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Abstract The finite difference method and smoothing approximation for a
nonsmooth constrained optimal control problem are considered. Convergence of
solutions of discretized smoothing optimal control problems is proved. Error es-
timates of finite difference smoothing solution are given. Numerical examples are
used to test a smoothing SQP method for solving the nonsmooth constrained op-
timal control problem.
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1 Introduction

Recently significant progress has been made in studying elliptic optimal control

problem

1
minimize — / (y — zq)%dx + 2 / (u — ug)’dz
2 Ja 2 Ja
subject to —Ay = f(z,y,u) in Q y=0 onT (1.1)
uelU

where zq,uq € L?(Q), f € C(Q2 x R?), a > 0 is a constant, {2 is an open, bounded
convex subset of RV, N < 3, with smooth boundary I', and

U={uc L*(Q)]|u(z) < q(r) a.e inQ},

q € L*(Q).
If f is linear with respect to the second and third variables, (1.1) is equivalent to
its first order optimality system. Based on the equivalence, the primal-dual active

set strategy [2] can solve problem (1.1) efficiently. Moreover, Hintermiiller, Ito and
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Kunisch [14] proved that the optimality system is slantly differentiable [7] and the
primal-dual active set strategy is a specific semismooth Newton method for the
first order optimality system. The nondifferentiable term in the optimality system
arises from the constraint v € U. Without this constraint, the optimality system
is a linear system. For such a case, Borzi, Kunisch and Kwak [3] gave convergence
properties of the finite difference multigrid solution for the optimality system.
For the case where f is nonlinear with respect to the second and third vari-
ables, the first order optimality system and second order optimality system have
been studied in order to obtain error estimates in discretization approximations
and convergence theory in sequential quadratic programming algorithms. See for
instance [4] and the references therein. Most of papers assume that f is of class
C? with respect to the second and third variables. However, this assumption does

not hold for the following optimal control problem

1
minimize 3 /Q(y — zg)%dw + % /Q(u — ug)?dw
subject to —Ay+ Amax(y,0)=u+g¢g in Q, y=0 onl (1.2)
u€EU,

where A > 0 is a constant and g € C(Q2). The nonsmooth elliptic equations can be
found in equilibrium analysis of confined MHD(magnetohydrodynamics) plasmas
6, 7, 18], thin stretched membranes partially covered with water[15], or reaction-
diffusion problems [1].

The discretized nonsmooth constrained optimal control problems derived from
a finite difference approximation or a finite element approximation of (1.2) with

mass lump has the form:

1

minimize 3 (Y — Zo) H(Y — Za) + g(U —U)TM(U - Uy)

subject to AY 4+ ADmax(0,Y) = NU + ¢ (1.3)
U <b.

Here Z4,¢c € R*, Us,b € R™, H €¢ R™*", M € R™™, A € R"™*",.D € R"*",
N € R™*™ and max(0,-) is understood componentwise. Moreover H, M, A, D are
symmetric positive definite matrices, and D =diag(dy, ...,d,) is a diagonal matrix.

It is aware that for the discretized nonsmooth constrained optimal control prob-
lem, a solution of the first order optimality system is not necessarily a solution of
the optimal control problem. Also a solution of the optimal control problem is not

necessarily a solution of the first order optimality system, see Example 2.1 in the



next section. In [5], a sufficient condition for the two problems to be equivalent is

given. In this paper, we consider the following smoothing approximation of (1.3)

1

minimize 3 (Y — Z)" H(Y - Z) + g(U —UNTM(U — Uy)

subject to AY +®.(Y) = NU +¢ (1.4)
U <b,

where ®. : R" — R" is defined by a smoothing function ¢, : R — R as

¢e(Y1)

5.v) - p| T

¢e(Yn)
Here € is called a smoothing parameter. For € > 0, ¢, is continuously differentiable
and its derivative satisfies ¢ > 0. Moreover, it holds

|pe(t) — max(0,t)] < ke

with a constant x > 0 for all ¢ > 0. We can find many smoothing functions having

such properties. In this paper, we simply choose [12]
1
Pe(t) = 5(zt + V2 +€2).

It is not difficult to verify that for a fixed € > 0, ¢. is continuously differentiable

and
t

1
¢ (t) = 5(1 T e

Moreover, for any ¢ and € > 0,

) > 0.

|pe(t) — max(0,t)| < %e.

and
) 2 ift>0
] 13 ! — : —
P°(t) == 16151‘155@) =3 1 ift=0
0 ift<0O.

It was shown in [8] that ¢°(¢) is an element of the subgradient [9] of max(0,-).
Following these properities of ¢, the smoothing approximation function ®, is con-

tinuously differentiable for € > 0 and satisfies
[@.(Y) — AD max(0, )| < AW Dle (15)
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for ¢ > 0. Here || - || denotes the Euclidean norm. In particular, for ¢ = 0,
®y(Y) = ADmax(0,Y). Moreover, the matrix

®°(Y) := ADdiag(¢°(Y1), ¢°(Y2), . . ., ¢°(Yn))

is an element of the Clarke generalized Jacobian [9] of AD max(0,Y).

In this paper we investigate the convergence of the discretized smoothing prob-
lem (1.4) derived from the five-point difference method and smoothing approxima-
tion. In section 2, we describe the finite difference discretization of the optimal
control problem. We prove that a sequence of optimal solutions of the discretized
smoothing problem (1.4) converges to a solution of the discretized nonsmooth opti-
mal control problem (1.3) as ¢ — 0. Moreover, under certain conditions, we prove
that the distance between the two solution sets of (1.3) and (1.4) is O(e). We show
that the difference between the optimal objective value of (1.3) and the optimal
objective value of the continuous problem (1.2) is O(h?), where 0 < v < 1. In
section 3 we use numerical examples to show that the nonsmooth optimal control

problem can be solved by a finite difference smoothing SQP method efficiently.

2 Convergence of smoothing discretized problem

In this section, we investigate convergence of the smoothing discretized optimal
control problem (1.4) derived from the smoothing approximation and the five-
point finite difference method with Q = (0,1) x (0, 1). To simplify our discussion,
we use the same mesh size for discretization approximation of y and w.

Let v be a positive integer. Set h = 1/(v + 1). Denote the set of grids by

O = {(ih, jh) 3,5 = 1,...,v}.

The Dirichlet problem in the constraints of (1.2) is approximated by the five-point
finite difference approximation with uniform mesh size h. For grid functions W

and V defined on 2, we denote the discrete L?-scalar product

3,j=1
Let P be the restriction operator from L*(2) to LZ(Q2). Let Zg = Pz4, Uy = Puy
and b = Pq. Then we obtain the discretized optimal control problem (1.3).

Denote the objective functions of the continuous problem and the discretized

problems
1 2 o 2
Ty =3 [ @ zde+ 5 [ (u—uaida
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and
1 «
J(Y,U) = 5(Y ~Z)TH(Y — Zy) + 5(U ~U)"M(U - Uy),

respectively. Let S, Sy, and Sy, denote the solution sets of (1.2), (1.3), and (1.4),
respectively.
2.1 Problems (1.4) and (1.3)

For a fixed h, we investigate the limiting behaviour of optimal solutions of (1.4)

as the smoothing parameter ¢ — 0.

Theorem 2.1 For any mesh size h and smoothing parameter € > 0, the solution
sets S, and Spe are nonempty and bounded. Moreover, there exists a constant
n > 0 such that

Sne S{Y,U) [Jn(Y,U) <} (2.1)

for all € € 0, 1].
Proof: First we observe that for fixed U < b and ¢ > 0, the system of equations
AY +9.(Y)=NU +¢

is equivalent to the strongly convex unconstrained minimization problem
N =~ [ T
min §Y AY + Z/ d(t)dt — Y (NU + c).
i=170

By the strong convexity, the problem has a unique solution Y,. Hence the feasible
sets of (1.3) and (1.4) are nonempty. Moreover, we notice that the objective func-
tion J, of (1.3) and (1.4) is strongly convex, which implies that the solution sets
of (1.3) and (1.4) are nonempty and bounded.

Now we prove (2.1).

In (1.3), the constraint

AY + ADmax(0,Y) = NU +¢

can be written as

(A+ADE(Y))Y = NU +c,

where E(Y) is a diagonal matrix whose diagonal elements are

(V) = 1 if Y;>0
"l o if y<o.



Since A is an M-matrix, from the structure of ADE(Y), we have that A+ ADE(Y)

is also an M-matrix and
1Y || < [[(A+ADEY))"{(NU +o)|| < [[AT(INIT] + [lel).  (2.2)

See Theorem 2.4.11 in [16].
Moreover, for € > 0, let Y. satisfy

AY. +®.(Y,)) = NU +ec.
By the mean value theorem, we find

0 = A(Y.-Y)+®(Y.) - A\Dmax(0,Y)
= AY. - Y)+ ®(Y) — ®(Y) + ®(Y) — A\Dmax(0,Y)
= (A+ gf))(yf ~-Y)+ gDe,

where _ _
- le Yn
D = Ddiag(l + ——,...,1 + ——)
VYZ+ € VY2 + €
and

>

— e,
Y2 + € VY2 +é
Here € € (0, ¢] and Y; lies between (Y:); and Y;.
Using that all diagonal elements of D are positive and

A

0< ——" <1, i=1,....n

/Y'z_2 + e2

we obtain

A A=l 12 A
Y.~ Y11 < 214+ 2 D) *Dlle < 214~ 1De (23)
Therefore, using (2.2), we find that for € € (0, 1],
Ao A
I¥ell < SHATIDle + Y] < JATGNDI + INTT -+ llell)-
Let (Y*,U?) € Spc and (Y*,U*) € Sp,. Let Y, be the solution of

AY 4+ &.(Y) = NU* +¢,



that is, (Y, U*) is a feasible point of (1.4). By the argument above, we have

Jn(Y,U7)

< (Y, UY)

< SIENY. — 24P+ SIM) 0" — U

< SIBINOY + 124007 + S UM + 02

< SUEIAAMIGIDI + NI+ ell) + 1Zall? + SUMIO0* |+ [0l

In the first part of the proof, we have shown that the solution set Sj is bounded,
that is, ||U*|| is smaller than a positive constant. Hence there exists a constant
1 > 0 such that

1 A . a .
SIENAAT NG DI+ INT I+ lell) + 11 Zall)* + S UM AT + [1Ual)* < 7.

This completes the proof. |

Theorem 2.2 Letting ¢ — 0, any accumulation point of a sequence of optimal
solutions of (1.4) is an optimal solution of (1.3), that is,

(o fm, (MO} S
€l

Proof: Let (Y*,UF) € S, (Y*,U*) € S;, and (Y., U*) satisty
AY.+ @ (Y,) = NU* +c.
Then the following inequality holds
(Y, U) < In(Ye, UT). (2.4)
Using the Talyor expansion, we find
TV U%) = Ju(Y*,0%) + (Y = YT H(Y* = Zg) + (¥, = V) TH(Y, = ¥°),
Following the argument on (2.3), we have
Y =¥l < S|A D]
Since the solution set of (1.3) is bounded, there is a constant £ > 0 such that for
e < 2/(AJAH[IDI]),
(Vo= V)T~ Z0) + L (Yo~ V) H(Y. ~ ¥)
< w([[Ye =Y+ [[Ye = Y7
< As[|AY[[|D]le.



Combining this with (2.4), the Talyor expansion gives
Tn(Y2,U7) < Jn(Y*,U) + Asl| A D]le.

Moreover, from Theorem 2.1, there is a bounded closed set £ such that

She C L, forall e € [0,1].
Hence, without loss of generality, we may assume that

(YXU*)— (Y, U)e L as e—0.

(2.5)

Now, we show that (Y,U) is a feasible point of (1.3). Obviously U < b as U* < b

for all € > 0. The other constraint also holds, since
|AY + AD max(0,Y) — NU — ¢||
= lsigl |AY* + AD max(0,Y) — NU — ¢||
= 16151 INU* — &.(Y*) + A\Dmax(0,Y) — NU||
< 1:&)1 |IAD max(0,Y) — &.(Y*)]|

€

< lim(A| D[ max(0,Y) — max(0, Y7)|| + [AD max(0, ¥¢") — @(Ye)]])

< ADIWm VY = Y7l + v/ne)
=0.
Here V is a diagonal matrix whose diagonal elements are
0 if (Y-Y*);=0

Vii = { max(0,Y); — max(0,Y*); otherwise

Obviously, we have 0 < V;; < 1.
Now let € — 0 in (2.5), we get

Jh(Y,0) < Ju(Y*,U).

Hence (Y, U) is a solution of (1.3).

To estimate the distance between the two solution sets S, and S we have to
consider the first order optimality system for (1.3). We say (Y, U) satisfies the first
order conditions of (1.3), or (Y,U) is a KKT (Karush-Kuhn-Tucker) point of (1.3),

if it together with some (s,t) € R™ x R™ satisfies

H(Y — Z;) + As+ ADE(Y)s
aM(U —Ug) — NTs + ¢

AY + ADmax(0,Y) — NU — ¢
min(¢,b — U)

=0.



The vectors s € R" and t € R™ are referred to as Lagrange multipliers. It was

shown in [5] that for any U, the system of nonsmooth equations
AY + ADmax(0,Y) — NU —c=0

has a unique solution, and it defines a solution function Y (U). Moreover, (2.6) is

equivalent to the following system

( (A+ADE(Y (U))) "NYTH(Y (U) — Za) + aM(U — Uy) + ¢ ) —0. (27)
min(¢,b — U) . .

However, for the discretized nonsmooth constrained optimal control problem (1.3),
a KKT point of (1.3) is not necessarily a solution of the optimal control problem
(1.3). Also a solution of the optimal control problem (1.3) is not necessarily a KKT
point of (1.3).

Example 2.1 Let n=2m=1,M =a=A=b=1,H=D=1,c=0,

a=(3) v 2)

1. For Uy =1 and Z; = (0,-3)7, (Y,U) = (0,0,0)7 is a KKT point of (1.3), but
(Y,U) is not a solution of (1.3).

2. For U; = 0 and Zz; = (0,1), (Y*,U*) = (0,0,0)" is a solution of (1.3), but
(Y*,U*) is not a KKT point of (1.3).

Let Ay (y) be the submatrix of A whose entries lie in the rows of A indexed by
the set
KY)={i|Y;=0,i=1,2,...,n}.

Lemma 2.1 [5] Suppose that (Y*,U*) is a local optimal solution of (1.8), and
either K(Y*) =0 or (A+ADE(Y*))™'N)x+) =0, then (Y*,U*) is a KKT point
of (1.3).

Theorem 2.3 Let (Y*,U) € Sp. and (Y*,U*) € S,. Under assumptions of

Lemma 2.1, we have
1YE =Y +[[UZ = U*|| < O(e).

Proof: Let us set
W= (A+ /\DE(Y*))*lN.



By Theorem 2.1 in [5], the assumptions implies that in a neighborhood of U*, the

solution function Y'(-) can be expressed by
Y (U) = WU.

Moreover, Y (-) is differentiable at U* and Y'(U*) = W. In such a neighborhood,

we define a function

WTH(Y(U) — Zg) + aM(U — Uy) + ¢
min(t, b — U) '

F(U,0) = (
From Lemma 2.1, there is t* € R™ such that
F(U*,t*) =0.

The Clarke generalized Jacobian 0F(U,t) [9] of F at (U*,t*) is the set of matrices

that have the version

WTHW + aM I
T I+T

where T' is a diagonal matrix whose diagonal elements are

1 i U<t
Ti={ 0 if (b—U*); >t
no if b-UY) =t

1)

T; € [—1,0]

This is easy to see that all matrices in OF(U*,t*) are nonsingular. By Propo-
sition 3.1 in [17], there is a neighborhood A of (U*,t*) and a constant 8 > 0 such
that for any (U,t) € N and any V € OF(U,t), V is nonsingular and ||V} < §.

Now we consider a function of F, defined by the first order condition of the

smoothing problem (1.4) as

min(¢t,b — U)
Here Y,(U) is the unique solution of the system of smoothing equations
AY +8.(Y) — NU — ¢ = 0.

Since (1.4) is a smoothing problem, (Y*,U}) € Sy implies that there is tf € R™
such that
F (U t) =0.

€)7€
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Applying the mean value theorem for Lipschitz continuous functions in [9], we

have

(v -u
F(U*,t*) — F(U*, t°) —can(U*U;,t*t;)( ¢ )

e t—t*
where coOF (U*U?,t*t?) denotes the convex hull of all matrices V € 0F(Z) for Z
in the line segment bewteen (U*,t*) and (U7, t}).

€7 7€

Therefore, we can claim that

U —U*
.

lim 2(Y") = 2°(Y")

< 26||F(U*,¢7) — F(UZ, E)])- (2.8)

€77%€

Note that

and ®°(Y*) € OAD max(0,Y*). By Lemma 2.2 in [5]
(A+@°(Y*) !N =W.

From the nonsingularity of F(Y*,U*), (Y*,U*) is the unique solution of (1.3).
From Theorem 2.2, Y* — Y* as € — 0. Hence there are constants v; > 0, v, > 0
and € > 0 such that for all € € (0, €,

IH(Y = Za)|| < v,
and for i ¢ K(Y™), i ¢ K(Y) and

1/ (Y2): + € — Y7
DY) = (Y )|i = 5 &) il
(Ye)i + €

Therefore, from F(U*,t*) = 0 and F.(U},t:) = 0, we find

€7 7€

= [|[Fe(UZ, £) = (UL ]

= (((A+2@°(Y") ™" = (A+ 2(Y) N H (Y, — Zy)|
<ull((A+2°(Y)) ' = (A+2(Y7)) "N

< | (A+ @Y))TH(@UY,) — 2°(Y7)) (A + 2°(Y™) "' N]|
< ul|ATII(@L(YY) — °(Y™)) (A + 2°(Y™)) T N||

< v1va/nf| A7 N e

I1EU* ") = F(US )|

The last inequality uses ||(A + ®°(Y*)) || < [|[A71]], (2.9) and
((A -+ (I)O(Y*))ilN)K(yw) =0.

11



This, together with (2.8), gives
1U* = UZ|| < O(e).

Furthermore, from the convergence of Y and the assumptions, we have that for

sufficiently small e,
[Y* =Y = [WU" = U] < O(e).

This completes the proof. |
2.2 Problems (1.3) and (1.2)
Note that L2(£2)-scalar product (Y, Y) 2 associated with ¥ = Py can be con-

sidered as the Riemann sum for the multidimensional integral / y’dz. By the error
Q
bound (5.5.5) in [10], we have

2V (y?)
2
[y = (Y )] < =
where P() — )|
y\r) —yiz
V(y®) =
SR A PR

If y is Lipschitz continuous in 2 with a Lipschitz constant K, then there is 3 such
that 8 > max,cq |y(z)| and

lv*(2) — y*(2)] = ly(z) + y(2)lly(z) — y(2)| < 26K ||z — z].
Hence the Lipschitzan continuity of f yields an error bound for the Riemann sum

[ s YYL2|<4ﬁTfL(_O(h) (2.10)

For a given function u, error bounds for the five-point finite difference method

to solve the nonsmooth Dirichlet problem
—Ay+ Amax(0,y) =u+g¢g inQ, y=0onTl. (2.11)
can be found in [6].

Lemma 2.2 [6] Let y € C*7(Q) be a solution of (2.11), and let Y be the finite
difference solution of (2.11). Then we have

A(Py) + AD max(0, Py) = Nu +c+ O(h”)

and
[Py — Y| < O(h).

12



Here v stands for the exponent of Holder-continuity, and 0 < vy < 1.

Theorem 2.4 Suppose that (1.2) has a Lipschitz continuous solution (y*,u*) and
y* € C?7. Let (Y*,U*) be a solution of (1.3). Then we have

Jn(Y*,U*) < Ju(Py*, Pu*) + O(h). (2.12)

Moreover, if there exists i € C®7, together with § € C?7, satisfies the constraints
of (1.2) and
[Pu—U*|| < O(h7),

then we have
Jo(Y*,U*) > Ju(Py*, Pu*) — O(h7). (2.13)

Proof: By Lemma 2.2, the truncation error of the finite difference method yields
A(Py*) + AD max(0, Py*) = N(Pu*) + ¢+ O(h"). (2.14)
We enlarge the feasible set of (1.3) and consider a relaxing problem

1
minimize (Y — Zo) H(Y — Za) + g(U —U)TM(U - Uy)
subject to AY + ADmax(0,Y) = NU + ¢ (2.15)
U<b+vh'e,

where e = (1,1,...,1)T € R", and v is a positive constant such that (Py*, Pu*) is
a feasible point of (2.15).
Let (Y,U) be a solution of (2.15). Then it holds

Jo(Y,U) < Jo(Py*, Pu®). (2.16)
Moreover, since the feasible set of (1.3) is contained in that of (2.15), we have
Jn(Y,0) < Jy(Y*,U*).
Take a point U = min(b, ), together with Y satisfying
AY + ADmax(0,Y) = NU +c.
Then (Y, ) is a feasible point of (1.3). Moreover, from U < b+ vh7e, we have
IU - U <O

and
Y = Y| < JATH[IN||IT - U]l < O(h").
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Therefore, we find
Jo(Y* U*) < J,(Y,0) < Ju(Y,0) + O(R).
This, together with (2.16), implies
J(Y*,U*) < Ju(Py*, Pu*) + O(h").
To prove (2.13), we let Y be the finite difference solution of the Diriclet problem
—Ay+ Amax(0,y) =a+g¢g inQ, y=0onl. (2.17)
By Lemma 2.2, we have
1Py — Y[ < O(h7). (2.18)
Moreover, from
AY + ADmax(0,Y) = N(Pa) + ¢
and
AY* + ADmax(0,Y*) = NU* + ¢
we find
[Y =Y*[| = [(A+V)"'N(Pa—U)|| < |[ATYIN[[|Pa — U*|| < O(h?).
Here V is a nonnegative diagonal matrix. (See the proof of Theorem 2.2.) This,
together with (2.18), implies that
|Py—Y*|| < O(h").
Therefore, we obtain
Jn(Py, Pu) < J,(Y*,U*) + O(h"). (2.19)
From the assumption that y*,u*, 4 and @ are Lipschitz continuous functions,
we can estimate the errors of the integrals in J and get
Ju(Py*, Pu) — O(h) < J(y*,u’) (2.20)
and
J(§,%) < Ju(Pij, Pi) + O(h). (2.21)
Finally, using the optimality of (y*,u*), that is,
J(y",u") < J(g,4),
we obtain (2.13) from (2.19), (2.20),(2.21). |

From Theorem 2.3 and Theorem 2.4, we find a nice relation between the solution
(y*,u*) of the nonsmooth optimal control problem (1.2) and the solution (Y*,UY)

of the finite difference smoothing approximation (1.4) as follows:

[Tn(YE,UE) = Jn(Py*, Pu”)|| < O(RY) + O(e).

14



3 Numerical Examples

Convergence analysis and error estimates in Section 2 suggest that the discretized
smoothing constrained optimal control problem (1.4) is a good approximation
of the nonsmooth optimal control problem (1.2). In this section, we propose a
smoothing SQP (sequential quadratic programming ) method for solving (1.4) and
report numerical results. Examples are generated by adding the nonsmooth term
Amax(0,y) to examples in [2]. Several tests for different values of A were performed.
The tests were carried out on a IBM workstation using Matlab.

Smoothing SQP method(SSQP)

Choose parameters € > 0, 0 > 0 and a feasible point (Y°,U°) of (1.3). For

k > 0 we solve the quadratic program
1
minimize (Y — Zo) H(Y — Z4) + %(U —U)TM(U — Uy)
subject to AY + & (Y*) + @ (Y*)(Y -~ Y*) = NU +¢
U<b
and let the optimal solution be (Y**1 U**1). We stop the iteration when
|Jh(Yk+1, Uk-i—l) - Jh(Yk, Uk)| < 0.

The SSQP method is a standard SQP method for solving the smoothing opti-
mization problem (1.4). Convergence analysis can be found in [11]. Furthermore,
the quadratic program at each step can be solved by an optimization toolbox, for
example, quadprog in MATLAB.

In the numerical test, we chose = (0,1) x (0,1), n = m = 200, ¢ = 1075,
oc=10"% g =0, and (Y°,U% = (0,...,0)T. In Tables 1-3, k is the number of

iterations,
L(Y*,U*) = || min(—((A+ADE(Y*)'N)TH(Y* ~ Z3) —aM(U* —Uy),b—U") || o,

[ = Ji = (V5 U = Th(YE U

and
re = [JAY* + XD max(0,Y*) — NU* — ¢||w-

Example 3.1 Let ¢(z) =0 and

1
zq(z) = 6exp(2x1) sin(2mzy) sin(27xs).
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Table 1: Example 3.1(a) uq =0, a =102

A k| LYRUR) | (YR UR) | |JF— T e
02 [4| 8.4e9 0.0419 1.1e-12 | 8.9e-13
0.8 [ 4] 25e7 0.0419 3.le-11 | 3.6e-12
1.6 | 4| 2.1e7 0.0419 2.6e-11 | 7.1e-12
32 (4| 6.1e8 0.0419 5.3e-12 | 1.4e-11
6.4 | 4| 1.6e-7 0.0419 2.7e-11 | 2.6e-11
12.8 | 4| 2.9e-7 0.0419 2.8e-11 | 3.2e-11

Table 2: Example 3.1(b) ug=1, a=10""°

A | k| LYRUY) | W(Y50%) | [JF =T
02 (4| 8.0e9 0.0302 8.7e-13 | 6.6e-14
08 4| 1.le6 0.0302 7.6e-11 | 2.7e-13
1.6 | 4| 7.0e-11 0.0303 5.4e-15 | 5.3e-13
32 [ 4] 6.0e7 0.0302 8.6e-11 | 1.1e-12
6.4 [ 4| 7.8e9 0.0302 5.4e-15 | 2.1e-12
12.8 | 4| 1.0e-7 0.0302 7.6e-12 | 4.0e-12

Table 3: Example 3.2 o« = 107°

A | k| L(YRUR | (YR U* | |JE =T | re
0.2 [ 4] 1.5e-15 0.0584 2.4e-11 | 3.4e-11
0.8 [ 4| 1.5e-14 0.0584 5.6e-16 | 5.8e-12
1.6 | 4| 3.0e-14 0.0584 8.3e-16 | 9.9e-12
3.2 [4| 6.3e-14 0.0584 2.1e-16 | 1.5e-11
6.4 | 4| 1.3e13 0.0584 1.2e-17 | 1.3e-10
12.8 | 5| 3.1e-10 0.0584 2.1e-16 | 1.2e-10
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Example 3.2 Let q(z) =1, ug =0, o = 1.0 ¢ and

() = 200z122(z1 — 5)%(1 — x2) if 0<z <1/2
T\ 200y(0y — 1) (21— 221 —25) i 1/2<m; <1
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Appendix: Proof of Example 2.1 The solution function Y () can be given

explicitly as

( ) U it U>0
Yiw) 5/3
/ if U<O.
1/3
1. Since Y = Y(U) = (0,0) and E(Y(U)) is a zero matrix, we have

(AT'NYTH(Y — Zg) + aM(U — Uy) +t = %(5,1) ( 2 ) —14+¢t=0
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with t =0, and

min(¢,b—U) = 0.
Hence (U, U) is a KKT point of (1.3). However,

(¥, D) :%(0,3) ( g ) +%:5,

and

N[

— = 1.1 1.1 ~ -
Y, U)=2(= “(z-1)?2== Y, U
where U = 1/2 and Y = (1/2,0)T. Hence (Y, U) is not a solution of (1.3).

2. For U > 0,

For U < 0,

125, U ., 1,
S22 ~ 1)+ U2
2( 9 v+ 3 )+ 2
Hence (Y*,U*) = 0 is the solution of (1.3). However

J(Y,U) =

(AT'NYT(Y* - Zy) +t = %(5,1) ( 0 . ) +t=0

implies ¢ = 1/3 and min(¢,b — U*) = min(1/3,1) = 1/3, that is, (Y*,U*) is not a
KKT point.
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