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Abstract The �nite di�erence method and smoothing approximation for a

nonsmooth constrained optimal control problem are considered� Convergence of

solutions of discretized smoothing optimal control problems is proved� Error es�

timates of �nite di�erence smoothing solution are given� Numerical examples are

used to test a smoothing SQP method for solving the nonsmooth constrained op�

timal control problem�
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� Introduction

Recently signi�cant progress has been made in studying elliptic optimal control

problem

minimize
�

�

Z
�

�y � zd

�dx �

�

�

Z
�

�u� ud

�dx

subject to ��y � f�x� y� u
 in �� y � � on � ����


u � U

where zd� ud � L���
� f � C��� R�
� � � � is a constant� � is an open� bounded

convex subset of RN � N � 	� with smooth boundary �� and

U � fu � L���
 j u�x
 � q�x
 a�e in�g�

q � L���
�

If f is linear with respect to the second and third variables� ����
 is equivalent to

its �rst order optimality system� Based on the equivalence� the primal�dual active

set strategy ��� can solve problem ����
 e�ciently� Moreover� Hinterm�uller� Ito and
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Kunisch ���� proved that the optimality system is slantly di�erentiable ��� and the

primal�dual active set strategy is a speci�c semismooth Newton method for the

�rst order optimality system� The nondi�erentiable term in the optimality system

arises from the constraint u � U � Without this constraint� the optimality system

is a linear system� For such a case� Borz�i� Kunisch and Kwak �	� gave convergence

properties of the �nite di�erence multigrid solution for the optimality system�

For the case where f is nonlinear with respect to the second and third vari�

ables� the �rst order optimality system and second order optimality system have

been studied in order to obtain error estimates in discretization approximations

and convergence theory in sequential quadratic programming algorithms� See for

instance ��� and the references therein� Most of papers assume that f is of class

C� with respect to the second and third variables� However� this assumption does

not hold for the following optimal control problem

minimize
�

�

Z
�

�y � zd

�d� �

�

�

Z
�

�u� ud

�d�

subject to ��y � �max�y� �
 � u� g in �� y � � on� ����


u � U �

where � � � is a constant and g � C��
� The nonsmooth elliptic equations can be

found in equilibrium analysis of con�ned MHD�magnetohydrodynamics
 plasmas

��� �� ���� thin stretched membranes partially covered with water��
�� or reaction�

di�usion problems ����

The discretized nonsmooth constrained optimal control problems derived from

a �nite di�erence approximation or a �nite element approximation of ����
 with

mass lump has the form�

minimize
�

�
�Y � Zd


TH�Y � Zd
 �
�

�
�U � Ud


TM�U � Ud


subject to AY � �Dmax��� Y 
 � NU � c ���	


U � b�

Here Zd� c � Rn� Ud� b � Rm� H � Rn�n� M � Rm�m� A � Rn�n�D � Rn�n�

N � Rn�m� and max��� �
 is understood componentwise� Moreover H�M�A�D are

symmetric positive de�nite matrices� and D �diag�d�� � � � � dn
 is a diagonal matrix�

It is aware that for the discretized nonsmooth constrained optimal control prob�

lem� a solution of the �rst order optimality system is not necessarily a solution of

the optimal control problem� Also a solution of the optimal control problem is not

necessarily a solution of the �rst order optimality system� see Example ��� in the

�



next section� In �
�� a su�cient condition for the two problems to be equivalent is

given� In this paper� we consider the following smoothing approximation of ���	


minimize
�

�
�Y � Zd


TH�Y � Zd
 �
�

�
�U � Ud


TM�U � Ud


subject to AY � ���Y 
 � NU � c ����


U � b�

where �� � R
n � Rn is de�ned by a smoothing function �� � R� R as

���Y 
 � �D

�
BBBBBB�

���Y�


���Y�

���

���Yn


�
CCCCCCA
�

Here � is called a smoothing parameter� For � � �� �� is continuously di�erentiable

and its derivative satis�es ��� � �� Moreover� it holds

j���t
�max��� t
j � ��

with a constant � � � for all � � �� We can �nd many smoothing functions having

such properties� In this paper� we simply choose ����

���t
 �
�

�
�t�

p
t� � ��
�

It is not di�cult to verify that for a �xed � � �� ��� is continuously di�erentiable

and

����t
 �
�

�
�� �

tp
t� � ��


 � ��

Moreover� for any t and � � ��

j���t
�max��� t
j � �

�
��

and

�o�t
 �� lim
���

����t
 �
�

�

�����
����

� if t � �

� if t � �

� if t 	 ��

It was shown in ��� that �o�t
 is an element of the subgradient ��� of max��� �
�
Following these properities of ��� the smoothing approximation function �� is con�

tinuously di�erentiable for � � � and satis�es

k���Y 
� �Dmax��� Y 
k � �
p
nkDk� ���



	



for � � �� Here k � k denotes the Euclidean norm� In particular� for � � ��

���Y 
 � �Dmax��� Y 
� Moreover� the matrix

�o�Y 
 �� �Ddiag��o�Y�
� �
o�Y�
� � � � � �

o�Yn



is an element of the Clarke generalized Jacobian ��� of �Dmax��� Y 
�

In this paper we investigate the convergence of the discretized smoothing prob�

lem ����
 derived from the �ve�point di�erence method and smoothing approxima�

tion� In section �� we describe the �nite di�erence discretization of the optimal

control problem� We prove that a sequence of optimal solutions of the discretized

smoothing problem ����
 converges to a solution of the discretized nonsmooth opti�

mal control problem ���	
 as �� �� Moreover� under certain conditions� we prove

that the distance between the two solution sets of ���	
 and ����
 is O��
� We show

that the di�erence between the optimal objective value of ���	
 and the optimal

objective value of the continuous problem ����
 is O�h�
� where � 	 
 	 �� In

section 	 we use numerical examples to show that the nonsmooth optimal control

problem can be solved by a �nite di�erence smoothing SQP method e�ciently�

� Convergence of smoothing discretized problem

In this section� we investigate convergence of the smoothing discretized optimal

control problem ����
 derived from the smoothing approximation and the �ve�

point �nite di�erence method with � � ��� �
� ��� �
� To simplify our discussion�

we use the same mesh size for discretization approximation of y and u�

Let � be a positive integer� Set h � ���� � �
� Denote the set of grids by

�h � f�ih� jh
 j i� j � �� � � � � �g�

The Dirichlet problem in the constraints of ����
 is approximated by the �ve�point

�nite di�erence approximation with uniform mesh size h� For grid functions W

and V de�ned on �� we denote the discrete L�h�scalar product

�W�V 
L�

h

� h�
�X

i�j��

W �ih� jh
V �ih� jh
�

Let P be the restriction operator from L���
 to L�h��
� Let Zd � Pzd� Ud � Pud

and b � Pq� Then we obtain the discretized optimal control problem ���	
�

Denote the objective functions of the continuous problem and the discretized

problems

J�y� u
 �
�

�

Z
�

�y � zd

�dx�

�

�

Z
�

�u� ud

�dx

�



and

Jh�Y� U
 �
�

�
�Y � Zd


TH�Y � Zd
 �
�

�
�U � Ud


TM�U � Ud
�

respectively� Let S�Sh� and Sh�� denote the solution sets of ����
� ���	
� and ����
�

respectively�

��� Problems ����� and �����

For a �xed h� we investigate the limiting behaviour of optimal solutions of ����


as the smoothing parameter �� ��

Theorem ��� For any mesh size h and smoothing parameter � � �� the solution

sets Sh and Sh�� are nonempty and bounded� Moreover� there exists a constant


 � � such that

Sh�� � f�Y� U
 j Jh�Y� U
 � 
g ����


for all � � ��� ���

Proof� First we observe that for �xed U � b and � � �� the system of equations

AY � ���Y 
 � NU � c

is equivalent to the strongly convex unconstrained minimization problem

min
Y

�

�
Y TAY �

nX
i��

Z Yi

�

���t
dt� Y T �NU � c
�

By the strong convexity� the problem has a unique solution Y�� Hence the feasible

sets of ���	
 and ����
 are nonempty� Moreover� we notice that the objective func�

tion Jh of ���	
 and ����
 is strongly convex� which implies that the solution sets

of ���	
 and ����
 are nonempty and bounded�

Now we prove ����
�

In ���	
� the constraint

AY � �Dmax��� Y 
 � NU � c

can be written as

�A� �DE�Y 

Y � NU � c�

where E�Y 
 is a diagonal matrix whose diagonal elements are

Eii�Y 
 �

��
�

� if Yi � �

� if Yi � ��






Since A is an M�matrix� from the structure of �DE�Y 
� we have that A��DE�Y 


is also an M�matrix and

kY k � k�A� �DE�Y 

���NU � c
k � kA��k�kNkkUk � kck
� ����


See Theorem ������ in �����

Moreover� for � � �� let Y� satisfy

AY� � ���Y�
 � NU � c�

By the mean value theorem� we �nd

� � A�Y� � Y 
 � ���Y�
� �Dmax��� Y 


� A�Y� � Y 
 � ���Y�
� ���Y 
 � ���Y 
� �Dmax��� Y 


� �A�
�

�
�D
�Y� � Y 
 �

�

�
�D��

where

�D � Ddiag�� �
�Y�q

�Y �
� � ��

� � � � � � �
�Ynq

�Y �
n � ��




and
�D � Ddiag�

��q
Y �
� � ���

� � � � �
��q

Y �
n � ���


�

Here �� � ��� �� and �Yi lies between �Y�
i and Yi�

Using that all diagonal elements of �D are positive and

� 	
��q

Y �
i � ���

� �� i � �� � � � � n

we obtain

kY� � Y k � �

�
k�A�

�

�
�D
�� �Dk� � �

�
kA��kkDk�� ���	


Therefore� using ����
� we �nd that for � � ��� ���

kY�k � �

�
kA��kkDk�� kY k � kA��k��

�
kDk� kNkkUk� kck
�

Let �Y �
� � U

�
� 
 � Sh�� and �Y �� U�
 � Sh� Let Y� be the solution of

AY � ���Y 
 � NU� � c�

�



that is� �Y�� U
�� is a feasible point of ������ By the argument above� we have

Jh�Y
�
� � U

�
� �

� Jh�Y�� U
��

� �

�
kHkkY� � Zdk� � �

�
kMkkU� � Udk�

� �

�
kHk�kY�k� kZdk�� � �

�
kMk�kU�k� kUdk��

� �

�
kHk�kA��k��

�
kDk� kNkkU�k� kck� � kZdk�� � �

�
kMk�kU�k� kUdk���

In the �rst part of the proof� we have shown that the solution set Sh is bounded�

that is� kU�k is smaller than a positive constant� Hence there exists a constant

� � 	 such that

�

�
kHk�kA��k��

�
kDk� kNkkU�k� kck� � kZdk�� � �

�
kMk�kU�k� kUdk�� � ��

This completes the proof�

Theorem ��� Letting � � 	� any accumulation point of a sequence of optimal

solutions of ����� is an optimal solution of ������ that is�

f lim
�Y�U��Sh��

���

�Y� U�g � Sh�

Proof� Let �Y �
� � U

�
� � � Sh��� �Y �� U�� � Sh and �Y�� U

�� satisfy

AY� � 
��Y�� � NU� � c�

Then the following inequality holds

Jh�Y
�
� � U

�
� � � Jh�Y�� U

��� �����

Using the Talyor expansion� we �nd

Jh�Y�� U
�� � Jh�Y

�� U�� � �Y� � Y ��TH�Y � � Zd� �
�

�
�Y� � Y ��TH�Y� � Y ���

Following the argument on ������ we have

kY� � Y �k � �

�
kA��kkDk��

Since the solution set of ����� is bounded� there is a constant � � 	 such that for

� � ����kA��kkDk��

�Y� � Y ��TH�Y � � Zd� �
�

�
�Y� � Y ��TH�Y� � Y ��

� ��kY� � Y �k� kY� � Y �k��
� ��kA��kkDk��






Combining this with ������ the Talyor expansion gives

Jh�Y
�
� � U

�
� � � Jh�Y

�� U�� � ��kA��kkDk�� �����

Moreover� from Theorem ���� there is a bounded closed set L such that

Sh�� � L� for all � � �	� ���

Hence� without loss of generality� we may assume that

�Y �
� � U

�
� �� � �Y � �U� � L as �� 	�

Now� we show that � �Y � �U� is a feasible point of ������ Obviously �U � b as U�
� � b

for all � � 	� The other constraint also holds� since

kA �Y � �Dmax�	� �Y ��N �U � ck
� lim

���
kAY �

� � �Dmax�	� �Y ��N �U � ck
� lim

���
kNU�

� � 
��Y
�
� � � �Dmax�	� �Y ��N �Uk

� lim
���
k�Dmax�	� �Y �� 
��Y

�
� �k

� lim
���

��kDkkmax�	� �Y ��max�	� Y �
� �k� k�Dmax�	� Y �

� �� 
��Y
�
� �k�

� �kDk�lim
���
kV kk �Y � Y �

� k�
p
n��

� 	�

Here V is a diagonal matrix whose diagonal elements are

Vii �

����
���

	 if � �Y � Y �
� �i � 	

max�	� �Y �i �max�	� Y �
� �i

� �Y � Y �
� �i

otherwise

Obviously� we have 	 � Vii � ��

Now let �� 	 in ������ we get

Jh� �Y � �U� � Jh�Y
�� U���

Hence � �Y � �U� is a solution of ������

To estimate the distance between the two solution sets Sh and Sh�� we have to
consider the �rst order optimality system for ������ We say �Y� U� satis�es the �rst

order conditions of ������ or �Y� U� is a KKT �Karush�Kuhn�Tucker� point of ������

if it together with some �s� t� � Rn � Rm satis�es
�
BBBBB�

H�Y � Zd� � As � �DE�Y �s

�M�U � Ud��NT s� t

AY � �Dmax�	� Y ��NU � c

min�t� b� U�

�
CCCCCA
� 	� �����

�



The vectors s � Rn and t � Rm are referred to as Lagrange multipliers� It was

shown in ��� that for any U � the system of nonsmooth equations

AY � �Dmax�	� Y ��NU � c � 	

has a unique solution� and it de�nes a solution function Y �U�� Moreover� ����� is

equivalent to the following system

�
� ��A� �DE�Y �U�����N�TH�Y �U�� Zd� � �M�U � Ud� � t

min�t� b� U�

�
A � 	� ���
�

However� for the discretized nonsmooth constrained optimal control problem ������

a KKT point of ����� is not necessarily a solution of the optimal control problem

������ Also a solution of the optimal control problem ����� is not necessarily a KKT

point of ������

Example ��� Let n � �� m � ��M � � � � � b � �� H � D � I� c � 	�

A �

�
� � ��
�� �

�
A and N �

�
� �

��

�
A �

�� For Ud � � and Zd � �	����T � � �Y � �U� � �	� 	� 	�T is a KKT point of ������ but

� �Y � �U� is not a solution of ������

�� For Ud � 	 and Zd � �	� ��� �Y �� U�� � �	� 	� 	�T is a solution of ������ but

�Y �� U�� is not a KKT point of ������

Let AK�Y � be the submatrix of A whose entries lie in the rows of A indexed by

the set

K�Y � � fi j Yi � 	� i � �� �� � � � � ng�

Lemma ��� ��	 Suppose that �Y �� U�� is a local optimal solution of ������ and

either K�Y �� � � or ��A��DE�Y �����N�K�Y �� � 	� then �Y �� U�� is a KKT point

of ������

Theorem ��� Let �Y �
� � U

�
� � � Sh�� and �Y �� U�� � Sh� Under assumptions of

Lemma 
��� we have

kY �
� � Y �k� kU�

� � U�k � O����

Proof� Let us set

W � �A � �DE�Y �����N�

�



By Theorem ��� in ���� the assumptions implies that in a neighborhood of U�� the

solution function Y ��� can be expressed by

Y �U� � WU�

Moreover� Y ��� is di�erentiable at U� and Y ��U�� � W� In such a neighborhood�

we de�ne a function

F �U� t� �

�
� W TH�Y �U�� Zd� � �M�U � Ud� � t

min�t� b� U�

�
A �

From Lemma ���� there is t� � Rm such that

F �U�� t�� � 	�

The Clarke generalized Jacobian 	F �U� t� ��� of F at �U�� t�� is the set of matrices

that have the version �
� W THW � �M I

T I � T

�
A

where T is a diagonal matrix whose diagonal elements are

Tii �

�����
����

�� if �b� U��i 
 t�i
	 if �b� U��i � t�i
�i if �b� U��i � t�i � �i � ���� 	��

This is easy to see that all matrices in 	F �U�� t�� are nonsingular� By Propo�

sition ��� in ��
�� there is a neighborhood N of �U�� t�� and a constant � � 	 such

that for any �U� t� � N and any V � 	F �U� t�� V is nonsingular and kV ��k � ��

Now we consider a function of F� de�ned by the �rst order condition of the

smoothing problem ����� as

F��U� t� �

�
� ��A� 
��Y��U���

��N�TH�Y��U�� Zd� � �M�U � Ud� � t

min�t� b� U�

�
A �

Here Y��U� is the unique solution of the system of smoothing equations

AY � 
��Y ��NU � c � 	�

Since ����� is a smoothing problem� �Y �
� � U

�
� � � Sh�� implies that there is t�� � Rm

such that

F��U
�
� � t

�
�� � 	�

�	



Applying the mean value theorem for Lipschitz continuous functions in ���� we

have

F �U�� t��� F �U�
� � t

�
�� � co	F �U�U�

� � t
�t���

�
� U� � U�

�

t� � t��

�
A �

where co	F �U�U�
� � t

�t��� denotes the convex hull of all matrices V � 	F �Z� for Z

in the line segment bewteen �U�� t�� and �U�
� � t

�
���

Therefore� we can claim that
������

�
� U� � U�

�

t� � t��

�
A
������ � ��kF �U�� t��� F �U�

� � t
�
��k� �����

Note that

lim
���


�
��Y

�� � 
o�Y ��

and 
o�Y �� � 	�Dmax�	� Y ��� By Lemma ��� in ���

�A� 
o�Y �����N �W�

From the nonsingularity of 	F �Y �� U��� �Y �� U�� is the unique solution of ������

From Theorem ���� Y �
� � Y � as � � 	� Hence there are constants 
� � 	� 
� � 	

and �� � 	 such that for all � � �	� ����

kH�Y �
� � Zd�k � 
��

and for i �� K�Y ��� i �� K�Y �
� � and

j
o�Y ��� 
�
��Y

�
� �ji �

�

�

q
�Y �

� �
�
i � �� � jY �

� jiq
�Y �

� �
�
i � ��

� 
��� �����

Therefore� from F �U�� t�� � 	 and F��U
�
� � t

�
�� � 	� we �nd

kF �U�� t��� F �U�
� � t

�
��k

� kF��U
�
� � t

�
��� F �U�

� � t
�
��k

� k���A� 
o�Y ����� � �A� 
�
��Y

�
� ��

���N�TH�Y �
� � Zd�k

� 
�k��A� 
o�Y ����� � �A� 
�
��Y

�
� ��

���Nk
� 
�k�A� 
�

��Y
�
� ��

���
�
��Y

�
� �� 
o�Y ����A� 
o�Y �����Nk

� 
�kA��kk�
�
��Y

�
� �� 
o�Y ����A� 
o�Y �����Nk

� 
�
�
p
nkA��k�kNk��

The last inequality uses k�A� 
o�Y �����k � kA��k� ����� and

��A � 
o�Y �����N�K�Y �� � 	�

��



This� together with ������ gives

kU� � U�
� k � O����

Furthermore� from the convergence of Y �
� and the assumptions� we have that for

su�ciently small ��

kY � � Y �
� k � kW �U� � U�

� �k � O����

This completes the proof�

��� Problems ����� and �����

Note that L�
h����scalar product �Y� Y �L�h associated with Y � Py can be con�

sidered as the Riemann sum for the multidimensional integral
Z
�
y�dx� By the error

bound ������� in ��	�� we have

j
Z
�
y�dx� �Y� Y �L�

h
j � �V �y��p

n
�

where

V �y�� � max
x�z��h
x��z

jy��x�� y��z�j
kx� zk �

If y is Lipschitz continuous in � with a Lipschitz constant K� then there is � such

that � 	 maxx�� jy�x�j and

jy��x�� y��z�j � jy�x� � y�z�jjy�x�� y�z�j � ��Kkx� zk�

Hence the Lipschitzan continuity of f yields an error bound for the Riemann sum

j
Z
�
y�dx� �Y� Y �L�

h
j � ��Kp

n
� O�h�� ����	�

For a given function u� error bounds for the �ve�point �nite di�erence method

to solve the nonsmooth Dirichlet problem

�
y � �max�	� y� � u� g in�� y � 	 on�� ������

can be found in ����

Lemma ��� ��	 Let y � C������� be a solution of �
����� and let Y be the �nite

di
erence solution of �
����� Then we have

A�Py� � �Dmax�	� P y� � Nu� c �O�h��

and

kPy � Y k � O�h���

��



Here � stands for the exponent of H�older�continuity� and 	 
 � 
 ��

Theorem ��� Suppose that ���
� has a Lipschitz continuous solution �y�� u�� and

y� � C���� Let �Y �� U�� be a solution of ������ Then we have

Jh�Y
�� U�� � Jh�Py

�� Pu�� �O�h��� ������

Moreover� if there exists �u � C���� together with �y � C���� satis�es the constraints

of ���
� and

kP �u� U�k � O�h���

then we have

Jh�Y
�� U�� 	 Jh�Py

�� Pu���O�h��� ������

Proof� By Lemma ���� the truncation error of the �nite di�erence method yields

A�Py�� � �Dmax�	� P y�� � N�Pu�� � c�O�h��� ������

We enlarge the feasible set of ����� and consider a relaxing problem

minimize
�

�
�Y � Zd�

TH�Y � Zd� �
�

�
�U � Ud�

TM�U � Ud�

subject to AY � �Dmax�	� Y � � NU � c ������

U � b � 
h�e�

where e � ��� �� � � � � ��T � Rn� and 
 is a positive constant such that �Py�� Pu�� is

a feasible point of �������

Let � �Y � �U� be a solution of ������� Then it holds

Jh� �Y � �U� � Jh�Py
�� Pu��� ������

Moreover� since the feasible set of ����� is contained in that of ������� we have

Jh� �Y � �U� � Jh�Y
�� U���

Take a point �U � min�b� �U�� together with �Y satisfying

A �Y � �Dmax�	� �Y � � N �U � c�

Then � �Y � �U� is a feasible point of ������ Moreover� from �U � b � 
h�e� we have

k �U � �Uk � O�h��

and

k �Y � �Y k � kA��kkNkk �U � �Uk � O�h���

��



Therefore� we �nd

Jh�Y
�� U�� � Jh� �Y � �U� � Jh� �Y � �U� �O�h���

This� together with ������� implies

Jh�Y
�� U�� � Jh�Py

�� Pu�� �O�h���

To prove ������� we let �Y be the �nite di�erence solution of the Diriclet problem

�
y � �max�	� y� � �u� g in�� y � 	 on�� ����
�

By Lemma ���� we have

kP �y � �Y k � O�h��� ������

Moreover� from

A �Y � �Dmax�	� �Y � � N�P �u� � c

and

AY � � �Dmax�	� Y �� � NU� � c

we �nd

k �Y � Y �k � k�A� V ���N�P �u� U��k � kA��kkNkkP �u� U�k � O�h���

Here V is a nonnegative diagonal matrix� �See the proof of Theorem ����� This�

together with ������� implies that

kP �y � Y �k � O�h���

Therefore� we obtain

Jh�P �y� P �u� � Jh�Y
�� U�� �O�h��� ������

From the assumption that y�� u�� �y and �u are Lipschitz continuous functions�

we can estimate the errors of the integrals in J and get

Jh�Py
�� Pu��� O�h� � J�y�� u�� ����	�

and

J��y� �u� � Jh�P �y� P �u� �O�h�� ������

Finally� using the optimality of �y�� u��� that is�

J�y�� u�� � J��y� �u��

we obtain ������ from ������� ����	���������

From Theorem ��� and Theorem ���� we �nd a nice relation between the solution

�y�� u�� of the nonsmooth optimal control problem ����� and the solution �Y �
� � U

�
� �

of the �nite di�erence smoothing approximation ����� as follows�

kJh�Y �
� � U

�
� �� Jh�Py

�� Pu��k � O�h�� �O����

��



� Numerical Examples

Convergence analysis and error estimates in Section � suggest that the discretized

smoothing constrained optimal control problem ����� is a good approximation

of the nonsmooth optimal control problem ������ In this section� we propose a

smoothing SQP �sequential quadratic programming � method for solving ����� and

report numerical results� Examples are generated by adding the nonsmooth term

�max�	� y� to examples in ���� Several tests for di�erent values of � were performed�

The tests were carried out on a IBM workstation using Matlab�

Smoothing SQP method�SSQP�

Choose parameters � � 	� � � 	 and a feasible point �Y �� U�� of ������ For

k 	 	 we solve the quadratic program

minimize
�

�
�Y � Zd�

TH�Y � Zd� �
�

�
�U � Ud�

TM�U � Ud�

subject to AY � 
��Y
k� � 
�

��Y
k��Y � Y k� � NU � c

U � b

and let the optimal solution be �Y k��� Uk���� We stop the iteration when

jJh�Y k��� Uk���� Jh�Y
k� Uk�j � ��

The SSQP method is a standard SQP method for solving the smoothing opti�

mization problem ������ Convergence analysis can be found in ����� Furthermore�

the quadratic program at each step can be solved by an optimization toolbox� for

example� quadprog in MATLAB�

In the numerical test� we chose � � �	� �� � �	� ��� n � m � �		� � � �	���

� � �	��� g � 	� and �Y �� U�� � �	� � � � � 	�T � In Tables ���� k is the number of

iterations�

L�Y k� Uk� � kmin����A��DE�Y k����N�TH�Y k�Zd���M�Uk�Ud�� b�Uk�k��

jJk
h � Jk��

h j � jJh�Y k� Uk�� Jh�Y
k��� Uk���j

and

r� � kAY k � �Dmax�	� Y k��NUk � ck��
Example ��� Let q�x� � 	 and

zd�x� �
�

�
exp��x�� sin���x�� sin���x���

��



Table �� Example ����a� ud � 	� � � �	��

� k L�Y k� Uk� Jh�Y
k� Uk� jJk

h � Jk��
h j r�

	�� � ���e�� 	�	��� ���e��� ���e���

	�� � ���e�
 	�	��� ���e��� ���e���

��� � ���e�
 	�	��� ���e��� 
��e���

��� � ���e�� 	�	��� ���e��� ���e���

��� � ���e�
 	�	��� ��
e��� ���e���

���� � ���e�
 	�	��� ���e��� ���e���

Table �� Example ����b� ud � �� � � �	��

� k L�Y k� Uk� Jh�Y
k� Uk� jJk

h � Jk��
h j r�

	�� � ��	e�� 	�	�	� ��
e��� ���e���

	�� � ���e�� 	�	�	� 
��e��� ��
e���

��� � 
�	e��� 	�	�	� ���e��� ���e���

��� � ��	e�
 	�	�	� ���e��� ���e���

��� � 
��e�� 	�	�	� ���e��� ���e���

���� � ��	e�
 	�	�	� 
��e��� ��	e���

Table �� Example ��� � � �	��

� k L�Y k� Uk� Jh�Y
k� Uk� jJk

h � Jk��
h j r�

	�� � ���e��� 	�	��� ���e��� ���e���

	�� � ���e��� 	�	��� ���e��� ���e���

��� � ��	e��� 	�	��� ���e��� ���e���

��� � ���e��� 	�	��� ���e��� ���e���

��� � ���e��� 	�	��� ���e��
 ���e��	

���� � ���e��	 	�	��� ���e��� ���e��	

��



Example ��� Let q�x� � �� ud � �� � � ����� and

zd�x� �

��
�

���x�x��x� �
�

�
����� x�� if � � x� � ���

���x��x� � ���x� �
�

�
����� x�� if ��� � x� � �
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Appendix� Proof of Example ��� The solution function Y ��� can be given

explicitly as

Y �U� �

��������
�������

�
� �

�

�
AU if U � �

�
� 
��

���

�
AU if U � ��

�� Since �Y � Y � �U� � ��� �� and E�Y � �U�� is a zero matrix� we have

�A��N�TH� �Y � Zd� � �M� �U � Ud� � t �
�

�
�
� ��

�
� �

�

�
A� � � t � �

��



with t � �� and

min�t� b� �U� � ��

Hence � �U� �U� is a KKT point of ������ However�

Jh� �Y � �U� �
�

�
��� ��

�
� �

�

�
A�

�

�
� 
�

and

Jh� �Y � �U� �
�

�
�
�

�
� ��

�
�

�

�

�

�
A�

�

�
�
�

�
� ��� �

��

�
� Jh� �Y � �U�

where �U � ��� and �Y � ����� ��T � Hence � �Y � �U� is not a solution of ������

�� For U � ��

Jh�Y �U�� U� �
�

�
�U� � �� �

�

�
U��

For U � ��

Jh�Y� U� �
�

�
�
�


�
U� � �

U

�
� ���� �

�

�
U��

Hence �Y �� U�� � � is the solution of ������ However

�A��N�T �Y �

� Zd� � t �
�

�
�
� ��

�
� �

��

�
A� t � �

implies t � ��� and min�t� b � U�� � min����� �� � ���� that is� �Y �� U�� is not a

KKT point�

��


