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1. Introduction. In this paper, we consider the nonsmooth minimization problem

min
x∈X

f(x), (1.1)

where X is a nonempty closed convex set and f : X → R is a locally Lipschitz continuous function. We
propose and analyze a smoothing direct search method in the case where the function value f(x) cannot be
computed directly, but is approximated by a Monte Carlo simulation fN (x), where N is the sample size of
the Monte Carlo simulation.

In [9] we considered a similar problem in the more general situation where the objective function was
not everywhere defined and capturing the domain of f was part of the problem. In this paper the objective
function is everywhere defined and can be approximated by a smoothing approach. The results in this paper
exploit the structure of that special case to simplify the analysis and improve the efficiency of the method
via smoothing.

A typical example of the class of objective functions of interest here is the composite nonsmooth function

f(x) = G(x, F (x)) (1.2)

where G : Rn+m → R is Lipschitz continuous and F : Rn → Rm is continuously differentiable and the
function value F (x) is approximated by a Monte Carlo simulation. For example, the expected value version
of the stochastic variational inequality problem [11,36]: Given the induced probability space (Ξ ⊂ R`,A,P)
and a convex set X ⊆ Rn, find x∗ ∈ X such that

(x− x∗)TF (x∗) ≥ 0, ∀x ∈ X, (1.3)

where F (x) := E[φ(ξ, x)], and φ : Ξ × Rn → Rm is continuously differentiable with respect to x for almost
all ξ ∈ Ξ and A-measurable with respect to ξ. The stochastic variational inequality problem (1.3) reduces
to the stochastic complementarity problem:

x ≥ 0, F (x) ≥ 0, xTF (x) = 0, (1.4)
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when X = Rn+ = {x ∈ Rn |x ≥ 0}, and the system of stochastic nonsmooth equations:

F (x) = 0

when X = Rn. In this case, the approximation is via Monte Carlo simulation

F (x) = E[φ(ξ, x)] ≈ FN (x) :=
1

N

N∑
i=1

φ(ξi, x),

where N is the sample size and ξi, i = 1, . . . , N are observations of ξ ∈ Ξ.
We can express problem (1.3) as a minimization problem [16]

min
x∈Rn

‖x− ProjX(x− F (x))‖ (1.5)

where ProjX is the projection onto the set X. In this formulation the optimal function value is zero.
Another example of problem (1.1) is the `1 regularized minimization problem

min
x∈Rn

‖F (x)‖1 + λ‖x‖1, (1.6)

where F (x) is approximated by a Monte Carlo simulation.
We will exploit the composition structure by using a smoothing function for f . We will show that if f

is replaced by the outcome of Monte Carlo simulation and one has full knowledge of the nonsmoothness, we
can develop a smoothing direct search method with Monte Carlo simulation, which has global convergence
to a Clarke stationary point of problem (1.1) with probability one (w.p.1.).

For example, if f has the form (1.2), we can define the smoothing function for f as

f̂(x, µ) = Ĝ(x, F (x), µ) (1.7)

and, when F (x) is replaced by the Monte Carlo outcome FN (x), we set the smoothing Monte Carlo simulation
as

f̃(x, µ,N) = Ĝ(x, FN (x), µ). (1.8)

For any fixed smoothing parameter µ > 0, the function f̂ is continuously differentiable with respect to
x. The main contribution of this paper is to propose a smoothing direct search algorithm with Monte Carlo
simulation for solving problem (1.1) and prove the convergence of the algorithm when the stencil size h and
smoothing parameter µ go to zero with the rate h/µ → 0, and the sample size N goes to infinity with the
rate (h

√
N)−1 → 0.

Convergence analysis of direct search algorithms for smooth optimization problems where function values
can be computed exactly have been well studied in [14, 15, 18, 22, 35]. Nonsmooth problems have been
considered in [1–3, 9, 22]. Algorithms for problems where the function evaluations require embedded Monte
Carlo simulations have been considered for nonlinear equations [40, 41] and for optimization problems [9].
The new algorithm in this paper exploits the structure of the problem and properties of smoothing methods
to allow for using coordinate basis as fixed stencil search directions, simplifying the approaches of [2, 9, 22]
for nonsmooth problems while preserving the convergence results.

This paper is organized as follows. In section 2, we present a smoothing direct search algorithm for
problem (1.1) where the function values f(x) can be computed directly, and prove the convergence of the
algorithm. In section 3, we extend the algorithm and convergence analysis to a smoothing direct search
algorithm for (1.1) where the function values f(x) cannot be computed directly, but are approximated
by Monte Carlo simulation. In section 4, we present numerical experiments which include examples from
statistical learning, and portfolio selection using test problems from the OR-Library [4] and real data from
the Shanghai-Shenzhen stock market.
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2. A smoothing direct search method. We begin by reviewing sampling direct search methods in
the context of the smooth optimization problem. Let the set of search directions be an orthonormal basis
V = {v1, v2, . . . , vn}. Let h be the stencil size along those search directions. A stencil centered at x with h
is the set of points {x± hvi}ni=1 ∪ {x}. Stencil failure in this specific instance means

f(x) ≤ f(x± hvi) for i = 1, . . . n. (2.1)

More general stencils can be used [2, 22,24,25] but are not needed for the applications in this paper.
For simplicity, in this paper we will use

V = {e1, e2, . . . , en} , (2.2)

for each iteration. Here ei is the i-th coordinate vector. The algorithms and convergence analysis can be
extended to an orthononormal basis.

It is easy to show [15, 21, 22] that if f is Lipschitz continuously differentiable, then (2.1) implies that
there is Γ(x) > 0 such that

‖∇f(x)‖ ≤ hΓ(x), (2.3)

and that for any bounded set Ω ⊂ Rn there is a positive constant ΓΩ such that

sup
x∈Ω

Γ(x) ≤ ΓΩ. (2.4)

Sampling methods evaluate the objective function at the points of the stencil. If the current point is the
best (stencil failure at the current point), then the stencil size is reduced. If the current point is not the best
on the stencil, then the new best point becomes the current point. Algorithm direct search is a version of
the method for minimizing a continuously differentiable objective function f within a convex set X.

Algorithm direct search (x, f, h)

for forever do
fbase = f(x)
fmin = min{f(y) | y = x± hv, v ∈ V and y ∈ X}
ŷ ∈ {y | f(y) = fmin, y = x± hv, v ∈ V and y ∈ X}
if fmin ≥ fbase then
h← h/2

else
x← ŷ

end if
end for

In Algorithm direct search, we choose the initial point x ∈ X.

The convergence proof of Algorithm direct search is based on the stencil directions such that if stencil
failure happens at the current point, then some type of approximate necessary condition holds. This idea can
be made very general with different stencils and different smoothness requirements on the objective function
f [1–3,9, 22].

We consider the following first-order stationarity measure

χ(x) = max
x+d∈X,‖d‖≤1

[−dT∇f(x)]. (2.5)

It is easy to check that, if x ∈ X is a local minimizer of (1.1), then χ(x) = 0.
In our convergence analysis (Proposition 2.1, Theorem 2.4, Theorem 3.1), we assume that

X = {x ∈ Rn : ` ≤ x ≤ u}. (2.6)
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In (2.6), l ∈ {R ∪ −∞}n, u ∈ {R ∪∞}n and the inequalities are componentwise.
Proposition 2.1. Assume that (2.6) holds and that f is Lipschitz continuously differentiable and has

bounded level sets. Let {xk} be the sequence generated from Algorithm direct search. Then

lim inf
k→∞

χ(xk) = 0. (2.7)

Moreover, stencil failure happens at infinitely many iterates, and for each limit point x of the stencil failure
iterates, it holds that

χ(x) = 0. (2.8)

Proof. For the initial iterate x0 ∈ X and the initial stencil size h0, set

Λ0 = {x ∈ X : f(x) ≤ f(x0)}, (2.9)

and

Xt = Λ0 ∩

{
x0 +

n∑
i=1

jih0

2t
ei : ji = 0,±1,±2, · · ·

}
, t = 0, 1, 2, . . . . (2.10)

Then Λ0 is bounded, and consequently Xt is a finite set. Stencil failure occurs at x̃t, the last iterate contained
in Xt and the size of the stencil at that iteration is h̃t = h0/2

t. For each t ≥ 1, define

I+
t = {i : x̃t + h̃tei ∈ X, 1 ≤ i ≤ n}, (2.11)

I−t = {i : x̃t − h̃tei ∈ X, 1 ≤ i ≤ n}, (2.12)

and denote gt = ∇f(x̃t). Let L be the Lipschitz constant of ∇f . Then by the definition of stencil failure
and Taylor’s theorem,

0 ≤ f(x̃t + h̃tei)− f(x̃t) ≤ h̃te
T
i gt +

L

2
h̃2
t for all i ∈ I+

t , (2.13)

0 ≤ f(x̃t − h̃tei)− f(x̃t) ≤ −h̃teTi gt +
L

2
h̃2
t for all i ∈ I−t , (2.14)

and consequently,

eTi gt ≥ −
Lh̃t
2

for all i ∈ I+
t , (2.15)

eTi gt ≤
Lh̃t
2

for all i ∈ I−t . (2.16)

By the assumption, there exists a positive constant Υ such that

‖∇f(x)‖ ≤ Υ for all x ∈ Λ0. (2.17)

In specific, ‖gt‖ ≤ Υ. Therefore, for each d such that x̃t + d ∈ X and ‖d‖ ≤ 1, it holds that

−dT gt = −
n∑
i=1

di(gt)i

= −
∑

i∈I+t \I
−
t

di(gt)i −
∑

i∈I−t \I
+
t

di(gt)i −
∑

i∈I+t ∩I
−
t

di(gt)i −
∑

i/∈I+t ∪I
−
t

di(gt)i

≤ nmax

{
Lh̃t
2
,Υh̃t

}
+ n

Lh̃t
2

+ nΥh̃t

≤ 3nmax

{
Lh̃t
2
,Υh̃t

}
,

(2.18)
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where the first inequality uses the fact that for each d with x̃t + d ∈ X, i /∈ I−t implies di > −h̃t and i /∈ I+
t

implies di < h̃t.
Hence, we obtain

χ(x̃t) ≤ 3nmax

{
Lh̃t
2
,Υh̃t

}
→ 0 when t→∞. (2.19)

Since {x̃t} is a subsequence of {xk}, we conclude that

lim inf
k→∞

χ(xk) = 0. (2.20)

If x is an accumulation point of the stencil failure iterates {x̃t}, then continuity of χ implies that χ(x) = 0.

2.1. Nonsmooth f . In this subsection, we consider problem (1.1) where f is nonsmooth and F can
be computed directly.

We will use smoothing methods which approximate f by a parameterized family of smoothing functions
f̂(·, µ) where µ > 0 is the smoothing parameter.

We formally give a definition of smoothing functions used in this paper.
Definition 2.2. [8] Let f : Rn → R be a locally Lipschitz continuous function. We call f̂ : Rn ×

(0,∞) → R a smoothing function of f , if f̂(·, µ) is continuously differentiable and ∇f̂(·, µ) is Lipschitz
continuous in Rn for any fixed µ ∈ (0,∞), and

lim
x→x̂,µ↓0

f̂(x, µ) = f(x̂).

Throughout this subsection we let ∇f̂ denote the gradient f̂ with respect to x.
Assumption 2.1.

(i) There are constants c1, c2 ≥ 0 such that for any x ∈ Rn, µ ∈ (0, 1],

|f(x)− f̂(x, µ)| ≤ µ(c1 + c2|f(x)|). (2.21)

(ii) f̂ satisfies the gradient consistency condition,

∂f(x) = con{v | ∇f̂(xk, µk)→ v, for xk → x, µk ↓ 0 }, (2.22)

where “con” denotes the convex hull and ∂f(x) is the Clarke subgradient at x.

(iii) There are Υ > 0, Γ > 0 and µ− > 0 such that ‖∇f̂(x, µ)‖ ≤ Υ and

‖∇f̂(x, µ)−∇f̂(y, µ)‖ ≤ Γ

µ
‖x− y‖ (2.23)

uniformly in x, y ∈ Ω, and µ ∈ (0, µ−), where Ω is a convex and compact set.

In section 4, we use examples to illustrate the definition of smoothing functions and Assumption 2.1.

The proof that the stencil fails infinitely often for smooth f depends on the fact that f has bounded
level sets. Assumption 2.1 implies that f̂(x, µ) has bounded level sets in both variables if f does. Lemma 2.3
states this precisely.

Lemma 2.3. Assume that f has bounded level sets and that part (i) of Assumption 2.1 holds. Let
µ̂ = 1/(1 + c2). Then for any M ∈ R, the set

ΩM =
⋃
µ≤µ̂

{x ∈ X : f̂(x, µ) ≤M}

is bounded.
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Proof. First note that µ ≤ µ̂ implies

1− c2µ ≥ 1− c2µ̂ = µ̂ > 0.

Now let x ∈ ΩM . Then there is µ ≤ µ̂ such that f̂(x, µ) ≤M . According to Part (i) of Assumption 2.1,

f(x)− f̂(x, µ) ≤ c1µ+ c2µ|f(x)|. (2.24)

Hence either f(x) ≤ 0, or

f(x) ≤ f̂(x, µ) + c1µ

1− c2µ
≤ M + c1µ̂

1− c2µ̂
.

Therefore,

ΩM ⊂
{
x ∈ X : f(x) ≤ max

{
0,
M + c1µ̂

1− c2µ̂

}}
, (2.25)

which is a bounded set.
In the case where f is known exactly and there is no embedded Monte Carlo simulation, we propose

a smoothing direct search algorithm, Algorithm smoothing search that decreases µ and h simultaneously,
but in a way that ensures h = o(µ) as µ→ 0, which will be important in the convergence analysis.

Algorithm smoothing search (x, f̂ , h, µ, τ)

for forever do
f̂base = f̂(x, µ)

f̂min = min{f̂(y, µ) | y = x± hv, v ∈ V and y ∈ X}
ŷ ∈ {y | f̂(y, µ) = f̂min, y = x± hv, v ∈ V and y ∈ X}
if f̂min ≥ f̂base then
h← h/2; µ← µ/2τ

else
x← ŷ

end if
end for

In Algorithm smoothing search, τ ∈ (0, 1) is an input parameter.
As an extension of (2.5), we define

χ̃(x) = min
v∈∂f(x)

max
x+d∈X,‖d‖≤1

−dT v (2.26)

to measure the first-order sationarity of x with respect to problem (1.1) when f is locally Lipschitz continuous
but not necessarily differentiable, where ∂f(x) is the Clarke subdifferential of f at x [13]. If f is smooth, then
χ̃(·) is the same as χ(·). Moreover, if x is a local minimizer of problem (1.1), then there exists a v ∈ ∂f(x)
such that

max
x+d∈X,‖d‖≤1

−dT v = 0,

that is, χ̃(x) = 0.
The convergence result follows the same argument as in the proof of Proposition 2.1 and Assumption

2.1 on the smoothing function of f .
Theorem 2.4. Assume that Assumption 2.1 holds with 0 < µ ≤ 1/(1 + c2) for the initial µ and that f

has bounded level sets. Let {xk, µk} be the iterates generated by Algorithm smoothing search, and

χk(x) = max
x+d∈X,‖d‖≤1

[−dT∇f̂(x, µk)]. (2.27)
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Then

lim inf
k→∞

χk(xk) = 0. (2.28)

Moreover, stencil failure happens at infinitely many iterates, and for each limit point x of the stencil failure
iterates, it holds that

χ̃(x) = 0. (2.29)

Proof. For the initial iterate x0, the initial smoothing parameter µ0, and the initial stencil size h0, set

Λ0 =
⋃
µ≤µ0

{x ∈ X : f(x, µ) ≤ f(x0, µ0)} , (2.30)

and

Xt = Λ0 ∩

{
x0 +

n∑
i=1

jih0

2t
ei : ji = 0,±1,±2, · · ·

}
, t = 0, 1, 2, . . . . (2.31)

Lemma 2.3 ensures that Λ0 is bounded. Xt is a finite set that contains at least one iterate. As in the proof
of Proposition 2.1, we denote the last iterate in Xt, where stencil failur occurs by x̃t, the corresponding
stecil size by h̃t = h0/2

t, and the corresponding smoothing parameter by µ̃t = h̃τt . For each t ≥ 1, define I+
t

and I−t in the same way as in the proof of Proposition 2.1, and denote ĝt = ∇f̂(x̃t, µ̃t). According to the
definition of stencil failure and Taylor expansion, noticing part (iii) of Assumption 2.1, we have

0 ≤ f̂(x̃t + h̃tei, µ̃t)− f̂(x̃t, µ̃t) ≤ h̃te
T
i ĝt +

Γ

2µ̃t
h̃2
t for all i ∈ I+

t , (2.32)

0 ≤ f̂(x̃t − h̃tei, µ̃t)− f̂(x̃t, µ̃t) ≤ −h̃teTi ĝt +
Γ

2µ̃t
h̃2
t for all i ∈ I−t , (2.33)

and consequently,

eTi ĝt ≥ −
Γh̃t
2µ̃t

for all i ∈ I+
t , (2.34)

eTi ĝt ≤
Γh̃t
2µ̃t

for all i ∈ I−t . (2.35)

By Assumption 2.1, there exists a positive constant Υ such that ‖ĝt‖ ≤ Υ. Using similar argument to
those for (2.18) and (2.19), we have

max
x̃t+d∈X,‖d‖≤1

−dT ĝt ≤ 3nmax

{
Γh̃t
2µ̃t

, Υh̃t

}
. (2.36)

Noticing the fact that h̃t/µ̃t → 0, we have

max
x̃t+d∈X,‖d‖≤1

−dT ĝt → 0 when t→∞, (2.37)

which implies (2.28).
Let x be a limit point of {x̃t}, and {x̃ti} be a subsequence that converges to x. Since {ĝt} is bounded,

we may as well suppose that {ĝti} converges to a point v (if not, replace {ti} by an appropriately chosen
subsequence). Let

d∗ ∈ argmax
x+d∈X,‖d‖≤1

−dT v, (2.38)
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and

yi =
x− x̃ti + d∗

max{‖x− x̃ti + d∗‖, 1}
. (2.39)

Then ‖yi‖ ≤ 1, and x̃ti + yi ∈ X due to the convexity of X (x̃ti + yi lies on the line segment between x̃ti
and x+ d∗). Hence

0 ≤ max
x+d∈X,‖d‖≤1

−dT v = − (d∗)T v

= lim
i→∞

−yTi ĝti

≤ lim
i→∞

max
x̃ti

+d∈X,‖d‖≤1
−dT ĝti

= 0.

(2.40)

Notice that v ∈ ∂f(x) according to the gradient consistency of f̂ . By the definition (2.26) of χ̃(·), we have

0 ≤ χ̃(x) ≤ max
x+d∈X,‖d‖≤1

−dT v = 0, (2.41)

which completes the proof.

3. Smoothing direct search method with Monte Carlo simulations. In this section, we propose
a smoothing direct search method based on Monte Carlo simulations to problem (1.1), where f is not nec-
essarily differentiable and cannot be computed directly. Deterministic direct search methods for nonsmooth
optimization problems have been studied in [1–3,9, 18,22,31].

Algorithm mc smoothing search for the embedded Monte Carlo case is a simple extension of Algorithm
smoothing search.

Algorithm mc smoothing search (x, f̃ , h, µ,N, τ, γ)

for forever do
f̃base = f̃(x, µ,N)
f̃min = min{f̃(y, µ,N) | y = x± hv, v ∈ V and y ∈ X}
ŷ ∈ {y | f̃(y, µ,N) = f̃min, y = x± hv, v ∈ V and y ∈ X}
if f̃min ≥ f̃base then
h← h/2; µ← µ/2τ ; N ← 4γN

else
x← ŷ

end if
end for

In Algorithm mc smoothing search, τ ∈ (0, 1) and γ > 1 are input parameters. The objective function

f is evaluated through f̃(x, µ,N), the Monte Carlo simulation of f̂(x, µ) with sample size N , where f̂(x, µ)
is a smoothing function of f that is defined in Definition 2.2 and satisfies Assumption 2.1.

As in Proposition 2.1 and Theorem 2.4, we need level boundedness to establish the convergence of
the algorithm. Here impose the level boundedness by Assumption 3.1. Let x0 denote the initial point of
Algorithm mc smoothing search, µ0 the initial smoothing parameter, and N0 the initial sample size.

Assumption 3.1. There are Γ > 0 and a bounded convex set D such that set

Ω =
⋃

µ≤µ0,N≥N0

{
x ∈ X : f̃(x, µ,N) ≤ Γ

}
⊆ D (3.1)

for each realization of Algorithm mc smoothing search.
It is possible to weaken Assumption 3.1 by requiring that the boundedness holds with probability 1, and

our results will still hold with minor modifications of the argument.
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The following is an assumption on the effectiveness of f̃(·, ·, N) as an approximation of f̂(·, ·).
Assumption 3.2. There exist constants δ ∈ (0, 1) and cf > 0 such that

Prob

(
sup
x∈Ω
|f̂(x, µ)− f̃(x, µ,N)| > cf√

N

)
< δ (3.2)

for each µ ∈ (0, µ0).

Consider the composite nonsmooth function in the form (1.2). Suppose there exist constants δ ∈ (0, 1)
and cF > 0 such that

Prob

(
sup
x∈Ω
‖F (x)− FN (x)‖ > cF√

N

)
< δ, (3.3)

where FN (x) is the Monte Carlo outcome of F (x) with the sample size N . If G is Lipschitz continuous at
F (x) and Ĝ satisfies Assumption 2.1, then there is a constant LF which is independent of N and µ, such
that

‖Ĝ(x, F (x), µ)− Ĝ(x, FN (x), µ)‖ ≤ LF ‖F (x)− FN (x)‖.

This, together with (3.3), implies that Assumption 3.2 holds with cf = LF cF .

Theorem 3.1. Suppose that the Monte Carlo simulations in Algorithm mc smoothing search are mu-
tually independent for different N . Assume that (2.6) and Assumptions 2.1, 3.1, 3.2 hold. Let {xk, µk, Nk}
be the sequence generated by Algorithm mc smoothing search. Then

Prob

(
lim inf
k→∞

χk(xk) = 0

)
= 1, (3.4)

where χk is defined in (2.27), and

Prob({xk} has an accumulation point x such that χ̃(x) = 0) = 1. (3.5)

Proof. Let Ω be the set defined in Assumption 3.1, and

Xt = Ω ∩

{
x0 +

n∑
i=1

jih0

2t
ei : ji = 0,±1,±2, · · ·

}
, t = 0, 1, 2, . . . . (3.6)

Then Ω is bounded. As in the proof of Proposition 2.1, Xt is a finite set that contains at least one iterate.
As before we denote the last iterate in Xt, where stencil failure occurs by x̃t, the corresponding stencil size
by h̃t = h0/2

t, and the corresponding smoothing parameter by µ̃t = µ0/2
tτ . The sample size at this point

in the iteration is Ñt = 4tγN0. For each integer t ≥ 1, define I+
t and I−t in the same way as in the proof of

Proposition 2.1, denote ĝt = ∇f̂(x̃t, µ̃t), and consider the event

Et =

{
sup
x∈Ω
|f̂(x, µ)− f̃(x, µ, Ñt)| ≤

cf√
Ñt

}
. (3.7)

By assumption, {Et} are mutually independent, and

Prob(Et) ≥ 1− δ > 0

for each t. Therefore,

Prob(Et happens for infinitely many t) = 1. (3.8)
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When Et happens, similar to (2.34) and (2.35), from

0 ≤ f̂(x̃t + h̃tei, µ̃t)− f̂(x̃t, µ̃t) ≤ h̃te
T
i ĝt +

Γ

2µ̃t
h̃2
t +

2cf

h̃t
√
Ñt

for all i ∈ I+
t , (3.9)

0 ≤ f̂(x̃t − h̃tei, µ̃t)− f̂(x̃t, µ̃t) ≤ −h̃teTi ĝt +
Γ

2µ̃t
h̃2
t +

2cf

h̃t
√
Ñt

for all i ∈ I−t , (3.10)

we have

eTi ĝt ≥ −
Γh̃t
2µ̃t
− 2cf

h̃t
√
Ñt

for all i ∈ I+
t , (3.11)

eTi ĝt ≤
Γh̃t
2µ̃t

+
2cf

h̃t
√
Ñt

for all i ∈ I−t . (3.12)

By Assumption 2.1, there exists a positive constant Υ such that ‖ĝk‖ ≤ Υ. Using similar argument as (2.18)
and (2.19), we obtain from (3.11) and (3.12) that

max
x̃t+d∈X,‖d‖≤1

−dT ĝt ≤ 3nmax

{
Γh̃t
2µ̃t

+
2cf

h̃t
√
Ñt
, Υh̃t

}
. (3.13)

Hence, by (3.8) and the fact that h̃t → 0, h̃t/µ̃t → 0, and h̃t
√
Ñt →∞, we have

Prob({χk(xk)} has a subsequence that converges to zero) = 1, (3.14)

which implies (3.4).
When lim infk→∞ χk(xk) = 0, let {ki} be the index sequence such that χki(xki) → 0. Since {xki} is

bounded (guaranteed the boundedness of Ω), it has an accumulation point x. By the same argument that
leads to the second part of Theorem 2.4, we have that χ̃(x) = 0. Thus (3.5) holds.

4. Numerical experiments. In this section, we test Algorithm mc smoothing search on two problem-
s: a stochastic optimization problem arising from censored regression and a two-stage optimization problem
arising from portfolio management. The problems in § 4.1 and 4.2.1 are derived from applications, but use
synthetic data to enable us to control the sample size.

4.1. Censored regression. We consider the following regularized censored regression problem [5, 26,
27,38,39]

min
x∈Rn

f(x)

s.t. − e ≤ x ≤ e,
(4.1)

where

f(x) = Ec,y[(max(cTx, 0)− y)2] + λ

n∑
i=1

log(1 + |xi|). (4.2)

Here the random variable pair (c, y) represents a data set of interest (c ∈ Rn, y ∈ R), λ > 0 is a regularization
parameter and e is the vector with all its entries being one. The regularization term

λ

n∑
i=1

log(1 + |xi|)

is in the objective function to enforce sparsity.
We assume that c ∼ N(0, I), and y = max(cTx∗+ ε, 0) for some underlying ground truth feature x∗ and

unobservable noise ε ∼ N(0, σ2). Moreover, we assume x∗ is sparse, that is, x∗ has few nonzero entries. Using
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the concave regularized model (4.1), we want to recover a sparse feature x to approximate x∗ as accurate as
possible given that x∗ ∈ {x | ‖x‖∞ ≤ 1} = [−e, e].

The functions (max(cTx, 0)− y)2 and log(1 + |xi|) are not differentiable. See Appendix A for smoothing

functions for max(., 0) and | · |. Using the smoothing functions, we can define a smoothing function f̂c,y(x, µ)
for (max(cTx, 0)− y)2 which satisfies Assumption 2.1. From the convexity of (max(cTx, 0)− y)2, the Clarke
subdifferential and the expectation can be exchanged, that is,

∂Ec,y[(max(cTx, 0)− y)2] = Ec,y[∂(max(cTx, 0)− y)2]

(see [13]). Moreover, Ec,y[f̂c,y(x, µ)] is a smoothing function for Ec,y[(max(cTx, 0) − y)2], and satisfies
Assumption 2.1 (see [7]). Problem (4.1) is a constrained nonsmooth nonconvex optimization problem where
the objective function values cannot be computed directly.

It is easy to see that Assumption 3.1 holds, since X is bounded. Moreover, the objective function is
level bounded. Since (max(cTx, 0)− y)2 ≥ 0 for any x ∈ Rn, we have that for any N > 0,

{x | 1

N

N∑
i=1

[(max(cTi x, 0)− yi)2] + λ
n∑
i=1

log(1 + |xi|) ≤M} ⊆ {x |λ
n∑
i=1

log(1 + |xi|) ≤M},

where M > 0 is a large positive number. Hence Assumption 3.1 holds even if X is not bounded, because of

the boundedness of the set {x |λ
n∑
i=1

log(1 + |xi|) ≤M}.

In practice the data in these problems are limited. To mimic the finite size of the data we will pose an
approximation to problem (4.1) that replaces the expectation with the sample average of a finite, but large,
data set. We will manage the sampling in the algorithm by randomly sampling from that data set. To this
end, we randomly generate a true feature x∗ ∈ R20 whose 5 nonzero entries are from uniform distribution on
[−1, 1]. Independently, we generate samples ci from c ∼ N(0, I) and εi from ε ∼ N(0, 0.01) with a sample
size 107. Let yi = max(cTi x

∗ + εi, 0). The new problem is an approximation to (4.1) with a finite data set.
We have

f(x) =
1

107

107∑
i=1

[(max(cTi x, 0)− yi)2] + λ

n∑
i=1

log(1 + |xi|). (4.3)

We used the regularization parameter λ = 10−2. This is large enough to capture the sparsity exactly and
small enough to allow us to observe several iterations before the iteration stagnates.

We configure the optimization as follows:
• The algorithmic parameters are c = 2, γ = 1.5, and τ = 0.5.
• We begin with h = 0.5 and terminate when h ≤ 10−3.
• N = 100 and µ = 0.1 at the beginning of the iteration.

Given N , for each evaluation of f , we independently and randomly choose vectors (ci, yi), i = 1, . . . , N
from the data set (ci, yi), i = 1, . . . , 107 generated above. Then we compute smoothing approximation
f̃(x, µ,N) of the following function

f(x,N) =
1

N

N∑
i=1

[(max(cTi x, 0)− yi)2] + λ

n∑
i=1

log(1 + |xi|), (4.4)

by using smoothing functions of max(., 0) and | · | in Appendix A.
For the initial point x0 = (0, . . . , 0)T we performed 20 runs of Algorithm mc smoothing search. In

Figure 4.1, we show histories of the difference ‖xk − x∗‖ and the value fbase(x
k), where one search through

the stencil is regarded one iteration.
Figure 4.1 illustrates several properties of the algorithm and the problem. At the end of the iteration, all

of the iteration histories are very similar. The theory would lead one to expect similar histories if N is large.
On the other hand, the initial value of N is large enough to cause considerable variation in f early in the
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Fig. 4.1. Histories of the difference ‖xk − x∗‖ and the value fbase(xk)
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iteration. This variation accounts for the differences in the histories. Finally, the iteration stagnates in the
terminal phase when the differences from the iterates and x∗ are roughly at the level of the regularization
parameter. The reason for this is that the regularization term would dominate the error term when x is
near x∗. While a smaller regularization would defer the stagnation, it would make it harder to capture the
sparsity. Our choice of λ = 10−2 captures the sparsity exactly. At each final iterate xk, we have xki = x∗i = 0
for all i ∈ Sc, where S = {i |x∗i 6= 0, i = 1, . . . , n}, the support set of x∗.

4.2. Portfolio management. Consider ν assets. Let u ∈ Rν denote the random returns of them, and

r = E[u], C = E[(u− r)(u− r)T ]. (4.5)

Here r is the vector of expected returns of the different assets, and C is the covariance matrix of the return
on the assets in the portfolio. When r and C are known, as discussed in [34], the Markowitz mean-variance
model [28,29] for portfolio selection can be formulated as

min
1

2
wTCw − ηrTw

s.t. eTw = 1

a ≤ w ≤ b,

(4.6)

where w denotes the weights of the assets in the portfolio, a ∈ Rν and b ∈ Rν (a ≤ b) are lower and upper
bounds enforced on w, and η is a nonnegative parameter (called the risk aversion factor) to balance the
conflicting aspects of minimizing the risk measured by wTCw and maximizing the expected return measured
by rTw. The Markowitz mean-variance model [28, 29] was first proposed and solved when the total return
is known. The model captures the essence of two conflicting aspects in portfolio management; namely, the
risk and the return.

The use of mean variance analysis in portfolio selection normally requires the knowledge of means,
variances, and covariances of returns of all securities under consideration. However, in general, these data
are not known exactly. Treating their estimates as if they were the exact parameters can lead to suboptimal
portfolio choices.

The experiments reported in [17, 20, 23] show that, influenced by the sampling error, portfolios selected
with the mean-variance model by Markowitz are not as efficient as an equally weighted portfolio. Other
results [12,30] show that the mean-variance model tends to magnify the errors associated with the estimates.
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In this section, we consider an optimal parameter selection model based on the Markowitz mean-variance
model to find optimal parameters for portfolio selection.

For simplicity, here we only consider the case where C is positive definite and the feasible set {w | eTw =
1, a ≤ w ≤ b} is nonempty. Given a, b, and η, problem (4.6) has a unique solution w. In other words, w is
uniquely defined by a, b, and η, the values of which will determine the quality of the portfolio selected by
solving problem (4.6). A common measure for the quality is the Sharpe ratio [37]

SR =
rTw√
wTCw

.

The Sharpe ratio characterizes how well the return of an asset compensates the investor for the risk taken.
In general, a strategy is better than others if its Sharpe ratio is higher.

In practice, a, b, and η are usually set by investors empirically according to their preferences. We
consider selecting them by solving the two-stage optimization problem

max
(a,b,η)∈Ω

rTw(a, b, η)√
w(a, b, η)TCw(a, b, η)

where w(a, b, η) = argmin
1

2
wTCw − ηrTw

s.t. eTw = 1

a ≤ w ≤ b,

(4.7)

where the feasible set

Ω = [a, a]× [b, b]× [η, η] with η < η

is given. The number of variables of the first level problem is

#{i|ai < ai, i = 1, . . . , ν}+ #{i|bi < bi, i = 1, . . . , ν}+ 1.

For example, if we choose

ai = ai = 0, for i 6= 1, a1 = 0, a1 = 1 and bi = bi = 1, for i 6= 2, b2 = 0, b2 = 1 (4.8)

then the number of variables of the first level problem is 3.
Finding an optimal parameters a, b, η is a challenging problem, since the solution w(a, b, η) of the second

stage optimization problem is not differentiable and the covariance matrix C and the vector of expected return
r cannot be computed directly in general. We will use the interior point method (w−a = s > 0, b−w = t > 0)
to solve the second stage problem of (4.7) and define a smoothing function wµ(a, b, η) [32]. In particular, we
use Algorithm mc smoothing search to solve

max
(a,b,η)∈Ω

rTwµ(a, b, η)√
wµ(a, b, η)TCwµ(a, b, η)

where wµ(a, b, η) = argmin
1

2
wTCw − ηrTw − µ

ν∑
i=1

log(si)− µ
ν∑
i=1

log(ti)

s.t. eTw = 1

w − a− s = 0

b− w − t = 0.

(4.9)

In this section, we report numerical results that we got with Algorithm mc smoothing search for five
standard data sets from the OR-Library [4] and the CSI 300 index from Shanghai-Shenzhen stock market.
The data are the weekly or daily prices of the component stocks for the six stock market indices drawn from
different countries. See Table 4.1 for the description of the data sets. The ν and T columns are the number
of the component assets included in the index and the number of the observations for the assets, respectively.
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Table 4.1
Description of the six real data sets

Data set ν Location Index T Description

data 1 31 Hong Kong Hang Seng 291 weekly prices from 1992 to 1997

data 2 85 Germany DAX 100 291 weekly prices from 1992 to 1997

data 3 89 UK FTSE 100 291 weekly prices from 1992 to 1997

data 4 98 USA S&P 100 291 weekly prices from 1992 to 1997

data 5 225 Japan Nikkei 225 291 weekly prices from 1992 to 1997

CSI300 300 China CSI 300 401 daily prices from 2011 to 2013

We report on two experiments: randomly generated problems in §4.2.1, which use the mean and the
covariance matrix generated from the real data in Table 4.1 and rolling window procedures for out-of-sample
comparison in §4.2.2, which use the stock prices to generate the returns of assets and the covariance matrix
by Monte Carlo simulation.

4.2.1. Randomly generated problems. We choose the following parameters as input data of Algo-
rithm mc smoothing search:

h = 0.5, µ = 0.1, N = 100, τ = 0.5, γ = 1.5.

We choose the feasible set Ω as in (4.8).

For all tests, we terminated the algorithm if the stencil size is less than 10−2.

For each data set in Table 4.1, we first calculate the average r̂ ∈ Rν and the covariance matrix Ĉ ∈ Rν×ν
for the returns of the assets. Given a sample size N , we generate i.i.d. random vectors ui ∈ Rν , i = 1, . . . , N
normally distributed with mean r̂ and covariance matrix Ĉ, that is

ui = r̂ + Ĉ
1
2 randn(ν, 1), i = 1, 2, ..., N,

and then take rN to be the sample average of ui, i = 1, 2, ..., N , and CN to be the sample covariance matrix

rN =
1

N

N∑
i=1

ui and CN =
1

N

N∑
i=1

(ui − rN )(ui − rN )T .

Then we compute the smoothing approximation for the problem of minimizing the negative Sharpe ratio

f̃(x, µ,N) = − (rN )Twµ(x)√
wµ(x)TCNwµ(x)

where wµ(x) = argmin
1

2
wTCNw − η(rN )Tw − µ

ν∑
i=1

log(si)− µ
ν∑
i=1

log(ti)

s.t. eTw = 1

w − a− s = 0

b− w − t = 0,

(4.10)

where x = (a1, b2, η).

For each data set in Table 4.1, we use Algorithm mc smoothing search to solve problem (4.7) with the
starting point (a1, b2, η) = (0, 1, 0.5). Table 4.2 presents the results. From Table 4.2, we can see the value of
objective function (Sharpe ratio) at the final iteration is bigger than the value of objective function at the
point w = e/ν, which is a feasible point of problem (4.6) with a = 0 and b = e.
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Table 4.2
Numerical results for the portfolio management problem with randomly generated data

Data set data1 data2 data3 data4 data5 CSI300

Lower bound a1 4.69E-1 4.22E-1 6.56E-1 1.25E-1 1.00E00 7.50E-1

Upper bound b2 8.13E-1 8.75E-1 9.69E-1 9.69E-1 7.12E-1 7.50E-1

Risk aversion η 9.69E-1 5.31E-1 3.43E-1 4.38E-1 8.59E-1 6.41E-1

Optimized Sharpe ratio 1.57E-1 2.85E-1 2.51E-1 2.47E-1 9.76E-2 7.98E-2

Sharpe ratio of e/ν 1.04E-1 9.15E-2 1.53E-1 1.99E-1 -4.90E-2 -9.05E-2

4.2.2. Problems with rolling window procedures. For a given data set, assuming that the obser-
vations of the stock prices are {Pi,t : 1 ≤ i ≤ ν, 1 ≤ t ≤ T}, we can compute the (logarithmic) returns of
the stocks:

ri,t = log
Pi,t+1

Pi,t
, i = 1, . . . , ν, t = 1, . . . , T − 1.

For the purpose of numerical comparisons, we partition the data set into two subsets: a training set and
a testing set. The training set, called in-sample set, consists the first half of the data set and is used to
compute an optimal parameter x∗ and the corresponding optimal portfolio selection w(x∗). The testing
set, called out-of-sample, consists the second half of the data set and is used to test how well the optimal
parameter x∗ and the corresponding optimal portfolio selection w(x∗).

More exactly, for stock i with i = 1, . . . , ν, we can use the training set to compute the in-sample
expectation and the standard deviation by

µ̄i =
1

M

M∑
t=1

ri,t and σ̄i =

√√√√ 1

M

M∑
t=1

(ri,t − µ̄i)2,

respectively, where M = (T − 1)/2. As is standard in finance [19], we simulate the out-of-sample prices as
follows. Let N be the sample size. Then at the j-th simulation (1 ≤ j ≤ N), for M + 1 ≤ t ≤ T − 1, if

the price S
(j)
i−1,t of stock i at an out-of-sample time t − 1 is known, the price S

(j)
i,t of this stock at time t is

generated by

S
(j)
i,t = S

(j)
i,t−1 exp(µ̄i + σ̄iZ),

where S
(j)
i,M = Pi,M for all 1 ≤ j ≤ N and Z is randomly produced by the standard normal distribution

N(0, 1). In a similar way, we can calculate the (logarithmic) returns by this simulation

r
(j)
i,t = log

S
(j)
i,t+1

S
(j)
i,t

, t = M + 1, . . . , T − 1.

For t = M + 1, . . . , T − 1, denote the column vector r
(j)
t with its i-th component being r

(j)
i,t and its average

vector r̄t = 1
N

∑N
j=1 r

(j)
t , the sample mean rN and the sample variance CN of the out-of-sample can be

computed by

rN =
1

M

T−1∑
t=M+1

r̄t and CN =
1

M

T−1∑
t=M+1

(r̄t − rN )(r̄t − rN )T .

Then we solve problem (4.9) with the sample mean rN and the sample variance CN as described in (4.10)
to obtain the optimal parameter x∗ and the corresponding optimal portfolio selection w(x∗) by Algorithm
mc smoothing search.
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We choose the following parameters as input data of Algorithm mc smoothing search:

h = 0.5, µ = 0.1, N = 10, τ = 0.5, γ = 1.5.

We choose the feasible set Ω as in (4.8). For all tests, we choose the starting point (a1, b2, η) = (0, 1, 0.5)
and terminated the algorithm when the sample size N gets larger than 105.

To evaluate the quality of the optimal portfolio selection w(x∗), we shall make use of the real out-of-
sample data. We denote by rout and Cout the mean and variance of the real returns of the out-of-sample
set; namely,

rout =
1

M

T−1∑
t=M+1

rt and Cout =
1

M

T−1∑
t=M+1

(rt − rout)(rt − rout)T ,

where rt is the vector formed by the stock prices ri,t(i = 1, . . . , n) for t = M + 1, . . . , T − 1. Then we can
calculate the Sharpe ratio of the optimal solution w(x∗) by using rout and Cout as follows.

SR∗ =
(rout)Tw(x∗)√
w(x∗)TCoutw(x∗)

.

In Table 4.3, for all the six data sets, we list the optimal values of a1, b2, η achieved by Algorithm
mc smoothing search, and the corresponding SR∗ For comparison, we also list the Sharpe ratio of the
average strategy (namely, taking 1/ν portion of each portfolio) using rout and Cout. From Table 4.3, we can
see that using Algorithm mc smoothing search to solve problem (4.7) can provide a portfolio strategy with
higher Sharpe ratio than the average strategy for all data sets.

Table 4.3
Numerical results for the portfolio management problem with rolling window procedures

Data set data1 data2 data3 data4 data5 CSI300

Lower bound a1 1.00E-3 1.18E-2 1.12E-2 1.02E-1 4.40E-2 3.33E-3

Upper bound b2 3.14E-1 2.31E-1 6.36E-1 4.15E-2 1.29E-2 2.53E-1

Risk aversion η 2.81E-1 9.38E-1 6.25E-1 6.25E-2 1.00E00 7.50E-1

Sharpe ratio SR∗ 3.35E-1 2.36E-1 3.72E-1 5.12E-1 2.19E-1 2.19E-1

Sharpe ratio of e/ν 1.57E-1 2.10E-1 2.79E-1 3.44E-1 -3.85E-2 3.18E-3

5. Conclusions. In this paper we propose a smoothing direct search algorithm with Monte Carlo sim-
ulation Algorithm mc smoothing search for the constrained nonsmooth nonconvex optimization problem
(1.1), where the objective function value f(x) cannot be computed directly, but are approximated by Monte
Carlo simulation. This algorithm updates the stencil size h, smoothing parameter µ and the sample size N
simultaneously with the rate h/µ → 0, and (h

√
N)−1 → 0. We prove that any accumulation point of the

sequence generated by the algorithm satisfies the first order optimality condition χ̃(x) = 0 with probability
one, where χ̃(x) is defined by (2.26). We report on a set of numerical experiments which illustrate the analysis
and show that Algorithm mc smoothing search is an effective method for minimizing nonsmooth functions
whose function values cannot be computed directly but are approximated by Monte Carlo simulation.

Appendix A. Smoothing functions.
We give an example of smoothing functions to explain Assumption 2.1. Let f(x) = 2 max(0, p(x)), where

p : Rn → R is twice continuously differentiable with

‖∇p(x)∇p(x)T ‖ ≤ Γ.

We use the smoothing function

f̂(x, µ) = p(x) +
√
p(x)2 + 4µ2, (A.1)
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and V = {e1, . . . , en}, the unit coordinate directions in Rn.
Clearly part (i) of Assumption 2.1 holds with c1 = 2 and c2 = 0, since

|f(x)− f̂(x, µ)| ≤ 2µ.

Now we consider part (ii) of Assumption 2.1. The Clarke subgradient has the form

∂f(x) = 2

 ∇p(x) if p(x) > 0
0 if p(x) < 0
[0, 1]∇p(x) if p(x) = 0

(A.2)

and the gradient of the smoothing function is

∇f̂(x, µ) =

(
1 +

p(x)√
p(x)2 + 4µ2

)
∇p(x).

Hence, we have

‖∇f̂(x, µ)‖ ≤ 2‖∇p(x)‖.

If p is Lipschitz continuously differentiable on a convex and compact set Ω, then there is an Υ such that
‖∇f̂(x, µ)‖ ≤ Υ on Ω.

It is easy to see that for p(x) 6= 0, f is differentiable at x and

∂f(x) = ∇f(x) = con{v | ∇f̂(xk, µk)→ v, for xk → x, µk ↓ 0 }.

For p(x) = 0, since 0 ≤ 1 + p(x)√
p(x)2+4µ2

≤ 2, we have

con{v | ∇f̂(xk, µk)→ v, for xk → x, µk ↓ 0 } ⊆ ∂f(x).

Now, let µ2
k = (1− h2)p(xk)2/(4h2) for some h ∈ (0, 1]. Then for xk → x with p(xk) ↓ 0, we have µk ↓ 0 and

∇f̂(xk, µk) = (1 + h)∇p(xk)→ (1 + h)∇p(x),

and for xk → x with p(xk) ↑ 0, we have µk ↓ 0 and

∇f̂(xk, µk) = (1− h)∇p(xk)→ (1− h)∇p(x).

Moreover, if we take µk =
√
|p(xk)|, then for xk → x, we have p(xk)→ 0, µk ↓ 0 and

∇f̂(xk, µk) =

(
1 +

p(xk)√
p(xk)2 + 4|p(xk)|

)
∇p(xk)→ ∇p(x).

Hence we find that for p(x) = 0,

∂f(x) = [0, 2]∇p(x) = con{v | ∇f̂(xk, µk)→ v, for xk → x, µk ↓ 0 }.

Finally, we consider part (iii) of Assumption 2.1. Since

∇2f̂(x, µ) =

(
1 +

p(x)√
p(x)2 + 4µ2

)
∇2p(x) +

4µ2

(p(x)2 + 4µ2)
3
2

∇p(x)∇p(x)T ,

we have

‖∇2f̂(x, µ)‖ ≤ 1

2µ
‖∇p(x)∇p(x)T ‖+ 2‖∇2p(x)‖ ≤ Γ

2µ
+ 2‖∇2p(x)‖,
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which implies that part (iii) of Assumption 2.1 holds.

A smoothing function of |p(x)| can be defined by using the relation |p(x)| = max(0, p(x))+max(0,−p(x))
and a smoothing function of max(0, p(x)). For example, using (A.1), we can have a smoothing function√

(p(x)2 + 4µ2) for |p(x)|.
There is a detailed discussion of smoothing functions in [8].
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[36] A. Shapiro, D. Dentcheva and A. Ruszczyński, Lectures on Stochastic Programming, MPS-SIAM Series on Optimization,

18



SIAM Philadelphia, 2009.
[37] W.F. Sharpe, The Sharpe Ratio, J. Portfolio Management, 21(1994), pp. 4958.
[38] R.J. Smith and R.W. Blundell, An exogeneity test for a simultaneous equation Tobit model with an application to labor

supply, Econometrica, 54(1986), pp. 679-685.
[39] L. Taylor and T. Otsu, Estimation of nonseparable models with censored dependent variables and endogenous regressors,

to appear in Econometric Reviews.
[40] A. Toth, J. A. Ellis, T. Evans, S. Hamilton, C. T. Kelley, R. Pawlowski, and S. Slattery, Local improvement results for

Anderson acceleration with inaccurate function evaluations, 2016. to appear in SIAM J. Sci. Comp.
[41] J. Willert, X. Chen and C. T. Kelley, Newton’s method for Monte Carlo-based residuals, SIAM J. Numer. Anal., 53(2015),

pp. 1738-1757

19


