The 21st ISMP, Berlin, Germany

Nonsmooth, Nonconvex Regularized Optimization for Sparse Approximations

Xiaojun Chen

Department of Applied Mathematics
The Hong Kong Polytechnic University

24 August 2012

Regularized minimization problem

$$\min_{x \in R^n} \quad f(x) := \Theta(x) + \lambda \sum_{i=1}^r \varphi(d_i^T x), \tag{1}$$

- $\Theta: \mathbb{R}^n \to \mathbb{R}_+$ is continuously differentiable, and $\nabla \Theta$ is globally Lipschitz with a Lipschitz constant $\beta > 0$.
- $\varphi: R \to R_+$ is continuous, $\varphi(t) = \varphi(-t)$, $\varphi(0) = 0$, and nondecreasing, concave in $[0, \infty)$, continuously differentiable in $(0, \infty)$.
- $d_i \in R^n, i = 1, ..., r$.
- $\lambda > 0$, regularization parameter.

Nonsmooth, nonconvex, non-Lipschitz minimization

- Compressive sensing, sparse solutions of systems
- Signal reconstruction, variable selection, image processing.

Baraniuk, Plenary Talk, ISMP2012, $||x||_p^p = \sum_{i=1}^n |x_i|^p$, $p \in (0,1]$.

Nonconvex least squares problems

$$\min_{x \in R^n} ||Ax - b||^2 + \lambda \sum_{i=1}^r \varphi(d_i^T x), \tag{LS}$$

 $A \in R^{m \times n}$, $b \in R^m$ with $\Theta(x) = \|Ax - b\|^2$ and $\beta = \|\nabla^2 \Theta(x)\| = 2\|A^T A\|$. Widely used penalty functions:

$$\varphi(t) = \frac{\alpha|t|}{1+\alpha|t|}, \qquad \varphi(t) = \log(1+\alpha|t|),$$

$$\varphi(t) = \int_0^{|t|} (1-s/(\alpha\lambda))_+ ds, \qquad \varphi(t) = \lambda - (\lambda-|t|)_+^2/\lambda$$

$$\varphi(t) = \int_0^{|t|} \min(1, (\alpha-s/\lambda)_+/(\alpha-1)) ds, \qquad \varphi(t) = |t|^p,$$

where $\alpha > 0$ and $p \in (0, 1)$.

For $|t|^p$, the smoothness and convexity are dependent on the value of p,

Nonconvex least squares problems

$$\min_{x \in R^n} ||Ax - b||^2 + \lambda \sum_{i=1}^n \varphi(d_i^T x),$$
 (LS)

 $A \in R^{m \times n}$, $b \in R^m$ with $\Theta(x) = ||Ax - b||^2$ and $\beta = ||\nabla^2 \Theta(x)|| = 2||A^T A||$. Widely used penalty functions:

$$\varphi(t) = \frac{\alpha|t|}{1+\alpha|t|}, \qquad \varphi(t) = \log(1+\alpha|t|),$$

$$\varphi(t) = \int_0^{|t|} (1-s/(\alpha\lambda))_+ ds, \qquad \varphi(t) = \lambda - (\lambda-|t|)_+^2/\lambda$$

$$\varphi(t) = \int_0^{|t|} \min(1, (\alpha-s/\lambda)_+/(\alpha-1)) ds, \qquad \varphi(t) = |t|^p,$$

where $\alpha > 0$ and $p \in (0,1)$. For $|t|^p$, the smoothness and convexity are dependent on the value of p,

- $|t|^p$ (p > 1) is smooth, convex,
- $|t|^p$ (p=1) is nonsmooth, convex,
- $|t|^p$ (0 < p < 1) is non-Lipschitz, nonconvex.

Concave penalty functions

$$\alpha = 2.5, \ \lambda = 0.5, \ \mu = 0.5, \ \varphi_6^{\mu}(t) = s(t,\mu)^{0.5}, \ s(t,\mu) = \begin{cases} |t| & \text{if } |t| \ge \mu \\ \frac{t^2}{2\mu} + \frac{\mu}{2} & \text{if } |t| < \mu \end{cases}$$

$$\left(\frac{1}{2\mu} + \frac{1}{2}\right) \quad \text{if } |t| < \mu$$

$$\varphi_5(t) = \int_0^{|t|} \min(1, (\alpha - s/\lambda)_+ / (\alpha - 1)) ds$$

 $\varphi_1(t) = \frac{\alpha |t|}{1 + \alpha |t|}$

 $\varphi_4(t) = \lambda - (\lambda - |t|)_{\perp}^2 / \lambda$

Joint work with

Wei Bian, Dongdong Ge, Lengfeng Niu, Michael Ng, Fengmin Xu, Zizhou Wang, Yinyu Ye, Ya-xiang Yuan, Chao Zhang, Weijun Zhou

- W. Bian, X. Chen, Y. Ye, Complexity analysis of interior point algorithms for non-Lipshchitz and nonconvex optimization, July, 2012.
- X. Chen, L. Niu and Y. Yuan, Optimality conditions and smoothing trust region Newton method for non-Lipschitz optimization, March, 2012.
 W. Bian and Y. Chen, Smoothing SOP algorithm for non-Lipschitz op-
- W. Bian and X. Chen, Smoothing SQP algorithm for non-Lipschitz optimization with complexity analysis, February 2012.
- X. Chen, D. Ge, Z. Wang and Y. Ye, Complexity of the unconstrained L_2 - L_p minimization, May 2011.
- \bullet X. Chen, M. Ng and C. Zhang, Non-Lipschitz ℓ_p -regularization and box constrained model for image restoration, IEEE Trans. Imaging P 2012.
- § X. Chen, F. Xu and Y. Ye, Lower bound theory of nonzero entries in solutions of ℓ_2 - ℓ_p minimization, SIAM Sci. Comput., 2010.
- X. Chen and W. Zhou, Smoothing nonlinear conjugate gradient method for image restoration using nonsmooth nonconvex minimization, SIAM Imaging Sci., 2010.

Smoothing / Interior Point Algorithms (0

Wei Bian, X. Chen, Smoothing SQP algorithm, complexity $O(\epsilon^{-2})$

$$\min_{x \in R^n} \quad f(x) := \Theta(x) + \lambda \sum_{i=1}^n \varphi(|x_i|^p) \tag{2}$$

Bian, Chen, Yinyu Ye, Interior point algorithms, complexity $O(\epsilon^{-\frac{3}{2}})$, $O(\epsilon^{-\frac{3}{2}})$

$$\min_{x \in [0,u]} \quad f(x) := \Theta(x) + \lambda \sum_{i=1}^{n} \varphi(x_i^p)$$
 (3)

Chen, Lingfeng Niu, Ya-xiang Yuan, Smoothing trust region Newton method

$$\min_{x \in R^n} \quad f(x) := \Theta(x) + \lambda \sum_{i=1}^r \varphi(|d_i^T x|^p) \tag{4}$$

Smoothing / Interior Point Algorithms (0

Nonconvex penalty function

$$\Phi(x) = \lambda \sum_{i} \varphi(|d_i^T x|^p), \qquad 0$$

Let $t = |d_i^T x|^p$.

$$\varphi(t) = \frac{\alpha t}{1 + \alpha t}, \qquad \varphi(t) = \log(1 + \alpha t),$$

$$\varphi(t) = \int_0^t (1 - s/(\alpha \lambda))_+ ds, \qquad \varphi(t) = \lambda - (\lambda - t)_+^2 / \lambda$$

$$\varphi(t) = \int_0^t \min(1, (\alpha - s/\lambda)_+ / (\alpha - 1)) ds, \qquad \varphi(t) = t,$$

 $D = [d_1, \dots, d_r]^T$ is the first order difference matrix, Total Variation (TV) $D = [d_1, \dots, d_n]^T$ is the identity matrix.

ℓ_2 - ℓ_p (0 < p < 1) minimization

Given a matrix $A \in \mathbb{R}^{m \times n}$, a vector $b \in \mathbb{R}^m$, a number $\lambda > 0$,

$$\min_{x \in R^n} f(x) := ||Ax - b||^2 + \lambda ||x||_p^p \qquad (\ell_2 - \ell_p)$$

ℓ_2 - ℓ_p (0 < p < 1) minimization

Given a matrix $A \in \mathbb{R}^{m \times n}$, a vector $b \in \mathbb{R}^m$, a number $\lambda > 0$,

$$\min_{x \in \mathbb{R}^n} f(x) := ||Ax - b||^2 + \lambda ||x||_p^p \qquad (\ell_2 - \ell_p)$$

$$||x||_0 = \sum_{\substack{i=1\\x_i \neq 0}}^n |x_i|^0 \quad \longleftarrow \quad ||x||_p^p = \sum_{i=1}^n |x_i|^p \quad \longrightarrow \quad ||x||_1 = \sum_{i=1}^n |x_i|$$

Bruckstein-Donoho-Elad (2009), Candén-Wakin-Boyd (2008), Chartrand-Staneva (2008), Chartrand-Yin (2009), Fan-Li (2001), Foucart-Lai (2009), Knight-Fu (2000), Ge-Jiang-Ye (2010), Hintermueller-Wu (2012), Huang-Horowitz-Ma (2008), Lai-Wang (2009), Men-Yang (2010), Nikolova et al (2008, 2011), Shi et al (2012), Xu et al (2010, 2012), Zhang (2010), Lu (2012), Sun (2012), Yin (2012), Ito-Kunisch (2012), So et al (2012), Lewis-Wright (2012), Wen et al (2012).

Extension

Low rank matrix: $\sum \sigma_i^p(X)$ and Group selection: $\sum (\sum_{i \in I_j} |x_i|)^p$

The lower bound theory I

Chen-Xu-Ye 2010 SIAM Sci. Comput.

Let a_i be the *i*th column of A. Let

$$L_i = \left(\frac{\lambda p(1-p)}{2||a_i||^2}\right)^{\frac{1}{2-p}}, \quad i = 1, \dots, n.$$

Theorem 1 For any local minimizer x^* of the ℓ_2 - ℓ_p problem, the following statements hold.

- $x_i^* \in (-L_i, L_i) \Rightarrow x_i^* = 0, i \in \{1, \dots, n\}.$
- The columns of the sub-matrix $B := A_{\Lambda} \in \mathbb{R}^{m \times |\Lambda|}$ of A are linearly independent, where $\Lambda = \text{support } \{x^*\}.$
- The ℓ_2 - ℓ_p problem has a finite number of local minimizers.

$$\|\cdot\|:=\|\cdot\|_2.$$

The lower bound theory II

For an arbitrarily given point x^0 , let

$$L = \left(\frac{\lambda p}{2\|A\|\sqrt{f(x^0)}}\right)^{\frac{1}{1-p}}.$$

Theorem 2 Let x^* be any local minimizer of the ℓ_2 - ℓ_p problem satisfying $f(x^*) \leq f(x^0)$. Then we have

- $x_i^* \in (-L, L) \Rightarrow x_i^* = 0, i \in \{1, \dots, n\}.$
- The number of nonzero entries in x^* is bounded by

$$||x^*||_0 \le \min\left(m, \frac{f(x^0)}{\lambda L^p}\right).$$

Sparsity of minimizers of the ℓ_2 - ℓ_p problem

Chen-Ge-Wang-Ye 2011

Theorem 3 Let

$$\beta(k) = k^{\frac{p}{2} - 1} \left(\frac{2\alpha}{p(1 - p)} \right)^{\frac{p}{2}} ||b||^{2 - p}, \quad \alpha = \max_{1 \le i \le n} ||a_i||^2, \quad 1 \le k \le n.$$

- If $\lambda \geq \beta(k)$, any minimizer x^* of the ℓ_2 - ℓ_p problem satisfies $||x^*||_0 < k$ for $k \geq 2$.
- If $\lambda \geq \beta(1)$, $x^* = 0$ is the unique minimizer of the ℓ_2 - ℓ_p problem.
- Suppose that set $C := \{ x \mid Ax = b \}$ is non-empty. Then, if $\lambda \leq \frac{\|b\|^2}{\|x_c\|_p^p}$ for some $x_c \in C$, any minimizer x^* of the ℓ_2 - ℓ_p problem satisfies $\|x^*\|_0 \geq 1$.

Theorem 4 Let

$$\gamma(k) = k^{p-1} \left(\frac{2\|A\|}{n} \right)^p \|b\|^{2-p}.$$

If $\lambda \geq \gamma(k)$, then any local minimizer x^* of the ℓ_2 - ℓ_p problem, with $f(x^*) \leq f(0) = ||b||^2$, satisfies $||x^*||_0 < k$ for $k \geq 2$.

The complexity of the ℓ_q - ℓ_p minimization

Chen-Ge-Wang-Ye 2011

Given $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $\lambda > 0$, $q \ge 1$, $0 \le p < 1$, consider

$$\min_{x \in R^n} \|Ax - b\|_q^q + \lambda \|x\|_p^p \qquad (\ell_q - \ell_p).$$

Theorem 5 The ℓ_q - ℓ_p minimization is strongly NP-hard.

Consider

$$\min_{x \in R^n} ||Ax - b||_q^q + \lambda \sum_{i=1}^n (|x_i| + \epsilon)^p \qquad (\ell_q - \ell_p - \epsilon),$$

where $\epsilon > 0$.

Theorem 6 The ℓ_q - ℓ_p - ϵ minimization is strongly NP-hard.

The complexity of constrained problems

Ge-Jiang-Ye (Math. Program. 2011) show that the following two problems are strongly NP hard

$$\min_{x \in R^n} ||x||_p^p$$
s.t. $Ax = b$

and

$$\min_{x \in R^n} \quad |||x| + \epsilon||_p^p$$
s.t.
$$Ax = b.$$

Natarajan (SIAM J. Computing, 1995) show that the following problem is NP-hard

$$\epsilon > 0$$
.

• **Definition 1:** Let $f: R^n \to R$ be continuous. We call $f: R^n \times R_+ \to R$ a smoothing function of f, if $\tilde{f}(\cdot, \mu)$ is continuously differentiable in R^n for any fixed $\mu > 0$, and

$$\lim_{x^k\to x, \mu_k\downarrow 0} \tilde{f}(x^k,\mu_k) = f(x), \quad \text{for any}\, x\in R^n.$$

 \bullet Subdifferential associated with \tilde{f} if f is locally Lipschitz

$$G_{\tilde{f}}(x) = \{ v : \nabla_x \tilde{f}(x^k, \mu_k) \to v, \text{ for } x^k \to x, \ \mu_k \downarrow 0 \}.$$

Rockafellar and Wets (1998): $G_{\tilde{f}}(x)$ is nonempty and bounded,

$$\partial f(x) = \operatorname{co}\{\lim_{\substack{x^k \to x \\ x^k \in D_f}} \nabla f(x^k)\} \subseteq \operatorname{co}G_{\tilde{f}}(x).$$

• **Definition 1:** Let $f: R^n \to R$ be continuous. We call $f: R^n \times R_+ \to R$ a smoothing function of f, if $\tilde{f}(\cdot, \mu)$ is continuously differentiable in R^n for any fixed $\mu > 0$, and

$$\lim_{x^k \to x, \mu_k \downarrow 0} \tilde{f}(x^k, \mu_k) = f(x), \quad \text{for any } x \in \mathbb{R}^n.$$

 \bullet Subdifferential associated with \tilde{f} if f is locally Lipschitz

$$G_{\tilde{f}}(x) = \{ v : \nabla_x \tilde{f}(x^k, \mu_k) \to v, \text{ for } x^k \to x, \ \mu_k \downarrow 0 \}.$$

Rockafellar and Wets (1998): $G_{\tilde{f}}(x)$ is nonempty and bounded,

$$\partial f(x) = \operatorname{co}\{\lim_{\substack{x^k \to x \\ x^k \in D_f}} \nabla f(x^k)\} \subseteq \operatorname{co}G_{\tilde{f}}(x).$$

Gradient Consistency

$$\partial f(x) = \cos G_{\tilde{f}}$$

Chen: Composite $(x)_+$, ISMP2012 special issue

Burke, Hoheisel, Kanzow: smoothing functions, draft 2012

Main steps

- Choose a smoothing function $f(x, \mu)$ and an algorithm for the smooth problems.
- Use $\tilde{f}(x^k, \mu_k)$ and its gradient $\nabla_x \tilde{f}(x^k, \mu_k)$ at each step of the algorithm.
- Update the smoothing parameter μ_k at each step. The updating scheme plays a key role in convergence analysis of the smoothing method.

Main steps

- Choose a smoothing function $f(x, \mu)$ and an algorithm for the smooth problems.
- Use $\tilde{f}(x^k, \mu_k)$ and its gradient $\nabla_x \tilde{f}(x^k, \mu_k)$ at each step of the algorithm.
- Update the smoothing parameter μ_k at each step. The updating scheme plays a key role in convergence analysis of the smoothing method.

Challenges:

- How to choose smoothing functions and algorithms for the problem ?
- How to update the smoothing parameter μ_k ?

Main steps

- Choose a smoothing function $\hat{f}(x,\mu)$ and an algorithm for the smooth problems.
- Use $\tilde{f}(x^k, \mu_k)$ and its gradient $\nabla_x \tilde{f}(x^k, \mu_k)$ at each step of the algorithm.
- Update the smoothing parameter μ_k at each step. The updating scheme plays a key role in convergence analysis of the smoothing method.

Challenges:

- How to choose smoothing functions and algorithms for the problem ?
- How to update the smoothing parameter μ_k ?

Smoothing projected gradient method Zhang-Chen, SIAM Optim. 2009 Smoothing conjugate gradient method Chen-Zhou, SIAM Imaging Sci. 2010 Smoothing direct-search methods Garmanjani-Vicente, IMA NA, to appear global convergence of these methods to a stationary point.

Smoothing / Interior Point Algorithms (0

Wei Bian, X. Chen, Smoothing SQP algorithm, complexity $O(\epsilon^{-2})$

$$\min_{x \in R^n} \quad f(x) := \Theta(x) + \lambda \sum_{i=1}^n \varphi(|x_i|^p)$$
 (2)

Bian, Chen, Yinyu Ye, Interior point algorithms, complexity $O(\epsilon^{-2})$, $O(\epsilon^{-\frac{3}{2}})$

$$\min_{x \in [0,u]} f(x) := \Theta(x) + \lambda \sum_{i=1}^{n} \varphi(x_i^p)$$
(3)

(3)

Chen, Lingfeng Niu, Ya-xiang Yuan, Smoothing trust region Newton method

$$\min_{x \in \mathbb{R}^n} \quad f(x) := \Theta(x) + \lambda \sum_{i=1}^r \varphi(|d_i^T x|^p) \tag{4}$$

Remark: Quadratic approximation at each step of the three algorithms. Cubic regularization with $O(\epsilon^{-\frac{3}{2}})$ for smooth nonconvex optimization: Nesterov-Polyak(2006) and Cartis-Gould-Toint(2012).

Smoothing function Approximations

$$s(t,\mu) = \begin{cases} |t| & \text{if } |t| \ge \mu \\ \frac{t^2}{2\mu} + \frac{\mu}{2} & \text{if } |t| < \mu \end{cases}$$

A Smoothing Function of f

$$\tilde{f}(x,\mu) = \Theta(x) + \sum_{i=1}^{n} \varphi(s^{p}(x_{i},\mu)), \qquad \tilde{g}(x,\mu) := \nabla_{x}\tilde{f}(x,\mu)$$

Strictly Convex Quadratic function approximation around y

$$\tilde{f}(x,\mu) \le Q(x,y,\mu) = \tilde{f}(y,\mu) + \langle \tilde{g}(y,\mu), x - y \rangle + \frac{1}{2} \sum_{i=1}^{n} \frac{(x_i - y_i)^2}{d_i(y,\mu)}$$

$$\frac{1}{d_i(y,\mu)} = \begin{cases} \max\{\beta + 8\lambda p | \frac{y_i}{2}|^{p-2}, \frac{|\tilde{g}_i(y,\mu)|}{|\frac{y_i}{2}|^{1-\frac{p}{2}}\mu^{\frac{p}{2}}}\} & \text{if } |y_i| > 2\mu \\ \max\{\beta + 8\lambda p\mu^{p-2}, \frac{|\tilde{g}_i(y,\mu)|}{\mu}\} & \text{if } |y_i| \le 2\mu. \end{cases}$$

SSQP Algorithm

SSQP Algorithm

Choose $x^0 \in \mathbb{R}^n$, $\mu_0 > 0$ and $\sigma \in (0,1)$. Set k = 0 and $z^0 = x^0$.

For
$$k \ge 0$$
, set
$$x_i^{k+1} = x_i^k - d_i(x^k, \mu_k) \tilde{g}_i(x^k, \mu_k), \quad i = 1, \dots, n$$

$$\begin{cases} u_i & \text{if } \tilde{f}(x^{k+1}, \mu_k) - \tilde{f}(x^k, \mu_k) \le -4\alpha n \mu^k \end{cases}$$

$$x_i^{k+1} = x_i^k - d_i(x^k, \mu_k) \tilde{g}_i(x^k, \mu_k), \quad i = 1, \dots, n$$

$$\mu_{k+1} = \begin{cases} \mu_k & \text{if } \tilde{f}(x^{k+1}, \mu_k) - \tilde{f}(x^k, \mu_k) \le -4\alpha p \mu_k^p \\ \sigma \mu_k & \text{otherwise,} \end{cases}$$

$$\begin{cases} x^k & \text{if } \mu_k = \sigma \mu_k \end{cases}$$

$$(5a)$$

$$(5b)$$

(5c)

In (5a)
$$z^{k} otherwise.$$

 $z^{k+1} = \begin{cases} x^k & \text{if } \mu_{k+1} = \sigma \mu_k \\ z^k & \text{otherwise} \end{cases}$

$$\nabla_{x} Q(x, x^{k}, \mu_{k}) = \tilde{g}(x^{k}, \mu_{k}) + \nabla_{x}^{2} Q(x, x^{k}, \mu_{k})(x - x^{k}),$$

$$\nabla_{x}^{2} Q(x, x^{k}, \mu_{k}) = \operatorname{diag}(\frac{1}{d_{1}(x^{k}, \mu_{k})}, \dots, \frac{1}{d_{n}(x^{k}, \mu_{k})}) \succ 0$$

$$f(x) < \tilde{f}(x, \mu_{k}) < Q(x, x^{k}, \mu_{k}), \qquad x \in \mathbb{R}^{n}$$

Worst-case complexity for SSQP

Definition 2 Let $G: \mathbb{R}^n \to \mathbb{R}^n$ be defined by

$$G(x) = X\nabla\Theta(x) + p|X|^p [\nabla\varphi(t)_{t=|x_i|^p}]_{i=1}^n,$$

where $X = \operatorname{diag}(x_1, \dots, x_n)$ and $|X|^p = \operatorname{diag}(|x_1|^p, \dots, |x_n|^p)$. For a given $\epsilon \geq 0$, we call $x^* \in \mathbb{R}^n$ an ϵ scaled first order stationary point of (2) if

$$||G(x^*)||_{\infty} \le \epsilon.$$

And x^* is called a scaled first order stationary point of (2) if $\epsilon = 0$.

Worst-case complexity for SSQP

Definition 2 Let $G: \mathbb{R}^n \to \mathbb{R}^n$ be defined by

$$G(x) = X \nabla \Theta(x) + p |X|^p [\nabla \varphi(t)_{t=|x_i|^p}]_{i=1}^n,$$

where $X = \operatorname{diag}(x_1, \dots, x_n)$ and $|X|^p = \operatorname{diag}(|x_1|^p, \dots, |x_n|^p)$. For a given $\epsilon \geq 0$, we call $x^* \in \mathbb{R}^n$ an ϵ scaled first order stationary point of (2) if

$$||G(x^*)||_{\infty} \le \epsilon.$$

And x^* is called a scaled first order stationary point of (2) if $\epsilon = 0$.

Definition 3 For $\epsilon \geq 0$, x^* is an ϵ global minimizer of (2) if

$$f(x^*) - \min_{x \in R^n} f(x) \le \epsilon.$$

Theorem 7 For any $\epsilon \in (0, 1]$, the SSQP Algorithm obtains an ϵ scaled first order stationary point or ϵ global minimizer of (2) in no more than $O(\epsilon^{-2})$ steps.

Interior Point Algorithm (0

$$\min_{x \in [0,u]} f(x) := \Theta(x) + \lambda \sum_{i=1}^{n} \varphi(x_i^p), \tag{3}$$

$$\|\nabla^2 \Theta(x)\| \le \beta$$
. For any $x, x^+ \in (0, u]$, we obtain

$$f(x^{+}) \leq f(x) + \langle \nabla f(x), x^{+} - x \rangle + \frac{\beta}{2} ||x^{+} - x||^{2}$$

$$= f(x) + \langle X \nabla f(x), d_{x} \rangle + \frac{\beta}{2} ||X d_{x}||^{2}, \qquad (X d_{x} = x^{+} - x).$$

Box constrained quadratic program

min
$$\langle X\nabla f(x), d_x \rangle + \frac{\beta}{2} d_x^T X^2 d_x$$

s.t. $d_x^2 \le \frac{1}{4} e_n, \quad d_x \le X^{-1} (u - x).$

$$d_x = \text{Proj}_{\mathcal{D}_x} \left[-\frac{1}{\beta} X^{-1} \nabla f(x) \right], \qquad \mathcal{D}_x = \left[-\frac{1}{2} e_n, \min \left\{ \frac{1}{2} e_n, X^{-1} (u - x) \right\} \right]$$

Interior Point Algorithm (0

Interior Point Algorithm

Choose $x^0 \in (0, u]$. For $k \ge 0$, set

$$d_k = \operatorname{Proj}_{\mathcal{D}_k} \left[-\frac{1}{\beta} X_k^{-1} \nabla f(x^k) \right], \qquad x^{k+1} = x^k + X_k d_k$$

Definition 3a For $\epsilon \geq 0$, x^* is an ϵ global minimizer of (3) if

$$x^* \in [0, u]$$
 and $f(x^*) - \min_{0 \le x \le u} f(x) \le \epsilon$.

Definition 4 For $\epsilon \geq 0$, x is an ϵ scaled first order stationary point of (3), if $x \in (0, u]$ and

- $|[X\nabla f(x)]_i| \le \epsilon \text{ if } x_i < u_i \delta \epsilon;$

Theorem 8 For any $\epsilon \in (0,1]$, the Interior Point Algorithm obtains an ϵ scaled first order stationary point or ϵ global minimizer of (3) in no more than $O(\epsilon^{-2})$ steps.

A special case of Problem (3)

$$\min_{x \ge 0} \quad f(x) := \Theta(x) + \lambda ||x||_p^p, \tag{3'}$$

Second Order Interior Point Algorithm

For given $\epsilon \in (0,1]$, choose $x^0 > 0$. For $k \ge 0$,

$$d_k \in \arg\min_{\|d\|^2 \le \epsilon/\Gamma} d^T X_k \nabla f(x^k) + \frac{1}{2} d^T X_k \nabla^2 f(x^k) X_k d$$

$$x^{k+1} = x^k + X_k d_k$$

 $\Gamma = (2\gamma\eta^3 + \lambda\eta^p)^2, \ \eta \ge \sup\{\|x\|_{\infty} : f(x) \le f(x^0), x \ge 0\}, \ \|\nabla^3\Theta(x)\| \le \gamma.$ **Definition 4a** For $\epsilon \ge 0, x > 0$ is an ϵ scaled second order stationary point of (3'), if

$$||X\nabla f(x)||_{\infty} < \epsilon$$
 and $X\nabla^2 f(x)X \succeq -\sqrt{\epsilon}I$.

Theorem 9 For any $\epsilon \in (0,1]$, the Second Order Interior Point Algorithm obtains an ϵ scaled second order stationary point or ϵ global minimizer of (3') in no more than $O(\epsilon^{-\frac{3}{2}})$ steps.

Smoothing trust region algorithm (0

$$\min_{x \in R^n} \quad f(x) := \Theta(x) + \lambda \sum_{i=1}^r \varphi(|d_i^T x|^p), \tag{4}$$

For $\bar{x} \neq 0$, let $J_{\bar{x}} = \{i \mid d_i^T \bar{x} \neq 0, i = 1, \dots, r\}$. Let $Z_{\bar{x}}$ be an $n \times \ell$ matrix whose columns are an orthonormal basis for the null space of $\{d_i \mid i \notin J_{\bar{x}}\}$. Let

$$w(x) := \Theta(x) + \lambda \sum_{i \in J_{\bar{x}}} \varphi(|d_i^T x|^p), \qquad (f(\bar{x}) = w(\bar{x}))$$

Theorem 9 (Second order necessary condition)

If \bar{x} is an nonzero local minimizer of problem (4), then we have

$$Z_{\bar{x}}^T \nabla w(\bar{x}) = 0 \tag{6}$$

$$\forall v \in R^{\ell}$$
, there is an $H \in \partial_C^2 w(\bar{x})$, such that $v^T Z_{\bar{x}}^T H Z_{\bar{x}} v \ge 0$. (7)

Smoothing trust region algorithm (0

$$\min_{x \in R^n} \quad f(x) := \Theta(x) + \lambda \sum_{i=1}^r \varphi(|d_i^T x|^p), \tag{4}$$

For $\bar{x} \neq 0$, let $J_{\bar{x}} = \{i \mid d_i^T \bar{x} \neq 0, i = 1, \dots, r\}$. Let $Z_{\bar{x}}$ be an $n \times \ell$ matrix whose columns are an orthonormal basis for the null space of $\{d_i \mid i \notin J_{\bar{x}}\}$. Let

$$w(x) := \Theta(x) + \lambda \sum_{i \in J_{\bar{x}}} \varphi(|d_i^T x|^p), \qquad (f(\bar{x}) = w(\bar{x}))$$

Theorem 9 (Second order necessary condition)

If \bar{x} is an nonzero local minimizer of problem (4), then we have

$$Z_{\bar{x}}^T \nabla w(\bar{x}) = 0 \tag{6}$$

$$\forall v \in R^{\ell}$$
, there is an $H \in \partial_C^2 w(\bar{x})$, such that $v^T Z_{\bar{x}}^T H Z_{\bar{x}} v \ge 0$. (7)

Theorem 10 (Second order sufficient condition)

If (6) holds and $Z_{\bar{x}}^T H Z_{\bar{x}} \succ 0$, $\forall H \in \partial_C^2 w(\bar{x})$, then \bar{x} is a strictly local minimizer of (4).

Smoothing trust region algorithm (0

$$s(t,\mu) = \sqrt{t^2 + 4\mu^2}$$
 a smoothing function of $|t|$

A Smoothing Function of f

$$\tilde{f}(x,\mu) = \Theta(x) + \sum_{i=1}^{r} \varphi(s^{p}(d_{i}^{T}x,\mu))$$

Smoothing Trust Region Algorithm

Choose
$$x^0 \in R^n$$
, $\mu_0 > 0$, Δ_0 , $\underline{\Delta}$, $\zeta > 0$, $\nu \in (0,1)$. For $k \ge 0$,
Step 1. min $d^T \nabla \tilde{f}(x^k, \mu_k) + \frac{1}{2} d^T \nabla^2 \tilde{f}(x^k, \mu_k) d$

min
$$d^2 \nabla f(x^n, \mu_k) + \frac{1}{2} d^2 \nabla^2 f(x^n, \mu_k)$$

s.t. $||d|| < \Delta_k$

Step 2 Update x^{k} and Δ_k to get x^{k+1} and Δ_{k+1}

Step 3 If $\|\nabla \tilde{f}(x^k, \mu_k)\| \le \zeta \mu_k$ and $\Delta_k \ge \underline{\Delta}$, choose $\mu_{k+1} = \nu \mu_k$; otherwise, set $\mu_{k+1} = \mu_k$.

Theorem 11 Any accumulation point of $\{x^k\}$ generated by the Smoothing Trust Region Algorithm satisfies the second order necessary conditions (6)-(7).

Example 1: SSQP Algorithm

$$\min_{x \in R^2} \quad f(x) := (x_1 + x_2 - 1)^2 + \lambda(\sqrt{|x_1|} + \sqrt{|x_2|}). \tag{8}$$

λ	global minimizer	global minimum
$\frac{8}{3\sqrt{3}}$	(0,0)	1
1	(0,0.7015) and $(0.7015,0)$	0.927

When $\lambda = \frac{8}{3\sqrt{3}}$, (1/3,0) and (0,1/3) are two nonzero vectors satisfying the first and second order necessary conditions.

Example 2: Prostate cancer

- This data sets are from the UCI Standard database.
- The data set consists of the medical records of 97 patients who were about to receive a radical prostatectomy. The predictors are 8 clinical measures: lcavol, lweight, age, lbph, svi,lcp, gleason and pgg45.
- The aim is to find few main factors with small prediction error.
- A training set with 67 observations, and a test set with 30 observations, $A \in \mathbb{R}^{67 \times 8}, b \in \mathbb{R}^{67}$.

Results for prostate cancer

Parameter

LASSO

IRL1

$x_1(lcavol)$	0.545	0.6187	0.6436	0.6437	0.646	0.6433
$x_2(lweight)$	0.237	0.2362	0.2804	0.2765	0.275	0.2767
$x_3(\text{lage})$	0	0	0	0	0	0
$x_4(lbph)$	0.098	0.1003	0	0	0	0
$x_5(svi)$	0.165	0.1858	0.1857	0.1327	0.128	0.1337
$x_6(lcp)$	0	0	0	0	0	0
$x_7(gleason)$	0	0	0	0	0	0
$x_8(pgg45)$	0.059	0	0	0	0	0
$ x _{0}$	5	4	3	3	3	3
Prediction error	0.478	0.468	0.4419	0.4264	0.428	0.426
<u> </u>		•				

OMP-SCG

SSQP

STR

FIP

IRL1: Iterative reweighted ℓ_1 norm, OMP-SCG: Orthogonal matching pursuit STR: Smoothing trust region, FIP: First order interior point

Example 3 Image restoration: $\sum_{i=1}^{r} \|d_i^T x\|_p^p$, $0 \le x \le e$

The restored 126th line for the Shepp-Logan image of size 256×256

Thank You

