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Regularized minimization problem

zeER"

min  f(z) = 6(@) + A3 (dTa), <1>J
=1

e ©: R"™ — Ry is continuously differentiable,
and VO is globally Lipschitz with a Lipschitz constant 5 > 0.

¢ : R — Ry is continuous, ¢(t) = ¢(—t), ¢(0) =0,
and nondecreasing, concave in [0, 00),
continuously differentiable in (0, 00).

d;,eR"i=1,...,r.

A > 0, regularization parameter.

Nonsmooth, nonconvex, non-Lipschitz minimization

o Compressive sensing, sparse solutions of systems

e Signal reconstruction, variable selection, image processing.

Baraniuk, Plenary Talk, ISMP2012, ||z|[5 = "7, |zi[?, p € (0,1].



Nonconvex least squares problems

i 2 T
Inin ||[Az —b||* + Az_;@(di x), (LS)

A€ R™*" be R™ with O(z) = || Az — b||? and 8 = ||V2O(2)| = 2||AT 4]
Widely used penalty functions:

alt|
t =
#(t) 1+ alt]’

p(t) = log(1 + alt]),

[t]
o(t) = / (1-s/(@N)sds, () = A— (A= [t)2/A

Il

o(t) = | min(l(@—s/A)+/la=1)ds, () =7,

where @ > 0 and p € (0, 1).
For |t|P, the smoothness and convexity are dependent on the value of p,
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o(t) = / (1-s/(@N)sds, () = A— (A= [t)2/A

Il

o(t) = | min(l(@—s/A)+/la=1)ds, () =7,

where @ > 0 and p € (0, 1).

For [t|P, the smoothness and convexity are dependent on the value of p,
e [t|” (p > 1) is smooth, convex,
@ [t|P (p = 1) is nonsmooth, convex,
e |t|” (0 < p < 1) is non-Lipschitz, nonconvex.



Concave penalty functions

|t] if [t] > p
a=25 A=05, p=05, gg(t) =s(t,p)°, st,u) =9 2 4
ﬂ + 5 if [t < p

Pa(t) = log(1 +alt|) o6 () = [£]°
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Smoothing / Interior Point Algorithms (0 <p < 1)

Wei Bian, X. Chen, Smoothing SQP algorithm, complexity O(e~?)

TER™

min - f(z) := O(z) + AZ (i) (2)J

Chen, Lingfeng Niu, Ya-xiang Yuan, Smoothing trust region Newton method

TER? :
1=1

min  f(z) = O(x) + A Y o(|d] z|?) <4>J




Smoothing / Interior Point Algorithms (0 <p < 1)

Nonconvex penalty function

O(x) =AY _e(dlzl’), 0<p<l1
=1

Let t = |d] xP.

_ at
T 14 at’

o(t) = / (1—s/(aN)ads, ()= A— (A—1)3/A

p(t) () = log(1 + at),

o(t) = / min(1, (@ — s/ /(@ - D)ds,  o(t) =1,

= [d1,...,d,]T is the first order difference matrix, Total Variation (TV)
d,]T is the identity matrix.



ly-0, (0 < p < 1) minimization

Given a matrix A € R™*"™, a vector b € R™, a number A > 0,

min f(z) = | Az = blJ* + Al (£a-Lp)




ly-¢, (0 < p < 1) minimization

Given a matrix A € R™*"™, a vector b € R™, a number A > 0,

min f(z) := [[Az — bl + Allll} (£a-Lp)

n n n
lzllo =Y |2:l® — allf = lwl? — Jallh =) |al
i=1 i=1 i=1

2;#0

v

Bruckstein-Donoho-Elad (2009), Candén-Wakin-Boyd (2008), Chartrand-Staneve
(2008), Chartrand-Yin (2009), Fan-Li (2001), Foucart-Lai (2009), Knight-Fu
(2000), Ge-Jiang-Ye (2010), Hintermueller-Wu (2012), Huang-Horowitz-Ma
(2008), Lai-Wang (2009), Men-Yang (2010), Nikolova et al (2008, 2011), Shi

et al(2012), Xu et al (2010, 2012), Zhang (2010), Lu (2012), Sun (2012), Yin
(2012), Ito-Kunisch (2012), So et al (2012), Lewis-Wright (2012), Wen et al
(2012).

Extension

Low rank matrix: Y o?(X) and Group selection: Y (>, .7 |zi])?

iel;



The lower bound theory I

Chen-Xu-Ye 2010 SIAM Sci. Comput.

Let a; be the ¢th column of A. Let

L= (x\p(lp)) _p7 i=1,---,n.

2)jail?

Theorem 1 For any local minimizer z* of the £5-¢, problem, the following
statements hold.

o zfe(—L,L;) = af=0, ie{l,---,n}
o The columns of the sub-matrix B := Ay € R™ /A of A are linearly
independent, where A = support {z*}.

o The ¢5-¢, problem has a finite number of local minimizers.

1= 1 lle-



The lower bound theory II

For an arbitrarily given point 20, let

1

Ap o
L= TRy .
2[|Ally/ f ()
Theorem 2 Let 2* be any local minimizer of the ¢5-£, problem satisfying
f(x*) < f(2°). Then we have
o zje(-L, L) = zf=0, ie{l,---,n}
@ The number of nonzero entries in z* is bounded by

0
2o < min (m, fg,,)) .




Sparsity of minimizers of the ¢,-/, problem

Chen-Ge-Wang-Ye 2011

Theorem 3 Let

2a 5 2= p
—— ) IbI*F?, a= max |a|?>, 1<Ek<n.
p(1—p) 1<i<n

8k =1

o If A\ > A(k), any minimizer z* of the ¢5-¢, problem satisfies ||z*[|o < k
for k > 2.

o If A > (1), z* = 0 is the unique minimizer of the ¢2-£, problem.

2
o Suppose that set C' := { x| Az = b} is non-empty. Then, if A < Hb” > for
some z. € C, any minimizer x* of the ¢>-¢, problem satisfies ||x*||0 > 1.

Theorem 4 Let 4 v
1 (2 _
) = o=t (2EL) g,

If A > ~(k), then any local minimizer z* of the £5-¢, problem, with f(z*) <
£(0) = ||b]|?, satisfies ||z*||o < k for k > 2.



The complexity of the (,-/, minimization

Chen-Ge-Wang-Ye 2011

Given A€ R™*" be R™, A >0,q>1,0<p< 1, consider

min [z =B+ Alally (b

Theorem 5 The {,-¢,, minimization is strongly NP-hard.

Consider

Jaig Mo U 42D (ml +7 ()

where € > 0.

Theorem 6 The ¢,-{,-¢ minimization is strongly NP-hard.



The complexity of constrained problems

Ge-Jiang-Ye (Math. Program. 2011) show that the following two problems
are strongly NP hard

1 P
fnin - [|z[|3
st. Az =0b
and
1 p
nin  [lz] +¢l[3
st. Ax=b.

Natarajan (SIAM J. Computing, 1995) show that the following problem is
NP-hard

Inin z[lo

st. Az — b2 < e

€ > 0.



Smoothing algorithms

e Definition 1: Let f : R" — R be continuous. We call f:R"x Ry - R
a smoothing function of f, if f(-, ) is continuously differentiable in R™
for any fixed p > 0, and

lim f(xk,uk) = f(z), foranyx € R".

ok —a, 1k 0
@ Subdifferential associated with f if f is locally Lipschitz
Gi(z) ={v : Vo f(x®, py) = v, for 2¥ — 2, pup L0 ).
Rockafellar and Wets (1998): G 7(x) is nonempty and bounded,

Of (z) = cof lim Vf(zF)} C coG §(z).

zh—
J‘/k’EDf



Smoothing algorithms

e Definition 1: Let f : R" — R be continuous. We call f:R"x Ry - R
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lim f(xk,uk) = f(z), foranyx € R".

ok —a, 1k 0
@ Subdifferential associated with f if f is locally Lipschitz
Gi(z) ={v : Vo f(x®, py) = v, for 2¥ — 2, pup L0 ).
Rockafellar and Wets (1998): G 7(x) is nonempty and bounded,

Of (z) = cof lim Vf(mk)}gcoGJ;(x).

z¥— x
wkEDf

Gradient Consistency

Of(x) = coGy

Chen: Composite ()4, ISMP2012 special issue
Burke, Hoheisel, Kanzow: smoothing functions, draft 2012



Smoothing algorithms

e Choose a smoothing function f(x, 1)
and an algorithm for the smooth problems.

o Use f(2*, u) and its gradient V, f(2*, up) at each step of the algorithm.

o Update the smoothing parameter uy at each step. The updating scheme
plays a key role in convergence analysis of the smoothing method.

<
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<

Challenges:

o How to choose smoothing functions and algorithms for the problem ?

o How to update the smoothing parameter py 7




Smoothing algorithms

e Choose a smoothing function f(x, 1)
and an algorithm for the smooth problems.

o Use f(2*, u) and its gradient V, f(2*, up) at each step of the algorithm.

o Update the smoothing parameter uy at each step. The updating scheme
plays a key role in convergence analysis of the smoothing method.

| A

Challenges:

o How to choose smoothing functions and algorithms for the problem ?

o How to update the smoothing parameter py 7

Smoothing projected gradient method Zhang-Chen, SIAM Optim. 2009
Smoothing conjugate gradient method Chen-Zhou, STAM Imaging Sci. 2010
Smoothing direct-search methods Garmanjani-Vicente, IMA NA, to appear
global convergence of these methods to a stationary point.



Smoothing / Interior Point Algorithms (0 <p < 1)

Wei Bian, X. Chen, Smoothing SQP algorithm, complexity O(e~?)

. o P

min - f(z) = 6(z) + /\;w(lwzl ) (2) J

Bian, Chen, Yinyu Ye, Interior point algorithms, complexity O(e~2), O(e’%)
o f(x) == 0(z) + A; o(z}) (3) J

Chen, Lingfeng Niu, Ya-xiang Yuan, Smoothing trust region Newton method

T
. — T ,.|p

min  f(z) = 6(a) + A;@(Idl z|?) (4) J

Remark: Quadratic approximation at each step of the three algorithms.
Cubic regularization with O(¢~2) for smooth nonconvex optimization: Nesterov-
Polyak(2006) and Cartis-Gould-Toint(2012).



Smoothing function Approximations

It] if [t| > p
S(ta /.t) = t2 1%
2

if |t| <

A Smoothing Function of f

f@,m) =0@)+ > (s (@i,m), gz, 1) = Vaf(z,p)

=1

Strictly Convex Quadratic function approximation around y

~ - n "L'Z—,L2
Flz, 1) < Qa,y, 1) = Fly, ) + <<y,u>,x_y>+%zﬂiy>

— di(y, p)
max{ + &ap| L2, WOy s
1 B 2 |%\1—§lﬁ
di ) N
i max{J + 8\puP~?, 160, 1 )l} if |y;| < 2p.



SSQP Algorithm

SSQP Algorithm

Choose 2° € R™, jip > 0 and o € (0,1). Set k =0 and 2° = 20.
For k£ > 0, set

= ok~ di(, )G ), = 1,eem (52)
if f(aktl p f(2*, < —4

e = {uk F@E ) = F(a®, ) ap (5b)
ok otherwise,
k .
a5 if i1 = o

Zk+1 _ . 12 +1' 12 (5C)
z otherwise.

In (5a) ! = arg min Q(x, 2", jux)

VIQ(JI,.’L‘]C, /J/k:) = g(xk’ ,uk:) + ViQ(.I, mkvﬂk)(x - ‘rk>7

. 1
ViQ(.’t, xkv Mk) = dlag(

ey >0
n@E ) @)

f(.%‘) < f(xa:u’k) < Q(xamkauk)’ r € R



Worst-case complexity for SSQP

Definition 2 Let G : R™ — R" be defined by
G(z) = XVO(z) + p| X[V (t) t= |, p iz,

where X =diag(x1,...,2,) and |X|P =diag(|z1|?,...,|z,|?). For a given
€ >0, we call z* € R™ an € scaled first order stationary point of (2) if

1G(z") ][ < e

And z* is called a scaled first order stationary point of (2) if € = 0.



Worst-case complexity for SSQP

Definition 2 Let G : R™ — R" be defined by
G(z) = XVO(z) + p| X[V (t) t= |, p iz,

where X =diag(x1,...,2,) and |X|P =diag(|z1|?,...,|z,|?). For a given
€ >0, we call z* € R™ an € scaled first order stationary point of (2) if

1G(z") oo <€

And z* is called a scaled first order stationary point of (2) if € = 0.

Definition 3 For € > 0, z* is an € global minimizer of (2) if

*) — mi <e.
f(@*) — min f(z) <e
Theorem 7 For any € € (0, 1], the SSQP Algorithm obtains an € scaled first
order stationary point or e global minimizer of (2) in no more than O(e~2)
steps.



Interior Point Algorithm (0 <p <1)

z€[0,u]

min - f(z) := () + /\Z (), 3)

[V20(z)|| < B. For any x, + € (0,u], we obtain

f@) < f@) +(Vi@),2" =) + Gllat - alf?

f(@) +(XVf(z),ds) + §||Xdz||2, (Xdy =zt — ).

min (XVf(z),d,) + gd;{Xde

1
st. d2< 1o dy < X Y(u— ).

dy = ProjDI[—%X_IVf(m)}, D, = [—%emmln{;emX_l(u —x)}]



Interior Point Algorithm (0 <p <1)

Interior Point Algorithm
Choose z° € (0,u]. For k > 0, set

: 1.,
dy = Projp, [—EX,c V)], ot = zF + Xydy

Definition 3a For € > 0, z* is an € global minimizer of (3) if

z* €[0,u] and f(z¥)— orgrgrglu f(z) <e.

Definition 4 For € > 0, z is an € scaled first order stationary point of (3), if
x € (0,u] and

Q |[[XV ()| <eif x; <u; — e

Q [Vf(2)); <eif x; > u; — de, where § > 0 is a small constant.
Theorem 8 For any e € (0,1], the Interior Point Algorithm obtains an e

scaled first order stationary point or € global minimizer of (3) in no more
than O(e~2) steps.



A special case of Problem (3)

x>0

min  f(z) = 6(x) + Az, (3) J

Second Order Interior Point Algorithm

For given € € (0, 1], choose 2° > 0. For k > 0,

1
i TX, V(") + =d" X, V2 f(2®) X
dkearg”dﬁgg;/rd RV F (") + 5d" XV f (@) Xpd

ghtl = gk + Xpdy

L = (2v0° + MP)?, 1 > sup{|[z]|o : f(2) < f(2%), 2 >0}, [V2O(z)]| < .
Definition 4a For € > 0, x > 0 is an € scaled second order stationary point
of (3), if

[XVF(®)]loo <€ and XV2f(2)X = —/el.

Theorem 9 For any € € (0, 1], the Second Order Interior Point Algorithm
obtains an € scaled second order stationary point or € global minimizer of (3')

in no more than O(e~2) steps.



Smoothing trust region algorithm (0 <p <1)

min  f(z) = O(z) + A Y p(ldf ), (4)

TER™
=1

For z # 0, let J; = {i | dfz # 0,5 = 1,--- ,r}. Let Zz be an n x ¢ matrix
whose columns are an orthonormal basis for the null space of {d; | ¢ & Jz}.

Let
w(z) (@) + A e(ld] =), (f(@) =w(z))

i€Jz

Theorem 9 (Second order necessary condition)
If Z is an nonzero local minimizer of problem (4), then we have

ZIVw(z) =0 (6)

Vv € RY, there is an H € 03w(), such that v/ ZLHZzv >0.  (7)



Smoothing trust region algorithm (0 <p <1)

min  f(z) = O(z) + A Y p(ldf ), (4)

€Rn
“ =il

For z # 0, let J; = {i | dfz # 0,5 = 1,--- ,r}. Let Zz be an n x ¢ matrix
whose columns are an orthonormal basis for the null space of {d; | ¢ & Jz}.

Let
w(z) (@) + A e(ld] =), (f(@) =w(z))
i€z

Theorem 9 (Second order necessary condition)
If Z is an nonzero local minimizer of problem (4), then we have

ZIVw(z) =0 (6)

Vv € RY, there is an H € 03w(), such that v/ ZLHZzv >0.  (7)

Theorem 10 (Second order sufficient condition)
If (6) holds and ZI' HZ; = 0,VH € 0%w(Z), then 7 is a strictly local minimizer
of (4).



Smoothing trust region algorithm (0 <p <1)

s(t, 1) = /12 + 4p? a smoothing function of |¢|
A Smoothing Function of f

fla,m) = O(@)+ > ¢(sP(d] =, 1))

i=1

Smoothing Trust Region Algorithm

Choose z° € R™, pg > 0, Ag, A C>O v € (0,1). For k > 0,

Step 1.  min d'Vf(2*, u) + ngvzf(:c s k) d

Step 2 Update zF and Ay, to get 2F+! and Ap g

Step 3 If |V f(z*, )| < (uw and Ay > A, choose pry1 = vjug;
otherwise, set px4+1 = pg.

v

Theorem 11 Any accumulation point of {z*} generated by the Smoothing
Trust Region Algorithm satisfies the second order necessary conditions (6)-(7).



Example 1: SSQP Algorithm

min  f(2) = (@1 +22 — 1) + M/ Jer] + VV]aa]): ®)
A global minimizer global minimum

g
ENE (0,0) 1

1 (0,0.7015) and (0.7015,0) 0.927

When X\ = %, (1/3,0) and (0,1/3) are two nonzero vectors satisfying the

first and second order necessary conditions.

_ _8
@ rA=37




Example 2: Prostate cancer

This data sets are from the UCI Standard database.

o The data set consists of the medical records of 97 patients who were
about to receive a radical prostatectomy. The predictors are 8 clinical
measures: lcavol, lweight, age, lbph, svi,lcp, gleason and pgg45h.

@ The aim is to find few main factors with small prediction error.

A training set with 67 observations, and a test set with 30 observations,
A€ RS7%8 b e RO,



Results for prostate cancer

Parameter LASSO | IRL1 | OMP-SCG | SSQP | STR FIP
z1 (lcavol) 0.545 | 0.6187 0.6436 0.6437 | 0.646 | 0.6433
x2(lweight) 0.237 | 0.2362 0.2804 0.2765 | 0.275 | 0.2767
x3(lage) 0 0 0 0 0 0
24(1bph) 0.098 | 0.1003 0 0 0 0
x5(svi) 0.165 | 0.1858 0.1857 0.1327 | 0.128 | 0.1337
ze(lep) 0 0 0 0 0 0
x7(gleason) 0 0 0 0 0 0
xs(pgedh) 0.059 0 0 0 0 0
l]lo 5 4 3 3 3 3
Prediction error 0.478 0.468 0.4419 0.4264 | 0.428 | 0.426

IRL1: Tterative reweighted ¢; norm, OMP-SCG: Orthogonal matching pursuit
STR: Smoothing trust region, FIP: First order interior point



Example 3 Image restoration: ) ' [|d] z|?, 0 <z <e

50 100

(c¢) Original image (d) Observed image

50 100 150 200

0.5]t]
140.5]¢]

(f) restored o(t) = [t|0-®

(e) restored (t) =




The restored 126th line for the Shepp-Logan image of size
256 x 256

L L
2 :
os o8
os o8
0 od
0 02
0 o
o o 50 100 150 200 250 300 o o 50 100 150 200 250 300
(g) original (h) observed
1 .
. .
os o8
os o
0 od
0z 0z
o o
o o 50 100 150 200 250 300 o 0 50 100 150 200 250 300

0.5]t|

(i) restored ¢(t) = T30.507]

(j) restored p(t) = |t|0-®
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