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SPHERICAL DESIGNS FOR APPROXIMATIONS ON SPHERICAL
CAPS *

CHAO LI" AND XIAOJUN CHEN¥

Abstract. A spherical t-design is a set of points on the unit sphere, which provides an equal
weight quadrature rule integrating exactly all spherical polynomials of degree at most ¢t and has a
sharp error bound for approximations on the sphere. This paper introduces a set of points called a
spherical cap t-subdesign on a spherical cap C(e3,r) with center e3 = (0,0,1)T and radius r € (0, )
induced by the spherical t-design. We show that the spherical cap t-subdesign provides an equal
weight quadrature rule integrating exactly all zonal polynomials of degree at most t and all functions
expanded by orthonormal functions on the spherical cap which are defined by shifted Legendre
polynomials of degree at most t. We apply the spherical cap t-subdesign and the orthonormal
basis functions on the spherical cap to non-polynomial approximation of continuous functions on
the spherical cap and present theoretical approximation error bounds. We also apply spherical
cap t-subdesigns to sparse signal recovery on the upper hemisphere, which is a spherical cap with
r = 0.5m. Our theoretical and numerical results show that spherical cap t-subdesigns can provide
good approximation on spherical caps.
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1. Introduction. Let S? := {y € R3 : ||y| = 1} C R® denote the unit sphere,
where || - || is the Euclidean norm, and let P;(S?) denote the space of spherical poly-
nomials of degree at most t. The concept of a spherical ¢-design was introduced by
Delsarte, Goethals and Seidel [14], which is a set of points {y1,...,yn} C S? such
that the quadrature rule

1 I

Ir f, PO = jz::lp(yj)

holds for all polynomials p € P;(S?) of degree at most ¢, where dw(y) is the surface
measure on S?. Seymour and Zaslavsky [29] showed that spherical t-designs exist for
any t if n is sufficiently large, and the authors in [7] established the optimal asymptotic
order for the number of points n required for a spherical ¢-design. Chen, Frommer and
Lang [9] showed existence of spherical t-designs on S? with n = (¢t + 1)? for ¢ < 100
by using interval methods. Computed spherical t-designs on S? with specific ¢ are
available in [37]. For more discussion on spherical t-designs, see [1, 5, 8, 33, 34, 39]
and references therein.

Spherical t-designs have been extensively studied for various applications and
showed good performance on numerical approximation on the sphere. In [2], An et
al. studied polynomial approximation problems on the sphere using regularized least
squares models and showed that spherical ¢-designs provide good polynomial approx-
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imation on the sphere. In [11], Chen and Womersley showed that spherical ¢-designs
provided a sharp error bound for sparse approximation in signal processing on the
sphere. In [3, 26], spherical ¢t-designs were applied to interpolation and hyperinterpo-
lation for noisy data on the sphere.

In numerous applications, people are interested in image analysis and signal pro-
cessing on spherical caps, especially the hemisphere, such as medical images (surfaces
of brain, eye, skull, scalp). Good approximations are needed on spherical caps (see
for example [12, 21, 22]). How to choose a set of points on spherical caps for good nu-
merical approximation on spherical caps is an interesting and timely question. In this
paper, we introduce a set of points on a spherical cap induced by the spherical ¢-design
for good approximations on the spherical cap. Since the sphere is rotationally invari-
ant, we present results on the north polar cap C(es,r) := {x € S? : x - e3 > cosr},
where e3 = (0,0,1)T, radius € (0,7) and x - e3 = x ' e3. In spherical polar coordi-
nates, S? and C(es, ) are denoted respectively as

S?={y e R®: y := (sin® cos ¢,sin¥sin ¢,cos ¥) ", ¥ € [0, 7], ¢ € [0, 27]},
Cles,r) = {x € R®: x := (sinf cos ¢,sinfsin ¢, cosf) ', 6 € [0,7], ¢ € [0,27]}.

It is easy to verify that for any ¥ € [0, 7], arccos(0.5(1 — cosr)(cosd — 1) + 1) € [0, r].
Now, we introduce the definition of a spherical cap t-subdesign.

DEFINITION 1.1. Let C(es,r) be the spherical cap with radius r € (0,7), YV, =
{y; € S* : y; = (sin¥; cos ¢;,sind;sing;,cos9;)", j = 1,...,n} be a spherical
t-design and let 6; = arccos(0.5(1 — cosr)(cos?; — 1)+ 1), j=1,...,n. We call the
point set XY := {x; € C(es,r) : x; = (sin6; cos ¢;,sin; sin ¢;,cos0;)",j =1,...,n}
a spherical cap t-subdesign induced by the spherical t-design Yy .

For convenience, we denote the upper hemisphere (that is C(es, 0.57)) by S2, and
call the spherical cap t-subdesign over Sﬁ_ a hemispherical ¢-subdesign.

Let {Yor : £=0,1,...,t,k =1,...,2¢ + 1} be a set of real spherical harmonics
orthonormal with respect to the Ly inner product on S?, where Yy is a spherical
harmonic of degree £ (see for example [4, 13]). It is known [2] that for every p € P;(S?),
there is a unique vector o = (cvgx) € REFD such that

2041

t
(1.1) Z Yo r(x), x €S2
(=0 k=1

We call p = ZE:O ap1Ye1 € Pi(S?) a zonal polynomial of degree at most ¢ on S? (see
for example [13]). In Section 3, we show that a spherical cap t-subdesign XY over
C(es,r) induced by the spherical t-design ), provides equal weight quadrature rules
for zonal polynomials, that is,

1 1<
— d — xY
2m(1 — cosr) /C(es,r) p(x)dw(x) nz (xs)s x5 €

(1.2)

holds for any zonal polynomial p € P;(S?).

In [18], the authors introduced a set of hemispherical orthonormal functions
{Hpp :£=0,1,...,¢t,k=1,...,2¢ + 1} which are derived from the shifted Legendre
polynomials of degree at most ¢. The set of functions {Hy x} shows a promising per-
spective in hemisphere related issues, such as surface description or construction of
hemisphere-like anatomical surface [19, 23], rendering and global illumination [18, 25].

2
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Inspired by [18], we define a set of orthonormal functions {7}, } over a spherical cap
C(es,r) with radius r € (0,7). {17} coincide with {Hyx} when r = 0.57. In Section
3, we show that the spherical cap t-subdesign XY provides an equal weight quadra-
ture rule integrating exactly all functions expanded by {Tg; ) defined by the shifted
Legendre polynomials of degree at most .

In Section 4, we study the non-polynomial approximation of continuous functions
and sparse signal recovery on spherical caps using spherical cap ¢-subdesigns induced
by spherical ¢-designs and orthonormal functions {Téf wr- We derive error bounds in
Ly norm and || - ||s norm for the non-polynomial approximation, and formulate a
non-convex minimization model for sparse signal recovery.

The main contributions of this paper are summarized as follows.

e We define the spherical cap t-subdesign XY over C(es,r) induced by the
spherical ¢-design ), and show that XY provides an equal weight quadrature
rule for zonal polynomials of degree at most ¢ and all functions expanded
by orthonormal functions {77} over C(es,r) defined by shifted Legendre
polynomials of degree at most ¢t. Moreover, we present an addition theorem
for {T7,.}.

e We derive error bounds of the non-polynomial approximation of continuous
functions and present an efficient sparse signal recovery method on C(es, )
using the spherical cap t-subdesign XY and orthonormal functions {Tg: et

The rest of this paper is organized as follows. In Section 2, we give notations,
the relationship among {Yrx}, {Her} and {1} .}, an addition theorem for {7}, },
and an analogues of the Funk-Hecke formula on C(es,r). In Section 3, we show
that the spherical cap t-subdesign XY induced by the spherical t-design provides
good quadrature rules for a class of functions. In Section 4, we first study the non-
polynomial approximation and sparse signal recovery on spherical caps using XY and
{T;,}. In Section 5, we present numerical evidence on the quality of spherical cap
t—sﬁbdesigns XY for numerical integration, non-polynomial approximation and sparse
signal recovery. Finally, we give concluding remarks in Section 6.

2. Notation and preliminaries.

2.1. Notation. Let Ny := {0,1,2,...} denote the set of natural numbers in-
cluding zero. The geodesic distance on the sphere is dist(x,y) := arccos(x - y), for x,
y € S?, where x -y = x 'y is the inner product of x and y. We denote a spherical
cap with center y € S§? and radius 7 by C(y,r) := {x € S? : x -y > cosr}, and the
rotation group SO(3) := {R € R**3 : RTR = I,det R = 1}, where I € R3*? is the
identity matrix. We use |-] to denote the floor function.

We denote by Lo(€) the space of square-integrable functions on a nonempty set
Q C S? endowed with the inner product

P = [ F§00)daly), VF.g € La(o),

and the Ly norm | fllL,) = ((f, f).(9))'/?. We denote the space of continuous
functions on © by C(2) and define || f||oc 1= supyeq |f(x)| for f € C().

Let Py denote a Legendre polynomial of degree ¢ defined as Py(x) := ﬁdd—;(ﬁ -
1), vz € [-1,1]. Let s € (—=1,1) and Py(z) := P;(22=2 1 1), 2 € [s,1] be a shifted
Legendre polynomial of degree £. The shifted Legendre polynomials are orthonormal

on [s, 1], that is, fsl Py(x) Py (x)dx = 216;4_5153@/, where g = 1if £ = ¢’ and 0 otherwise.

3
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2.2. Spherical harmonics. The standard basis for spherical harmonics of de-
gree £ € Ny is (see for example [4])

Yo1(9,¢) = Ny oPe(cosv),
H,Q’rﬂ(ﬁa ¢) = N@,’mPE,m(COS 19) COS m¢,
Yo om+1(9, ¢) = Ne o Prm(cos¥)sinmep, m=1,...,¢,

where ¢ € [0, 7], ¢ € [0,27], Ngm = 4/ 22-;1 Ei+z):7 Neo =/ 2“1 and Py, is an asso-

ciated Legendre function, i.e., P, (x) = (=1)™(1 — 2%)% P(m)( ), Ve e [-1,1], m
1,...,¢ For any £ € Ny, Yy ; is called a zonal spherlcal harmonic. For convenience, we
denote by Y} 1, a real-valued spherical harmonic of degree ¢ € Ny, order k € {1,...,2¢0+
1} and write Y7 x(y) := Yo x (9, ¢) with y = (sind cos ¢, sindsin ¢, cos9) T € S%.

The spherical harmonics are Lo (S?)-orthonormal to each other, that is,

(2.1) . Yo (¥)Yer ko (¥)dw(y) = Sue S

The set of spherical harmonics {Yy : £ = 1,2,...,20+1,¢ = 0,1,...,t} forms a
complete Lo(S?)-orthonormal basis of P;(S?). Moreover, P,(S2) = span{Yg,;c|Sz+ k=
1,2,...,20+1,¢=0,1,...,t}, due to the linear independence of Ygﬂgz+ which are
the restrictions of Yy i, to the hemisphere. The addition theorem (see for example [4])
for spherical harmonics is

(2.2) S Yok (y)Yer(z) = 2Py -z), Vy,zeS?, VeN,.
We denote

(2.3)  Gily.z) =20 o S You(y)Yor(z) = Yo 221 Py(y - 2), Vy,z€S?,

which is a “reproducing kernel” in P;(S?) [28] and whose value depends only on the
inner product y - z. Obviously, G is rotationally invariant, that is, for y,z € S? and
any rotation R € SO(3), Gi(y,z) = G,(Ry,Rz).

The Funk-Hecke formula (see for example [13, 16, 17, 20, 27]) which plays an
important role in the theory of spherical harmonics gives the following.

LEMMA 2.1 (Funk-Hecke Formula). Let f be a continuous function on [—1,1],
then for any £ € Ny,

. Fx-y)Yor(x)dw(x) = MYor(y), Yy eS?

where Ay = 27rf ft)Pe(t)dt.

Based on the Funk-Hecke formula and Slepian functions [30] on a spherical cap
C(es,r) (see Appendix A for more detail), we obtain the following proposition.

PROPOSITION 2.2. Let f be a continuous function on [—1,1]. For any L € Ny and
anyy € S, let Y>‘( )= MoYo1 (), MY11(¥), MY12(y), s ALY ora (¥)) T, where
Aj —27rf ft)P;(t)dt, j=0,1,...,L. For any fixed r € (0,7) and { < L, we have

(2.4) /C( ) f(x-y)Yer(x)dw(x) = ceﬁkYi‘(y), Vy € S?,

4
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where ¢ = V&kAVT, A = diag(p1, .., prorsr) and V = (Vi, ...,V 1) with
pi, Vi being the ith largest eigenvalue and corresponding eigenvector of the matriz D
defined by (A.1) with t = L, and v, is the ({? + k)th row of the matriz V.

Proof. First we assume that f is a polynomial of degree L € Ny and let dj, :=
(L+1)2. By Appendix A, the Slepian functions of degree < L over C(es, ) are S;(x)

Zf:o Ziﬁll v] WYik(x), Vx € Cles,r), i=1,...,dr. And, Yy ,(x) = ZdL vé w91 (%),
vx €S?% ke {l,...,20+ 1}, £ < L. Then, for any ¢ < L, we have
fc(e37r) S y)Yek(x)dw(x)
d i
=325 Ve Je(es.ry £ (X0 ¥)Si(x)dw(x) = 3205 v upi g (x)dw(x)
Zz 1 W kPi Zf:o Ziz+11 ; k' fgz Yk (x)dw(x)
L 2414
Zz 1 W kP Zj:O ij/+1 V5 A Y, w (Y ) = CMYE\(Y)7 Vy € 8%,
where the first and third equalities follow from the relationship between S; and Yy x,
the second equality follows from (A.3) and, for any fixed y € S?, f(x-y) is a spherical
polynomial of degree < L, and the last equality follows from the Funk-Hecke formula.
Now, if f is a continuous function on [—1, 1], then we choose a sequence of poly-

nomials p, of degree L such that p, converges to f uniformly on [—1,1]. It follows
that for L sufficiently large, the desired result holds for f. The proof is completed. O

Remark 2.3. Notice that the matrix D defined by (A.1) is an identity matrix
when r =, t = L. Then, p; = 1 and v; is a unit vector with the ith element being
1. Thus, (2.4) reduces to the Funk-Hecke Formula.

2.3. Orthogonal functions on spherical caps. In [18], Gautron et al. pro-
pose a set of real-valued hemispherical orthogonal functions derived from a shifted
Legendre polynomial of degree ¢ € Ny, which have the following form

H1(0,¢) = V2Ny 0 Py(cos ),
Hp9m(0,0) = V2N 1, Py (cos 0) cos m,
Hyomy1(0,9) = ngmP@m(CObe)blnm¢, m=1,2,...,¢,

where 6 € [0, 7], ¢ € [0, 27, Py (cos8) == Py, (2cos#—1). For convenience, we write
Hyp(x) = Hop(0,0), k € {1,...,20+1} with x = (sinf cos ¢,sin @ sin ¢, cos ) T € S2..

Remark 2.4. Although {Hy;} are called hemispherical harmonics in [19, 23, 25],
{Hy 1} are not harmonic functions on S%.. For example, for £ =1 and k = 2,

Hi2(x) = H12(0,0¢) =2 %131,1(008 ) cos ¢

=/ (=11 — (2cosf — 1) %cosgbffa:\/»,/l_s_z,

where x = (x,7,2) " = (sinf cos ¢, sin fsin ¢, cos ) " € S%. Thus,

v2H1 2( ) o? H1 2(x) + 22 H1 2(x) + o? H1 2(x) 2? H1 2(") ?é 0,

which implies that H; 2 is not a harmonic function.

Similarly, we define a set of orthonormal functions over a spherical cap C(es,r)
with r € (0, 7) derived from a shifted Legendre polynomial of degree ¢ € Ny as follows,

T71(0,¢) = VENpoPi(kcosd +1 — k),
5
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T} 90 (0, ¢) = VENgm Prm (ki cos 0 + 1 — k) cos ma,
T} 9ms1(0,0) = VENg i Prm(kcos +1 — k)sinme, m=1,2,....¢,

where ¢ € [0,7], ¢ € [0,27], x := 2/(1 — cos7). For convenience, we write 7, (x) :=
Ty (0,9), k€ {1,2,...,20 41} with x = (sin 0 cos ¢,sin Osin ¢, cos 0) " € C(es, r).

Notice that Hyj = Tg',f”, V¢ e Ny, k=1,...,2¢ + 1. The functions {Téfk} are
L2(C(es,r))-orthonormal to each other, i.e.,

(25) /( )Tzk(X)TZ7k/ (x)dw(x) = 5”’5kk’-
C(es,r

Following the definitions of {77 } and {Yy .}, we have the following proposition.

PROPOSITION 2.5. Let r € (0,7) be fized and k := 2/(1 —cosr). For any 6 €
[0,7], let ¥ = arccos(k cos@ + 1 — k). Then, ¥ € [0,7] and

(26) Tlik(evd)) = \/Eyvf,k(ﬁvq&)a VE S NOv ke {1a2, .. a2€+ 1}

In particular, Hy (0, 9) = V2Y (9, ¢).
Now we give the relation between {Y;;} and {77} at x € C(es, 7).

PROPOSITION 2.6. Let r € (0,7) be fized and r := 2/(1 — cosr). For £ € Ny and
ke {l,2,...,20+ 1}, let v = |k/2]| and B; = V/Kka;N¢ /N, if v # 0, otherwise,
Bj = ajNio/(V/EN, o), where a; = 0.5k(25 + l)fclosrPg(x)Pj(/fx +1—k)dzx, j =
v,..., L, then

K2X - es + 2K — K2 2 ¢ -
en (P ) = 3BT, ke Clear)
Jj=v

In particular, (ﬁ;‘?;)f Yir(x) = Zﬁ:v BiH;k(x), Vx € S.
Proof. For any £ € Ny, 6 € [0,7] and ¢ € [0, 27], let
Ye1(0,0) = VEN o Pr(kcosf + 1 — k),
Ye.om (0, P) (—1)m\/ENg7mPe(m)(I€ cosf + 1 — k)sin™ 0 cosma,
Yo.om+1(0, ) (—1)m\/ENg’mP€(m)(/<; cosf +1—k)sin™ Osinmep, m=1,..., L

For convenience, we write ¢y x(x) := Yo (6, ¢), k € {1,2,...,20 + 1}, with x =
(sin 6 cos ¢, sin sin ¢, cos ) T € C(es, 7).
We can see that

Pp(kcosf+1—k)=(—1)"(1— (kcosf+1— K)z)%PZ(m)(HCOSG +1—k)

= (—1)™ (7"2 C‘isfc‘gz’;_"z)? Pe(m)(KCOSQ +1—k)sin™ 0,

which implies

IR

(2.8) T7,(x) = (%M) bew(x), Vx € Cles, 7).
6
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On the other hand, for 6 € [0, 7],
N Prm(cos0) = Np o (—1)™(1 — cos? 9)%Pz(m) (cos )

= ZJ - %(—1)’”Nj7mP;m)(m cosf+1—k)sin™ 6

- Zj:m Bi(—1 )m\/ENj’ij(m)(n cosf 41— k)sin™ 6,
Ny oPy(cost) = Zﬁ:o BivVEN;oPj(kcosf + 1 — k),

where the second and last equalities follow from definition of a;. Thus, by definitions
of Y, 1, and Yy i, we have

(2.9) Yor(x) = Z?;V Bivjx(x), Vx€Cl(es,r).

v
K xe3+2f@ K2\ 2

e on both sides of (2.9), combing (2.8), we obtain (2.7).
Taking r = 0.57, we obtain the rest of the proposition. The proof is completed. 0
Remark 2.7. Let s € (—1,1), Py(z) :== P(2=2 4 1), 2 € [5,1]. Let Py([—1,1])
be the space of polynomials of degree at most £ on [—1,1]. It is easy to see (see for
example [24]1) that P, € Pp([—1,1]). Thus, Pi(x) = Zﬁ:o b;Pj(x), x € [s,1], where
j = = I
b; = £ [ Py(z)P;(z)dx. Moreover, Pe(m)(x) = iem bij(m)(x), m=1,...,¢,
Vo € [s,1]. For £ € No, k € {1,2,...,20+ 1}, let v = [k/2], v; = /KbjNy,w/Nj.,
j =v,...,L. Following a similar argument of Proposition 2.6, for any ¢ € Ny, k €
{1,2,...,2¢+ 1}, we obtain,

2 2 5
(2100 Tpu(0) = (D) T, Yk, Vx e Clesr),

which shows that {77} are not polynomials except when k = 1.

Multiplying (

We next present an addition theorem for {77, }.

THEOREM 2.8. Let C(eg,r) be the spherical cap with radius r € (0,m). For any
¢ e Ny and x,z € C(es,r), there is a rotation matriz Rx, € SO(3) such that

2041
20+ 1 .

2.11 T T =——P Rx.2z).
In particular, (i) E%H Hy o (x)Hy o (2) = ZE Py(x " Rxpz), Vx,2 € 2. (i1) Ry =1
when x = z.

Proof. Let r € (0,7) be fixed and  := 2/(1—cosr). For any (6, ¢) € [0, 7] x][0, 27],
let v = arccos(kcosf +1 — k) — 6 and

cos? pcosy +sin ¢ (cosy — 1)cospsing cospsinry
(2.12) R(0,¢) := |(cosy — 1)cospsing sin® pcosy 4+ cos?¢  sin¢gsin~y
—cos ¢siny — sin ¢ sin vy cos 7y

Let Ryy = R(01,¢1) " R(6a, o), where (01, ¢1), (62, ¢2) € [0,7] x [0,27] are the po-
lar coordinates of x, z € C(es, ), respectively. It is easy to verify that R(61,¢1),
R(02,¢2), Rxz € SO(3). Moreover, Rx := R(01, ¢1)x € S? and Rz := R(62, ¢2)z €
S2. By Proposition 2.5,

2041 20+1 (2£+ 1)
Z T, (X7 4(2) = £ > Vir(Rx)Yyk(Rz) = TP[(XTRXZZ)7

k=1
7
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where the last equality follows from (2.2). Thus, (2.11) holds. Taking r = 0.57, we
obtain (i), and (ii) follows from definition of Ry,. The proof is completed. d

Remark 2.9. In [15], the authors provided an addition theorem for {Hy} as

20+1

2
Z Hgk Xl)Hg k(Xz) VX1,X9 € Si

(2.13) Py(xy -x2) = W+

However, the following example shows that the equality in (2.13) does not hold.

Let £ = 1, x; = (1,0,0)7 and x3 = (1/3/2,0,1/2)", we have Hi(x1) =
H173(X1) = 0, Hl,l(xl) = —\/3/27'( and Hl’l(Xg) = H1’3(X2) = 0, HLQ(XQ) = \/3/27‘(.
Thus, 28 570 Hyk(x1)Hik(x2) = 0, but

Pi(x1-x2) = P1(V3/2) = P (V3 - 1) = V3 -1 #0,
which implies that (2.13) in [15] is not correct.

Remark 2.10. Let {77} be the set of orthonormal functions over C(es,r), let
C(X,r) be another spherical cap with center X € S? and the same radius r, and
R € SO(3) be a rotation matrix such that RX = e3. Then the functions 7, (Rz),
Vz € C(X,r) are Lo(C(X,r))-orthonormal, i.e.,

C(®,r C(es,r

3. Quadrature rules on spherical caps. In this section, we show that spheri-
cal cap t-subdesigns induced by a spherical t-design provides equal weight quadrature
rules for the numerical integration of zonal polynomials and orthonormal functions
{T} .} over a spherical cap C(es,r) with radius r € (0,7) and nonnegative weights
rules for the numerical integration of spherical harmonics over C(es,r).

3.1. Quadrature rules for p € P;(C(es,r)). In this subsection, we present
positive weights quadrature rules on C(es,r) by the spherical cap t-subdesign. We
begin with the following lemma.

LEMMA 3.1. Let C(es,r) be the spherical cap with radius r € (0,7) and X be a
spherical cap t-subdesign over C(es,r) induced by a spherical t-design Y,. Then, the
following quadrature rule is exact for all Ty, with £ <t, Vk € {1,2,...,20+ 1},

n

1 1
1 s Ty (x)do(x) = ~ 3 T7L(xy), % € 2.
3-1) 2m(1 —cosr) /c(ew) i () () et cr(x5), x5 € Xy

Proof. Let k =2/(1 —cosr). For £ =0,1,...,t, k=1,2,...,20 + 1, we have

VEn . _
n Yoo ifl=0
E Ty (x5) E Yer(yj) \/; /Sz Yo r(y)dw(y) = { V(‘)“r 040

where y; € Y, the first equality follows from (2.6), the second equality follows from
definition of spherical ¢-design and the last equality follows from Yy 1 (y) = 1/+/4,
Vy € $? and orthogonality of Yy .

On the other hand,

irif =

v e / T7 ()T (X)dw(x) = 4 V&
»/C(eg,r) @k C(es,r) Zk 01 0 1f€7é07
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where the second equality follows from 7, (x) = /7%=, Vx € C(e3,r) and the last
equality follows from (2.5). The proof is completed d

Based on Lemma 3.1 and Proposition 2.6, we can derive the following nonnegative
weights quadrature rule for the numerical integration of spherical harmonics over

6(63, ’I“).
THEOREM 3.2. Adopts the conditions of Lemma 3.1. Then we have the following

equality for any spherical harmonic Yy ), of degree at most t,
(3.2)

27 (1—cosr) noy ) . _
Yo 1 (x)dw(x) = n Zi:l () i k= 1 where x; € X>.
’ 0 th. I
Cles,r) otherwise,

Proof. Since foh cos(k¢)dgp = 0 and f027r sin(k¢)d¢ = 0 for any integer k, we have
fC(eg " Yi k(x)dw(x) = 0 if k # 1. By Proposition 2.6, we have

/ Y1 (x)dw(x)
C(eg,’!‘)

/4

L(e3,r) ; 6ZT74T,1 (X)dw(x)

:27r (1 —cosr) ZZ@ _ — cosT) ZYMXJ

j=11i=0

where the first and last equalities follow from Proposition 2.6 by taking k¥ = 1, and
the second equality follows from Lemma 3.1. Thus, we obtain (3.2). |

COROLLARY 3.3. Let C(es,r) be the spherical cap with radius r € (0,7) and XY
be a spherical cap 2t-subdesign over C(es,r) induced by a spherical 2t-design Y,,. For
any spherical polynomial p € Py(S?) of degree L < t, we have

2m(1 —cosr
B3 [ st - TSI SS  y), x e
C(es,r) j=1+¢=0
where Q1 = 4% Z;L:lp(yj)}/@,l(y])7 y; € yvu = 07 17 s 7L'
Proof. For any spherical polynomial p € Pi(S?) of degree L < t, there are
unique oy € R such that p = Z(g OZ%H e kYo € Pi(S?). Since Y, is a spher-

ical 2t-design, we have agy = [o p(y)Yer(y)dw(y) = 35 p(yi)Yer(yi), £ =
0,1,...,L<t, k=1,2,...,20 + 1. Moreover,

¢
/ => Oém/ Yo, (x)dw(x)
C(e3,’r) (63,7)
27(1 — cosr) L
=> Yo (x)dw(x) = ZZWlYM X;),

=0 C(es;r) =0 j—1

where the second equality follows from fc(e3 ” Yok (x)dw(x) = 0 if k& # 1, and the
third equality follows from Theorem 3.2. The proof is completed. ]

3.2. Equal weight quadrature rules. In this section, we show that the spher-
ical cap t-subdesign induced by a spherical t-design provides an equal weight quadra-
ture rule that integrates exactly zonal spherical polynomials of degree < t.

Recall p = 22:0 ap1Yy1 € Py(C(es,r)), where apq1 € R, a zonal polynomial of
degree at most ¢ on C(eg, ).
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THEOREM 3.4. Let C(es,r) be the spherical cap with radius r € (0,7) and XY be
a spherical cap t-subdesign over C(es,r) induced by a spherical t-design Y,,. Then the
following equal weight quadrature

n

1 1
o 71 N —_ — . . X)}
2m(1 — cosr) /c<e3,r)p(x)dw(x) =D px)), X €X

j=1
holds for any zonal polynomial p € P;(C(es,r)) of degree at most t.

Since Theorem 3.4 is a direct result of Theorem 3.2, we omit its proof here.
Next, we present equal weight quadrature rules for the numerical integration of
zonal spherical polynomials over any spherical caps with radius r € (0, 7).

LEMMA 3.5. Adopt conditions of Theorem 3.4. Let G, be defined as (2.3), for
any L <t, we have

1 1 &
- d == E x>
2m(1 — cosr) /c(em Crlboeniab) =5, 2, Guboen) 3 €

Proof. Taking y =x € C(es,r) and z = e3 in (2.3), we have
G, €3) = g 2 P 3) = Xilg oY (x) € Pi(S?),

where ¢, = 2“1 ,€=0,1,...,L <t. By Theorem 3.4, we obtain this lemma. ]

THEOREM 3.6. Adopt conditions of Theorem 8.4. Then, for any fized z € S* and
L <t, we have

1 1 n
1 ) d = — e e XY,
27(1 — cosr) /C(zﬂ.) Guly, 2)dw(y) n ; G.(xj,e3), x; €A,

Proof. For a fixed point z € S?, let R € SO(3) be the rotation matrix of z such
that Rz = e and Ry € C(es,r) for y € C(z,r). By the rotational invariance of G,
we have G, (y,z) = GL(Ry,eg,), y € S%. Thus, for any L < t,

Jetar Gy 2 = Jear Cr(RY, €3)dw(y) = [o(q, ) Gi(x, €3)dw(x)

— 2rlizcosr) yon. GL(Xj»ezs)v

where the second equality follows from x = Ry, RTR = I and det(R) = 1 and the
last equality follows from Lemma 3.5. The proof is completed. ]

In the following, we give the equal weight quadrature rule for the numerical inte-
gration of any function f over C(es,r) that has the following expansion

L 2041
(3.4) f(x)= Z Z ar Ty (x), x€C(es,r), where asy € R.
=0 k=1

THEOREM 3.7. Adopt conditions of Theorem 3.4. Then the quadrature rule

1 Iy
3.5 — — e XY
(3:5) 27(1 — cosr) /c(ewo) f(x) n ZZ: X5 € s

holds for any function f with expansion (8.4) and L <t
10
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Proof. By (3.4) and Lemma 3.1, we obtain

Jetonm £ ¥)dw(x) = XQOZ%HWkk%T 17, (x)dw(x)
Ze 0 Z%H Ak Zj:l Te,k(xj) = % Z?:l f(Xj)a xj € A

where k :=2/(1 — cosr). The proof is completed.

|

COROLLARY 3.8. Let C(es,r) be the spherical cap with radius r € (0,7) and X be

a spherical cap 2t-subdesign over C(es,r) induced by a spherical 2t-design Yi,.

for any function f with expansion (3.4) and L <t, we have

1

ml_mr)/(;(es,T)f< )T () oo fo] Tiuxy), x; € A7,

(=0,1,...,L, 1<;=1,...,2é+1.

Proof. Let k =2/(1 —cosr). By (3.4), we have

n r n L 20/ 41 r r
oo F) T (%) =320 2o 2o e T g (%) 17, (x5)

L 20
=k Y0y Yo Yo ok Yo s (75) Yer(y;)

7% Zf':o Z%:Jrll Qe k! fsz Yo i (}’)Yé,k(}’)dw(}’) = %Oée,k
=i fc(es,r) f(X)Ter,k(X)dW(X),

Then,

where y; € V,, the second equality follows from (2.6), the third equality follows from
that Y, is a spherical 2¢-design, the fourth equality follows from orthogonality of Yy j
and the last equality follows from

2041 .
fC(es,r) Ze 0 KT ()T 4 (x) fc(e“)f I} o (%) dew(x).

Thus, we complete the proof.

|

4. Approximation on spherical caps. In this section, we study approxima-
tion and sparse signal recovery using orthonormal functions {TZ .+ and spherical cap
t-subdesigns over the spherical cap C(es,r) with radius r € (0, 7).

4.1. Non-polynomial approximation. Inspired by hyperinterpolation [31],
which is a discretization of the Ly(S?) orthogonal projection of a continuous func-
tion f on the sphere onto P (S?) by a quadrature rule, we study non-polynomial ap-
proximation of a continuous function over C(es,r) by constructing a non-polynomial
function through spherical cap t-subdesigns and orthonormal functions {TZT, Bt

Let XY C C(es,r) be a spherical cap t-subdesign induced by a spherical ¢t-design
YV, C S? for t > 2L, following [31], we define the “discrete inner product” correspond-
ing to the Ly inner product on C(es,r) as

(=TS f)g), % € A2 g € ClCles, ).
j=1

and the non-polynomial approximation of a continuous function f € C(C(es,r)) as

(4.1)

L 20+1

Tof =Y (LT Ty
=0 k=1
11
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Notice that T, f € Lo(C(es,r)). It is easy to verify that
(4.2) <Té’:k7 T€7;7k/>]142(c(63,7')) - <Té’:k7 T€7;7]<;’>’IL = 6[@/5kk/

for any ¢, ¢ satisfying { + ¢ < 2L, k=1,...,20+1, k' =1,...,2¢' + 1. Hence if
f € C(C(es,r)) has the exact expansion (3.4) with 2L < ¢, then T, f = f.
The following lemma presents a property of 7.

LEMMA 4.1. Let C(es,r) be the spherical cap with radius r € (0,7) and X be
a spherical cap t-subdesign induced by a spherical t-design Y, for t > 2L. Given

feC(Cles,r)), let T, f be defined by (4.1). We have (To f, Tofin < {f, fn-
Proof. By (4.1),

r L 20/ +1 -
(Tof s T dn = 2p—o S (s Ty i )nTp s Teg)n = (T jms VES L,
where the last equality follows from (4.2). We obtain (7, f, 7. f)n = {f, T.f)n. Thus,

=T f =Tehn = o T, Tef)on =20, Tef)n = (s on — (T fs Te f)m,
which implies (T, f, T. f)n < (f, f)n due to (f =T f, f =T f)n = 0. a

Based on Lemma 4.1, we derive the Ly(C(es, r)) approximation error bound.

THEOREM 4.2. Let C(es,r) be a spherical cap with radius r € (0,m) and XY be

a spherical cap t-subdesign induced by a spherical t-design Y, for t > 2L. Given
feC(C(es,r)), we have

(4.3) ”TLleLz(C(es,r)) < /27(1 — cos 7’)||fHOOv

(4.4) ITef = fllLacesr)) < 2v/2m(1 —cosr)EL(f),

. ¢
where B, (f) = infa,, er |f — Xy o Soncy el kllsc-

Proof. Let k =2/(1 — cosr). Inequality (4.3) follows from

ITeFIE scienry = (Tefs Tef)n < (s fln = 35 251 (F(x))? < ZEIIFIE, x5 € &Y,

where the first equality follows from (4.2) and the first inequality follows from Lemma
4.1. Now we prove (4.4). Let h(x) = ZeL:o Zié:ll a1 Ty, (%), x € C(es,r), where
oy, € R. We have

ITef = fllaeesry) = ITe(f —h) +h = fllL,(ciesm)
(4.5) ST (f = Plleaccies,ry) + 1h = fllacces,m)

AN = Blloe + /2218 = flloo = 44/ZI1f = Blloc

Since (4.5) holds for arbitrary g x € R, we choose ay i such that || f — k|l = EL(f).
we obtain || 7. f — fllL,ces,r)) < 2v/27(1 —cosr)E,(f). The proof is completed. O
Note that if h in (4.5) is a zonal polynomial of degree L, then E,(f) is the
error of best uniform approximation to f by a polynomial of degree at most L, and
the convergence rate of F,(f) has been widely studied, see for example [4, 13] and
references therein.
In the following, we give the || - ||oo approximation error bound on C(es, ).

12

This manuscript is for review purposes only.



388
389
390
391

392

393
394
395
396

397

399

405
406
107
408
409
410

411
412

THEOREM 4.3. Adopts the conditions of Theorem 4.2. Given f € C(C(es,r)), we
have

(4.6) 172 flloo < (L + D[ flloo
(4.7) ITef = fllo < (L +2)EL(f),

where By (f) = infa, ,er | f = 3iso iy aesTfylloo-

Proof. Let k =2/(1 — cosr), z € C(es,r) be any fixed point and R, = R(6, ¢),
where R(,) is defined as (2.12) and (6, ¢) € [0,7] x [0, 27] is the polar coordinate of
z, then R,z € S? and

2041 n r r
|T.f(z )‘—|Ze 02 ke (m Zj 1f(Xj)Ték(xj)>Ték(z)‘
2041
= 3001 () Yoo S Yeu(93) Ve (Raz)| < | flloe 25y 4FIG(y;
< flloo VAT (), G2 (v, Ra2))? = || flloo VAT (J52 G2 ( y,RzZ)dW(Y))
= ||l VATGL* Ry Ryz) = (L + D) flloc: %5 € X2, 5 € Vi,
where the second equality follows from Proposition 2.5, G is defined as (2.3), the
second inequality follows from Cauchy-Schwarz inequality, the third equality follows
from definition of ), and the last two equalities follows from Theorem 5.5.2 in [32].

By the arbitrariness of z € C(es,r), we obtain || 7, fllcc < (L + 1) f|loo-
Following a similar proof of (4.5), combing (4.6), we obtain (4.7). |

COROLLARY 4.4. Adopts the conditions of Theorem 4.2, we have

27 (1 — .
w jz::lf(xj) - /C(e&r) f(x)dw(x)| <4n(1 —cosr)E.(f), x; € X;).

Proof. Let k =2/(1 — cosr). It is easy to see that

<

fC(eg,'r) 7-Lf(X)d ( ) Zé 0 Z2£+1<fﬂ TZ k/imn fC (es,r) Z k:( )dw(x) = 4i<fa T&1>n

e e JOa) T () = 5 05 FOxy), X € XY

where the second equality follows from orthogonality of 77 and ¢ 1 (x) = \/x/(4m).
Then, we obtain

47" Z] 1 f XJ fC(eg r) f )‘ = “[C(e;;,r) 7—Lf<x) - f(X)dUJ(X)‘
< V/2m(1 = cos7)|Tof - fH]Lz(C(eg,r)) < dm(1—cosr)EL(f),

where the first inequality follows from Cauchy—Schwarz inequality and the last in-
equality follows from Theorem 4.2. The proof is completed. 0

COROLLARY 4.5. Let m be an integer and f be an m-times continuously differen-
tiable zonal function with all such derivatives in C(C(es,r)) such that f(x) = g(x-e3),
x € C(es,r), where g : [cosr 1] = R is m-times continuously differentiable. Then,

By (f) = infa, er [lf =S¢ o S ae i Tl < O(L™™).

Proof. We adopt the notations in the proof of Theorem 2.8. Define 77 f(x) =
fc(es ” f(2)VL(Rxx - Ryz)dw(z), Vx € C(es,r), where Rx = R(61,¢1) and R, =
13
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[
z € C(es,r), respectively, and V7,(-) = Z?ﬁgl X(%)%Pg(), where x : [0,00) —
[0,1] is a C* function such that x(s) = 1, if 0 < s < 1, x(s) = 0, if s > 2, and
0<x(s) <1lforl<s<2 By(25)and (2.11), T7 f is a zonal polynomial. Then,

by Corollary 4.3 in [4], E.(f) < ||f —T(, 5 fllc <OL™™). d

R (02, d2) with (01,¢1), (02,¢02) € [0,7] x [0,27] being the polar coordinates of x,
)
s

4.2. Sparse signal recovery on the hemisphere. In this section, we apply
spherical cap t-subdesigns and orthonormal functions {Téf ) to sparse signal recovery
problems on C(es, ) with radius r € (0, 7), where the observed data ¢ € R™ is related
to a discrete signal v* € R™ located on a grid X,, C C(es, r) according to

c=Av" 47,

where 17 € R™ represents the noise and A € R™*" is a system matrix, which can be
defined by a class of functions and a set of points on C(es,r). To recovery the signal
v* on C(es3,r), we use the optimization problem

(48) min V3= Sl st AV =l <o,

where 0 < ¢ < 1,0 >0, > 1, and the matrix A € R™*" with elements (A)p4s ; =
T7 (%) X5 € Xy £=0,1,..., L k=1,2,...,20+ 1, m= (L +1).

Notice that if A}, is a spherical cap t-subdesign with ¢ > 2L, we have AAT =
FrTocosry I which follows from the optimization framework in [10] with [ = 2.

In this paper, we mainly consider the case that the noise 1 comes from some heavy-
tailed distributions or contains outliers with [ = 1. We assume that the feasible set
of (4.8) is nonempty and ||c||y > o so that 0 is not a solution. Notice that model
(4.8) has been well studied in [38], hence we make a simple sketch of the main results
here and refer the reader to [38] for details. By Theorem 2.1 in [38], any solution
of problem (4.8) is on the boundary of the feasible set. It is worth noting that by
Theorems 2.2 and 2.3 in [38], without any condition on A, there is a g € (0,1) such
that for any ¢ € (0, q], every optimal solution of (4.8) with [ = 1 is an optimal solution
of the following sparse optimization problem

(4.9) min [vllo =S il st AV — el <o

Since problem (4.8) is nonconvex and non-Lipschitz continuous, it is hard to find
an optimal solution. Thus, we will focus on finding a stationary point of (4.8) (see
Definition 3.1 in [38]) by solving a sequence of exact penalty problems of (4.8), i.e.,

(4.10) min V]2 + u([Av = ] - 0)-.

where u > 0 is the penalty parameter and (-)+ = max{-,0}. The exact penalization
results can be found in Appendix C in [38]. Due to the nonsmoothness of both parts
in (4.10), we apply the smoothing penalty method in [38] for finding a stationary
point of (4.8). For details about the algorithm and convergence analysis, see section
3 in [38].

In Subsection 5.3, we show that v* can be efficiently recovered by choosing X, to
be a spherical cap t-subdesign with ¢ > 2L using optimization model (4.8) with [ =1
when the noises 7 follow Student’s t-distribution.

14
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5. Numerical simulations. In this section, we present numerical evidence on
the quality spherical cap t-subdesigns for numerical integration, non-polynomial ap-
proximation and sparse signal recovery.

5.1. Geometry of hemispherical t-subdesigns. In this section, we show the
geometrical properties of hemispherical ¢-subdesigns &Y induced by spherical ¢-designs
YV, with n = (¢t + 1)? [9]. We denote by

h(XY) = SUPy cg2 Mily, cay dist(y,x;) and &(XY) := min;»; dist(x;,x;)

the local mesh norm of XY and the separation distance of &Y with respect to Si,
respectively. We know that if V, = {y1,...,¥n} C S? is a spherical t-design, then
the set RY,, = {Ryy,...,Ry,} C S? is a spherical t-design for any rotation matrix
R € SO(3). Moreover, §(YV,) = 6(RY,), for any R € SO(3). Let XY and X be
the hemispherical ¢-subdesigns induced by a spherical ¢-design ),, and the spherical
t-design RY,, respectively. Then, we have
(5.1) mingeso(s) §(Ay) < 6(AY) < maxgeso(s) 0(Xp).

In the following, we show the separation distance for hemispherical ¢-subdesigns
XY induced by spherical ¢-designs ), for ¢ < 60 in Figure 1. We also show the
separation distance for hemispherical ¢-subdesigns X*” induced by spherical ¢-designs
RY),, where R € SO(3) is randomly chosen. The local mesh norm of hemispherical
t-subdesigns XY estimated by using a set of generalized spiral points [6] over the
hemisphere with 500,000 points is shown in Figure 1.

Separation distance

*o(A7)

Local mesh norm

ool w W)
e
ko () ! )
e « 6
LT S22+ 1) —-- 1w/t
g 0 IRy 08
o \\ il xxm(x%&x 0.27/(2t+1) P
T foca L
* B ol &0
I, \
N *f**-ﬁ*- % )
x *
iU} g 04
102 Ty P e

Degree Degree ¢

Fic. 1. Left: the separation distance for hemispherical t-subdesigns and corresponding spherical
t-designs with t = (n + 1)2. Right: local mesh norm of hemispherical t-subdesigns.

5.2. Numerical integration and non-polynomial approximation. In this
section we apply the hemispherical ¢-subdesigns XY (resp. X®¥) induced by computed
spherical t-designs ), (resp. RY,) with n = (¢ + 1)? points to evaluate integration
and non-polynomial approximation on the hemisphere. We choose the following two
functions:

Fr(x) =(4]lx — esll + 1)((1 — [[x — es])+)*,
F2(x) =((0-25 — ||Jx = %*)4)°,

where x € $2, % = (1,1,4)/v/18. Note that f; is a Wendland function [36] has support
C(es,m/3). It is nonsmooth at ez and at the boundary of C(es,7/3). fo is in the

15
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Solobev space H*(S?) for s < 3.5 [22] and has support on a cap C(X, arccos(7/8)) C S%.
It is nonsmooth at the boundary of its support. We also apply spherical cap t-
subdesigns ZY'' and ZY* induced by Y, to evaluate integration and non-polynomial
approximation of f; and f5 on their support sets, i.e., Q; := C(es,7/3) and Qy :=
C(x, arccos(7/8)), respectively. For convenience, we set k1 = 4 and ko = 16.

5.2.1. Integration. The approximate values of the integral fsi fi(x)dw(x) and

fQ fi(x)dw(x), i = 1,2, computed by the software Maple are

Tsz (f1) = To, (f1) = 0.448798950 and  Zg: (f2) = To,(f2) = 0.003067963.

We show the absolute errors |Zgz (fi) — N L) T, (i) — 2= 300 ful2h)],
X; € XY

Y, zj- € ZY' i = 1,2, as a function of degree t in Figure 2. From Figure
2, we can see that the absolute errors are bounded by /27 ||H; fi(x) — f; (X)Hb(si)
(t < 30), Val|Tefi(x) = fi(x)[lL,) (t < 30), respectively, and decreases rapidly
to around 107 at ¢t = 60. Specifically, the absolute error and L, error for fo, are
approximately zero for ¢ > 3. Combing Figure 1, we observe that the separation
distance of hemispherical t-subdesigns affect the absolute errors slightly.

+ Absolute error A7) \ * Absolute error A7

Absolute error X \ Absolute error X%

"’°i& + Absolute error 23 ° “&h s Absolute error 2}
= -t Aﬁ\", -t

w2l * V2 e~ fillia e *\LM * V2l = Al
2 ‘}\‘:"*a.m. * AT = Al 5 PR wowky |+ VAT Tefy = filluaces
H 't:'}‘i#.. u 5 10° G
g N5 g "~
5 10+ -y \ﬂ#::.'*":w 2 P o v
2 hioacticWitgon o S 100 Frolong wosiat
2 e, 2 P e
< e bt < e

CUINE i Y 10710
i 107 btk

10 20 30 40 50 60 0 10 20 30 40
Degree ¢ Degree t

50 80

F1G. 2. Absolute errors for f1 (left) and fo (right).

5.2.2. Non-polynomial approximation. In this section, we apply hemispher-
ical 60-subdesign X37,, and spherical cap 60-subdesigns 2375, induced by a computed
spherical 60-design Y3721 to consider the non-polynomial approximation errors for f;,
i = 1,2, on the hemisphere and their support sets, respectively. The Ly norm of the
approximation errors is estimated by

Fi)Laez) & (2 25, 1) = Hofi(x5)[2)2, % € Xy,
s n i i E) Vi
fi(3) Ly (i) = (7%7 Zj:l |fi(zj) - 7-Lfi(zj)|2)23zj € Z3701,

The uniform norm of the approximation errors is estimated by

[HLfi(x) = fi(x)[loo = maxxexe [ fi(x) — Hofi(x)],
7. fi(2) = [i(2)]| oo = maxzeze [fi(2) — T.fi(2)];

where X° C 2, Z0 C O, 25 C Qy are sets of generalized spiral points [6] with
500000, 250000, 62500 points, respectively.

The approximation errors for f; and f; at every L < 30 are shown in Figures 3 and
4. From Figures 3(a) and 4(a), we observe that the Ly errors are bounded by uniform

16

1H.fi(x) —

T2 fi(x) — i=1,2.

i=1,2,
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errors. In Figures 3(b)-(c) and 4(b)-(c), we show the pointwise errors |H, f;(x) — fi(x)]
over X°, |T. fi(z) — fi(z)| over Z¢ for L = 30, i = 1,2. We observe that the uniform
error for f; attained at e3 and the uniform error for fo attained at a point around
the boundary of spherical cap C(X,arccos(7/8)). Specifically, the pointwise errors
for fs estimated on Z3 are approximately zero. Besides, the separation distance of
hemispherical t-subdesigns does not affect the approximation errors.

Estimated approximation errors for f;
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Fic. 4. Estimated approzimation errors for fa.

We further compare the numerical integration and approximation of f; and fo
over three different domains, i.e., S2, Si, Q; and o, using spherical harmonics {Yp 1 }
and a spherical ¢-design ), orthognormal functions {Hy} and the hemispherical
t-subdesign & induced by Y, orthognormal functions {77} and the spherical cap
t-subdesign Z>-* induced by V,, i = 1, 2, respectively. The results are shown in Figure
5, where the left column is the absolute errors of numerical integration, the middle
column is the Ly approximation errors and the right column is the || - || approxima-
tion errors. We observe that the approximation over their support sets achieves the
smallest absolute error of numerical integration, Ly and || - || approximation errors.
Thus, both spherical cap t-subdesigns and orthonormal functions {TZ’: ) are promising
for numerical integration and approximation of functions over spherical caps.

5.3. Sparse signal recovery on the hemisphere. To construct the matrix
A and vector c¢ in optimization problem (4.8), we choose the following four point sets
Yp, on the sphere to derive point sets XY on the hemisphere:
e Spherical t-designs (SF).
e Maximum determinant (MD) points [33, 39]: the set of points {y1,...,yn} C
S? which maximizes the determinant of Y'Y, where (Y)e 1, = Yor(y;),

17
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F1G. 5. Estimated errors of numerical integration (left column), non-polynomial approzimation
(middle and right columns) for f1 and fa.

525 £=0,1,....t, k=1,...,20+1,j=1,...,n.

526 e Tensor product (TP) points: the set of points equally spaced in polar angle
527 ¥ € [0, 7] and azimuthal angle ¢ € [0, 27), i.e., ¥; = ”(22:;:1), 1=0,1,...,n9—
528 1, ¢; = 27%3, j=0,1,...,n4 — 1, which gives n = nyng distinct points on S%.
529 e Gauss-Legendre (GL) points [35]: the set of points uses Gauss-Legendre
530 points with cos 9 € (—1,1), 9 € [0, 7], and equally spaced points in ¢ € [0, 27).

531 We denote by sSF the hemispherical t-subdesign induced by SF. Similarly, we denote
532 by sMD, sTP and sGL the point sets on Si induced by MD, TP, GL, respectively in
533 the same way as in Definition 1.1.

534 The four point sets SF, MD, TP, GL on the sphere were compared in [11] for
535 sparse signal recovery on the sphere. We show some properties of the four point sets
536 sSF, sMD, sTP and sGL on Si in Table 1, where oax(A) and opmin(A) are maximal

537 and minimal singular values of A € R(E+1)?xn generated by the four point sets and
538 {Hgy} with L = 15, respectively. In Table 1, the local mesh norm of the four point
539 sets is estimated using spiral points [6] over the hemisphere with 500,000 points. In
510 Figure 6, we show the separation distance 6(X;Y) as a function of the number of points
541 n for sSF, sMD, sGL, and sTP. We show the distribution of points on Sa_ in Figure

6.
TABLE 1
The four point sets on the hemisphere.

Node | n ¢t  h(&XY) 6(&Y) 6(X)N?  omax(A)/omin(A)

sSF 1014 44 0.1107 1.8e-2 0.58 1.0000

sMD | 1024 31 0.1167 1.6e-2 0.49 1.0605

sTP | 1024 30 0.0987 4.8e-3 0.15 3.7733

sGL | 1058 45 0.0726 9.9e-3 0.32 3.0508
542
543 We apply the smoothing penalty method (SPel.1) proposed in [38] to solve prob-
544 lem (4.8) with [ =1, and Algorithm 4.1 in [11] to solve problem (4.8) with [ = 2.
545 In the numerical experiments, we first generate A using sSF, sMD, sGL and sTP
546 as the way in Subsection 4.2 with L = 15, respectively. Next we randomly choose a
547 subset I C {1,2,...,n} of size |I| with the uniform distribution and generate a vector

18
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u € Rl with i.i.d. standard Gaussian entries. Then, we define the sparse vector
v* by setting v§ = u and vi. = 0, and set ¢ = Av™ + d7, where § > 0 is a scaling
parameter and 7 is the noisy vector with each entry independently following Student’s
t(2)-distribution. Finally, we set o = §||n||; for I = 1,2.

The numerical results are presented in Table 2, where v denotes the recovered
signal, “rank” is the rank of A ;y with J = supp(Vv), “feasibility” is given by max{||Av—
c|l; — 0,0} and ||v*& V||p denotes the number of nonzero elements of v* and v in
common and “false” denotes the number of elements that v* is zero while v is nonzero.

TABLE 2
Signal recovery on the hemisphere with different nodes: ||[v*|lo = |I| = 120, ¢ = 0.5 and § = 1073.

Nodes | n [ feasibility [[v*—¥[| rank [[V[o [[v*&V]o false
Problem (4.8) with [ = 1 solved by SPeLl in [38]
sSF 1014 0 0.85 133 133 114 6
sMD 1024 0 4.48 200 200 87 33
sGL 1058 0 3.18 129 129 86 34
sTP 1024 0 3.11 115 115 85 35
Problem (4.8) with | = 2 solved by Algorithm 4.1 in [11]

sSF 1014 2.4e-16 2.70 161 161 94 26
sMD 1024 1.0e-16 4.79 196 196 83 37
sGL 1058 0 3.80 144 144 76 44
sTP 1024 0 5.05 137 137 67 53

We also show the recovered signals and pointwise errors by using SPeLl for
problem (4. 8) in Figure 7, where the first column illustrates the function values
) = SR S ey Hog(x;), x; € XY obtained from the noisy coefficients ¢
and the four point sets. From Table 2 and Figure 7, among the four point sets,
the hemispherical ¢-subdesign (sSF) induced by spherical ¢-designs performs the best
regarding the recovery error and the position of nonzero elements.

6. Conclusion. We first introduce a new set of points on the spherical cap
C(es,r), r € (0,7) and call it the spherical cap ¢-subdesign induced by the spherical
t-design in this paper. Using the relation between spherical harmonics and orthonor-
mal functions {7}, } established in Section 2, we present an addition theorem for
{Tg; )+ and show that the spherical cap t-subdesign provides an equal weight quadra-
ture rule integrating exactly all zonal polynomials of degree at most ¢ and functions
expanded by {7}, } derived from Legendre polynomials of degree at most ¢ on C(es, r).
Moreover, we apply the spherical cap t-subdesigns and {Tg: &t for non-polynomial ap-
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Al

FI1G. 7. Recovery results by the four point sets sSF (row 1), sMD(row 2), sGL(row 3), and
sTP(row 4). The function values from noisy coefficients, the true signals, the recovered signals and
the pointwise errors are given in column 1 to column 4 at these points, respectively.

570 proximation on C(es,r), and derive error bounds for the approximation. We also
571 apply the spherical cap t-subdesigns to recover sparse signals on C(es, ). Our theo-
572 retical and numerical results show that the spherical cap t-subdesigns are promising
573 for numerical integration and approximation on C(ez, r).
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Appendix A. Slepian functions on north polar caps C(esz,r). In this ap-
pendix, we give a brief introduction to Slepian functions [30] on C(es, ) with r € (0, 7].
For any t € Ny, let d; := (t +1)? and D € R%**% with elements

(Al) (D)€2+k,é’2+k’ = fC(eg,T) n7k(X)n/7k/(X)dw(X),
00 =0,1,....t, k=1,2,...,204+ 1, K =1,2,...,2¢' + 1. From [30], D is a real,
symmetric and positive definite matrix whose eigenvalues satisfy 1 > Ay > ... >

Ad, > 0 with corresponding eigenvectors vi,...,vq,. (We choose vy,...,vq, to be
orthonormal.) The Slepian functions [30] are defined by

(A.2) Si(x) = Yo S vh Yer(x), i =1,2,...,dy,  Vx €S,

where v; = (v) 1,0} 1,0} 5,0} 3,...,0f011)" € R* are the eigenvectors of D. The
Slepian functions are polynomials of degree < t and admit the following property

(A3) fC(eg,r) Sz(X)S] (X)dw(X) = )\i6ij7 fSQ Si(X)SJ‘(X)dw(X) = 51’]’-
Therefore, for any polynomial p € P;(S?), there are unique {ay } and {3;} such that
POO) = i S anaYer(x) = S0, BiSi(x), Vx €S

Moreover, 3; = 22:0 Ei@ll ag’kvzk, i=1,...,d;.

It is worth noting that fC(eg,T‘) Yo (%)Y 1 (x)dw(x) = 0 for k # K/, thus D is
a sparse matrix. Following our discussions in section 3, let Z = be a spherical cap
4t-subdesign induced by a spherical 4t-design ),,, we obtain

. o+
(D)2 sk o2ir = w S S e Y1 (zi), 7€ ZY

where Corl = %Z?:l }/é,k(yj)}/f',k(yj)}/@”,l(Yj)7 Yy S yn Thus, we obtain exact
discrete D on C(eg, r) for any t € No.
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