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STOCHASTIC VARIATIONAL INEQUALITIES: RESIDUAL
MINIMIZATION SMOOTHING SAMPLE AVERAGE

APPROXIMATIONS∗

XIAOJUN CHEN† , ROGER J.-B. WETS‡ , AND YANFANG ZHANG†

Abstract. The stochastic variational inequality (VI) has been used widely in engineering and
economics as an effective mathematical model for a number of equilibrium problems involving un-
certain data. This paper presents a new expected residual minimization (ERM) formulation for a
class of stochastic VI. The objective of the ERM-formulation is Lipschitz continuous and semismooth
which helps us guarantee the existence of a solution and convergence of approximation methods. We
propose a globally convergent (a.s.) smoothing sample average approximation (SSAA) method to
minimize the residual function; this minimization problem is convex for the linear stochastic VI if the
expected matrix is positive semidefinite. We show that the ERM problem and its SSAA problems
have minimizers in a compact set and any cluster point of minimizers and stationary points of the
SSAA problems is a minimizer and a stationary point of the ERM problem (a.s.). Our examples come
from applications involving traffic flow problems. We show that the conditions we impose are satisfied
and that the solutions, efficiently generated by the SSAA procedure, have desirable properties.
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1. Introduction. In a deterministic environment, one refers to the problem of
finding x ∈ X that satisfies the inclusion −F (x) ∈ NX(x) as a variational inequality
(VI) denoted by VI(X,F ), also written as

findx ∈ X such that (u− x)TF (x) ≥ 0 for all u ∈ X ;

here F : Rn → Rn is a continuous function, X ⊆ Rn is a (nonempty) closed, convex
set, and NX(x) is the normal cone to X at x. The VI(X,F ) is often solved via a
deterministic optimization problem by using a residual function for the VI(X,F ).

Definition 1.1 (see [10]). A residual function for the VI(X,F ) on a (closed)
set D ⊇ X is a nonnegative function f : D → R+ such that f(x) = 0 if and only if
x ∈ D solves the VI(X,F ).

A good formulation of a variational inequality in a stochastic environment when
F , X , or both depend on stochastic parameters is not straightforward. Even when
just F involves stochastic parameters, say ξ, one might be led to consider a variety of
formulations. Find x ∈ X such that

prob
{− F (ξ, x) ∈ NX(x)

} ≥ α, or − F (ξ̂, x) ∈ NX(x),

(1.1) or E[−F (ξ, x)] ∈ NX(x),
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where α ∈ (0, 1], ξ̂ stands for a guess of the future, and E[·] denotes the expected
value over Ξ ⊆ RL, a set representing future states of knowledge. The last two
formulations are essentially deterministic variational inequalities, the only issues being
how to calculate E[−F (ξ, x)] for the last one and having an undeniable capability

to know the future for the second one; one might consider setting ξ̂ = E[ξ], but
that has been discredited repeatedly including in this article. The first formulation
with α = 1 could be converted to a large variational inequality, involving an infinite
number of inequalities when ξ is continuously distributed, that only exceptionally
would have a solution. When α ∈ (0, 1), the problem takes on the form of a “chance
constraint” and would actually be quite challenging to come to grips with theoretically
and computationally, in addition to having to validate the choice of the α. When
the set X depends on ξ, a meaning can still be attached to the first two of these
formulations but the comments made earlier about such formulations remain valid,
even more so. When seeking to mimic the third formulation one runs quickly into
difficulties trying to justify replacing Xξ by its expectation or trying to compute
E[NXξ

(x) + F (ξ, x)].
There is another way to formulate the problem, even when both F and X are

stochastic, that comes with a “natural” interpretation and leads, at least in the case
we shall consider, to implementable algorithmic procedures. For each realization ξ of
the random quantities, let g(ξ, x) be a function that measures the compliance gap,
i.e., a nonnegative function such that g(ξ, x) = 0 if and only if −F (ξ, x) ∈ NXξ

(x).
The value to assign to g(ξ, x) could depend on the specific application but usually it
would be a relative of the gap function [10, section 1.5.3], and the way to solve the
problem would be to minimize E[g(ξ, ·)] or some other risk measure associated with
the random variable g(ξ, ·). It is this latter approach that will be developed in this
paper for the particular class of variational inequalities described below.

Consider the stochastic VI, where F : Ξ×Rn → Rn is continuously differentiable
in x for every ξ ∈ Ξ ⊆ RL and measurable in ξ for every x ∈ Rn and

Xξ = { x |Ax = bξ, x ≥ 0}
with a given matrix A ∈ Rm×n and a random vector bξ taking values in Rm. If
Xξ = Rn

+, the stochastic VI simplifies to a stochastic nonlinear complementarity
problem:

x ≥ 0, F (ξ, x) ≥ 0, xTF (ξ, x) = 0.

In some applications, A is an incidence matrix whose entries are either 0 or 1 but
the function F and the vector b depend on stochastic parameters (e.g., traffic equilib-
rium problems, Nash–Cournot production and distribution problems). Using mean
values or some other estimates for the uncertain parameters in the model may lead
to seriously misleading decisions.

The following two deterministic formulations have been studied for the stochastic
VI when X is a fixed set X :

• Expected value (EV) formulation [12, 13, 25, 29]: find x ∈ X such that

(1.2) (y − x)TE[F (ξ, x)] ≥ 0, y ∈ X.

• Expected residual minimization (ERM) formulation [1, 5, 7, 11, 15, 16, 33, 34]:

(1.3) minx∈X E[f(ξ, x)],

f(ξ, ·) : X → R+ is a residual function for the VI(X,F (ξ, ·)) for fixed ξ ∈ Ξ [10,
section 6.1].
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As pointed out earlier, the EV-formulation can be viewed as a deterministic
VI(X, F̄ ) with the expectational function F̄ (x) = E[F (ξ, x)]. The ERM-formulation
minimizes the expected values of the “loss” for all possible occurences due to fail-
ure of the equilibrium. Mathematical analysis and practical examples show that the
ERM-formulation is robust in the sense that its solution has minimum sensitivity with
respect to variations in the random parameters [7].

To allow for the dependence of the set X on ξ ∈ Ξ, one needs to extend Defini-
tion 1.1 of the residual function for the classical VI to stochastic VI.

Definition 1.2. Let D ⊆ Rn be a closed and convex set. f : Ξ ×D → R+ is a
residual function of the stochastic VI if the following conditions hold:

(i) For any x ∈ D, prob{ f(ξ, x) ≥ 0} = 1.
(ii) ∃ u : Ξ×D → Rn such that for any x ∈ D and almost every ξ ∈ Ξ, f(ξ, x) = 0

if and only if u(ξ, x) solves the VI(Xξ, F (ξ, ·)).
From Definition 1.1, we can see that Definition 1.2 is a natural extension of

Definition 1.1. Moreover, the residual function can be used to provide error bounds
on the distance from x to the solution set of VI(Xξ, F (ξ, ·)). See [10]. In this paper,
we will not study the theoretical error bounds, but we will provide numerical results
for E[‖u(ξ, x)− x∗‖] and E[f(ξ, x∗)].

The natural residual function

‖x− projXξ
(x− F (ξ, x))‖2

is a residual function for the stochastic VI with D = Rn and u(ξ, x) = x. Here projXξ

is the orthogonal projection of Rn onto Xξ and ‖ · ‖ is the �2 norm. When Xξ = Rn
+,

one has

x− projXξ
(x − F (ξ, x)) = min(x, F (ξ, x)).

The ERM-formulation with this natural residual function would be a nonsmooth,
nonconvex minimization problem.

Other possible residual functions may be defined via the KKT conditions in the
primal-dual variable (x, v) ∈ Rn+m

0 ≤ F (ξ, x) +AT v ⊥ x ≥ 0, Ax− bξ = 0.

However, in the natural residual function and the KKT condition, there are not
recourse variables.

In this article, we rely on the gap function [10, section 1.5] to define a new residual
function

(1.4) f(ξ, x) = u(ξ, x)TF (ξ, u(ξ, x)) +Q(ξ, u(ξ, x)),

where

u(ξ, x) = x+A†(bξ −Ax)

is a recourse variable and

Q(ξ, u(ξ, x)) = min{ zT bξ | AT z + F (ξ, u(ξ, x)) ≥ 0},

A† = AT (AAT )−1 is the Moore–Penrose generalized inverse of A. The gap function
provides a measure for the deviations that will be needed to “adjust” the solution
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of the variational inequality as it is affected by the circumstances, i.e., the random
components of the problem.

In section 2, we show that f is a residual function for the stochastic VI. Moreover,
in the affine case where F (ξ, x) = Mξx + qξ, we show that E[f(ξ, x)] is convex if the
expectation matrix E[Mξ] is a positive semidefinite matrix, that is,

(1.5) xTE[Mξ]x ≥ 0 for all x ∈ Rn.

Luo and Lin [16] dealt with an ERM-formulation for the stochastic VI, with X de-
terministic, by using the regularized gap function as a residual function. Agdeppa,
Yamashita, and Fukushima [1] showed that the ERM formulation using the regular-
ized gap function is convex when F (ξ, x) = Mξx+ qξ and

(1.6) infξ∈Ξ,‖x‖=1 x
TMξx ≥ β0

for some positive constant β0.
Obviously, in the affine case, (1.6) implies (1.5). However, the converse is not

true. It is worth noting that (1.5) does not imply that the probability

prob{Mξ positive semidefinite} > 0.

Example 1.1 in [7] exhibits a stochastic matrix Mξ that satisfies condition (1.5), but
there is no ξ ∈ Ξ for which Mξ is positive semidefinite. Hence, condition (1.5) is much
weaker than (1.6). Moreover, the new residual function (1.4) can be used when Xξ is
a random set.

The main contribution of this paper is to show that the ERM-formulation

(1.7) minx∈D ϕ(x) = E[f(ξ, x)],

defined by the new residual function (1.4), has various desirable properties and to
prove the convergence of smoothing sample average approximation (SSAA) methods
to solve (1.7) by relying on an epiconvergence argument and the properties of inf-
projections [23]. Moreover, we provide efficient methods to solve a class of stochastic
variational inequalities with applications to traffic flow problems. In particular, we
give explicit forms of Q(ξ, u(ξ, x)) and smoothing approximations of f(ξ, x).

In section 2, we show that the function f is a residual function for the stochastic
VI and the objective function ϕ is Lipschitz continuous and semismooth. Moreover,
we prove the existence of solutions of (1.7). For the case where F (ξ, x) = Mξx + qξ,
we show that ϕ is convex if E[Mξ] is positive semidefinite.

In section 3, we define the SSAA function and prove the existence of solutions
to SSAA minimization problems. Moreover, we show that any sequence of solutions
of SSAA minimization problems has a cluster point and any such cluster point is a
solution of the ERM-formulation (1.7) (a.s.). We also show that any cluster point of
a sequence of stationary points of SSAA minimization problems is a stationary point
of the ERM-formulation (1.7) (a.s.).

In section 4, we use examples coming from traffic equilibrium assignment to il-
lustrate the ERM-formulation (1.7) and the SSAA method. We derive an explicit ex-
pression for Q(ξ, x) and its smoothing approximation for a class of stochastic VIs and
show that all conditions used in sections 2 and 3 are satisfied. Moreover, we present
numerical results to compare the solution of (1.7) with that of the EV-formulation.

It is remarkable that for all the applications being considered the only requirement
is that the sampling should be independent and identically distributed (abbreviated
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iid) whereas related convergence results require strong conditions, for example, uni-
form convergence of the approximating functions.

Throughout the paper, ‖ · ‖ represents the �2 norm, Rn
+ = {x ∈ Rn |x ≥ 0}, e

denotes the vector whose elements are all 1, and I denotes the identity matrix. For
a given matrix A = [aij ] ∈ Rm×n, let AK ∈ Rm×|K| be the submatrix of A with
column-index in the index set K ⊆ {1, . . . , n} of cardinality |K|. Let projC denote
the orthogonal projection from Rn onto C, that is, projC(x) = argminy∈C ‖y − x‖.

2. A new residual function. For given ξ, the gap function for the VI(Xξ, F (ξ, ·))
is defined by

g(ξ, x) = max{ (x− y)TF (ξ, x) | y ∈ Xξ}.

It is easy to see that g(ξ, x) ≥ 0 for x ∈ Xξ, and it is known that the VI(Xξ, F (ξ, ·))
is equivalent to the minimization problem [10, section 1.5.3]

(2.1) minx∈Xξ
g(ξ, x).

This minimization problem (2.1) can be written as a two stage optimization problem

(2.2)
min xTF (ξ, x) +Q(ξ, x)
s.t. x ∈ Xξ,

Q(ξ, x) = max{−yTF (ξ, x) | y ∈ Xξ};

from linear programming duality it follows that Q can also be written

(2.3) Q(ξ, x) = min{ zT bξ | AT z + F (ξ, x) ≥ 0}.

Let u(ξ, x) = (I −A†A)x+A†bξ and

D = { x | (A†A− I)x ≤ c}, where for i = 1, . . . ,m, ci = minξ∈Ξ(A
†bξ)i.

It is not difficult to verify that u(ξ, x) satisfies the KKT conditions

0 ≤ u− x+AT v ⊥ u ≥ 0 and Au = bξ

with Lagrange multiplier v = (AAT )−1(Ax− bξ) of the convex minimization problem

min

{
1

2
‖u− x‖2 |Au = bξ, u ≥ 0

}

for a fixed x ∈ D. Hence, for any x ∈ D and almost every ξ ∈ Ξ,

(2.4) u(ξ, x) = projXξ
(x).

Assumption 1. Assume that for all x ∈ D and for almost every ξ ∈ Ξ,

∃ y(ξ, x) such that Q(ξ, u(ξ, x)) = −y(ξ, x)TF (ξ, u(ξ, x)).

Rather than assuming that the second stage program is feasible for all u ∈ Xξ,
Assumption 1 only requires that it is feasible for a much more restricted class, namely,
those u =projXξ

(x) when x ∈ D. In section 4, we show that Assumption 1 holds for
a class of matrices A and vectors bξ that arise from traffic equilibrium problems.
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Theorem 2.1. When Assumption 1 is satisfied, f : Ξ×D → R; as defined earlier
f(ξ, x) = u(ξ, x)TF (ξ, u(ξ, x)) +Q(ξ, u(ξ, x)) is a residual function for our stochastic
VI.

Proof. Let x ∈ D. By the definition of u(ξ, x), we have Au(ξ, x) = bξ and

u(ξ, x) = (I −A†A)x +A†bξ ≥ (I −A†A)x+ c ≥ 0.

Hence u(ξ, x) ∈ Xξ. By definition of f(ξ, x) and Assumption 1, for almost every
ξ ∈ Ξ, there is y(ξ, x) ∈ Rn such that

f(ξ, x) = u(ξ, x)TF (ξ, u(ξ, x)) +Q(ξ, u(ξ, x))

= u(ξ, x)TF (ξ, u(ξ, x)) − y(ξ, x)TF (ξ, u(ξ, x))

= max{(u(ξ, x)− y)TF (ξ, u(ξ, x)) | y ∈ Xξ}
≥ 0,

where the last inequality follows from u(ξ, x) ∈ Xξ. Hence, we obtain prob{f(ξ, x) ≥
0} = 1. Moreover, f(ξ, x) = 0 if and only if u(ξ, x) solves the VI(Xξ, F (ξ, ·)) a.s.

It is this residual function f that gets used in our ERM-formulation (1.7) with
the objective function

ϕ(x) = E[f(ξ, x)] = E[u(ξ, x)TF (u(ξ, x))] + E[Q(ξ, u(ξ, x))].

By Theorem 2.1, ϕ(x) ≥ 0 for all x ∈ D and if ϕ(x) = 0, then u(ξ, x) solves the
VI(Xξ, F (ξ, ·)) for almost every ξ ∈ Ξ. Hence the here and now solution is

xERM = E[u(ξ, x∗)] = x∗ +A†(E[bξ]−Ax∗),

where x∗ is a solution of the ERM-formulation (1.7). By definition of u(ξ, x),

(2.5) AxERM = E[bξ] and xERM ≥ 0.

Moreover, the following proposition shows that xERM is also a solution of our ERM-
formulation (1.7).

Proposition 2.2. Under Assumption 1, if (1.7) has a solution x∗, then

(2.6) xERM ∈ argminx∈D ϕ(x).

Proof. For x ∈ D, let ū = E[u(ξ, x)]. Then, from (2.4)

u(ξ, ū) = projXξ
(ū) = projXξ

(E[projXξ
(x)]).

Moreover, we obtain

u(ξ, ū)− u(ξ, x) = (I −A†A)ū+A†bξ − (I −A†A)x −A†bξ
= (I −A†A)((I −A†A)x +A†E[bξ])− (I −A†A)x
= (I −A†A)A†E[bξ] = 0,

where the last two equalities use (I−A†A)(I−A†A) = I−A†A and (I−A†A)A† = 0.
Hence for any x ∈ D and almost every ξ ∈ Ξ, we have

(2.7) projXξ
(x) = projXξ

(E[projXξ
(x)]).
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From (2.7), for every ξ ∈ Ξ,

u(ξ, xERM) = projXξ
(xERM) = projXξ

(x∗) = u(ξ, x∗),

which, together with ϕ(x∗) = minx∈D ϕ(x), implies

ϕ(xERM) = minx∈D ϕ(x),

which in turn yields (2.6).
It is interesting to note that xERM = x∗ if and only if A†(E[bξ]−Ax∗) = 0. From

(2.6), if the ERM-formulation (1.7) has a solution and A†(E[bξ] − Ax∗) �= 0, then
(1.7) has a multiplicity of solutions.

Again, with c̄i ≥ maxξ∈Ξ(A
†bξ)i, i = 1, . . . ,m, let

U = { u = Λc+ (I − Λ)c̄+ (I −A†A)x |Λ = diag(λ1, . . . , λn), λi ∈ [0, 1], x ∈ D }
and observe that for any x ∈ D and ξ ∈ Ξ, u(ξ, x) ∈ U .

Assumption 2.

(i) There are b, b̄ ∈ Rm such that b ≤ bξ ≤ b̄ for all ξ ∈ Ξ,
(ii) ∃ d : Ξ → R+ such that ‖F (ξ, u)‖ ≤ d(ξ) for all u ∈ U and E[d(ξ)] < ∞,
(iii) ∃ d1 : Ξ → R+, bounded, such that ‖∇F (ξ, u)‖ ≤ d1(ξ) for all u ∈ U ,
(iv) ∃ γ > 0 such that Xξ ⊂ U0 = {u ∈ Rn | ‖u‖∞ ≤ γ} for any ξ ∈ Ξ.
Assumptions 2(i)–(iii) are pretty standard and are in no way restrictive as far

as applications are concerned. Assumption 2(iv) is not quite as common but, in
particular, is satisfied by the class of problems considered in section 4.

Since u(ξ, x) = (I − A†A)x + A†bξ is a linear function of x and u(ξ, x) ∈ U for
any x ∈ D, for almost every ξ ∈ Ξ, we immediately obtain the following proposition.

Proposition 2.3. F (ξ, u(ξ, x)) is measurable in ξ for every x ∈ D. Moreover,
for any fixed ξ ∈ Ξ, the following hold:

(i) F (ξ, u(ξ, x)) is continuously differentiable with respect to x.
(ii) If (ii) and (iii) of Assumption 2 hold, then for all x ∈ D,

‖F (ξ, u(ξ, x))‖ ≤ d(ξ) and ‖∇xF (ξ, u(ξ, x))‖ ≤ ‖I −A†A‖d1(ξ).
Theorem 2.4. Assume that Assumption 1 holds. Then, the function f is mea-

surable in ξ for any x ∈ D and locally Lipschitz continuous in x a.s.; actually, under
Assumption 2(iii), the functions {f(ξ, ·) : D → R, ξ ∈ Ξ} are then also equilocally
Lipschitz continuous a.s. Moreover, under Assumption 2(i)–(ii) the following hold:

(i) If each component Fi(ξ, u) of F (ξ, u) is concave in u, then Q(ξ, u) is convex
in u.

(ii) If F (ξ, x) = Mξx + qξ and E[Mξ] is positive semidefinite, then the objective
function ϕ is a finite valued convex function on D.

Proof. Since u(ξ, x) is linear in x, by Proposition 2.3 we only need to consider
F (ξ, u) for u ∈ U .

For any u, v ∈ U and almost every ξ ∈ Ξ, there are z(ξ, u), z(ξ, v) ∈ Rm such that
Q(ξ, u) = bTξ z(ξ, u) and Q(ξ, v) = bTξ z(ξ, v). By perturbation error analysis for linear
programs in [17], there is a constant νA > 0 that only depends on the matrix A such
that

(2.8) ‖Q(ξ, u)−Q(ξ, v)‖ ≤ ‖bξ‖‖z(ξ, u)−z(ξ, v)‖ ≤ ‖bξ‖mνA‖F (ξ, u)−F (ξ, v)‖ a.s.

Since for any fixed ξ ∈ Ξ, F (ξ, ·) is continuously differentiable in x, Q(ξ, ·) is locally
Lipschitz continuous in x a.s. with, in view of Assumption 2(iii), the (local) Lipschitz
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constant not depending on ξ. From this it follows that for any fixed ξ ∈ Ξ, the two
terms in f(ξ, ·) are locally Lipschitz continuous in x with the Lipschitz constant not
depending on ξ. Hence, the collection {f(ξ, ·), ξ ∈ Ξ} is then equilocally Lipschitz
continuous in x, a.s. Recall that F (ξ, x) is measurable in ξ for every x ∈ Rn and
bξ is measurable in ξ. We have that Q(ξ, u) is measurable in ξ for any u ∈ U , cf.
[25, Theorem 19, Chapter 1]. Hence the function f(ξ, x) is measurable in ξ for any
x ∈ Rn.

Now we prove the second part of this theorem. (i) For any u, v ∈ U , λ ∈ [0, 1]
and almost every ξ ∈ Ξ,

min{ bTξ z |AT z + F (ξ, u) ≥ 0} and min{ bTξ z |AT z + F (ξ, v) ≥ 0}
have solutions. Let z(ξ, u) and z(ξ, v) be solutions of these two problems, respectively.
Since the functions Fi(ξ, x) are concave in x a.s.,

0 ≤ λ(AT z(ξ, u) + F (ξ, u)) + (1− λ)(AT z(ξ, v) + F (ξ, v))

≤ AT (λz(ξ, u) + (1− λ)z(ξ, v)) + F (ξ, λu + (1− λ)v)

holds a.s. This implies that λz(ξ, u)+(1−λ)z(ξ, v) ∈ {z|AT z+F (ξ, λu+(1−λ)v) ≥ 0}
a.s. Hence, we obtain the convexity of Q(ξ, x),

Q(ξ, λu + (1− λ)v) ≤ bTξ (λz(ξ, u) + (1− λ)z(ξ, v))

= λQ(ξ, u) + (1− λ)Q(ξ, v), a.s.

(ii) With B = A†A− I, one has

f(ξ, x) = (−Bx+A†bξ)T (Mξ(−Bx+A†bξ) + qξ) +Q(ξ,−Bx+A†bξ)
= xTBTMξBx− (A†bξ)T (Mξ +MT (ξ))Bx − qTξ Bx

+ (A†bξ)T (MξA
†bξ + qξ) +Q(ξ,−Bx+A†bξ).

By conditions (i) and (ii) of Assumption 2, there exists d2(ξ) such that 0 ≤ f(ξ, x) ≤
d2(ξ) for all x ∈ D and E[d2(ξ)] < ∞. Taking the expected value of f , we see that ϕ
is finite valued and there are a vector c ∈ Rn and a constant c0 such that

ϕ(x) = xTBTE[Mξ]Bx+ cTx+ c0 + E[Q(ξ,−Bx+A†bξ)].

Since Q(ξ, u) is convex in u for almost every ξ ∈ Ξ, Q(ξ,−Bx+A†bξ) is convex in x
for almost every ξ ∈ Ξ. Hence, when E[Mξ] is positive semidefinite it implies that ϕ
is convex.

Theorem 2.5. Under Assumptions 1 and 2, ϕ is globally Lipschitz on D, i.e.,

(2.9) |ϕ(x) − ϕ(y)| ≤ κ‖x− y‖, x, y ∈ D,

where

κ = (E[d(ξ)] + E[d1(ξ)](E[‖bξ‖]mνA + γ
√
n))‖I − A†A‖;

recall that A is an m× n-matrix, and for the constant νA refer to (2.8).
Proof. For the first term in ϕ, we have

|uTF (ξ, u)− vTF (ξ, v)| ≤ |uT (F (ξ, u)− F (ξ, v))|+ |(u − v)TF (ξ, v)|
≤ ‖u‖d1(ξ)‖u− v‖ + d(ξ)‖u− v‖
≤ (γ

√
nd1(ξ) + d(ξ))‖u− v‖.
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For the second term, from (2.8), we have

|Q(ξ, u)−Q(ξ, v)| ≤ ‖bξ‖mνAd1(ξ)‖u − v‖.
Combining these two inequalities,

|ϕ(x)− ϕ(y)| ≤ E[|f(ξ, x)− f(ξ, y)|]
≤ E[|u(ξ, x)TF (ξ, u(ξ, x))− u(ξ, y)TF (ξ, u(ξ, y))|]

+ E[|Q(ξ, u(ξ, x)) −Q(ξ, u(y, ξ))|]
≤ (γ

√
nE[d1(ξ)] + E[d(ξ))] +mνAE[‖bξ‖]E[d1(ξ)])‖I −A†A‖‖x− y‖

completes the proof.
Definition 2.6 (see [18]). Suppose that φ : X ⊆ Rm → R is a locally Lips-

chitz continuous function; then φ is semismooth at x ∈ int X if φ is directionally
differentiable at x and for any g ∈ ∂φ(x + h),

φ(x+ h)− φ(x) − gTh = o(‖h‖),
where int X denotes the interior of X and ∂φ denotes the Clarke generalized gradient.

Theorem 2.7. Suppose Assumptions 1 and 2 hold. Then the function ϕ is
semismooth on D.

Proof. Following Proposition 1 and (3.1)–(3.2) in [20], we only need to show that
the following three conditions hold:

(i) There exists an integrable function κ1 such that

|f(ξ, x)− f(ξ, y)| ≤ κ1(ξ)‖x− y‖ for allx, y ∈ D, a.s.

(ii) f(ξ, ·) is semismooth at x ∈ D a.s.
(iii) The directional derivative f

′
ξ(x;h) of f(ξ, ·) at x in direction h satisfies

|f ′
ξ(x+ h;h)− f

′
ξ(x;h)|

‖h‖ ≤ κ2(ξ),

where E[κ2(ξ)] < ∞.
For (i), as follows from the proof of Theorem 2.5,

|f(ξ, x)− f(ξ, y)| ≤ (d(ξ) + d1(ξ)
√
nγ +mν(A)d1(ξ)‖bξ‖)‖I −A†A‖‖x− y‖

for all x, y ∈ D and almost every ξ ∈ Ξ.
For (ii), since F (ξ, ·) is continuously differentiable at x, it suffices to worry about

Q(ξ, ·) and by [4, Theorem 5.8, section 3.1] this function is piecewise smooth. Since
piecewise smooth implies semismooth and the addition of semismooth functions is
also a semismooth function, f(ξ, ·) is semismooth on D a.s.

For (iii), from Assumption 2, we find that the first term of f ′
ξ(x+h;h) is bounded

by the integrable function (d(ξ) +
√
nγd1(ξ))‖I − A†A‖‖h‖. The second term of f

is the directional derivative of Q(ξ, x); by [21, Lemma 2.2] and the formula (2.5),
this term can be bounded by mν(A)d1(ξ)‖bξ‖‖I − A†A‖‖h‖. Thus, we set κ2(ξ) =
2(d(ξ) +

√
nγd1(ξ) +mν(A)d1(ξ)‖bξ‖)‖I −A†A‖ and this yields (iii).

Theorem 2.8. Suppose Assumptions 1 and 2(i), (ii), and (iv) hold. Then, (1.7)
has a solution in the compact set

D1 = { y |y = (I −A†A)x, x ∈ D}.
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Moreover,

(2.10) D1 ⊆ D and argminy∈D1
ϕ(y) ⊆ argminx∈D ϕ(x).

Proof. From Theorems 2.1 and 2.4 follow 0 ≤ ϕ(x) < ∞ for any x ∈ D. From
the definition of u(ξ, x), we have that u(ξ, x) ∈ Xξ and there are two constants b and
b̄ such that b ≤ bξ ≤ b̄ for all ξ ∈ Ξ. Hence, the vector

(I −A†A)x = u(ξ, x)−A†bξ

is in the compact set D1. From (I − A†A)(I − A†A) = (I − A†A) and D = {x|(I −
A†A)x+ c ≥ 0}, we have y = (I −A†A)x ∈ D which implies D1 ⊆ D. Moreover, from

(I −A†A)(I −A†A)x +A†bξ = (I −A†A)x+A†bξ = u(ξ, x)

we obtain

(2.11) minx∈D ϕ(x) = miny∈D1 ϕ(y).

Since D1 is compact and ϕ is continuous, argminD1
ϕ �= ∅ and any y∗ ∈ argminD1

ϕ
also minimizes ϕ on D since D1 ⊆ D. Finally, from (2.11) one obtains (2.10).

Remark 1. To define a deterministic optimization formulation for finding a here
and now solution for the stochastic VI, we need a deterministic feasible set and a
deterministic objective function. The feasible set D defined in this section after (2.3)
can ensure that

(i) u(ξ, x) =projXξ
(x) ≥ 0 for any x ∈ D;

(ii) there exist solutions and a solution on a bounded subset D1 ⊆ D can be
found.

The new function f(ξ, x) in (1.4) is defined by the recourse variable u(ξ, x) which is
dependent on the first level variable x and random variable ξ. Hence the degree of
inadequacy or loss of a given x for a given ξ can be measured by f(ξ, x). In section 4,
we show that max{−yTF (ξ, x)|y ∈ Xξ} has a closed form and f(ξ, x) can be written
explicitly for Wardrop’s equilibrium for traffic assignment.

3. SSAA. Let ξ1, . . . , ξN be a sampling of ξ. The sample average approximation
(SAA) method has been used to find a solution of the EV-formulation (1.2) over a
deterministic feasible set X [12, 13, 24, 29]. The SAA method for the EV-formulation
of the stochastic VI uses the sample average value

F̂N (x) =
1

N

N∑
i=1

F (ξi, x)

to approximate the expected value E[F (ξ, x)] and solves

(y − x)T F̂N(x) ≥ 0 for all y ∈ X.

The classical law of large numbers ensures that F̂N (x) converges with probability 1
to E[F (ξ, x)] when the sample is iid.

Similarly, one can apply the SAA method to the ERM-formulation (1.3) and
denote the sample average value by

ϕ̂N (x) =
1

N

N∑
i=1

f(ξi, x).
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By the assumption that F is continuously differentiable in x for every ξ ∈ Ξ, E[F (ξ, x)]
and F̂N (x) are continuously differentiable. However, the assumption of continuous
differentiability of F does not imply that our (objective) function ϕ and its SAA
ϕ̂N (x) are differentiable. In what follows, we introduce an SSAA

(3.1) ΦN
μ (x) =

1

N

N∑
i=1

f̃(ξi, x, μ),

where f̃ : Ξ×Rn ×R+ is a smoothing approximation of f .
Definition 3.1. Let g : Rn → R be a locally Lipschitz continuous function. We

call g̃ : Rn ×R+ → R a smoothing function of g if g̃ is continuously differentiable on
Rn for any μ ∈ R++ and for any x ∈ Rn,

limz→x, μ↓0 g̃(z, μ) = g(x).(3.2)

If f(ξ, ·) is convex for almost every ξ ∈ Ξ, then we can use the Moreau–Yoshida
regularization to define a smoothing function for ΦN

μ . However, the Moreau–Yoshida
regularization cannot be used when f(ξ, ·) is not convex for almost every ξ ∈ Ξ. We
will give smoothing functions for traffic equilibrium problems in section 4.

We consider the existence and the convergence of solutions of the SAA problems

(3.3) minx∈D ϕ̂N (x)

and SSAA problems

(3.4) minx∈D ΦN
μ (x).

Let X ⊆ Rn be an open set and R = [−∞,∞].
Definition 3.2 (see [23]). A sequence of functions {gN : X → R,N ∈ N}

epiconverges to g : X → R, written gN
e−→ g, if for all x ∈ X,

(i) lim infN→∞ gN (xN ) ≥ g(x) for all xN → x, and
(ii) lim supN→∞ gN (xN ) ≤ g(x) for some xN → x.
Definition 3.3 (see [14]). A function g : Ξ × X → R is a random lsc (lower

semicontinuous) function if
(i) g is jointly measurable in (ξ, x),
(ii) g(ξ, ·) is lsc for every ξ ∈ Ξ.
Definition 3.4 (see [14]). A sequence of random lsc functions {gN : Ξ ×X →

R, N ∈ N} epiconverges to g : X → R a.s., written gN
e−→ g a.s., if for almost every

ξ ∈ Ξ, {gN(ξ, ·) : X → R,N ∈ N} epiconverges to g : X → R̄.
Let δD(x) = 0 when x ∈ D and δD(x) = ∞ otherwise; δD is the indicator function

of the set D. For a given x ∈ Rn and a positive number r, we denote the closed ball
with center x and radius r by B(x, r) = { y ∈ Rn | ‖y − x‖ ≤ r }. Let μ̄ be a positive
number. Let

ϕμ(x) = E[f̃(ξ, x, μ)].

Lemma 3.5. Let f̃ be a smoothing function of f . Then ΦN
μ and ϕμ are smoothing

functions of ϕ̂N and ϕ, respectively. If the sample is iid then for any fixed μ ∈ [0, μ̄],
we have

(3.5) ΦN
μ

e−→ ϕμ onD a.s.
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Proof. By Definition 3.1, it is easy to see that ΦN
μ and ϕμ are smoothing functions

of ϕ̂N and ϕ, respectively.
The proof for (3.5) is based on the convergence of inf-projections. Let

cx,r = infB(x,r) ϕμ + δD, cNx,r = infB(x,r)Φ
N
μ + δD.

Let Qn be the set of rational n-dimensional vectors and Q++ = R++ ∩ Q1. For any
x ∈ Qn, r ∈ Q++, since the samples are iid, the random variables {cNx,r} are iid [14].
From the law of large numbers follows

cNx,r −→ cx,r as N → ∞ a.s.

Since ΦN
μ + δD and ϕμ + δD are random lsc functions, both functions can be

completely identified by a countable collection of their inf-projections [14], [23, Chap-
ter 14]. Hence we obtain (3.5).

For any locally Lipschitz continuous function g : Rn → R, we can construct a
smoothing function g̃ : Rn ×R+ → R satisfying the gradient consistent property

(3.6)

{
lim

z→x,μ↓0
∇g̃(z, μ)

}
⊆ ∂g(x)

by convolution [23, Theorem 9.67], where ∂g denotes the Clarke generalized gradient.
Moreover, for many locally Lipschitz continuous functions, we can easily construct
computable smoothing functions satisfying (3.6). See examples in section 4 and (ii) of
Lemma 4.4. In the remainder of this paper, we assume that the smoothing functions
ΦN

μ and ϕμ satisfy the gradient consistent property (3.6).

Lemma 3.6. Under Assumptions 1 and 2(iii), whatever be the sample {ξ1, . . . , ξN}
that defines the functions ϕ̂N and ΦN

μ , the collection of functions {ϕ̂N , N ∈ N} as

well as the collection {ΦN
μ , μ > 0, N ∈ N} are equilocally Lipschitz continuous on D.

In particular, this implies that when for all N the samples are iid, the functions
ΦN

μ not only epiconverge almost surely to ϕμ on D but converge also pointwise almost
surely.

Proof. The statements about the collections being equilocally Lipschitz follow
directly from Theorem 2.4 and the gradient consistent property (3.6), since they
imply that both the collections of functions {f(ξ, · ) : D → R, ξ ∈ Ξ} and {f̃(ξ, ·μ) :
D → R, μ > 0, ξ ∈ Ξ} that define ϕ̂N and ΦN

μ via finite sums are equilocally Lipschitz
continuous.

The almost sure pointwise convergence then follows immediately from [23, The-
orem 7.10] and Lemma 3.5 which imply that under equilower semicontinuity of the
approximating functions, epiconvergence implies pointwise convergence.

Lemma 3.7. Under the assumptions of Theorem 2.8, for any μ ∈ [0, μ̄] and
N ∈ N, the SAA minimization problem (3.3) and the SSAA minimization problem
(3.4) admit optimal solutions.

Proof. Since for any ξ ∈ Ξ, f(ξ, ·) is a continuous function on D and measurable
in ξ for any x ∈ D, the SAA function ϕ̂N and the SSAA function ΦN

μ are continuous
functions on D for any μ ∈ [0, μ̄] and N ∈ N and consequently are also random lsc
functions [23, Example 14.15]. Moreover by the same arguments as in the proof of
Theorem 2.8, one obtains

(3.7) minx∈D ϕ̂N (x) = miny∈D1 ϕ̂
N (y)
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and

(3.8) minx∈D ΦN
μ (x) = miny∈D1 Φ

N
μ (y).

Since D1 is compact, there are y∗, y∗∗ such that

y∗ ∈ argminy∈D1
ϕ̂N (y) and y∗∗ ∈ argmin

y∈D1

ΦN
μ (y),

respectively. Moreover, from D1 ⊆ D and (3.7), (3.8), y∗ and y∗∗ are thus solutions
of (3.3) and (3.4), respectively.

Let S∗, SN , and SN
μ be the sets of solutions of (1.7), (3.3), and (3.4) in D1. In

the following, we analyze the convergence of SN and SN
μ to S∗. For two sets Y and

Z, we denote the distance from z ∈ Rn to Y and the excess of the set Y on the set Z
by

dist(z, Y ) = infy∈Y ‖z − y‖ and �(Y, Z) = supy∈Y dist(y, Z).

Since ϕ, ϕ̂N , and ΦN
μ are continuous and D1 is compact, we have

minx∈Rn h(x) + δD1(x) ⇐⇒ minx∈D1 h(x)

for h = ϕ, h = ϕ̂N , or h = ΦN
μ .

Theorem 3.8. Under Assumptions 1 and 2, if the sample is iid, then the follow-
ing hold:

(i) Any sequence {xN
μ ∈ SN

μ } has a cluster point as N → ∞ and μ ↓ 0 a.s.

(ii) Any cluster point of {xN
μ ∈ SN

μ } is an optimal solution of (1.7) a.s.

(iii) �(SN
μ , S∗) −→ 0 a.s., as N → ∞ and μ ↓ 0.

Proof. By the definition of the smoothing functions of ϕ(x), limx→x̄,μ↓0 ϕμ(x) =
ϕ(x̄) for any x, x̄ ∈ D1. Moreover, from Lemmas 3.5, 3.6, and

|ΦN
μ (x)− ϕ(x̄)| ≤ |ΦN

μ (x) − ϕμ(x)|+ |ϕμ(x) − ϕ(x̄)|
we obtain

ΦN
μ (x) −→ ϕ(x̄), as x → x̄, N → ∞, μ ↓ 0, a.s.

which means ΦN
μ epiconverges to ϕ as N → ∞ and μ ↓ 0, a.s. Hence by [23, Theo-

rem 7.11], one has

ΦN
μ + δD1

e−→ ϕ+ δD1 , a.s.

Moreover, by the continuity and nonnegativity of ϕ on the compact set D1 and The-
orem 2.8, one also has

−∞ < min
x∈Rn

ϕ(x) + δD1(x) = minx∈D1 ϕ(x) < ∞.

Hence, from [23, Theorem 7.31], we obtain

lim supN→∞,μ↓0 argminx∈D1
ΦN

μ (x) = lim supN→∞,μ↓0 argminx∈D1
(ΦN

μ (x) + δD1(x))

⊂ argminx∈D1
(ϕ(x) + δD1(x))

= argminx∈D1
ϕ(x), a.s.

By the compactness of D1, the sequence {xN
μ } has a cluster point and any such cluster

point lies in the solution set of minx∈D1 ϕ(x) a.s. Using Theorem 2.8 again, any such
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cluster point is also in the solution set of (1.7). The statement (iii) follows from (i)
and (ii) of this theorem and the compactness of D1.

In some cases, the expectation can be defined by multidimensional integrals and
we can apply efficient quasi-Monte Carlo methods [26] to find approximate values of
the expectation at each point x over a compact set. By error analysis of quasi-Monte
Carlo methods for numerical evaluation of continuous integrals, we have

(3.9) limN→∞ ΦN
μ (x) = ϕμ(x), x ∈ D1, μ ∈ [0, μ̄],

in the sense that for any given ε > 0, there is a ν̄ > 0 such that for any N ≥ ν̄ we
have

|ΦN
μ (x) − ϕμ(x)| < ε for any x ∈ D1, μ ∈ [0, μ̄].

Theorem 3.9. Under Assumptions 1 and 2, if (3.9) holds, so do the following:
(i) Any sequence {xN

μ } ⊆ SN
μ has a cluster point as N → ∞ and μ ↓ 0.

(ii) Any cluster point of {xN
μ } is an optimal solution of (1.7).

(iii) �(SN
μ , S∗) −→ 0, as N → ∞ and μ ↓ 0.

Proof. By definition of the smoothing functions associated with ϕ(x), limx→x̄,μ↓0
ϕμ(x) = ϕ(x̄) for any x̄ ∈ D1. Moreover, from (3.9) and

|ΦN
μ (x)− ϕ(x̄)| ≤ |ΦN

μ (x) − ϕμ(x)|+ |ϕμ(x) − ϕ(x̄)|
we find

limx→x̄,N→∞,μ↓0 ΦN
μ (x) = ϕ(x̄),

which means ΦN
μ + δD1 continuously converges to ϕ as N → ∞ and μ ↓ 0 and

continuous convergence implies epiconvergence. The remaining part of the proof is
then similar to the proof of Theorem 3.8.

In the remainder of this section, we analyze the convergence of stationary points,
that so far has only received perfunctory attention in the approximation theory for
variational problems.

Recall [23, section 8.A] that the subderivative of a function g : Rn → R at a point
x̄ at which g(x̄) is finite is the function dg(x̄; ·) defined by

dg(x̄;h) = lim inf
τ↓0

h′→h

Δτg(x;h
′) or, equivalently, dg(x̄; ·) = epi- lim inf

τ↓0
Δτg(x̄; ·),

where Δτg(x;w) is the difference quotient function

Δτg(x;h) :=
g(x+ τh) − g(x)

τ
for τ > 0.

One refers to x̄ ∈ X ⊂ Rn as a stationary point of g on a closed set X if

(3.10) dg(x̄;h) ≥ 0 for all h ∈ TX(x̄),

where TX(x̄) is the tangent cone of X at x̄ ∈ X [10]. When X is convex one can
exploit the polarity between the tangent and the normal cones [23, Theorem 6.9] and
reformulate this condition as

dg(x̄; z − x̄) ≥ 0 for all z ∈ X.
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We work with this latter inequality since our X , the sets D and D1, are convex.
Moreover, the functions f(ξ, ·), cf. Theorem 2.4, and, a fortiori, f̃(ξ, x, μ) that are used
to build our sample average approximations are locally Lipschitz (a.s.). We are going
to assume that they are also Clarke regular at the points of interest. Of course, this
would be the case when Q(ξ, ·) is regular since, by assumption, F (ξ, ·) is continuously
differentiable. This occurs in a variety of situations, for example, when F (ξ, ·) is
linear, when for i = 1, . . . , n, the functions Fi(ξ, ·) are concave, and, in particular,
when Q(ξ, ·) can be expressed as a max-function as in our applications in section 4.

In view of [23, Theorem 9.16], when g is locally Lipschitz and Clarke regular at
x̄, then the subderivative coincides with the directional derivative,

dg(x̄;h) = lim
τ↓0

Δτg(x;h) = g′(x;h).

Moreover, dg(·, h) is usc (upper semicontinuous); in fact, [23, Theorem 9.16] asserts
a bit more, but that’s not needed here.

In addition to these properties, the proof of the next theorem relies like Lemma 3.5
on the law of large numbers for random lsc functions (more precisely, random usc
functions) and two inequalities: The first one comes about from the interchange of
subdifferentiation and taking expectation, and the second one results from the choice
of a smoothing function that will satisfy

(3.11) limμ↓0 df̃μ(ξ, x;h) ≤ df(ξ, x;h) for all x, h.

In section 4, we show that Q(ξ, ·) is regular and the exponential smoothing func-
tion [6, 19] satisfies (3.11) for piecewise maxima functions.

Theorem 3.10. Suppose Assumptions 1 and 2 hold and Q(ξ, ·) is regular for
any fixed ξ ∈ Ξ. Then for any μ ≥ 0 and N ∈ N, the SAA problem (3.3) and the
SSAA problem (3.4) have stationary points in the compact set D1. Let {xN

μ } ⊂ D1 be
a sequence of stationary points of (3.4). If the sample is iid, then any cluster point of
{xN

μ } is a stationary point of (1.7), a.s.
Proof. The existence of stationary points follows directly from the existence of

minimizers of (3.3) and (3.4).
By the regularity of Q and continuous differentiability of F , we deduce that f , ϕ,

ϕ̂N are Clarke regular [8, Definition 2.3.4, Proposition 2.3.6] in D.
Since f is globally Lipschitz in D, there are constants t̄ > 0 and β such that

t−1[f(ξ, x+ h)− f(ξ, x)] ≥ β, a.s. for all h in a neighborhood of 0 and 0 < t̄ ≤ t. By
Proposition 2.9 in [28, section 2], we obtain

(3.12) E[df(ξ, x; y − x)] ≤ dϕ(x; y − x) for all x, y ∈ D.

By the continuous differentiability of f̃(ξ, x, μ) for μ > 0 and upper semicontinuity
of df(ξ, x;h) on x for each fixed h, we deduce that for any fixed μ ∈ [0, μ̄] and h ∈ Rn,

dΦN
μ (·;h) = 1

N

∑N
i=1 df̃μ(ξ

i, ·;h) is upper semicontinuous. Hence, we can use the same
technique as in the proof of Lemmas 3.5 and 3.6 to show that

(3.13) dΦN
μ (·;h) e,p−→ dϕμ(·;h), inD, a.s.,

where e, p stands for epi- and pointwise convergence.
Let x̂ be a cluster point of {xN

μ }. For a y ∈ D, let h = y − x̂. One might have
to restrict the argument to a subsequence, but to simplify the notation, assume that
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{xN
μ } converges to x̂. Then, one has

0 ≤ dΦN
μ (xN

μ ; y − xN
μ )

≤ σ‖x̂− xN
μ ‖+ dΦN

μ (xN
μ ;h)− dϕμ(x̂;h) + dϕμ(x̂;h)− dϕ(x̂;h) + dϕ(x̂;h),

where σ is a Lipschitz constant of ΦN
μ near x̂ for all μ ≥ 0 and N ∈ N; the existence

of such σ follows from the global Lipschitz continuity of ΦN
μ and ϕ.

The third and second terms give dΦN
μ (xN

μ ;h) − dϕμ(x̂;h) → 0 as N → ∞ and
μ ↓ 0, a.s. by using (3.13).

From (3.12) and (3.11), the fifth and fourth terms give

dϕμ(x̂;h)− dϕ(x̂;h) ≤ E[dfμ(ξ, x̂;h)− df(x̂;h)] ≤ 0, as μ ↓ 0.

Hence we obtain dϕ(x̂;h) ≥ 0 as N → ∞ and μ ↓ 0.
Remark 2. From the properties of smoothing functions, we can define

f̃(ξ, x, 0) = limμ↓0 f̃(ξ, x, μ)

at any x ∈ D and ξ ∈ Ξ. Hence, we can consider ϕ̂N (x) = ΦN
0 (x) = limμ↓0 ΦN

μ (x) at
any x ∈ D. Since our convergence results include μ ≡ 0, the same convergence results
hold for SAA solutions and SAA stationary points as a special case.

Remark 3. The conclusions of Proposition 6 [25, Chapter 6] are similar to that
of Theorem 3.7 but require the a.s.-uniform convergence of the SAA functions ϕ̂N ;
whereas essentially our only requirement is “iid samples,” we followed the pattern
already laid out in [3].

Remark 4. In [30], Xu and Zhang proposed an SSAA method for solving a general
class of one stage nonsmooth stochastic problems and derived the exponential rate
of convergence of the SSAA method. We believe that the exponential rate can be
also derived for the residual minimization SSAA method for stochastic variational
inequalities. However, this is by no means straightforward and, as far as we can tell,
it requires nonclassical analysis that would certainly lead to substantially exceeding
page limitations. This certainly will require a separate treatment that we plan to deal
with in a separate paper.

4. Application and numerical experiments. In this section, we use three
examples in traffic network analysis to illustrate the new ERM-formulation (1.7) and
the theoretical results derived in the preceding sections. We first use an example with
7 links and 6 variables to explain the theory and its application in detail. Next we
present numerical results for this example and one more example with 19 links and
25 variables to show the efficiency of the SSAA approach.

4.1. Application. A traffic network consists of a set of nodes and a set of links.
We denote by W the origin-destination (OD) pairs and K the set of all paths be-
tween OD-pairs. The network in Figure 4.1 from [31] has 5 nodes, 7 links, 2 OD-pairs
(1 → 4, 1 → 5) and 6 paths p1 = {3, 7, 6}, p2 = {3, 1}, p3 = {4, 6}, p4 = {3, 7, 2}, p5 =
{3, 5}, p6 = {4, 2}. Traffic equilibrium models are built based on travel demand be-
tween every OD-pair and travel capacity on each link. The demand and capacity
depend heavily on various uncertain parameters, such as weather and accidents. Let
Ξ ⊆ RL denote the set of uncertain factors. Let (bξ)i > 0 denote the stochastic travel
demand on the ith OD-pair and (cξ)k denote the stochastic capacity of link k.

For a realization of random vectors bξ ∈ R2 and cξ ∈ R7, ξ ∈ Ξ, an assignment of
flows to all paths is denoted by the vector x ∈ R|K|, whose component xj denotes the
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Fig. 4.1. The 7-links, 6-paths network.

flow on path j, while an assignment of flows to all links is represented by the vector
v whose component vk denotes the stochastic flow on link k. The relation between x
and v is given by

v = Δx,

where Δ = (δk,j) is the link-path incidence matrix with entries δk,j = 1 if link k is on
path j and δk,j = 0 otherwise. Let A = (ai,j) denote the OD-path incidence matrix
with entries ai,j = 1 if path j connects the ith OD and ai,j = 0 otherwise. The
incidence matrices for the network in Figure 4.1 are given, respectively, as

Δ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 0 1 0 1
1 1 0 1 1 0
0 0 1 0 0 1
0 0 0 0 1 0
1 0 1 0 0 0
1 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, A =

(
1 1 1 0 0 0
0 0 0 1 1 1

)
.

The link travel time function T (ξ, v) is a stochastic vector and each of its entries
Tk(ξ, v) is assumed to follow a generalized bureau of public roads (GBPR) function,

Tk(ξ, v) = t0k

(
1.0 + 0.15

(
vk

(cξ)k

)nk
)
, k = 1, . . . , 7,(4.1)

where t0k and nk are given parameters. The path travel cost function is defined by

F (ξ, x) = η1Δ
TT (ξ,Δx),(4.2)

where η1 > 0 is the time-based operating costs factor. If nk = 1, k = 1, . . . , 7, then
F (ξ, x) = Mξx+ q, where

Mξ = 0.15η1Δ
Tdiag

(
t0k

(cξ)k

)
Δ and q = η1t

0
1Δ

T e.

Note that rank(Δ) = 5 for any ξ ∈ Ξ. Mξ ∈ R6×6 is a positive semidefinite matrix
with rank(Mξ) = 5. Obviously, E[Mξ] is positive semidefinite, but condition (1.6)
used in [1] does not hold.

For a fixed ξ ∈ Ξ, the VI formulation for Wardrop’s user equilibrium, denoted by
VI(Xξ, F (ξ, ·)), seeks an equilibrium path flow xξ ∈ Xξ such that

(y − xξ)
TF (ξ, xξ) ≥ 0 for all y ∈ Xξ = {x |Ax = bξ, x ≥ 0},(4.3)

which is equivalent to finding a solution such that the residual function f(ξ, x) = 0.
The residual function is nonnegative and regarded as a cost function.
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In a stochastic environment, ξ belongs to a set Ξ representing future states of
knowledge. In general, we cannot find a vector x̄ such that f(ξ, x̄) = 0 for all ξ ∈ Ξ.
The ERM-formulation is to find a vector x∗ which minimizes the expected value
of f(ξ, x̄) over Ξ. The main role of the traffic model is to provide a forecast for
future traffic states. The solution of the ERM-formulation is a here and now solution
which provides a robust forecast and has advantages over other models for long term
planning.

Now we give sufficient conditions on A and bξ that guarantee that Assumption 1
and Assumption 2 hold. Such conditions hold for the OD-path incidence matrix and
random demand vector.

Definition 4.1 (see [9]). A set S ⊆ Rm is a meet semisublattice under the
componentwise ordering of Rm if

u, v ∈ S ⇒ w = min(u, v) ∈ S.

The vector w is called the meet of u and v.
Lemma 4.2 (see [9]). If S is a nonempty meet semisublattice that is closed and

bounded below, then S has a least element.
Theorem 4.3. Suppose prob{bξ > 0, ‖bξ‖∞ ≤ β} = 1 for some β > 0 and A can

be split into two submatrices AK and AJ , where AK is an m×m M-matrix and AJ

is an m × (n − m) nonnegative matrix whose columns have only one positive entry.
Let

γ0 = min
i,j

{(A−1
K AJ )ij | (A−1

K AJ )ij > 0, j ∈ J, 1 ≤ i ≤ m}, γ = max(1, γ−1
0 )β‖A−1

K ‖∞.

Then,

(4.4) Xξ ⊆ {x | 0 ≤ x ≤ γe} =: U0.

Further, if for some κ > 0 and any u ∈ U0, prob{‖F (ξ, u)‖∞ ≤ κ} = 1, then
Assumption 1 holds with Q(ξ, u(ξ, x)) = bTξ z(ξ, u(ξ, x)) and

(4.5) ‖z(ξ, u(ξ, x))‖∞ ≤ θ = κmax(1, γ−1
0 )‖A−T

K ‖∞

for any x ∈ D and almost every ξ ∈ Ξ.
Proof. Let P be n × n permutation matrix such that AP = [AK , AJ ]. For fixed

ξ ∈ Ξ, consider a vector x ∈ Xξ with xj0 = maxj xj = ‖x‖∞. By definition,

(4.6) A−1
K bξ = A−1

K APPx = A−1
K [AK , AJ ]Px = [I, A−1

K AJ ]Px.

Since [I, A−1
K AJ ] is a nonnegative matrix and its each column has at least one positive

element, [I, A−1
K AJ ]Px ≥ 0. Hence, there is a positive element (I, A−1

K AJ )i,j0 =
Bi,j0 ≥ min(1, γ0) such that

min(1, γ0)‖x‖∞ ≤ Bi,j0xj0 ≤ ‖[I, A−1
K AJ ]Px‖∞ ≤ ‖A−1

K bξ‖∞ ≤ ‖A−1
K ‖∞β a.s.

This implies Xξ ⊆ U0 a.s.
Let Sξ,u = {z |AT z + F (ξ, u) ≥ 0} denote the feasible set. For w, v ∈ Sξ,u, let

s = min(w, v) be their meet. We consider an arbitrary index i ∈ {1, . . . , n}. By the
assumptions of this theorem, there is at most one positive element aki > 0. Without
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loss of generality, we assume sk = vk. Then,

(AT s+ F (ξ, u))i = Fi(ξ, u) +

m∑
j 
=k

ajisj + akisk

≥ Fi(ξ, u) +

m∑
j 
=k

ajivj + akivk

≥ 0.

This establishes the feasibility of the vector s and the meet semisublattice property
of Sξ,u.

Let e ∈ Rm and ẽ ∈ Rn be vectors with all of their elements 1. Let t =
κmax(1, γ−1

0 )A−T
K e. Note that AT

JA
−T
K is a nonnegative matrix. Then

PAT t = κmax(1, γ−1
0 )

(
e

AT
JA

−T
K e

)
≥ κẽ ≥ −PF (ξ, u) a.s.

Hence t ∈ Sξ,u and thus Sξ,u is nonempty, a.s.
Let C = [A−T

K , 0] ∈ Rm×n. For any z ∈ Sξ,u,

CP (AT z + F (ξ, u)) = z + CPF (ξ, u) ≥ 0,

which implies

(4.7) z ≥ −CPF (ξ, u) ≥ −LA−T
K e ≥ −max(1, γ−1

0 )κA−T
K e.

Hence Sξ,u is closed and bounded below. By Lemma 4.2, Sξ,u has a unique least
element z(ξ, u), a.s. Moreover, by the assumption bξ > 0 a.s., z(ξ, u) is the unique
solution of (2.3) a.s.

Furthermore, using z(ξ, u) ≤ t and (4.7),

(4.8) ‖z(u, ξ)‖∞ ≤ κmax(1, γ−1
0 )‖A−T

K ‖∞ = θ a.s.

which completes the proof.
In the traffic flow problem [2, 31, 34], we often have the constraints

(4.9) Xξ =

⎧⎨
⎩x |

∑
j∈Ii

xj = (bξ)i, i = 1, . . . ,m

⎫⎬
⎭

with
m⋃
i=1

Ii = {1, 2, . . . , n}, Ii ∩ Ij = ∅, i �= j,

where bξ is a demand vector which comes with uncertainties due to weather, accidents,
etc., xj , j ∈ Ii are traffic flows on the j path connecting the ith OD-pair. The
constraints (4.9) can be written as Ax = bξ, where A is called the OD-path incidence
matrix. Each column of A has only one nonzero element 1 and the ith row has |Ii|
elements. Such a matrix satisfies the assumption on A in Theorem 4.3. Moreover, if
bξ > 0, then from AT z + F (ξ, u) ≥ 0, the solution z(ξ, u) of (2.3) has a closed form

(4.10) zi(ξ, u) = max{−Fj(ξ, u), j ∈ Ii}, i = 1, . . . ,m.

Moreover, if F (ξ, x) = Mξx+ qξ, then ϕ is a convex function.
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Now, we define a smoothing function of

(4.11) f(ξ, x) = u(ξ, x)TF (ξ, u(ξ, x)) +

m∑
i=1

bi(ξ)max
j∈Ii

{−Fj(ξ, u(ξ, x))}.

Consider the following nonsmooth function for a vector y ∈ Rk

p(y) = max
1≤i≤k

{yi}.

We define a smoothing function of p as follows [19]: for μ > 0,

p̃(y, μ) = μ ln

(
k∑

i=1

eyi/μ

)
.

Lemma 4.4 (see [6]). p̃ is continuously differentiable with respect to x for any
fixed μ > 0. Moreover, the following hold:

(i)

0 ≤ p̃(y, μ)− p(y) = μ ln

(
k∑

i=1

e
yi−p(y)

μ

)
≤ μ lnk.

(ii) {limz→x, μ↓0 ∇xp̃(z, μ)} is nonempty and bounded. Moreover, p̃ satisfies the
gradient consistent property, that is,{

lim
y→ȳ,μ↓0,

∇y p̃(y, μ)

}
⊆ ∂p(ȳ),

where ∂p denotes the Clarke generalized gradient.
Lemma 4.5. The directional derivative p̃′μ(y;h) of p̃ satisfies

(4.12) lim
μ↓0

p̃′μ(y;h) ≤ p′(y;h) for all y, h ∈ Rk.

Proof. For any given y, h ∈ Rk, let K = {i | yi = p(y) } and h0 = maxi∈K hi. The
directional derivative p′(y;h) = h0. For μ > 0, p̃ is continuously differentiable and

lim
μ↓0

p̃μ(y;h) = lim
μ↓0

∇p̃μ(y)
Th =

k∑
i=1

hi

k∑
j=1

1

e(yj−yi)/μ
≤ 1

|K|
∑
i∈K

hi ≤ h0 = p′(y;h).

This completes the proof.
Let

(4.13) f̃(ξ, x, μ) = u(ξ, x)TF (ξ, u(ξ, x)) + μ

m∑
i=1

(bξ)i ln
∑
j∈Ii

e−Fj(ξ,u(ξ,x))/μ.

Theorem 4.6. When Xξ is defined by (4.9) and f̃ is defined by (4.13), the
assumptions of Theorem 4.3 hold and ϕμ and ΦN

μ are smoothing functions of ϕ and

ϕ̂N , respectively. Moreover, Q(ξ, u(ξ, x)) is regular in x for any fixed ξ ∈ Ξ and f̃
satisfies (3.11).

Proof. The matrix A can be split into two submatrices AK and AJ , where AK =
I ∈ Rm×m, whose ith column is the first column of AIi with AJ an m × (n − m)
nonnegative matrix whose columns have only one positive element.
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From Lemma 4.4, it is easy to verify that f̃ is a smoothing function of f defined
in (4.11). By definition, ϕμ and ΦN

μ are smoothing functions of ϕ and ϕ̂N .
The regularity of Q(ξ, u(ξ, x)) =

∑m
i=1 bi(ξ)maxj∈Ii{−Fj(ξ, u(ξ, x))} follows di-

rectly from the chain rule [8, Theorem 2.3.9] since bξ > 0, p is convex, and F is
continuously differentiable.

Next, we show that (3.11) holds. Note that by the regularity of f , df(ξ, x;h) =
f ′(ξ, x;h). Since the first term of f is continuously differentiable, we only need
to consider the second term. Without loss of generality, we assume I1 = K =
{1, . . . k} and thus z1(ξ, u) = max{−Fj(ξ, u), j ∈ K}. For a fixed ξ, let g(u) =
(−F1(ξ, u), . . . ,−Fk(ξ, u))

T and q(u) = p(g(u)) = max(g1(u), . . . , gk(u)). Since bi(ξ) >
0, for i = 1, . . . ,m, it is sufficient to show that

(4.14) lim
μ↓0

q̃′μ(u;h) ≤ q′(u;h) for all u, h ∈ Rk.

By the continuous differentiability of g, the directional derivative of q satisfies

q′(u, h) = lim
t↓0

p(g(u+ th))− p(g(u))

t

= lim
t↓0

p(g(u) + tg′(u)h+ o(t))− p(g(u))

t
= p(g(u); g′(u)h).

For μ > 0,

lim
μ↓0

q̃′μ(u;h) = lim
μ↓0

∇p̃μ(g(u))
T g′(u)h ≤ p(g(u); g′(u)h) = q(u;h)

following from Lemma 4.5.

4.2. Numerical experiment. In Examples 4.1–4.2, Xξ is defined by (4.9) and

f̃ is defined by (4.13). The EV-formulation for the two examples is to find an x ∈
X = {x |Ax = E[bξ] } such that

(4.15) (y − x)TE[F (ξ, x)] ≥ 0, y ∈ X.

We solve the following minimization problem

(4.16) min
x∈X

g(x) := max{(x− y)TE[F (ξ, x)] | y ∈ X}

and set a minimizer to be xEV.
For the ERM-formulation, we solve the ERM problem (1.7) and set xERM =

(I −A†A)x∗ +A†E[bξ], where x∗ is a solution of (1.7).
We use the residual function f and conditional value-at-risk (CVaR) [22] to com-

pare the two formulations; for fixed x,

α∗(x) ∈ argmin
α∈R

CVaR(x, α) := α+
1

1− β
E{[f(ξ, x)− α]+}.

For the GBPR function, we set na = nk, k = 1, . . . , kv, where kv is the number of
links.

Example 4.1. This example is the 7-links, 6-paths problem in Figure 4.1. The
free travel time t0k and the mean of the capacity E[(cξ)k] of the network are the same
as those used in [31], which are listed in Table 4.1.
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Table 4.1

Link cost parameters in Figure 4.1.

Link number k 1 2 3 4 5 6 7

Free-flow time t0k 6 4 3 5 6 4 1

Mean E[(cξ)k] 15 15 30 30 15 15 15

Table 4.2

Solutions for sampling size N = 1000.

na = 2 na = 4
xEV xERM x∗ xEV xERM x∗

x1 18.85 27.28 16.61 2.89 14.87 23.60
x2 90.32 88.11 77.44 95.09 92.38 101.12
x3 90.83 84.61 73.95 102.03 92.75 101.49
x4 26.61 28.29 10.95 20.37 19.64 17.31
x5 99.65 97.53 80.20 104.87 102.73 100.40
x6 93.74 94.18 76.85 94.76 97.63 95.30

Table 4.3

Criteria for x = xEV , x = xERM , x = x∗ with N = 1000, β = 0.9 in CVaR.

na = 2 na = 4
ε = 4.5E3 ε = 5E5

xEV xERM x∗ xEV xERM x∗
prob{f(ξ, x) ≤ ε} 0.58 0.61 0.61 0.56 0.59 0.59

E[‖x− x∗
ξ‖] 46.94 39.63 54.00 35.28 33.01 36.65

E[‖u(ξ, x)− x∗
ξ‖] 47.03 39.72 39.72 35.41 33.15 33.15

E[f(ξ, x)] 4.316E3 4.198E3 4.198E3 5.064E5 4.907E5 4.907E5

α∗(x) 7.395E3 7.132E3 7.132E3 1.071E6 1.037E6 1.037E6
CVaR(x, α∗(x)) 8.691E3 8.515E3 8.515E3 1.254E6 1.229E6 1.229E6

For the travel demand vector, we set E[bξ] = [200 220]T , where the components
follow the order of the OD-pairs 1 −→ 4 and 1 −→ 5. The link capacity and the
demand vector both have a beta distribution. For the demand vector bξ, the lower
bound is b = [150 180]T and the parameters for the beta distribution are α = 5,
β = 1. For the link capacity cξ, the lower bound is c = [10 10 20 20 10 10 10]T and
the parameters for the beta distribution are α = 2, β = 2.

Results in Tables 4.2 and 4.3 were obtained by using the same sampling with size
N = 1000. Table 4.2 gives EV and ERM solutions for different values of na. Table 4.3
lists robustness and risk criteria for the EV and ERM solutions in Table 4.2; x∗

ξ means
a solution of the variational inequalities for each fixed ξ ∈ Ξ.

In Figure 4.2, we graph prob{f(ξ, x) ≤ ε} with different values of ε. We can see
the ERM-formulation has higher probability than the EV-formulation for each ε.

Example 4.2. This example uses the Nguyen and Dupuis network, which contains
13 nodes, 19 links, 25 paths, and 4 OD-pairs. See Figure 4.3. We use the free-flow
travel time t0k as that used by Yin [32], and the mean of the demand vector E[bξ] of
the network is E[bξ] = [400, 800, 600, 450]T .

The link capacity has three possible scenarios which denotes different conditions
of the network such as weather, accidents and so on, and we give the three scenarios

cξ = 100× [8, 3.2, 3.2, 8, 4, 3.2, 8, 2, 2, 2, 4, 4, 8, 6, 4, 4, 1.6, 3.2, 8]T ;
cξ = 100× [10, 4.4, 1.4, 10, 3, 4.4, 10, 2, 2, 4, 7, 7, 7, 7, 4, 3.5, 2.2, 4.4, 7]T ;
cξ = 100× [4, 4, 2, 4, 4, 4, 4, 4, 4, 2, 4, 4, 2, 8, 8, 1, 2, 4, 2]T

corresponding to probabilities p1 = 1
2 , p2 = 1

4 , and p3 = 1
4 , respectively.
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Fig. 4.2. prob{f(ξ, x) ≤ ε} with different values of ε for xEV and xERM.
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Fig. 4.3. Nguyen and Dupuis network with 19 links and 25 paths.

Table 4.4

Example 4.2. Criteria for β = 0.9 in CVaR, na = 2, ε = 3.3E3.

xEV xERM

prob{f(ξ, x) ≤ ε} 0.508 0.952
N = 103 E[f(ξ, x)] 3.498E3 2.938E3
μ = 10−4 α∗(x) 7.935E3 3.226E3

CVaR(x, α∗(x)) 8.154E3 3.333E3

prob{f(ξ, x) ≤ ε} 0.510 0.908
N = 5 ∗ 103 E[f(ξ, x)] 3.498E3 2.983E3
μ = 10−5 α∗(x) 7.918E3 3.286E3

CVaR(x, α∗(x)) 8.121E3 3.403E3

prob{f(ξ, x) ≤ ε} 0.509 0.927
N = 104 E[f(ξ, x)] 3.505E3 2.976E3
μ = 10−6 α∗(x) 7.978E3 3.253E3

CVaR(x, α∗(x)) 8.168E3 3.359E3

The demand vector follows the beta distribution bξi ∼ b + b̂ ∗ beta(α, β) with

the lower bound b = [300, 700, 500, 350]T and parameters α = 50, β = 10, and b̂ =
[120, 120, 120, 120]T. We rely on the Monte Carlo method to randomly generate N
samples of (bξi , cξi) for i = 1, 2, . . . , N , where cξi is sampled from the three possibilities
with given probability and bξi is sampled from the beta distribution. Numerical results
are reported in Table 4.4.
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Fig. 4.4.

Example 4.3. We consider the Sioux Falls network as shown in Figure 4.4 (left),
which consists of 24 nodes, 76 links, and 528 OD-pairs. The total of 1179 paths are
pre-generated as possible travel routes between different OD-pairs. The parameters
of the GBPR function are the same as that in [27, 34] except na=4. We consider the
stochastic settings for the OD demands and the capacity of the links. Each (bξ)i is
supposed to follow a log-norm distribution, and the coefficients of variation for each
(bξ)i are 5. For the capacity, we use the beta distribution to generate the samples.
The link flow patterns obtained by the ERM (1.7) are displayed in Figure 4.4 (right).
Here the link flow is displayed on each link with the unit 1.0e3, and the width of each
link is proportional to the link flow. By the property of xERM , we known that the
ERM flow patterns satisfy the average of travel demand as AxERM = E[bξ]. Moreover,
the ERM flow patterns satisfy the stochastic travel demand on all OD pairs with high
probability:

0.848 ≥ prob{(AxERM − bξ)i ≥ 0} ≥ 0.780, i = 1, . . . , 528.

Remark 5. The three examples are often used in transportation research. They
satisfy all our assumptions of the theoretical analysis for the ERM-formulation in
sections 2 and 3. Moreover, our preliminary numerical results show that the ERM-
solution performs better than the EV-solution both as far as robustness and risk
analysis are concerned.
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lsc functions, Sémi. Anal. Convexe, 13 (1991), pp. 13.1–13.29.

[4] J.R. Birge and F. Louveaux, Introduction to Stochastic Programming, Springer, New York,
1997.



STOCHASTIC VI: RESIDUAL MINIMIZATION 673

[5] X. Chen and M. Fukushima, Expected residual minimization method for stochastic linear
complementarity problems, Math. Oper. Res., 30 (2005), pp. 1022–1038.

[6] X. Chen, R.S. Womersley, and J. Ye, Minimizing the condition number of a Gram matrix,
SIAM J. Optim., 21 (2011), pp. 127–148.

[7] X. Chen, C. Zhang, and M. Fukushima, Robust solution of monotone stochastic linear com-
plementarity problems, Math. Program., 117 (2009), pp. 51–80.

[8] F.H. Clarke, Optimization and Nonsmooth Analysis, John Wiley, New York, 1983.
[9] R.W. Cottle, J.S. Pang, and R.E. Stone, The Linear Complementarity Problem, Academic

Press, New York, 1992.
[10] F. Facchinei and J.S. Pang, Finite-Dimensional Variational Inequalities and Complementar-

ity Problems, Springer-Verlag, New York, 2003.
[11] H. Fang, X. Chen, and M. Fukushima, Stochastic R0 matrix linear complementarity problems,

SIAM J. Optim., 18 (2007), pp. 482–506.
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