LΨ , where Ωε is defined by (11). Let

Fλ,μ(t, x) = F(t, x, uλ,μ(t, x)).

Then there exist λ0, μ0, T0, δ0, ζ > 0 such that ∀λ ∈ [0, λ0] and ∀μ ∈
[0, μ̄],Fλ,μ(·, ·) maps [0, T0] × N (x̂0, δ0 + ζT0) into N (0, ζ ).

Proof From Lemma 2, it follows that there exists δ1 such that

sup
u∈Ωε

‖Gλ,μ(t, x, u)− G(0, x̂0, u)‖2 < δ1

implies that there is uλ,μ(t, x) ∈ Ωε. Let ζ0 be defined by (14). It is clear that
Ωε ⊆ N (0, ζ0). Then by using inequalities (13) and (24), for any (t, x) ∈ [0, T̄ ] ×
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N (x̂0, δ̄), u ∈ S(0, x̂0)+ N (0, ε), λ ∈ [0, λ̄] and μ ∈ [0, μ̄], we have

‖Gλ,μ(t, x, u)− G(0, x̂0, u)‖2

≤ ‖Gλ,μ(t, x, u)− G(t, x, u)‖2 + ‖G(t, x, u)− G(0, x̂0, u)‖2

≤ λ‖u‖2 + κ
√

mμ+ LΨ (t + ‖x − x̂0‖2).

Choosing positive numbers δ̄, T̄ , λ̄ and μ̄ such that

LΨ (δ̄ + T̄ ) <
δ1

3
, λ̄ζ0 <

δ1

3
, κ

√
mμ̄ <

δ1

3
,

we obtain

‖Gλ,μ(t, x, u)− G(0, x̂0, u)‖2 ≤ δ1.

Hence uλ,μ(t, x) ∈ Ωε ⊆ N (0, ζ0) and Fλ,μ(t, x) ∈ N (0, ζ ), where ζ is defined by
(15). Taking λ0, δ0, T0 > 0 such that δ0 + ζT0 < δ̄, we draw the conclusion. ��
Theorem 4 Suppose that Assumption 2 holds, Ψ (·, ·, u) is Lipschitzian near (0, x̂0)

for any u ∈ Ωε with modular LΨ , and Γ (·, ·) is Lipschitzian near (x̂0, x̂0) with
the modular LΓ , where Ωε is defined by (11). If S(t, x) is lower semi-continuous
near (0, x̂0) or F(t, x) is singleton, then there exist λ0, T, δ0, ζ > 0 such that for
any 0 < λ ≤ λ0 the regularized smoothing system (21) has a classical solution
(xλ,μ, uλ,μ) over [0, T ], where xλ,μ(0) ∈ N (x̂0, δ0), and xλ,μ(t) ∈ N (x̂0, δ0 + ζT )
for any t ∈ [0, T ].
Proof From Theorem 3 and Lemma 4, it follows that there exist λ0, T0, δ0, ζ > 0
such that ∀λ ∈ [0, λ0],Fλ,μ(·, ·) is continuous and maps [0, T0] × N (x̂0, δ0 + ζT0)

into N (0, ζ ). Then by Theorem 2.1.3 of [1], we know that

⎧⎨
⎩

ẋ(t) = F(t, x(t), u(t))
0 = Gλ,μ(t, x(t), u(t))
x(0) = η

(25)

has a solution (xλ,μ, uλ,μ) over [0, T0], where xλ,μ(t) is continuously differentiable.
The remaining part can be proved in the same manner as used in the proof for
Theorem 2. ��

Denote by X and U the spaces of the continuous functions and the square integrable
functions over [0, T ], respectively, and denote for x ∈ X

‖x‖C := sup
t∈[0,T ]

‖x(t)‖2 ,

and denote for u ∈ U

‖u‖L2 := 〈u, u〉1/2 , where 〈u, v〉 :=
T∫

0

u(t)T v(t)dt.
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We define the norm for (x, u, η) ∈ W1 = X × U × Rn :

‖(x, u, η)‖W1 = ‖x‖C + ‖u‖L2 + ‖η‖2. (26)

Let Z denote the space of the continuous functions in U . For (x, u, η) ∈ W2 =
X × Z × Rn we denote

‖(x, u, η)‖W2 := ‖x‖C + ‖u‖C + ‖η‖2. (27)

It is clear that W2 ⊂ W1, and both are Banach spaces under the norm (26) and (27),
respectively. Define

Φ(x, u, η)(t) =
⎛
⎝ x(t)− η − ∫ t

0 F(τ, x(τ ), u(τ ))dτ
G(t, x, u)
Γ (η, x(T ))

⎞
⎠ . (28)

Obviously,Φ(x, u, η) ∈ W1 for an (x, u, η) ∈ W1, andΦ(x, u, η) ∈ W2 if moreover
(x, u, η) ∈ W2. Then we can reformulate (1) as a minimization problem over W1:

min
(x,u,η)∈W1

‖Φ(x, u, η)‖W1
.

Obviously, ‖Φ(x, u, η)‖W1 = 0 implies that (x, u) is a weak solution of (1). For a
continuous u, then ‖Φ(x, u, η)‖W2 = 0 implies that (x, u) is a classic solution.

Let

Φλ,μ(x, u, η)(t) =
⎛
⎝ x(t)− η − ∫ t

0 F(τ, x(τ ), u(τ ))dτ
Gλ,μ(t, x, u)
Γ (η, x(T ))

⎞
⎠ , (29)

where Gλ,μ is a smoothing regularization of G satisfying (24).
From Theorem 4 it follows that the regularized smoothing system (21) has a clas-

sic solution (xλ,μ(t), uλ,μ(t)) with xλ,μ(0) = ηλ,μ. Then (xλ,μ, uλ,μ, ηλ,μ) is a
minimizer of the functional ‖Φλ,μ(x, u, η)‖Wi . Here we study the convergence of
{(xλ,μ, uλ,μ, ηλ,μ)}∞k=1 by the so-called epigraphical convergence of the functional
‖Φλ,μ(x, u, η)‖Wi when λ ↓ 0 and μ ↓ 0.

Let {Φk}∞k=1 be a sequence of approximate mappings of Φ. Taking k →
∞, {‖Φk‖Wi }∞k=1 is said to be epigraphically convergent to ‖Φ‖Wi if

(a) for any {(xk, uk, ηk)}∞k=1 with (xk, uk, ηk) → (x, u, η)

lim inf
k→∞ ‖Φk(xk, uk, ηk)‖Wi ≥ ‖Φ(x, u, η)‖Wi ;

(b) there is {(xk, uk, ηk)}∞k=1 with (xk, uk, ηk) → (x, u, η) such that

lim sup
k→∞

‖Φk(xk, uk, ηk)‖Wi ≤ ‖Φ(x, u, η)‖Wi ,
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where the convergence of (xk, uk, ηk) → (x, u, η) is defined by the norm ‖ · ‖Wi , i =
1, 2. See [31], for example.

Taking sequences λk ↓ 0 and μk ↓ 0 when k → ∞, we have the following
epigraphical convergence of the sequence of the functionals {‖Φλk ,μk ‖Wi }∞k=1.

Lemma 5 Let {λk}∞k=1 ↓ 0 be given and μk = o(λk). Then {‖Φλk ,μk ‖Wi }∞k=1 is
epigraphically convergent to ‖Φ‖Wi for i = 1, 2.

Proof Let (xk, uk, ηk) → (x, u, η) in Wi . Noting
√

a + b + c ≤ √
a +√

b +√
c for

any nonnegative numbers a, b and c, we can see

‖Φλk ,μk (x
k, uk, ηk)−Φ(xk, uk, ηk)‖W1

=
⎛
⎝

T∫

0

∥∥∥Gλk ,μk (t, xk(t), uk(t))− G(t, xk(t), uk(t))
∥∥∥2

2
dt

⎞
⎠

1/2

≤
⎛
⎝

T∫

0

(
λk‖uk(t)‖2 + κ

√
mμk

)2
dt

⎞
⎠

1/2

=
⎛
⎝

T∫

0

λ2
k‖uk(t)‖2

2dt +
T∫

0

2κ
√

mμkλk‖uk(t)‖2dt +
T∫

0

κ2mμ2
kdt

⎞
⎠

1/2

≤
⎛
⎝

T∫

0

λ2
k‖uk(t)‖2

2dt

⎞
⎠

1/2

+
(∫ T

0
2κ

√
mμkλk‖uk(t)‖2dt

)1/2

+ κμk
√

mT ,

and

‖Φλk ,μk (x
k, uk, ηk)−Φ(xk, uk, ηk)‖W2

= sup
t∈[0,T ]

∥∥∥Gλk ,μk (t, xk(t), uk(t))− G(t, xk(t), uk(t))
∥∥∥

2

≤ sup
t∈[0,T ]

(λk‖uk(t)‖2 + κ
√

mμk) = λk‖u‖C + κ
√

mμk .

Now we have ‖Φλk ,μk (x
k, uk, ηk)‖Wi − ‖Φ(xk, uk, ηk)‖Wi → 0.

On the other hand we know ‖Φ(xk, uk, ηk)‖Wi − ‖Φ(x, u, η)‖Wi → 0 since
‖Φ‖Wi is continuous. Therefore we can conclude ‖Φλk ,μk (x

k, uk, ηk)‖Wi →
‖Φ(x, u, η)‖Wi , which implies the epigraphical convergence of {‖Φλk ,μk ‖Wi }∞k=1 to
‖Φ‖Wi . This completes the proof. ��

Using Lemma 5 we give the following result on the convergence of the solution
(xλ,μ, uλ,μ, ηλ,μ) of the regularized smoothing system (21).

Theorem 5 Suppose that the conditions of Theorem 4 hold. Take μ = o(λ). There
exist {λk}∞k=1 ↓ 0, x ∈ X and u ∈ U such that xλk ,μk → x uniformly and uλk ,μk → u
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weakly, where (xλk ,μk , uλk ,μk ) is the classic solution of (21) for λ = λk . Moreover, if
uλk ,μk → u with respect to ‖ · ‖L2 , then (x, u) is a weak solution of (1); if uλk ,μk → u
uniformly, then (x, u) is a classic solution of (1).

Proof From Theorem 4, it follows that there exist λ0, δ0, ζ > 0 such that for
any λ ∈ (0, λ0) the regularized smoothing system (21) has a classical solution
(xλ,μ(t), uλ,μ(t)) over [0, T ], where xλ,μ(0) = ηλ,μ ∈ N (x̂0, δ0) and xλ,μ(t) ∈
N (x̂0, δ0 + ζT ) for ant t ∈ [0, T ], where x̂0 is the solution of Γ (x, x) = 0 in
Assumption 2. Hence {xλk ,μk }∞k=1 is uniformly bounded and {uλk ,μk }∞k=1 ⊆ Ωε is also
uniformly bounded. Since

ẋλk ,μk = F(t, xλk ,μk , uλk ,μk )

and F(t, x, u) is continuous, the uniform boundedness of {xλk ,μk }∞k=1 and {uλk ,μk }∞k=1
follows that {ẋλk ,μk }∞k=1 is also uniformly bounded. Then by the Arzelá-Ascoli
theorem [24], we know that {xλk ,μk } is uniformly convergent to a continuous x . Since
{uλk ,μk }∞k=1 is uniformly bounded and U is reflexive, by Alaoglu’s theorem [24], there
is a subsequence of {uλk ,μk }∞k=1 that is weakly convergent to u ∈ U .

Because (xλ,μ(t), uλ,μ(t)) is a solution of the regularized smoothing system (21)
and xλ,μ(t) and uλ,μ(t) are continuous with ηλ,μ = xλ,μ(0) ∈ N (x̂0, δ0), we can see
that it is a minimizer of ‖Φλ,μ‖Wi with

‖Φλ,μ(xλ,μ, yλ,μ, ηλ,μ)‖W1 = ‖Φλ,μ(xλ,μ, yλ,μ, ηλ,μ)‖W2 = 0,

and {ηλ,μ}∞k=1 is bounded. Therefore there is a sequence {uλk ,μk }∞k=1 that is conver-
gent to an η. If moreover uλk ,μk → u with respect to ‖ · ‖L2 , then the sequence
(xλk ,μk , uλk ,μk , ηλk ,μk ) is convergent to (x, u, η) with respect to ‖ · ‖W1 . Because
{‖Φλk ,μk ‖W1}∞k=1 is epigraphically convergent to ‖Φ‖W1 , from the well known min-
ima property of the epigraphically convergent functional sequence (see Proposition
7.18 of [12], for example), we conclude that (x, u, η) is a minimizer of Φ(x, u, η) in
W1 with

‖Φ(x, u, η)‖W1 = lim sup
k→∞

‖Φλk ,μk (x
k, uk, ηk)‖W1 = 0.

Then (x, u) is a weak solution of (1).
If uλk ,μk → u uniformly, then u ∈ Z is continuous, therefore the sequence (xλk ,μk ,

uλk ,μk , ηλk ,μk ) is convergent to (x, u, η) with respect to ‖ · ‖W2 , and (x, u, η) is a
minimizer of Φ(x, u, η) in W2 with

‖Φ(x, u, η)‖W2 = lim sup
k→∞

‖Φλk ,μk (x
k, uk, ηk)‖W1 = 0.

Then (x, u) is a classic solution of (1). ��
We know that using regularization approximation for the static monotone VI can

find the least norm solution [11,16]. The following theorem shows that this property
can be extended to their dynamic cases.
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Theorem 6 Let Ψ (t, x, u) be Lipschitzian in (t, x) for any u with modular LΨ , and
let xλk ,μk → x uniformly with

lim
k→∞

‖xλk ,μk − x‖C

λk
≤ ς, (30)

and let uλk ,μk → u with respect to ‖ · ‖L2 . Then for any weak solution (x, ũ) of (1),
we have

〈u, u〉 ≤ 〈ũ, u〉 + LΨ Tς‖u − ũ‖L2 . (31)

Proof Denoting u∗ = uλ,μ − Ψ (t, xλ,μ, uλ,μ) − λuλ,μ, in a similar manner as used
in the proof for Theorem 3, we can show

〈
uλ,μ − ũ,Gλ,μ(t, xλ,μ, uλ,μ)− Ψ (t, xλ,μ, ũ)

〉
≥ 〈

uλ,μ − ũ, λuλ,μ
〉 − μ

√
mκ‖u∗ −ΠU (u

∗)‖L2 − ‖uλ,μ − ũ‖L2μ
√

mκ.

As uλ,μ(t) is continuous and ũ(t) ∈ SOL(U, Ψ (t, x(t), ·)) for almost every t ∈ [0, T ],
we have

(uλ,μ − ũ)TΨ (t, x, ũ) ≥ 0 and Gλ,μ(t, xλ,μ, uλ,μ) = 0.

Adding the above two inequalities and taking the integral over [0, T ], we can show

0 ≥ 〈
uλ,μ − ũ,Gλ,μ(t, xλ,μ, uλ,μ)− Ψ (t, x, ũ)

〉
≥ 〈

uλ,μ − ũ,Gλ,μ(t, xλ,μ, uλ,μ)− Ψ (t, xλ,μ, ũ)+ Ψ (t, xλ,μ, ũ)− Ψ (t, x, ũ)
〉

≥ 〈
uλ,μ − ũ, λuλ,μ

〉 − μ
√

mκ(‖u∗ −ΠU (u
∗)‖L2 + ‖uλ,μ − ũ‖L2)

− LΨ ‖xλ,μ − x‖C‖uλ,μ − ũ‖L2 .

Now we have

〈
uλ,μ − ũ, λuλ,μ

〉 ≤ μ
√

mκ(‖u∗ −ΠU (u
∗)‖L2 + ‖uλ,μ − ũ‖L2)

+ LΨ ‖xλ,μ − x‖C‖uλ,μ − ũ‖L2 ,

and therefore

〈
uλ,μ, uλ,μ

〉 − 〈
ũ, uλ,μ

〉 ≤ μ

λ

√
mT κ(‖u∗ −ΠU (u

∗)‖L2 + ‖uλ,μ − ũ‖L2)

+ LΨ T
‖xλ,μ − x‖C

λ
‖uλ,μ − ũ‖L2 .

Taking (xλk ,μk , uλk ,μk ) converging to (x, u) with μk = o(λk) and (30), we draw the
conclusion (31). ��
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We end this section by summarizing the results achieved in this section. Here the
DVI is treated as a DAE (10), in which the function G(t, x, u) defining the algebraic
constraint is normally nonsmooth and weak univalent, the univalent property is given
by Assumption (A2). By the regularization and smoothing techniques, we propose a
regularized smoothing function Gλ,μ(t, x, u) to approximate G(t, x, u) in the DAE
(10), which yields the regularized smoothing system (21). In Theorem 4 we show that
the system (21) has a classic solution (xλ,μ, uλ,μ), which can be efficiently solved by
high order ODE-solvers. Then we show in Theorem 5 that (xλ,μ, uλ,μ) is convergent to
a weak solution of the DVI (1), which, together with Theorem 1, gives an equilibrium
point of the dynamic NEPSC.

5 Numerical illustration

We use the two-player zero-sum game with shared constraints to illustrate the dif-
ferential monotone VI approach and the convergence of the regularized smoothing
method. At first we show that if the cost functions of the two players are convex, then
we can find a solution of the game via the differential monotone VI.

For i = 1, 2, we suppose that the i-th player’s state dynamic is semi-linear:

Θi (t, yi , ui ) = fi (t, yi )+ Bi ui ,

where fi : [0, T ] × Rni → Rni and Bi ∈ Rni ×mi are given. Let the cost functional

θ1(y, u) = ψ1(y(T ))+
T∫

0

ϕ1(t, y, u)dt

be given, where T > 0 is fixed, y = (yT
1 , yT

2 )
T ∈ Rn, u = (uT

1 , uT
2 )

T ∈ Rm, n =
n1 +n2,m = m1 +m2, ϕ1(t, y, u) is convex in the control u1 of Player 1, and concave
in the control u2 of Player 2. In the two-player zero-sum game, Player 1 minimizes
the cost functional θ1(y, u), while the other maximizes it. Then by the same manner
as presented in Section 2, the dynamic NEPSC yields the DVI (1), where x = (v, y)
and Ψ (t, x, u) has the following form

Ψ (t, x, u) =
( ∇u1ϕ1(t, y, u)+ BT

1 v1

−∇u2ϕ1(t, y, u)+ BT
2 v2

)
.

Note that ϕ1(y, u) is convex in u1 and concave in u2. Hence the function Ψ (t, v, y, ·)
is monotone, and the dynamic NEPSC yields a monotone DVI when U is convex.
Moreover, by Lemma 1, if (x∗, u∗) = (v∗, y∗, u∗) is a solution of the monotone DVI,
then (y∗, u∗) is a solution of two-player dynamic NEPSC.

We use a numerical example of the two-player zero-sum game with shared con-
straints to show the convergence of the regularized smoothing method. Let n1 = n2 =
1,m1 = m2 = 2. The players’s state dynamics are
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Θ1(t, y1, u1) = f1(t, y1)+ B1u1 with f1(t, y1) = −2 + 2y1, B1 = (1,−2),

Θ2(t, y2, u2) = f2(t, y2)+ B2u2 with f2(t, y2) = −2t − y2, B2 = (−6, 3).

The admissible control sets are

U1(u2) = {u1 | h1(u1) = −u1 ≤ 0, g(u1, u2) = eT (u1 + u2)− 1 ≤ 0},
U2(u1) = {u2 | h2(u2) = −u2 ≤ 0, g(u1, u2) = eT (u1 + u2)− 1 ≤ 0},

where e = (1, 1)T . The initial states are y0
1 = −1, y0

2 = 2. The cost functional of
Player 1 is defined by

θ1(y, u) = ψ1(y(T ))+
T∫

0

ϕ1(t, y, u)dt

where

ψ1(y(T )) = y(T )T [Ly(T )+ c] ,

ϕ1(t, y, u) = yT [Py + Su + h(t)] + uT [Ru + d(t)] ,

L =
(

2 −1
3 0

)
, c =

( −2
3

)
,

P =
(

3 −6
−1 0

)
, S =

( −1 0 2 3
6 −9 0 −2

)
, h(t) =

( − sin(3t)
1

)
,

R =

⎛
⎜⎜⎝

0 −1 −3 2
1 0 5 −1
0 −3 −1 2
2 4 −2 0

⎞
⎟⎟⎠ , d(t) =

⎛
⎜⎜⎝

0
−1

− cos(t − π
12 )

0

⎞
⎟⎟⎠ .

Then the DVI, formulated from this two-player zero-sum game, has the form:

ẋ(t) = q(t)+ Ax(t)+ Bu(t)

u(t) ∈ SOL(U, p(t)+ Qx(t)+ M(·)) (32)

b = Ex(0)+ ET x(T ),

where

A =

⎛
⎜⎜⎝

−2 0 −6 7
0 1 −7 0
0 0 2 0
0 0 0 −1

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝

1 0 −2 −3
6 −9 0 −2
1 −2 0 0
0 0 −6 3

⎞
⎟⎟⎠ , q(t) =

⎛
⎜⎜⎝

sin(3t)
1

−2
−2t

⎞
⎟⎟⎠ ,

123



DVI approach to dynamic games 405

and

Q =

⎛
⎜⎜⎝

1 0 −1 6
−2 0 0 −9

0 −6 −2 0
0 3 −3 2

⎞
⎟⎟⎠ , M =

⎛
⎜⎜⎝

0 0 −3 4
0 0 2 3
3 −2 2 0

−4 −3 0 0

⎞
⎟⎟⎠ , p(t) =

⎛
⎜⎜⎝

0
−1

cos
(
t − π

12

)
0

⎞
⎟⎟⎠ ,

and

E =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , ET =

⎛
⎜⎜⎝

1 0 −4 −2
0 1 2 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , b =

⎛
⎜⎜⎝

−2
−3
−1

2

⎞
⎟⎟⎠ ,

and U = {u | u ≥ 0, eT u ≤ 1} = {u|Cu ≥ c}, where

C =

⎛
⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

−1 −1 −1 −1

⎞
⎟⎟⎟⎟⎠ , c =

⎛
⎜⎜⎜⎜⎝

0
0
0
0

−1

⎞
⎟⎟⎟⎟⎠ .

In practice, it is not easy to give the close form of the smoothing function Gλ,μ for a
VI. For this example, we know however, that u(t) ∈ SOL(U, g(t)+ Qx(t)+ M(·)) if
and only if there is a multiplier w such that the Karush-Kuhn-Tucker condition holds

p(t)+ Qx(t)+ Mu(t)− CTw = 0 and 0 ≤ w⊥ Cu − c ≥ 0.

Then the system (32) can be reformulated as the linear complementarity system

ẋ(t) = q(t)+ Ax(t)+ Bu(t)

0 = p(t)+ Qx(t)+ Mu(t)− CTw(t)

0 ≤ w(t)⊥ Cu(t)− c ≥ 0

b = Ex(0)+ ET x(T ). (33)

It is obvious that for this example, the algebraic system Γ (x, x) = Ex + ET x −b = 0
has a unique solution x̂0 = (−2,−1,−1, 2)T = (E + ET )

−1b.
As the matrix M is positive semi-definite and the domain U is convex and compact,

the problem VI(U, p(0)+ Qx̂0 + M(·)) is solvable, and so is the VI problem

0 = p(0)+ Qξ + Mu − CTw

0 ≤ w ⊥ Cu − c ≥ 0. (34)

We show that the solution set of the VI (34) is bounded. Let (34) have the solutions
{(uk, wk)}. Obviously, the boundedness of U yields that {uk} is bounded. From the
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Fig. 2 Numerical results for x(t) with μ = λ2

equality of (34) we have (CTwk)i = (p(0)+ Qξ + Muk)i = wk
i −wk

5, which means
that wk

i − wk
5 is bounded for i = 1, 2, 3, 4. If wk

5 → ∞, then wk
5 > 0 once k is

large enough, then from 0 ≤ w⊥Cu − c ≥ 0, we know uk
1 + uk

2 + uk
3 + uk

4 = 1,
which follows that there must be a component uk

i > 0. Therefore we have wk
i = 0

as 0 ≤ wk
i ⊥uk

i ≥ 0, which yields the unboundedness of {wk
i − wk

5}, this gives a
contradiction. Now we can conclude that {wk} is also bounded, and Assumption (A1)
is fulfilled. Since M is positive semi-definite, it is obvious that Assumption (A2) is
fulfilled.

Now we use the Chen-Harker-Kanzow-Smale smoothing function to give a smooth-
ing regularization approximation of (33)

ẋ(t) = q(t)+ Ax(t)+ Bu(t)

0 = p(t)+ Qx(t)+ (M + λI )u(t)− CTw(t)

μ = 4wi (t) [Cu(t)− c + λw(t)]i (1 ≤ i ≤ 5)

b = Ex(0)+ ET x(T ). (35)

This is a standard ODE. Here, on the platform of Matlab, we use the algebraic equa-
tion solver “fsolve.m” and the least square problem solver “lsqnonlin.m” to solve
Gλ,μ(t, x, u) = 0, for evaluating the right hand side of the ODE. For λ = 1, λ = 0.3
and λ = 0.1 with μ = λ2, by using the boundary value problem solver “bvp5c.m”
to the ODE (35), we get the trajectories of (xλ,μ(t), uλ,μ(t)) of (35). Here we adopt
(E + ET )

−1b to initialize the solver “bvp5c.m”.
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Fig. 3 Numerical results for u(t) with μ = λ2

In Figs. 2, 3 we plot the trajectories of the adjoint variables v1 and v2, the state vari-
ables y1 and y2, the control variables u1 = ((u1)1, (u1)2)

T and u2 = ((u2)1, (u2)2)
T .

The numerical results strongly support the convergence of the regularization and
smoothing approximation. From the figures we can observe that our method approxi-
mates the nonsmooth solution by the smooth one. In our method we use μ = o(λ) to
get the least norm solution u in the solution set S(t, x).
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