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The Subdifferential of Measurable Composite Max
Integrands and Smoothing Approximation

James V. Burke · Xiaojun Chen · Hailin
Sun

Abstract The subdifferential calculus for the expectation of nonsmooth ran-
dom integrands involves many fundamental and challenging problems in s-
tochastic optimization. It is known that for Clarke regular integrands, the
Clarke subdifferential of the expectation equals the expectation of their Clarke
subdifferential. In particular, this holds for convex integrands. However, lit-
tle is known about the calculation of Clarke subgradients for the expectation
of non-regular integrands. The focus of this contribution is to approximate
Clarke subgradients for the expectation of random integrands by smoothing
methods applied to the integrand. A framework for how to proceed along this
path is developed and then applied to a class of measurable composite max
integrands. This class contains non-regular integrands from stochastic com-
plementarity problems as well as stochastic optimization problems arising in
statistical learning.

Keywords Stochastic optimization · Clarke subgradient · smoothing ·
non-regular integrands

1 Introduction

Let X ⊆ Rn be a convex compact set with non-empty interior and Ξ ⊆ R` be
a Lebesgue measurable closed set with non-empty interior. In this paper, we
consider the stochastic optimization problem

min
x∈X

F (x) := E[f(ξ, x)], (1)
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where ξ : Ω → Ξ is a random variable on the probability space (Ω,F , ς) with
ς absolutely continuous with respect to Lebesgue measure, f : Ξ ×X → R is
continuous on X and measurable in Ξ for every x ∈ X, and E[·] denotes the
expected value over Ξ. A point x ∈ Rn is called a Clarke stationary point for
(1) if it satisfies

0 ∈ ∂F (x) +NX(x), (2)

where ∂ denotes the Clarke subdifferential (see Appendix Definition 9 (i))
and NX(x) is the normal cone to X at x ∈ X. Condition (2) is a first-order
necessary condition for optimality of problem (1).

The subdifferential ∂F (x) = ∂E[f(ξ, x)] does not in general have a closed
form and is difficult to calculate. Consequently, much the existing literature
[30,32,34] employs the first-order necessary condition

0 ∈ E[∂xf(ξ, x)] +NX(x), (3)

where

E[∂xf(ξ, x)] := {E[ϕ(ξ, x)]|ϕ(ξ, x) is a measurable selection from ∂xf(ξ, x)}

is the Aumann (set-valued) expectation of ∂xf(ξ, x) with respect to ξ defined
in [2]. Points x satisfying (3) are called weak stationary points for problem
(1) [21,35]. In some cases, elements of E[∂xf(ξ, x)] can be computed [27].
However, as the name implies, condition (3) is much weaker than condition
(2). In particular, it is always the case that

∂F (x) ⊆ E[∂xf(ξ, x)] = coE[∂xf(ξ, x)], (4)

where “co” denotes the convex hull. In (4), the inclusion is given by Clarke
[14, Theorem 2.7.2] and equivalence follows from either Aumann’s Convexity
Theorem [2,23] or Lyapunov’s Convexity Theorem [19,31]. Moreover, since
the Clarke subdifferential is the closed convex hull of the Mordukhovich subd-
ifferential (M-subdifferential) ∂M ((see Appendix Definition 9)[28, Definition
8.3]), the subdifferential inclusion

∂MF (x) ⊆ ∂F (x) ⊆ E[∂xf(ξ, x)] = E[co ∂Mx f(ξ, x)] = E[∂Mx f(ξ, x)]

holds where the final equality follows from [2, Theorem 3] (see [20, Lemma
6.18] for connections to the M-subdifferential).

Consequently, if x satisfies (2), then x satisfies (3), but the converse is not
in general true. On the other hand, [14, Theorem 2.7.2] tells us that if f(ξ, ·)
is Clarke regular [14, Definition 2.3.4] on X for almost all ξ ∈ Ξ, then equality
holds in (4). Unfortunately, in many applications of interest, Clarke regularity
fails to hold, and the set E[∂xf(ξ, x)] is much larger than the set ∂E[f(ξ, x)].
For example, this occurs in stochastic nonlinear complementarity problems [11,
13] and optimal statistical learning problems [1,3]. In such cases, condition (3)
is too weak for assessing optimality. By way of illustration, consider f(ξ, x) =
ξ|x| with ξ ∼ N(0, 1) and x ∈ R. Then E[f(ξ, x)] = E[ξ|x|] ≡ 0 for x ∈ R, but
E[∂f(ξ, 0)] =

√
2/π[−1, 1].
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The main contributions of the paper are the development of a framework
for the study of smoothing methods for the expectation of random integrand-
s F (x) = E[f(ξ, x)] based on the smoothing of the integrand f , a smooth-
ing approach to the approximation of the Clarke subgradients of expectation
F (x) = E[f(ξ, x)], and the application of these techniques to the class of mea-
surable composite max (CM) integrands. CM intergrands arise in several im-
portant applications including stochastic nonlinear complementarity problems
[11,13] and optimization problems in statistical learning [1,3].

The paper is organized as follows. In Section 2 and the Appendix, we recall
some basic definitions and properties from variational analysis, the theory of
measurable multifunctions, and the study of the variational properties of the
expectation function. In Section 3, we define measurable smoothing functions
and give a few fundamental properties. In particular, we introduce the notions
of gradient consistency and sub-consistency. In Section 4, we present an ap-
proximation theory of smoothing functions for measurable CM functions, and
prove the gradient sub-consistency of CM integrands. Finally we show that the
subgradient of the expectation function can be approximated via smoothing
in the absence of regularity.

2 The Subdifferential Properties of F (x) := E[f(ξ, x)]

In this section, we study the relationship between the variational properties
of f and F (x) = E[f(ξ, x)]. Our approach is motivated by the case where f is
specified during the modeling process in stochastic optimization, and we are
asked to optimize its expectation. For this reason it is important to understand
the properties that f should satisfy in order that the optimization of F is in
some sense numerically tractable. In particular, we study those properties of f
that give access to the desired variational properties of F . For example, it has
already been mentioned that, in general, we only have ∂F (x) ⊆ E[∂xf(ξ, x)].
But there are situations in which equality holds. We begin by reviewing these
results. The first step is to recall the standard conditions on f that imply the
local Lipschitz continuity of F (e.g. see [14, Hypothesis 2.7.1]).

2.1 LL integrands

Let λ denote Lebesgue measure on Rn and, let ρ be a probability measure on R`
that is absolutely continuous with respect to Lebesgue measure with support
Ξ. In particular, this implies that ρ is non-atomic. Let ρ̂ denote the induced
product measure on R` × Rn. We consider the following class of functions.

Definition 1 (Carathéodory Mappings) [28, Example 14.15] We say that
the function f : Ξ×X → R is a Carathéodory mapping on Ξ×X if f(ξ, ·) is
continuous on an open set containing X for all ξ ∈ Ξ, and f(·, x) is measurable
on Ξ for all x ∈ X.

Definition 2 (Locally Lipschitz (LL) Integrands) Let U be an open
subset of Rn. We say that f : Ξ × U → R is an LL integrand on Ξ × U if f
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is a Carathéodory mapping on Ξ ×U and for each x̄ ∈ U there is an ε(x̄) > 0
and an integrable mapping κf (·, x̄) ∈ L2

1(R`,M, ρ) such that

|f(ξ, x1)− f(ξ, x2)| ≤ κf (ξ, x̄)‖x1 − x2‖ ∀ x1, x2 ∈ Bε(x̄)(x̄) and a.e. ξ ∈ Ξ,

where a.e. denotes “almost every” and Bε(x̄) := {x | ‖x− x̄‖ ≤ ε} ⊆ U .
Here and throughout, Lmn (R`,M, ρ) denotes the Banach space ofm-integrable

functions κ : R` → Rn defined on the measure space (R`,M, ρ), where the
norm is given by ‖κ‖m := [

∫
R` [
∑n
j=1 |κj |m]dρ]1/m.

In what follows we often have functions of two variables, h(u, v), but need
to discuss the variational objects for this function with respect to only one
of the two variables. For this we use ∇vh(u, v), ∂vh(u, v) and dvh(u, v)(d)
to denote the derivative, the Clarke subdifferential, and the subderivative of
h(u, v) in the direction d, respectively, in v for fixed u.

Lemma 1 (Properties of LL Integrands) Let U be an open subset of Rn,
and let f : Ξ×U → R be an LL integrand on Ξ×U with f(·, x) ∈ L1

1(R`,M, ρ)
for all x ∈ U . Then the following statements hold.

(a) The function f(ξ, ·) is strictly continuous on U (see Appendix Definition
10) for a.e. ξ ∈ Ξ with lipxf(ξ, x̄) ≤ κf (ξ, x̄) a.e. ξ ∈ Ξ.

(b) The mapping F (x) := E[f(ξ, x)] is locally Lipschitz continuous on U with
local Lipschitz modulus κF (x̄) := E[κf (ξ, x̄)]. In particular, F is strictly
continuous on U .

(c) The function d̂xf(ξ, x)(v) (see Appendix Definition 8) is measurable in ξ
for every (x, v) ∈ U × Rn.

(d) The set of measurable selections S(∂xf(·, x)) is a weakly compact, convex
set in L2

n(R`,M, ρ).
(e) The Clarke subdifferential ∂F (x) is a nonempty, convex, compact subset of

Rn contained in κF (x̄)B for every x ∈ U .
(f) For every E ∈M such that E ⊆ Ξ and every x̄ ∈ U∫

E

f(ξ, x)dρ ∈
∫
E

f(ξ, x̄)dρ+ ‖κf (·, x̄)‖2 ρ(E)B and∫
E

∂xf(ξ, x)dρ ⊆ ‖κf (·, x̄)‖2 ρ(E)B

for all x ∈ Bε(x̄)(x̄), where ‖κf (·, x̄)‖2 :=
√∫

Ξ
κ2
f (ξ, x̄)dρ.

Proof (a) This follows immediately from the definition of strict continuity.
(b) This follows immediately from the inequality

|F (x′)− F (x)| ≤ E[|f(ξ, x′)− f(ξ, x)|] ≤ E[κf (ξ, x̄)] ‖x′ − x‖ .

(c) This follows from the well known fact that the limsup of measurable func-
tions is measurable, e.g. [17, Theorem 2.7].
(d) This follows immediately from Proposition 2 of the Appendix since κf (·, x̄) ∈
L2

1(R`,M, ρ).
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(e) This is an immediate consequence of [14, Proposition 2.1.2].
(f) By definition, f(ξ, x) − f(ξ, x̄) ∈ κf (ξ, x̄)B for all x ∈ ε(x̄)B and ξ ∈ Ξ.
Hence, for all x ∈ ε(x̄)B, f(ξ, x) − f(ξ, x̄) is a measurable selection from the
tube κf (ξ, x̄)B on Ξ. Similarly, by [28, Theorem 9.13], any measurable selection
s(ξ) from ∂xf(ξ, x) satisfies s(ξ) ∈ κf (ξ, x̄)B for all x ∈ ε(x̄)B. Therefore, both
inclusions follows from Lemma 11.

2.2 Subdifferential regularity

If f is an LL integrand on Ξ×U , then, by Lemma 1(e), ∂F (x) is a nonempty,
convex, compact subset of Rn for every x ∈ U . But this does not say that
∂F (x) is representable in terms of ∂f(ξ, x).

Theorem 1 (The Subdifferential of F ) [14, Theorem 2.7.2] Let U be an
open subset of Rn, and let f : Ξ ×U → R be an LL integrand on Ξ ×U with
f(·, x) ∈ L1

1(R`,M, ρ) for all x ∈ U . Then

∂F (x) ⊆ E[∂xf(ξ, x)] ∀x ∈ U. (5)

If, in addition, x̄ ∈ U is such that f(ξ, ·) is subdifferentially regular (see Ap-
pendix Definition 9 (ii)) in x at x̄ for a.e. ξ ∈ Ξ, then F is subdifferentially
regular at x̄ and equality holds in (5).

Remark 1 In [14, Theorem 2.7.2], Clarke uses the hypothesis that f(ξ, ·) is
subdifferentially regular in x at x̄ for all ξ ∈ Ξ. However, the above result
holds with essentially the same proof.

Corollary 1 Let U be an open subset of Rn, and let f : Ξ×U → R be an LL
integrand on Ξ×U with f(·, x) ∈ L1

1(R`,M, ρ) for all x ∈ U . If x̄ ∈ U is such
that either f(ξ, ·) is subdifferentially regular at x̄ ∈ U for a.e. ξ ∈ Ξ or −f(ξ, ·)
is subdifferentially regular at x̄ ∈ U for a.e. ξ ∈ Ξ, then equality holds in (5).

Proof If f(ξ, ·) is subdifferentially regular in x at x̄ ∈ U for a.e. ξ ∈ Ξ, then
the result follows from Theorem 1. If −f(ξ, ·) is subdifferentially regular in x
at x̄ for a.e. ξ ∈ Ξ, then, by [14, Proposition 2.3.1] and Theorem 1,

∂F (x̄) = −∂(−F )(x̄) = −E[∂(−f)(ξ, x̄)] = E[∂f(ξ, x̄)].

Note that, in opposition to Theorem 1, the corollary does not say that the
hypotheses imply that F is subdifferentially regular at x̄. Indeed, this may not
be the case. The following example illustrates this possibility.

Example 1 Consider the Carathéodory function f(ξ, x) := −|ξ||x|, where ξ ∼
N(0, 1), x ∈ R. It is easy to see that this function is not Clarke regular in x at
(ξ, 0) for all ξ 6= 0. In addition, the function F is not Clarke regular at x = 0.
To see this, observe that

dF (0)(w) = lim inf
τ↓0

E[f(ξ,τw)]−E[f(ξ,0)]
τ = −E[|ξ|] |w| = −

√
2
π |w| and

d̂F (0)(w) = lim sup
x′→0, τ↓0

E[f(ξ,x′+τw)]−E[f(ξ,x′)]
τ = E[|ξ|] |w| =

√
2
π |w| 6= dF (0)(w).

Nonetheless, by Corollary 1, ∂F (0) = E[∂f(ξ, 0)]. This can also be verified by
direct computation.
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Before leaving this section we provide an elementary lemma useful in the
analysis to follow.

Lemma 2 Let h : Ξ ×X → R be a Carathéodory function, and let ξ ∈ Ξ be
such that h(ξ, ·) is strictly continuous and subdifferentially regular at x ∈ X.
Given v ∈ Rn, set

`1(ξ, x; v) := lim
t↓0

h(ξ, x+ 2tv)− h(ξ, x+ tv)

t
and

`2(ξ, x; v) := lim
t↓0

h(ξ, x− tv)− h(ξ, x− 2tv)

t
.

Then, for any v ∈ Rn, the limits `1(ξ, x; v) and `2(ξ, x; v) exist and we have

`1(ξ, x; v) = dxh(ξ, x)(v) = sup {〈g , v〉 | g ∈ ∂xh(ξ, x)} and

`2(ξ, x; v) = −dxh(ξ, x)(−v) = inf {〈g , v〉 | g ∈ ∂xh(ξ, x)} .
(6)

Proof Strict continuity (Appendix Definition 10) tells us that

|dxh(ξ, x)(v)| ≤ ‖v‖ lipx h(ξ, x) <∞ ∀ v ∈ Rn,

so that dxh(ξ, x)(v) is finite for all v ∈ Rn. Therefore, by (55), the limit
`1(ξ, x; v) exists and

dxh(ξ, x)(v) = 2dxh(ξ, x)(v)− dxh(ξ, x)(v)

= lim
t↓0

(
2
h(ξ, x+ 2tv)− h(ξ, x)

2t
− h(ξ, x+ tv)− h(ξ, x)

t

)
= lim

t↓0

h(ξ, x+ 2tv)− h(ξ, x+ tv)

t
.

The first equvalence in (6) now follows from (56). The second equivalence
follows from the first by replacing v by −v.

3 Smoothing Functions for F (x) := E[f(ξ, x)]

3.1 Measurable smoothing functions

Definition 3 (Smoothing Functions) [9, Definition 1] Let F : U → R ,

where U ⊆ Rn is open. We say that F̃ : U×R++ → R is a smoothing function
for F on U if

(i) F̃ (·, µ) converges continuously to F on U in the sense of [28, Definition

5.41], i.e., limµ↓0,x→x̄ F̃ (x, µ) = F (x̄) ∀ x̄ ∈ U, and

(ii) F̃ (·, µ) is continuously differentiable on U for all µ > 0.

We now construct a class of smoothing functions for the Carathéordory
function f that generate smoothing functions for F .
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Definition 4 (Measurable Smoothing Functions) Let U ⊆ Rn be open
and let f : Ξ × U → R be a Carathéodory mapping on Ξ × U with f(·, x) ∈
L1

1(R`,M, ρ) for all x ∈ U . A mapping f̃ : Ξ × U × R++ → R is said to be a
measurable smoothing function for f on Ξ×U×R++ with smoothing parameter
µ > 0 if, for all µ > 0, f̃(·, ·, µ) is a Carathéodory map on Ξ×U with f̃(·, x, µ) ∈
L1

1(R`,M, ρ) for all (x, µ) ∈ U × R++ and the following conditions hold:

(i) The function f̃(ξ, ·, µ) converges continuously to f(ξ, ·) on U as µ ↓ 0 for
a.e. ξ ∈ Ξ in the sense of [28, Definition 5.41], i.e.,

lim
µ↓0,x→x̄

f̃(ξ, x, µ) = f(ξ, x̄) ∀ x̄ ∈ U and a.e. ξ ∈ Ξ, (7)

and, for every (x̄, µ̄) ∈ U × R++, there is an open neighborhood V ⊆ U of
x̄ and a function κf (·, x̄, µ̄) ∈ L2

1(Ξ,M, ρ) such that

|f̃(ξ, x, µ)| ≤ κf (ξ, x̄, µ̄) ∀ (ξ, x, µ) ∈ Ξ × V × (0, µ̄] . (8)

(ii) For all µ > 0, the gradient ∇xf̃(ξ, x, µ) exists, is continuous on U for all
ξ ∈ Ξ, and, for every (x̄, µ̄) ∈ U × R++, there is an open neighborhood
V ⊆ U of x̄ and a function κ̂f (·, x̄, µ̄) ∈ L2

1(Ξ,M, ρ) such that∥∥∥∇xf̃(ξ, x, µ)
∥∥∥ ≤ κ̂f (ξ, x̄, µ̄), ∀ (ξ, x, µ) ∈ Ξ × V × (0, µ̄] . (9)

Remark 2 Just as in Lemma 1, Lemma 11 can be applied to show that (9)
implies that∫

E

∇xf̃(ξ, x, µ)dρ ∈ ‖κ̂f (·, x̄, µ̄)‖2 ρ(E)B ∀ (x, µ) ∈ V × (0, µ̄] (10)

for all E ∈ M. Note that if we assume that f̃(ξ, ·, ·) is Lipschitz continuous,
then (8) holds. The conditions in (8) and (9) are added to the usual notion of
smoothing function in Definition 3 to facilitate the application of the Domi-
nated Convergence Theorem when needed.

Lemma 3 (Measurable Smoothing Functions Yield Smoothing Func-
tions) Let U ⊆ Rn be open with X ⊆ U , and let f : Ξ × U → R be
a Carathéodory mapping on Ξ × U such that f(·, x) ∈ L1

1(Ξ,M, ρ) for all
x ∈ U . Let f̃ : Ξ×U×R++ → R be a measurable smoothing function for f on

Ξ×U×R++. Then the functions F (x) := E[f(ξ, x)] and F̃ (x, µ) := E[f̃(ξ, x, µ)]

are well defined on U and U×R++, respectively, and F̃ is a smoothing function
for F on U satisfying

∇xF̃ (x, µ) = E[∇xf̃(ξ, x, µ)] ∀ (x, µ) ∈ U × R++. (11)

Proof The fact that F and F̃ are well defined follows from the definitions. It
remains only to show that F̃ is a smoothing function for F . By (7), (8) and
the Dominated Convergence Theorem, for all x ∈ U ,

lim
µ↓0,x→x̄

F̃ (x, µ) = lim
µ↓0,x→x̄

E[f̃(ξ, x, µ)] = E[ lim
µ↓0,x→x̄

f̃(ξ, x, µ)] = E[f(ξ, x)]
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which establishes (i) in Definition 3.
Next let (x̄, µ̄) ∈ U × R++ and d ∈ Rn with d 6= 0. By (9) and the Mean

Value Theorem (MVT), for all small t > 0 and ξ ∈ Ξ there is a zt(ξ) on the
line segment joining x̄+ td and x̄ such that∣∣∣∣∣ f̃(ξ, x̄+ td, µ̄)− f̃(ξ, x̄, µ̄)

t

∣∣∣∣∣ = |∇xf̃(ξ, zt(ξ), µ̄)T d| ≤ κ̂f (ξ, x̄, µ̄) ‖d‖ .

Hence, by the Dominated Convergence Theorem,

lim
t↓0

F̃ (x̄+ td, µ̄)− F̃ (x̄, µ̄)

t
= lim

t↓0
E

[
f̃(ξ, x̄+ td, µ̄)− f̃(ξ, x̄, µ̄)

t

]

= E

[
lim
t↓0

f̃(ξ, x̄+ td, µ̄)− f̃(ξ, x̄, µ̄)

t

]
=
〈
E[∇xf̃(ξ, x̄, µ̄)] , d

〉
.

Since this is true for all choices of d ∈ Rn, we have∇xF̃ (x̄, µ̄) = E[∇xf̃(ξ, x̄, µ̄)]
which establishes (11).

Finally we show that ∇xF̃ (·, µ) is continuous on U for all µ > 0. Let
(x̄, µ̄) ∈ U × R++. By (11), (9) and the Dominated Convergence Theorem,

lim
x→x̄
∇xF̃ (x, µ̄) = lim

x→x̄
E[∇xf̃(ξ, x, µ̄)]

= E[ lim
x→x̄
∇xf̃(ξ, x, µ̄)] = E[∇xf̃(ξ, x̄, µ̄)] = ∇xF̃ (x̄, µ̄).

3.2 Gradient consistency of F (x) = E[f(ξ, x)]

A key concept relating smoothing to the variational properties of F is the
notion of gradient consistency introduced in [9].

Definition 5 (Gradient Consistency of Smoothing Functions) Let U ⊆
Rn be open and let F : U → R be such that F̃ : U×R++ → R is a smoothing

function for F on U . We say that F̃ is gradient consistent at x̄ ∈ U if

co

{
Limsup
µ↓0,x→x̄

∇xF̃ (x, µ)

}
= ∂F (x̄),

where the limit superior is taken in the multi-valued sense (57).

When F̃ ≡ F , the definition reduces to that of the Clarke subdifferential
for the finite-dimensional case (Appendix Definition 9).

As a first step toward understanding how the gradient consistency of a
measurable smoothing function for f can be used to construct a smoothing
function for F , we give the following result.



Title Suppressed Due to Excessive Length 9

Theorem 2 (Gradient Consistency and Subgradient Approximation)
Let U ⊆ Rn, x̄ ∈ U , and f : Ξ × U → R be as in Corollary 1, and suppose
that f̃ : Ξ × U × R++ → R is a measurable smoothing function for f on
Ξ × U × R++. If, for a.e. ξ ∈ Ξ, f̃(ξ, ·, ·) is gradient consistent at x̄, i.e.

co

{
Limsup
x→x̄,µ↓0

∇xf̃(ξ, x, µ)

}
= ∂xf(ξ, x̄) a.e. ξ ∈ Ξ, (12)

then F̃ (x, µ) := E[f̃(ξ, x, µ)] is a smoothing function for F (x) := E[f(ξ, x)]
satisfying

∂F (x̄) = E

[
co

{
Limsup
x→x̄,µ↓0

∇xf̃(ξ, x, µ)

}]
= coE

[
Limsup
x→x̄,µ↓0

∇xf̃(ξ, x, µ)

]
. (13)

Proof The fact that F̃ is a smoothing function for F comes from Theorem
3. Therefore, the result is an immediate consequence of Corollary 1 and the
Lyapunov convexity theorem [31].

The B-subdifferential, denote ∂B , is defined in Definition 9 part (iii) of the
Appendix. In particular, we know that for a fixed ξ ∈ Ξ,

∂Bx f(ξ, x) ⊆ ∂Mx f(ξ, x) ⊆ ∂xf(ξ, x)

and
co ∂Bx f(ξ, x) = co ∂Mx f(ξ, x) = ∂xf(ξ, x).

Moreover, by [2, Theorems 1 and 3]

E[∂Bx f(ξ, x)] = E[∂Mx f(ξ, x)] = E[∂xf(ξ, x)].

If we replace (12) by{
Limsup
x→x̄,µ↓0

∇xf̃(ξ, x, µ)

}
= ∂Bx f(ξ, x̄) a.e. ξ ∈ Ξ, (14)

then we have the subdifferential inclusion

∂F (x̄) = E

[
co

{
Limsup
x→x̄,µ↓0

∇xf̃(ξ, x, µ)

}]
= E[co ∂Bx f(ξ, x)] = E[∂Bx f(ξ, x)].

(15)
Obviously, condition (14) implies condition (12). The above argument also
holds if we replace ∂B in (14)-(15) by ∂M . However, the converse is not true.
For example, consider f(ξ, x) = −ξ|x|, where ξ follows uniform distribution
over [0.5, 1.5]. It is clear that both −f(ξ, x) and −E[f(ξ, x)] = |x| are subdif-

ferentially regular. Taking f̃(ξ, x, µ) := −ξ
√
x2 + µ, we have

Limsup
x→0,µ↓0

∇xf̃(ξ, x, µ) = Limsup
x→0,µ↓0

ξx√
x2 + µ

= ∂xf(ξ, 0) = [−ξ, ξ] a.e. ξ ∈ Ξ,
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and

∂E[f(ξ, 0)] = E[∂xf(ξ, 0)] = [−1, 1].

However,

∂Bx f(ξ, 0) = {−ξ, ξ}, ∂BE[f(ξ, 0)] = {−1, 1}, E[∂Bx f(ξ, 0)] = [−1, 1]

∂Mx f(ξ, 0) = {−ξ, ξ}, ∂ME[f(ξ, 0)] = {−1, 1}, E[∂Mx f(ξ, 0)] = [−1, 1].

Thus (14) does not hold for either ∂B or ∂M . This simple example tells us
that even for a function f(ξ, x) for which −f(x, ξ) is subdifferentially regular
in x for all ξ ∈ Ξ, it may not be the case that

∂BE[f(ξ, x)] = E[∂Bx f(ξ, x)], ∂ME[f(ξ, x)] = E[∂Mx f(ξ, x)]

and the gradient sub-consistency. Therefore, in this paper we consider the
smoothing approximation for the Clarke subdifferential.

The pointwise condition (12) does not imply the gradient consistency of F̃
at x̄. To obtain such a result from (13) we also need to know that

coE

[
Limsup
x→x̄,µ↓0

∇xf̃(ξ, x, µ)

]
= co

{
Limsup
x→x̄,µ↓0

E[∇xf̃(ξ, x, µ)]

}
. (16)

The equivalence (16) is nontrivial requiring stronger hypotheses.

Since ∂xf(ξ, x) is compact-, convex-valued in x, the left-hand side of (12)
is contained in the right-hand side if and only if for a.e. ξ ∈ Ξ and ε > 0 there
is a δ(ξ, x̄, ε) > 0 such that

∇xf̃(ξ, x, µ) ∈ ∂xf(ξ, x̄) + εB ∀ (x, µ) ∈ (x̄, 0) + δ(ξ, x̄, ε)B with µ > 0.

This motivates the hypotheses employed in the following theorem.

Theorem 3 (Gradient Sub-Consistency) Let U ⊆ Rn and f : Ξ×U → R
be as in Corollary 1, and suppose that f̃ : Ξ ×U ×R++ → R is a measurable
smoothing function for f on Ξ × U × R++. If x̄ ∈ U is such that there exists
ν̄ ∈ (0, 1) such that for all ν ∈ (0, ν̄) there exist δ(ν, x̄) > 0 and Ξ(ν, x̄) ∈ M
with ρ(Ξ(ν, x̄)) ≥ 1− ν satisfying for a.e. ξ ∈ Ξ(ν, x̄)

∇xf̃(ξ, x, µ) ∈ ∂xf(ξ, x̄) + νB ∀ (x, µ) ∈ [(x̄, 0) + δ(ν, x̄)(B× (0, 1))], (17)

then

co

{
Limsup
x→x̄,µ↓0

∇F̃ (x, µ)

}
⊆∂F (x̄) = coE

[
Limsup
x→x̄,µ↓0

∇xf̃(ξ, x, µ)

]
. (18)
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Proof Since ∂F (x) is convex, we need only show that the inclusion, without

the convex hull, is satisfied. Let g ∈ Limsupx→x̄,µ↓0∇F̃ (x, µ). Then there is a

sequence (xk, µk)→ (x̄, 0) with µk > 0 such that ∇F̃ (xk, µk)→ g. By Lemma
1(d), there is a measurable selection s from ∂xf(·, x̄). Let ν ∈ (0, ν̄), and let k̄
be such that (xk, µk) ∈ (x̄, 0) + δ(ν, x̄)(B× (0, 1)) for all k ≥ k̄. For all k ≥ k̄,
define

qk(ξ) :=

{
∇xf̃(ξ, xk, µk), ξ ∈ Ξ(ν, x̄)

s(ξ), ξ ∈ Ξ \Ξ(ν, x̄).

Then

g = lim
k→∞

∇xF̃ (xk, µk)

= lim
k→∞

∫
ξ∈Ξ(ν,x̄)

∇xf̃(ξ, xk, µk)dξ +

∫
ξ∈Ξ/Ξ(ν,x̄)

∇xf̃(ξ, xk, µk)dξ

= lim
k→∞

∫
ξ∈Ξ

qk(ξ)dξ −
∫
ξ∈Ξ\Ξ(ν,x̄)

s(ξ)dξ +

∫
ξ∈Ξ\Ξ(ν,x̄)

∇xf̃(ξ, xk, µk)dξ

∈ E[∂xf(ξ, x̄)]+νB+ν‖κf (·, x̄)‖2 B+ν‖κ̂f (·, x̄, µ̄)‖2 B
= ∂F (x̄) + ν(1 + ‖κf (·, x̄)‖2 + ‖κ̂f (·, x̄, µ̄)‖2)B,

where the second equation follows from Theorem 3, the inclusion follows from
(17), Theorem 1(f), and (10), and the final equation follows from Corollary 1.
Since ν ∈ (0, ν̄) was chosen arbitrarily, this proves the inclusion in (18) since
∂F (x̄) is closed. The equivalence in (18) follows from Theorem 2 since (17)
implies (12).

In what follows, we refer to (18) as the gradient sub-consistency property for

the smoothing function F̃ at x̄, and we refer to (17) as the uniform subgradient
approximation property for the measurable smoothing function f̃ at x̄.

4 Composite Max (CM) Integrands

In this section we introduce the class of CM integrands, and smoothing func-
tions for these integrands, that satisfy the properties required for the appli-
cation of the results of the previous sections. The nonsmoothness of CM in-
tegrands arises through composition with finite piecewise linear convex func-
tions on R. The simplest such piecewise linear functions is given by (t)+ :=
max{0, t}. Indeed, all piecewise linear convex functions can be built up from
this basic function. Integral smoothing techniques based on (t)+ first appeared
in the work of Chen and Mangasarian [8] and were later expanded by Chen
[9] to a broader class of non-smooth functions under composition. In [6] it is
shown that certain economies are possible by using the piecewise linear convex
functions directly in the construction of smoothers. We use these here. As in
[6,8,9], we convolve these piecewise linear functions with a density to obtain a
rich class of measurable smoothing mappings useful in applications. We begin
with the following definition.
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Definition 6 (Measurable Mappings with Amenable Derivatives) Let
Ξ × X ⊆ R` × Rn and let U be an open set containing X. We say that the
mapping g : Ξ ×U → Rm is a measurable mapping with amenable derivative
if the following two conditions are satisfied:

(i) Each component of g is a Carathéodory mapping and, for all ξ ∈ Ξ, g(ξ, ·)
is continuously differentiable in x on U ;

(ii) For all x ∈ U , the gradient ∇xg(ξ, x) is locally L2 bounded in x in the sense
that there is a function κ̂g : Ξ ×U → R satisfying κ̂g(·, x) ∈ L2

1(R`,M, ρ)
for all x ∈ U and
∀ x̄ ∈ X ∃ ε(x̄) > 0 such that ‖∇xg(ξ, x)‖ ≤ κ̂g(ξ, x̄) ∀ x ∈ Bε(x̄)(x̄).

Define κ̂Eg (x̄) := E[κ̂g(ξ, x̄)].

We now define CM integrands.

Definition 7 (Composite Max (CM) Integrands) A CM integrand on
Ξ ×X is any mapping of the form

f(ξ, x) := q(c(ξ, x) + C(g(ξ, x))) (19)

for which there exists an open set U containing X such that

(i) C : Rm → Rm is of the form C(y) := [p1(y1), p2(y2), . . . , pm(ym)]T ,
where pi : R→ R (i = 1, . . . ,m) are finite piecewise linear convex functions
having finitely many points of nondifferentiability,

(ii) the mappings c and g are measurable mappings with amenable derivatives
mapping Ξ × Rn to Rm and having common underlying open set U con-
taining X on which c(ξ, ·) and g(ξ, ·) are continuously differentiable in x
on U for all ξ ∈ Ξ, and

(iii) the mapping q : Rm → R is continuously differentiable with Lipschitz con-
tinuous derivative on the set

Q := cl (co {c(ξ, x) + C(g(ξ, x)) | (ξ, x) ∈ Ξ × U }).
Let κ̄q be a Lipschitz constant for ∇q on Q.

Remark 3 The family of CM integrands is designed to include many important
classes of functions useful in applications, e.g. the gap functions of the Non-
linear Complementarity Problem (NCP); the conditional value at risk (CVaR)
[24]; and the difference of two Clarke regular functions where nonsmooth-
ness occurs due the presence of compositions with piecewise convex functions.
Ralph and Xu [22] discussed Aumann’s integral of piecewise random set-valued
mappings which include some special CM integrands. The censored regression
problem in statistics and machine learning has many important applications
[3] and takes the form

min
x

E[(max(a(ξ)Tx, 0)− b(ξ))2].

The function f(ξ, x) := (max(a(ξ)Tx, 0)− b(ξ))2 is an example of a CM inte-
grand. In this case, m = 1, and

c(ξ, x) := −b(ξ), C(y) := max(y, 0)− b(ξ), g(ξ, x) := a(ξ)Tx, q(z) := z2.
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Following [6, Section 4], we assume with no loss of generality that for each
i = 1, . . . ,m, there is a positive integer ri and scalar pairs (aij , bij), i =
1, . . . ,m, j = 1, . . . , ri such that pi(t) := max {aijt+ bij | j = 1, . . . , ri } ,
where ai1 < ai2 < · · · < ai(ri−1) < airi . Again with no loss of generality, we
assume that the scalar pairs (aij , bij), i = 1, . . . ,m, j = 1, . . . , ri are coupled
with a scalar partition of the real line −∞ = ti1 < ti2 < · · · < tiri < ti(ri+1) =
∞ such that for all j = 1, . . . , ri−1, aijti(j+1)+bij = ai(j+1)ti(j+1)+bi(j+1) and

pi(t) =

 ai1t+ bi1, t ≤ ti2,
aijt+ bij , t ∈ [tij , ti(j+1)] (j ∈ {2, . . . , ri − 1}),
airit+ biri , t ≥ tiri .

This representation for the functions pi gives

∂pi(t) =

{
aij , tij < t < ti(j+1), j = 1, . . . , ri

[ai(j−1), aij ], t = tij , j = 2, . . . , ri.
(20)

It is easily shown that the functions pi and C (19) are globally Lipschitz
continuous with common Lipschitz constant

κ̄C := max{|aij | | i = 1, . . . ,m, j = 1 . . . , ri}. (21)

Clearly CM integrands on Ξ ×X are Carátheodory functions on Ξ ×X.
Moreover, CM integrands are explicitly constructed so that they are also LL
integrands on Ξ ×X. We record this easily verified result in the next lemma.

Lemma 4 (CM Integrands are LL Integrands) Let f : Ξ ×X → R be
an CM integrand as in (19). Then f is an LL integrand on Ξ ×X, where, for
all x̄ ∈ X, one may take

κf (·, x̄) := κ̄q[κ̂c(·, x̄) + κ̄C κ̂g(·, x̄)], (22)

where κ̄q and κ̄C are defined in Definition 7 and (21), respectively, and κ̂c and
κ̂g are given in Definition 6.

Since the functions pi are continuously differentiable on the open set R \
{ti2, . . . , tiri} and the functions q, c(ξ, ·), and g(ξ, ·) are continuously differen-
tiable, the set on which the CM integrand f(ξ, ·) is continuously differentiable
is easily identified.

Proposition 1 Let f : Ξ ×X → R be a CM integrand as in (19), and, for
each i = 1, . . . ,m, set qi(ξ, x) := pi(gi(ξ, x)). Given (ξ, x) ∈ Ξ × U set

Ũi(ξ) :=
{
x ∈ U

∣∣x 6∈ (gi(ξ, ·))−1({ti2, . . . , tiri})
}
, i = 1, . . . ,m,

Ξ̃i(x) :=
{
ξ ∈ Ξ

∣∣ ξ 6∈ (gi(·, x))−1({ti2, . . . , tiri})
}
, i = 1, . . . ,m,

Ũ(ξ) :=

m⋂
i=1

Ũi(ξ) and Ξ̃(x):=

m⋂
i=1

Ξ̃i(x).
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Then qi(ξ, ·) is continuously differentiable on the open set Ũi(ξ) with

∇xqi(ξ, x) = ∇pi(gi(ξ, x))∇gi(ξ, x), i = 1, . . . ,m,

and f(ξ, ·) is continuously differentiable and subdifferentially regular on the

open set Ũ(ξ) with

∇xf(ξ, x)=(∇xc(ξ, x)+diag(∇pi(gi(ξ, x)))∇xg(ξ, x))T∇q(c(ξ, x)+C̃(g(ξ, x̄)))

and ∂xf(ξ, x) = {∇xf(ξ, x)}. Therefore, given x ∈ U , f(ξ, ·) is continuously

differentiable and subdifferentially regular at x for all ξ ∈ Ξ̃(x). In particular,

if x ∈ U is such that ρ(Ξ̃(x)) = 1, then f(ξ, ·) is continuously differentiable
and subdifferentially regular at x for a.e. ξ ∈ Ξ.

Proof Observe that each of the sets Ũi(ξ) is open due to the continuity of

gi(ξ, ·). In addition, given x ∈ Ũi(ξ), t := gi(ξ, x) is a point of continuous
differentiability for pi. Hence, by a standard chain rule with the amenable
derivatives of c(ξ, ·) and g(ξ, ·) (e.g. see [29, Theorem 9.15]), qi(ξ, ·) is continu-

ously differentiable at every x ∈ Ũi(ξ). Therefore, every qi(ξ, ·), i = 1, . . . ,m is

continuously differentiable for x ∈ Ũ(ξ), and so, by the same standard chain

rule, f(ξ, ·) is continuously differentiable on Ũ(ξ) with it’s gradient as given.
The subdifferential regularity follows from [28, Theorem 9.18 and Exercise
9.64].

Given x ∈ U and ξ ∈ Ξ̃(x) we have gi(ξ, x) 6∈ {ti2, . . . , tiri} for i = 1, . . . ,m.

Hence x ∈ Ũ(ξ) so that f(ξ, ·) is continuously differential and subdifferentially
regular at x as required. The final statement of the proposition is now evident.

4.1 Smoothing CM integrands

We use the techniques described in [6] to smooth CM integrands. Let β :
R→ R+ be a non-negative, symmetric, piecewise continuous density function
satisfying ∫

R
β(t) dt = 1, β(t) = β(−t) and ω :=

∫
R
|t|β(t) dt <∞. (23)

We denote the distribution function for the density β by ϕ, i.e., ϕ : R→ [0, 1]
is given by ϕ(x) =

∫ x
−∞ β(t) dt. Since β is symmetric and β(·) ≥ 0, ϕ is a

non-decreasing continuous function satisfying

ϕ(0) =
1

2
, 1− ϕ(x) = ϕ(−x), lim

x→∞
ϕ(x) = 1 and lim

x→−∞
ϕ(x) = 0. (24)

Moreover, for every α ∈ (0, 1), ϕ−1(α) is a bounded interval in R, and so

ϕ−1
min(α) := inf

{
ζ
∣∣ ζ ∈ ϕ−1(α)

}
≤ ϕ−1

max(α) := sup
{
ζ
∣∣ ζ ∈ ϕ−1(α)

}
(25)

with both ϕ−1
min(α) and ϕ−1

max(α) finite. Finally, we note that since β is a non-
negative, piecewise continuous density function, it must be bounded on R,
so that βmax := sup {β(t) | t ∈ R} < +∞ which implies that ϕ is Lipschitz
continuous on R with modulus βmax, i.e., |ϕ(t1)− ϕ(t2)| ≤ βmax|t1 − t2|.



Title Suppressed Due to Excessive Length 15

Lemma 5 [6, Lemma 4.1] For each i = 1, . . . ,m, let pi : R → R be the
finite max-function defined above. Furthermore, let β : R → R+ be a non-
negative, symmetric, piecewise continuous density satisfying (23). Then, for
each i = 1, . . . ,m, the convolution

p̃i(t, µ) :=

∫
R
pi(t− µs)β(s) ds

is a (well-defined) smoothing function with

∇tp̃i(t, µ) = ai1

(
1− ϕ

( t− ti2
µ

))
+

ri−1∑
j=2

aij

(
ϕ
( t− tij

µ

)
− ϕ

( t− ti(j+1)

µ

))
+ airiϕ

( t− tiri
µ

)
,

(26)

ηi(t) := lim
µ↓0
∇tp̃i(t, µ) =

{
aij , tij < t < ti(j+1), j = 1, . . . , ri
1
2 (ai(j−1) + aij), t = tij , j = 2, . . . , ri

(27)
is an element of ∂pi(t), and Limsup

t→t̄,µ↓0
∇tp̃i(t, µ) = ∂pi(t̄), ∀t̄ ∈ R. In addition,

for t̂, t̄ ∈ R and 0 < µ̂ ≤ µ̄, we have

|p̃i(t̂, µ̂)− p̃i(t̄, µ̄)| ≤ κ̄C [ |t̂− t̄|+ |µ̂− µ̄| ] and (28)

|∇tp̃i(t̂, µ̂)−∇tp̃i(t̄, µ̄)| ≤ 2ri
µ̂

[ |t̂− t̄|+ (1− µ̂/µ̄) max
j
|t̄− tij | ]. (29)

Remark 4 The bounds (28) and (29) do not appear in [6], but are straightfor-
ward to verify directly from the definitions and (26).

Theorem 4 (Smoothing of CM Integrands) [6, Theorem 4.6] Let f be a
CM integrand. Then f̃ : Ξ × U × R++ → R given by

f̃(ξ, x, µ) := q(c(ξ, x) + C̃(g(ξ, x), µ)), (30)

where C̃(y, µ) := [p̃1(y1, µ), p̃2(y2, µ), . . . , p̃m(ym, µ)]T with each p̃i is as given
in Lemma 5, is a measurable smoothing function for f . If, furthermore, (ξ, x̄) ∈
Ξ × U is such that rank∇xg(ξ, x̄) = m, then, for all µ > 0,

∇xf̃(ξ, x̄, µ) = (∇xc(ξ, x̄) + diag(∇tp̃i(gi(ξ, x̄), µ))∇xg(ξ, x̄))T∇q(c(ξ, x̄)

+ C̃(g(ξ, x̄)))
(31)

and

Limsup
x→x̄,µ↓0

∇xf̃(ξ, x, µ) ⊆ ∂xf(ξ, x̄) and co

{
Limsup
x→x̄,µ↓0

∇xf̃(ξ, x, µ)

}
= ∂xf(ξ, x̄),

where

∂xf(ξ, x̄) = (∇xc(ξ, x̄)+diag(∂tpi(gi(ξ, x̄)))∇xg(ξ, x̄))T∇q(c(ξ, x̄)+C(g(ξ, x̄))).
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We now proceed to show that the function f̃ defined in (30) is a measurable
smoothing function for f in the sense of Definition 7. First observe that the
expression for ∇tp̃i(t, µ) in Lemma 5 implies the bound

2κ̄C ≥ ‖diag(∇tp̃i(gi(ξ, x̄), µ)))‖∞ ∀ (ξ, x̄, µ) ∈ Ξ ×X × R++. (32)

Since this bound is independent of µ, we can use it in conjunction with the
representation (31) to provide a Lipschitz constant for f̃ analogous to (22).

Lemma 6 (Smoothed CM Integrands are LL Integrands) Let f̃ :
Ξ × X → R be as in Theorem 4. Then, for every µ ∈ R++, f̃(·, ·, µ) is an
LL integrand on Ξ × X, where, for all x̄ ∈ X, one may take κf̃µ(·, x̄) :=

κ̄q[κ̂c(·, x̄) + 2κ̄C κ̂g(·, x̄)].

We also have the following bounds for the functions pi, p̃i, ∇tp̃i, and ηi.

Lemma 7 For i = 1, . . . ,m, let ∇tp̃i and ηi be as in Lemma 5, and set

γi(t) :=


|t− t2|, if ri = 2, t 6= t2,

+∞, if ri = 2, t = t2,

min {|t− tij | | j∈{2, . . . , ri}, t 6= tij} , if ri≥3, t 6= tij , j=1, . . . , ri,

min{|tij̄ − ti(j̄−1)|, |tij̄ − ti(j̄+1)|}, if ri≥3, t= tij̄ , j̄=2, . . . , ri.

Then, for each i = 1, . . . ,m,

κ̄C(|t̄− t|+ µω) ≥ | pi(t̄)− p̃i(t, µ) | ∀ t̄, t ∈ R, and (33)

bi(t, µ) := (r̄ + 1)κ̄Cϕ(−µ−1γi(t)) ≥ |∇tp̃i(t, µ)− ηi(t) |, (34)

where ω is defined in (23), κ̄C is defined in (21) and r̄ := max{r1, . . . , rm}.
Moreover, for i = 1, . . . ,m, bi is continuous on R× (0,+∞) when ri = 2 and
is continuous on (R \ {ti2, . . . , tiri}) × (0,+∞) when ri ≥ 3. In addition, for
all (t, µ) ∈ R× (0,∞), 0 ≤ b(t, µ) ≤ 1

2 (r̄ + 1)κ̄C , and b(t, ·) is non-decreasing
on (0,+∞) with limµ↑∞ b(t, µ) = 1

2 (r̄ + 1)κ̄C and limµ↓0 b(t, µ) = 0 .

Proof The bound (33) is given in the proof of [6, Lemma 4.1]. Next, fix i ∈
{1, . . . ,m}. Since i is fixed, we suppress it in the proof to follow. Let t ∈ R
and let k denote some integer in {2, . . . , r}. One of the following five mutually
exclusive cases must hold: (i) r = 2 and t 6= t2, (ii) r = 2 and t = t2, (iii) r ≥ 3
and (t < t2 or t > tr), (iv) r ≥ 3 and t = tk, and (v) r ≥ 3 and tk < t < tk+1

with 2 ≤ k ≤ r−1. Each of the five cases is addressed separately. In each case,
we make free use of the properties of the function ϕ as described in (23)-(25).
(i) r = 2 and t 6= t2:

| ∇tp̃i(t, µ)− ηi(t) | ≤ rκ̄Cϕ(µ−1(|t− t2|)) = rκ̄Cϕ(−µ−1γ(t)).

(ii) k = 2 and t = t2:

| ∇tp̃i(t, µ)− ηi(t) | = 0 = ϕ(−µ−1γ(t)).
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(iii) r ≥ 3 and (t < t2 or t > tr):

(t < t2) : | ∇tp̃i(t, µ)− ηi(t) | ≤rκ̄Cϕ(µ−1(t− t2)) =rκ̄Cϕ(−µ−1γ(t)).

(t > tr) : | ∇tp̃i(t, µ)− ηi(t) | ≤rκ̄C
(
1− ϕ(µ−1(t− tr))

)
=rκ̄Cϕ(µ−1(tr − t))

=rκ̄Cϕ(−µ−1γ(t)).

(iv) r ≥ 3 and t = tk:

| ∇tp̃i(t, µ)− ηi(t) | ≤ (k − 2)κ̄C
(
1− ϕ(µ−1(t− tk−1))

)
+

∣∣∣∣ak−1

(
ϕ(µ−1(t−tk−1))− 1

2

)
+ak

(1

2
−ϕ(µ−1(t−tk+1))

)
− 1

2
(a(k−1)+ak)

∣∣∣∣
+ (r − k)κ̄Cϕ(µ−1(t− tk+1))

≤ (k − 1)κ̄C
(
1− ϕ(µ−1(t− tk−1))

)
+ (r − k + 1)κ̄Cϕ(µ−1(t− tk+1))

= (k − 1)κ̄Cϕ(µ−1(tk−1 − t)) + (r − k + 1)κ̄Cϕ(µ−1(t− tk+1))

≤ rκ̄Cϕ(−µ−1γ(t)).

(v) r ≥ 3 and tk < t < tk+1 with 2 ≤ k ≤ r − 1:

| ∇tp̃i(t, µ)− ηi(t) | ≤ (k − 1)κ̄C
(
1− ϕ(µ−1(t− tk−1))

)
+ (r − k)κ̄Cϕ(µ−1(t− tk+1))

+
∣∣∣ak(ϕ(µ−1(t− tk))− ϕ(µ−1(t− t(k+1)))

)
− ak

∣∣∣
≤kκ̄C

(
1− ϕ(µ−1(t− tk))

)
+ (r − k + 1)κ̄Cϕ(µ−1(t− tk+1))

=kκ̄Cϕ(µ−1(tk − t)) + (r − k + 1)κ̄Cϕ(µ−1(t− tk+1))

≤(r + 1)κ̄Cϕ(−µ−1γ(t)).

The bound (34) follows. The properties stated for the function b follow from
its definition.

Theorem 5 (Measurable Smoothing Functions for CM Integrands)
Let f be a CM integrand and let f̃ : Ξ×U ×R++ → R be as given in Theorem
4. Then f̃ is a measurable smoothing function for f on Ξ×U×R++. Moreover,

the functions F (x) := E[f(ξ, x)] and F̃ (x, µ) := E[f̃(ξ, x, µ)] are well defined

on U and U × R++, respectively, with F̃ a smoothing function for F on U .

Proof By Lemma 4, we need only establish (i) and (ii) in Definition 4 to show
that f̃ is a measurable smoothing function for f . First note that the bound
(33) in Lemma 7 shows that (7) in part (i) in Definition 4 is satisfied. The
bound (8) is also satisfied since, by Lemma 6,

|f̃(ξ, x, µ)| ≤ |f̃(ξ, x̄, µ)|+ κ̄q[κ̂c(ξ, x̄) + 2κ̄C κ̂g(ξ, x̄)]

∀ (ξ, x, µ) ∈ Ξ×Bε(x̄)× (0, µ̄] (see Definition 2 and Lemma 4 for the definition
of the terms in this bound). Hence Definition 7(i) is satisfied.
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By (31), for all µ > 0, the gradient ∇xf̃(ξ, x, µ) exists, and ∇xf̃(ξ, ·, µ) is
continuous on U for all ξ ∈ Ξ. Also, by (31), Definition 6 and (32) (or, more
simply Lemma 6),

|∇xf̃(ξ, x, µ)| ≤ κ̄q[κ̂c(ξ, x̄) + 2κ̄C κ̂g(ξ, x̄)] ∀ (ξ, x, µ) ∈ Ξ × Bε(x̄)(x̄)× (0, µ̄],

which establishes a bound stronger than (9) in Definition 7(ii) since it is inde-
pendent of µ.

The final statement of the theorem follows from Lemma 3.

4.2 Gradient sub-consistency of CM integrands

We now examine conditions under which the smoothing (30) of CM integrands
satisfy the gradient sub-consistency property (18). Our approach is to develop
conditions under which Theorem 3 can be applied. The key condition in this
regard is the uniform subgradient approximation property (17). This property
is equivalent to saying that there exists ν̄ ∈ (0, 1) such that for all ν ∈ (0, ν̄)
there exist δ(ν, x̄) > 0 and Ξ(ν, x̄) ∈M with ρ(Ξ(ν, x̄)) ≥ 1−ν satisfying, for
a.e. ξ ∈ Ξ(ν, x̄),

dist
(
∇xf̃(ξ, x, µ) | ∂xf(ξ, x̄)

)
≤ ν ∀ (x, µ)∈ [(x̄, 0) + δ(ν, x̄)(B× (0, 1))]. (35)

To establish this condition we use Theorem 4 to derive a bound on the distance
to ∂xf(ξ, x̄) in terms of the distances to the subdifferentials ∂tpi(gi(ξ, x̄)). For
this we require the following Lipschitz hypothesis on the Jacobians ∇q, ∇xg
and ∇xc: for all x̄ ∈ U , there is a δ̄(x̄) > 0 for which there exist kg(x̄) > 0 and
kc(x̄) > 0 such that, for all ξ ∈ Ξ and x ∈ Bδ̄(x̄)(x̄),

‖∇q(y)−∇q(ȳ)‖ ≤ κ̄q‖y − ȳ‖
‖∇xg(ξ, x)−∇xg(ξ, x̄)‖ ≤ kg(x̄)‖x− x̄‖, and

‖∇xc(ξ, x)−∇xc(ξ, x̄)‖ ≤ kc(x̄)‖x− x̄‖ ∀ ξ ∈ Ξ, x ∈ Bδ̄(x̄)(x̄),

(36)

where κ̄q is the Lipschitz constant for ∇q given in Definition 6. The Lipschitz
continuity of ∇xc and ∇xg on Bδ̄(x̄)(x̄) uniformly in ξ on Ξ implies that these
functions are bounded on Bδ̄(x̄)(x̄) uniformly in ξ on Ξ. Denote these bounds
by κc(x̄) and κg(x̄), respectively. We also assume that ∇q is bounded by κq.
Taken together, we have

‖∇q‖ ≤ κq, ‖∇xc(ξ, x)‖ ≤ κc(x̄) and

‖∇xg(ξ, x)‖ ≤ κg(x̄) ∀ (ξ, x) ∈ Ξ × Bδ̄(x̄)(x̄).
(37)

Lemma 8 Let f be a CM integrand as given in Definition 7 and let f̃ be the
smoothing function for f as in Theorem 4 for which (36) and (37) hold, and set

K1(x̄) :=[κq(kc(x̄)+2
√
mkg(x̄)κ̄C)+κ̄q(κc(x̄)+κ̄Cκg(x̄))(κc(x̄)+

√
mκg(x̄)κ̄C)],

K2(x̄) :=
√
mωκ̄qκ̄C(κc(x̄) +

√
mκg(x̄)κ̄C), and

K3(x̄) :=
√
mκqκg(x̄).
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If x̄ ∈ U is such that rank∇xg(ξ, x) = m for all x ∈ Bδ̄(x̄)(x̄) for a.e. ξ ∈ Ξ, then

dist
(
∇xf̃(ξ, x, µ) | ∂xf(ξ, x̄)

)
≤K1(x̄)‖x− x̄‖+K2(x̄)µ

+K3(x̄) max
i=1,...,m

dist (∇tp̃i(gi(ξ, x), µ) | ∂pi(gi(ξ, x̄)))

(38)
for all (ξ, x) ∈ Ξ × Bδ̄(x̄)(x̄) and µ > 0.

Proof Let x ∈ Bδ̄(x̄)(x̄) and set Y = diag(y) and Z := diag(z) where yi :=
∇tp̃i(gi(ξ, x), µ)) and zi ∈ ∂pi(gi(ξ, x̄)), i = 1, . . . ,m. Then, by Theorem 4, for
a.e. ξ ∈ Ξ,

g̃ := ∇xf̃(ξ, x, µ) = (∇xc(ξ, x) + Y∇xg(ξ, x))T∇q(c(ξ, x) + C̃(g(ξ, x)))

and

g := (∇xc(ξ, x̄) + Z∇xg(ξ, x̄))T∇q(c(ξ, x̄) + C(g(ξ, x̄))) ∈ ∂xf(ξ, x̄).

By using the bound (33), the constants defined in (36) and (37), and the fact
that ‖·‖2 ≤

√
m ‖·‖∞ on Rm, we have

‖g̃ − g‖ ≤ [(kc(x̄) + 2
√
mkg(x̄)κ̄C) ‖x− x̄‖+ κg(x̄) ‖Y − Z‖]κq

+[κc(x̄) +
√
mκg(x̄)κ̄C ]κ̄q

[
κc(x̄) ‖x− x̄‖+

∥∥∥C̃(g(ξ, x))− C(g(ξ, x̄))
∥∥∥]

≤[(kc(x̄) + 2
√
mkg(x̄)κ̄C) ‖x− x̄‖+ κg(x̄) ‖Y − Z‖]κq

+[κc(x̄) +
√
mκg(x̄)κ̄C ]κ̄q

[
κc(x̄) ‖x− x̄‖+ κ̄C(κg(x̄) ‖x− x̄‖+

√
mωµ)

]
≤[κq(kc(x̄)+2

√
mkg(x̄)κ̄C)+κ̄q(κc(x̄)+κ̄Cκg(x̄))(κc(x̄)+

√
mκg(x̄)κ̄C)] ‖x−x̄‖

+
√
mωκ̄qκ̄C(κc(x̄)+

√
mκg(x̄)κ̄C)µ+

√
mκqκg(x̄) max

i=1,...,m
|∇tp̃i(gi(ξ, x), µ)−zi|,

(39)
or equivalently,

‖g̃ − g‖ ≤ K1(x̄) ‖x− x̄‖+K2(x̄)µ+K3(x̄) max
i=1,...,m

|∇tp̃i(gi(ξ, x), µ)− zi|,

for a.e. ξ ∈ Ξ, which proves the lemma.

Lemma 8 shows that if we can obtain a bound on the distances to the
subdifferentials ∂pi(gi(ξ, x̄)) similar to the bound in (35), then we can choose

δ̂(x̄) and µ small enough to ensure that (35) also holds.

Lemma 9 Let f and f̃ satisfy the hypotheses of Lemma 8. Set

τ̄ := κ̄C(r̄+1)/2, ε̄ :=
1

4
min

{
|tij − ti(j+1)| | i = 1, · · · ,m, j = 2, · · · , ri − 1

}
and, for every ε ∈ (0, ε̄] and x ∈ U , define

Ξ̄ε(x) :=

ξ ∈ Ξ
∣∣∣∣∣∣∣∣
∃ i ∈ {1, · · · ,m}, gi(ξ, x) ∈

ri⋃
j=2

(tij + [−ε, ε])

but gi(ξ, x) /∈ {ti1, · · · , tiri}

 .
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Let x̄ ∈ U and consider the following assumption:

for any τ ∈ (0, τ̄), ∃ ε̃(τ, x̄) ∈ (0, ε̄), s.t. ρ(Ξ̄ε(x̄)) ≤ τ, ∀ ε ∈ (0, ε̃(τ, x̄)). (40)

If x̄ ∈ U is such that (40) holds, then, for all i ∈ {1, . . . ,m}, τ ∈ (0, τ̄) and
ε ∈ (0, ε̃(τ, x̄)),

dist (∇tp̃i(gi(ξ, x), µ) | ∂pi(gi(ξ, x̄)) ) ≤ τ (41)

for all ξ ∈ Ξ̄cε(x̄) := Ξ \ Ξ̄ε(x̄) whenever (x, µ) ∈ Bδ̃(ε,τ,x̄)(x̄) × (0, µ̃(ε, τ, x̄)),

where δ̃(ε, τ, x̄) := min{δ̄(x̄), ε/(2κg(x̄))} and

µ̃(ε, τ, x̄) :=
ε

−2ϕ−1
min( τ

(r̄+1)κ̄C
)

with δ̄(x̄) and κg(x̄) as given in Lemma 8 and (37), respectively.

Proof Let δ̄(x̄), κ̄q, κq, kg(x̄), κg(x̄), kc(x̄) and κc(x̄) be as in Lemma 8 and
it’s proof. Observe that, for every ε ∈ (0, ε̄] and x ∈ U ,

Ξ̄cε(x) =

{
ξ ∈ Ξ

∣∣∣∣∣ ∀i ∈ {1, · · · ,m}, gi(ξ, x) ∈ [tij + ε, ti(j+1) − ε],
or gi(ξ, x) ∈ {ti1, · · · , tiri}

}
,

and note that these sets are measurable.
By (40), for any τ ∈ (0, τ̄), we have ρ(Ξ̄ε(x̄)) ≤ τ for all ε ∈ (0, ε̃(τ, x̄)]. Let

ε ∈ (0, ε̃(τ, x̄)). Then, for all (ξ, x) ∈ Ξ×Bδ̃(ε,τ,x̄)(x̄), we have for i = 1, · · · ,m,

‖gi(ξ, x)− gi(ξ, x̄)‖ ≤ ε
2 .

Let ε ∈ (0, ε̃(τ, x̄)] and ξ ∈ Ξ̄cε(x̄). We consider two cases, both of which make
use of the following two elementary facts without reference:

(a) If t < t1 < t2, then

|ϕ(µ−1(t− t1))− ϕ(µ−1(t− t2))| ≤ ϕ(µ−1(t− t2)) = ϕ(−µ−1|t− t2|).

(b) If t > t1 > t2, then

|ϕ(µ−1(t− t1))− ϕ(µ−1(t− t2))| ≤ 1− ϕ(µ−1(t− t1)) = ϕ(−µ−1|t− t1|).

Case 1: (gi(ξ, x̄) ∈ [tij̄ + ε, ti(j̄+1) − ε] for some j̄ ∈ {1, · · · , ri}) Let x ∈
Bδ̃(ε,τ,x̄)(x̄) and µ > 0. Then gi(ξ, x) ∈ [tij̄ + ε

2 , ti(j̄+1) − ε
2 ] for all x ∈

Bδ̃(ε,τ,x̄)(x̄), in which case∇pi(gi(ξ, x̄)) = ∇pi(gi(ξ, x)) = ηi(gi(ξ, x)). By Lem-
ma 7, we have

|∇tp̃i(gi(ξ, x), µ)−∇pi(gi(ξ, x̄))|≤(ri+1)κ̄Cϕ(
−1

µ
γi(gi(ξ, x)))≤(r̄+1)κ̄Cϕ(

−ε
2µ

).

Since τ/(κ̄C(r̄ + 1)) ≤ 1/2 (so that ϕ−1
min( τ

(r̄+1)κ̄C
) < 0 by (24)), we have the

inequality |∇tp̃i(gi(ξ, x), µ) − ∇pi(gi(ξ, x̄))| ≤ τ whenever 0 < µ ≤ µ̃(ε, τ, x̄).
Hence, for any (x, µ) ∈ Bδ̃(ε,x̄)(x̄)× (0, µ̃(ε, τ, x̄)), we have

|∇tp̃i(gi(ξ, x), µ)−∇pi(gi(ξ, x̄))| ≤ τ.
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Case 2. (gi(ξ, x̄) = tij̄ for some j̄ ∈ {2, · · · , ri}) In this case ∂pi(gi(ξ, x̄)) =
[ai(j̄−1), aij̄ ]. Clearly,

η̃(gi(ξ, x), µ) :=ai(j̄−1)

(
1− ϕ(µ−1(gi(ξ, x)−tij̄))

)
+aij̄ϕ(µ−1(gi(ξ, x)−tij̄))

∈∂pi(gi(ξ, x̄)),

and so

dist (∇tp̃i(gi(ξ, x), µ) | ∂pi(gi(ξ, x̄)) ) ≤ |∇tp̃i(gi(ξ, x), µ)− η̃i(gi(ξ, x̄), µ)|.

If ri = 2, then (26) tells us that ∇tp̃i(gi(ξ, x), µ) = η̃i(gi(ξ, x̄), µ), so that

|∇tp̃i(gi(ξ, x), µ)− η̃i(gi(ξ, x̄))| = 0 ≤ (r2 + 1)κ̄Cϕ(− ε

2µ
).

If ri ≥ 3 and 2 6= j̄ 6= ri, the expression in (26) for ∇tp̃i(gi(ξ, x), µ) tells us that

|∇tp̃i(gi(ξ, x), µ)− η̃i(gi(ξ, x̄), µ)|
≤
∑(j̄−2)
j=1 κ̄C(1− ϕ(µ−1(gi(ξ, x)− tij)))

+|ai(j̄−1)(ϕ(µ−1(gi(ξ, x)− ti(j̄−1)))− ϕ(µ−1(gi(ξ, x)− tij̄)))
+aij̄(ϕ(µ−1(gi(ξ, x)− tij̄))− ϕ(µ−1(gi(ξ, x)− ti(j̄+1)))− η̃i(gi(ξ, x̄), µ)|

+
∑ri
j=j̄+1 κ̄Cϕ(µ−1(gi(ξ, x)− tij))

≤ (j̄ − 2)κ̄Cϕ(− ε
2µ ) + |ai(j̄−1)|(1− ϕ(µ−1(gi(ξ, x)− ti(j̄−1)))|

+|aij̄ |ϕ(µ−1(gi(ξ, x)− ti(j̄+1))) + (ri − j̄)κ̄Cϕ(− ε
2µ )

≤ r̄κ̄Cϕ(− ε
2µ ).

If ri ≥ 3 and j̄ = 2 or j̄ = ri,

|∇tp̃i(gi(ξ, x), µ)− η̃i(gi(ξ, x̄), µ)| ≤ (r̄ − 1)κ̄Cϕ(− ε

2µ
).

Hence, we always have

dist (∇tp̃i(gi(ξ, x), µ) | ∂pi(gi(ξ, x̄)) ) ≤ (r̄ + 1)κ̄Cϕ(− ε

2µ
),

and so, as in Case 1, whenever 0 < µ ≤ µ̃(ε, τ, x̄), we have

dist (∇tp̃i(gi(ξ, x), µ) | ∂pi(gi(ξ, x̄)) ) ≤ τ.

The result follows by combining these two cases.

Remark 5 One can strengthen the hypothesis (40) to

∃ τ > 0 s.t. ∀ τ ∈ (0, τ̄) ∃ ε̃(τ, x̄) ∈ (0, ε̄) s.t. ρ(Ξ̂ε(x̄)) ≤ τ ∀ ε ∈ (0, ε̃(τ, x̄)),
(42)

Then Lemma 9 still holds. However, under (42), we have that ρ(Ξ̃(x̄)) = 1,
where

Ξ̃(x̄) =
{
ξ ∈ Ξ

∣∣∀ i ∈ {1, . . . ,m} ξ 6∈ (gi(·, x))−1({ti2, . . . , tiri})
}

is defined in Proposition 1. Consequently, (42) implies that f(ξ, ·) is continu-
ously differentiable and subdifferentially regular at x̄ for a.e. ξ ∈ Ξ.
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We now combine Lemmas 8 and 9 to establish conditions under which (35)
is satisfied.

Theorem 6 (Uniform Subgradient Approximation) Let f be a CM in-
tegrand as given in Definition 7 and let f̃ be the smoothing function for f given
in Theorem 4. Suppose that the basic assumptions of Lemmas 8 and 9 are sat-
isfied so that their conclusions hold. Then f̃ satisfies the uniform subgradient
approximation property at x̄. That is, there exists ν̄ ∈ (0, 1) such that, for all
ν ∈ (0, ν̄), there exists δ(ν, x̄) > 0 and Ξ(ν, x̄) ∈ M with ρ(Ξ(ν, x̄)) ≤ 1 − ν
for which (35) is satisfied.

Proof Let x̄ ∈ U be such that rank∇xg(ξ, x̄) = m and let ν ∈ (0, ν̄). Let
δ̄(x̄), K1(x̄), K2(x̄) and K3(x̄) be as given by Lemma 8 so that (38) is satisfied
for all x ∈ Bδ̄(x̄)(x̄) and µ > 0. Set

δ1(ν, x̄) := min{δ̄(x̄), ν/(3K1(x̄))}, µ1(ν, x̄) := ν/(3K2(x̄)), and

τ := ν/(3K3(x̄) + 1).

Let ε̃(τ, x̄) be as in (40). Take ε ∈ (0, ε̃(τ, x̄)), and set Ξ(ν, x̄) equal to Ξ̄cε (x̄).
Observe that ρ(Ξ(ν, x̄)) ≥ 1 − τ ≥ 1 − ν by construction. Set δ2(ν, x̄) :=
min{δ1(ν, x̄), δ̃(ε, τ, x̄)} and µ2(ν, x̄) := min{µ1(ν, x̄), µ̃(ε, τ, x̄)} where δ̃(ε, τ, x̄)
and µ̃(ε, τ, x̄) are given in (41). Then, by (38) and the definitions given above,

dist
(
∇xf̃(ξ, x, µ) | ∂xf(ξ, x̄)

)
≤ K1(x̄)‖x− x̄‖+K2(x̄)µ

+K3(x̄) max
i=1,...,m

dist (∇tp̃i(gi(ξ, x), µ) | ∂pi(gi(ξ, x̄)) )

≤ ν

3
+
ν

3
+
ν

3
= ν

for all x ∈ Bδ2(ν,x̄)(x̄) and µ ∈ (0, µ2(ν, x̄)).

We can now apply Theorem 3 to obtain the gradient sub-consistency of
smoothed CM integrands.

Theorem 7 (Gradient Sub-Consistency of Smoothed CM Integrand-
s) Let f be a CM integrand as given in Definition 7 and let f̃ be the smoothing
function for f given in Theorem 4. Suppose that the basic assumptions of Lem-
mas 8 and 9 are satisfied so that their conclusions hold. We further assume
that f(ξ, ·) is subdifferentially regular x̄ for a.e. ξ ∈ Ξ or −f(ξ, ·) is subdiffer-

entially regular at x̄ for a.e. ξ ∈ Ξ. Then F̃ (x, µ) := E[f̃(ξ, x, µ)] satisfies the
gradient sub-consistency property (18) at x̄, i.e.,

co

{
Limsup
x→x̄,µ↓0

∇F̃ (x, µ)

}
⊆ ∂F (x̄) = coE

[
Limsup
x→x̄,µ↓0

∇xf̃(ξ, x, µ)

]
.

Proof The result follows once it is shown that the hypotheses of Theorem 3 are
satisfied. Theorem 6 tells us that the uniform subgradient approximation prop-
erty is satisfied. Lemma 4 shows that every CM integrand is an LL integrand,
so, the subdifferential regularity requirement implies that the hypotheses of
Corollary 1 are satisfied. Hence, all hypotheses of Theorem 3 are satisfied at x̄.
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4.3 Subgradient approximation via smoothing without regulartity

Theorem 7 uses the subdifferential regularity of f(ξ, x) or −f(ξ, x) for a.e. ξ to
obtain the gradient sub-consistency property of the smoothing approximation
F̃ . However, gradient sub-consistency is often stronger than what is required
in some applications. In this section it is shown that a useful subgradient
approximation result can be obtained without assumptions on subdifferential
regularity.

Let f̃ be the measurable smoothing function introduced in (30). We show
that if (ξ, x̄) ∈ Ξ × X is such that rank∇xg(ξ, x̄) = m, then the limit

limµ↓0∇xf̃(ξ, x̄, µ) exits, and we provide an explicit formula for this limit.
For i = 1, . . . ,m, define the functions

zi(ξ, x̄):= ηi(gi(ξ, x̄))∇xgi(ξ, x̄)

h1i (ξ, x̄)(v):=


aij∇xgi(ξ, x̄)T v, tij < gi(ξ, x̄) < ti(j+1), j = 1, . . . , ri

aij∇xgi(ξ, x̄)T v, 〈∇xgi(ξ, x̄), v〉 ≥ 0, gi(ξ, x̄) = tij , j = 2, . . . , ri

ai(j−1)∇xgi(ξ, x̄)T v, 〈∇xgi(ξ, x̄), v〉 < 0, gi(ξ, x̄) = tij , j = 2, . . . , ri,

h2i (ξ, x̄)(v):=


aij∇xgi(ξ, x̄)T v, tij < gi(ξ, x̄) < ti(j+1), j = 1, . . . , ri

ai(j−1)∇xgi(ξ, x̄)T v, 〈∇xgi(ξ, x̄), v〉 ≥ 0, gi(ξ, x̄) = tij , j = 2, . . . , ri

aij∇xgi(ξ, x̄)T v, 〈∇xgi(ξ, x̄), v〉 < 0, gi(ξ, x̄) = tij , j = 2, . . . , ri,

where the functions ηi are defined in (27). Note that

〈zi(ξ, x̄), v〉 =
1

2
(h1
i (ξ, x̄)(v) + h2

i (ξ, x̄)(v)), (43)

and, by Lemma 5,

z(ξ, x̄) = diag(ηi(gi(ξ, x̄)))∇xg(ξ, x). (44)

Lemma 10 Consider the CM integrand f and its smoothing function f̃ de-
fined in (30). Assume that rank∇xg(ξ, x̄) = m for a fixed (ξ, x̄) ∈ Ξ×X. Then
the following limits exist as given with u(ξ, x̄) ∈ ∂xf(ξ, x̄): for all v ∈ Rn,

u(ξ, x̄) := lim
µ↓0
∇xf̃(ξ, x̄, µ)

= (∇xc(ξ, x̄) + (z1(ξ, x̄), . . . , zm(ξ, x̄))T∇q(c(ξ, x̄) + C(g(ξ, x̄)))
(45)

`1(ξ, x̄; v) := lim
t↓0

f(ξ, x̄+ 2tv)− f(ξ, x̄+ tv)

t

= ∇q(c(ξ, x̄) + C(g(ξ, x̄)))T (∇xc(ξ, x̄)v + (h1
1(ξ, x̄)(v), · · · , h1

m(ξ, x̄)(v))T )
(46)

and

`2(ξ, x̄; v) := lim
t↓0

f(ξ, x̄− tv)− f(ξ, x̄− 2tv)

t

= ∇q(c(ξ, x̄) + C(g(ξ, x̄)))T (∇xc(ξ, x̄)v + (h2
1(ξ, x̄)(v), · · · , h2

m(ξ, x̄)(v))T ).
(47)

Moreover, by (43), we have

〈u(ξ, x̄), v〉 =
1

2
(`1(ξ, x̄; v) + `2(ξ, x̄; v)) ∀ v ∈ Rn. (48)
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Proof By combining (31) and (27), we find that the right hand side of (45) is
an element of ∂xf(ξ, x̄). Moreover, by (27) in Lemma 5 and (31) in Theorem 4,
the limit u(ξ, x̄) exists as given in (45). Since (48) follows from (46) and (47),
it remains only to establish the limits `1(ξ, x̄; v) and `2(ξ, x̄; v) exist as given.

First consider the nonsmooth functions hi(ξ, x) := pi(gi(ξ, x)), i = 1, · · · ,m.
For each ξ, the functions hi(ξ, ·) are convex-composite functions [4]. Hence, by
[4, Section 2],

∂xhi(ξ, x̄) = ∂x(pi ◦ gi)(ξ, x̄)) = ∂pi(gi(ξ, x̄))∇xgi(ξ, x̄) (49)

and

∇x(p̃i ◦ gi)(ξ, x̄), µ) = ∇tp̃i(gi(ξ, x̄), µ)∇xgi(ξ, x̄).

By combining (20), (44) and (49), we have that zi(ξ, x) ∈ ∂x(pi◦gi)(ξ, x) for all
(ξ, x) ∈ Ξ×X. Since, for each x ∈ X, zi(ξ, x) is defined by ηi which is the limit
of measurable functions in ξ from (27), zi(ξ, x) is measurable in ξ. In addition,
by [4, Section 2], each of the mappings x 7→ hi(ξ, x) = pi(gi(ξ, x)) is Clarke
regular. Since g(ξ, x) is smooth, lim

x′→x̄
∇xgi(ξ, x′) = ∇xgi(ξ, x̄). Combining (20)

and Lemma 2, for any x ∈ X and direction v ∈ Rn, we have

h1
i (ξ, x̄)(v) = lim

t↓0

hi(ξ, x+ 2tv)− hi(ξ, x+ tv)

t
= max
ν∈∂xhi(ξ,x)

〈ν, v〉 and

h2
i (ξ, x̄)(v) = lim

t↓0

hi(ξ, x− tv)− hi(ξ, x− 2tv)

t
= min
ν∈∂xhi(ξ,x)

〈ν, v〉.

Note that, for every t > 0, the mean value theorem tells us that there
exists wt ∈ Rm on the line segment connecting the two vectors c(ξ, x̄− tv) +
C(g(ξ, x̄− tv)) and c(ξ, x̄− 2tv) + C(g(ξ, x̄− 2tv)) such that

`2(ξ, x̄; v)=lim
t↓0

q(c(ξ, x̄−tv)+C(g(ξ, x̄−tv)))−q(c(ξ, x̄−2tv)+C(g(ξ, x̄−2tv)))

t

=lim
t↓0
∇q(wt)

T (c(ξ, x̄−tv) + C(g(ξ, x̄−tv)))−(c(ξ, x̄−2tv)+C(g(ξ, x̄−2tv)))

t

=lim
t↓0
∇q(wt)

T

(
c(ξ, x̄−tv)−c(ξ, x̄−2tv)

t
+
C(g(ξ, x̄− tv))−C(g(ξ, x̄−2tv))

t

)
=∇q(c(ξ, x̄)+C(g(ξ, x̄)))T (∇c(ξ, x̄)T v+(h2

1(ξ, x̄)(v), · · · , h2
m(ξ, x̄)(v))T),

and similarly,

`2(ξ, x̄; v)=∇q(c(ξ, x̄)+C(g(ξ, x̄)))T(∇c(ξ, x̄)Tv+(h1
1(ξ, x̄)(v),· · ·,h1

m(ξ, x̄)(v))T ).

This establishes (46) and (47) which combined imply (48).

Theorem 8 (Subgradient Approximation by Smoothing) Consider the
CM integrand f and its smoothing function f̃ defined in (30), and suppose the
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hypotheses of Lemma 8 hold. Set F (x) := E[f(ξ, x)] and F̃ (x, µ) := E[f̃(ξ, x, µ)]
for all x ∈ X. Then, for a.e. ξ ∈ Ξ,

dist
(
∇xf̃(ξ, x̄, µ) | ∂xf(ξ, x̄)

)
≤K2(x̄)µ+K3(x̄)(r̄+1)κ̄C max

i=1,...,m
ϕ(
−1

µ
γi(gi(ξ, x̄))).

(50)

Moreover, F̃ (·, µ) is differentiable at x̄ for all µ > 0 with ∇xF̃ (x̄, µ) equal
= E[∇xf̃(ξ, x̄, µ)], the function u in (45) is well defined, and,

lim
µ↓0
∇xF̃ (x̄, µ) = lim

µ↓0
E[∇xf̃(ξ, x̄, µ)] = E[u(ξ, x̄)] ∈ ∂E[f(ξ, x̄)] = ∂F (x̄).

Proof Combining (34) and (38), we have (50).
By Lemma 4, f is an LL integrand. By Lemma 10, the function u in (45) is

well defined a.e. in Ξ and measurable. By Theorem 5, F̃ (·, µ) is differentiable

at x̄ for all µ > 0 with ∇xF̃ (x̄, µ) = E[∇f̃(ξ, x̄, µ)]. By Theorem 5, (45) and
the Dominated Convergence Theorem,

lim
µ↓0
∇xF̃ (x̄, µ) = lim

µ↓0
E[∇xf̃(ξ, x̄, µ)] = E[u(ξ, x̄)].

Since ∂E[f(ξ, x̄)] = ∂F (x̄), it remains only to show that E[u(ξ, x̄)] ∈ ∂F (x̄).
Let v ∈ Rn. By [17, Theorem 2.7], each of the mappings ∇f̃(ξ, x, µ) is

measurable in ξ for each (x, µ) ∈ X×R++. By Lemma 10 and [17, Proposition
2.7], u(ξ, x̄) ∈ ∂xf(ξ, x̄) is measurable. Moreover, by (48) in Lemma 10,

`1(ξ, x̄; v)− 〈u(ξ, x̄), v〉 = −(`2(ξ, x̄; v)− 〈u(ξ, x̄), v〉) a.e. ξ ∈ Ξ,

with both limits existing and measurable. Consequently,

E[`1(ξ, x̄; v)]− E[〈u(ξ, x̄), v〉] = −(E[`2(ξ, x̄; v)]− E[〈u(ξ, x̄), v〉]). (51)

Since f is an LL integrand,

max

{
|f(ξ, x̄+ 2tv)−f(ξ, x̄+ tv)|

t
,
|f(ξ, x̄−tv)−f(ξ, x̄−2tv)|

t

}
≤κf (ξ, x̄) ‖v‖ .

Therefore, by the Dominated Convergence Theorem,

E[`1(ξ, x̄; v)] = lim
t↓0

E
[
f(ξ, x̄+ 2tv)− f(ξ, x̄+ tv)

t

]
and

E[`1(ξ, x̄; v)] = lim
t↓0

E
[
f(ξ, x̄− tv)− f(ξ, x̄− 2tv)

t

]
,

which tells us that

d̂F (x̄)(v)=lim sup
t↓0,z→x̄

E
[
f(ξ, z + tv)−f(ξ, z)

t

]
≥ lim
t↓0

E
[
f(ξ, x̄+ 2tv)−f(ξ, x̄+ tv)

t

]
=E[`1(ξ, x̄; v)]
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and

d̂F (x̄)(v)=lim sup
t↓0,z→x̄

E
[
f(ξ, z + tv)−f(ξ, z)

t

]
≥ lim
t↓0

E
[
f(ξ, x̄− tv)−f(ξ, x̄− 2tv)

t

]
=E[`2(ξ, x̄; v)].

Hence, by (51),

d̂F (x̄)(v)− 〈E[u(ξ, x̄)] , v〉 ≥ E[`1(ξ, x̄; v)]− 〈E[u(ξ, x̄)] , v〉
= −(E[`2(ξ, x̄; v)]− 〈E[u(ξ, x̄)] , v〉)

and d̂F (x̄)(v)− 〈E[u(ξ, x̄)] , v〉 ≥ E[`2(ξ, x̄; v)]− 〈E[u(ξ, x̄)] , v〉 , and so

d̂F (x̄)(v)− 〈E[u(ξ, x̄)] , v〉 ≥ |E[`2(ξ, x̄; v)]− 〈E[u(ξ, x̄)] , v〉 | ≥ 0.

Since v was chosen arbitrarily, Appendix Definition 9 tells us that E[u(ξ, x̄)] ∈
∂F (x̄).

Corollary 2 Let the assumptions of Theorem 8 hold. For µ > 0 and x̄ ∈ U ,
set K4(x̄) := [K1(x̄)µ+ 2r̄K3(x̄)κg(x̄)]. Then∥∥∥∇f̃(ξ, x, µ)−∇f̃(ξ, x̄, µ)

∥∥∥ ≤ K4(x̄)

µ
‖x− x̄‖ ∀ ξ ∈ Ξ and x ∈ Bδ̄(x̄)(x̄)

(52)
and

dist
(
E[∇f̃(ξ, x, µ)] | ∂F (x̄)

)
≤K4(x̄)

µ
‖x−x̄‖

+ dist
(
∇xF̃ (x̄, µ) | ∂F (x̄)

)
∀ x∈Bδ̄(x̄)(x̄).

(53)

Moreover, we have the following gradient sub-consistency property at x̄ for any
γ ∈ (0, 1):

Limsup
x→x̄, µ=O(‖x−x̄‖γ)

E[∇f̃(ξ, x, µ)] ∈ ∂F (x̄). (54)

Proof The proof of (52) follows the pattern of proof given for (39) to first
establish that
‖∇f̃(ξ, x, µ)−∇f̃(ξ, x̄, µ)‖≤K1(x̄)‖x−x̄‖

+K3(x̄) max
i=1,...,m

|∇tp̃i(gi(ξ, x, µ)−∇tp̃i(gi(ξ, x̄, µ)|.

Then use (29) to obtain the bound (52).
To see (53), note that

dist
(
E[∇f̃(ξ, x, µ)] | ∂F (x̄)

)
≤‖E[∇f̃(ξ, x, µ)]− E[∇f̃(ξ, x̄, µ)]‖

+ dist
(
∇xE[f̃(ξ, x̄, µ)] | ∂F (x̄)

)
≤K4(x̄)

µ
‖x− x̄‖+ dist

(
∇xE[f̃(ξ, x̄, µ)] | ∂F (x̄)

)
≤ K4(x̄)

‖x− x̄‖
µ

+ dist
(
∇xF̃ (x̄, µ) | ∂F (x̄)

)
.
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Hence, (54) follows from Theorem 8.

One of stopping criteria in smoothing algorithms is to require that the
smoothing gradient ∇F̃ (xk, µ) is sufficiently small. However, in keeping with
our program, we prefer a stopping criteria based on the integrand. Such a
criteria is provided by Theorem 8 where it is shown that the expectation
E[u(ξ, x̄)], with u is defined in (45), provides an arguably better estimate
of proximity to stationarity in the CM function setting. This expectation is
computable and satisfies u(ξ, x̄) ∈ ∂xf(ξ, x̄) a.e. ξ.

5 Conclusion

In this paper, we provide a framework for the study of smoothing functions for
non-smooth random integrands with the primary focus being the study of the
gradient consistency property and the approximation of Clarke subgradients
of expectation functions. For the large class of measurable CM functions, we
show the gradient sub-consistency property when the integrand or its negative
is subdifferentially regular for a.e. ξ ∈ Ξ (Theorems 6-7). Moreover, when this
subdifferential regularity hypothesis fails, we show that for any x ∈ Rn,

lim
µ↓0

E[∇f̃(ξ, x, µ)]∈∂E[f(ξ, x)] and Limsup
x→x̄, µ=O(‖x−x̄‖γ)

E[∇f̃(ξ, x, µ)]∈∂E[f(ξ, x)].

Consequently, we can approximate an element of the Clarke subdifferential of
the expectation function using gradients of a smoothing function for the non-
smooth integrand (Theorem 8 and Corollary 5.19). Measurable CM functions
arise in several important applications, e.g.

E[‖min(x, ϕ(ξ, x))‖2] and E[(max(a(ξ)Tx, 0)−b(ξ))2]+λ

m∑
i=1

log(1+|dTi x|)).

The first comes from stochastic nonlinear complementarity problems with a
continuously differentiable function ϕ : Ξ × Rn → Rn [11,13], and the sec-
ond is from optimal statistical learning problems with a(ξ) ∈ Rn, b(ξ) ∈ R and
di ∈ Rn [1,3]. Other interesting application might be stochastic programs with
the P -matrix linear complementarity constraints. The P -matrix linear com-
plementarity constraints can be rewritten as piecewise linear constraints [10,
22,33] and approximated by continuously differentiable constraint functions
using a smoothing approximation. Our goal is to apply these approximation
techniques in cases where the inclusion ∂E[f(ξ, x)] ⊆ E[∂f(ξ, x)] is insufficient
for guiding both numerical optimization and optimality assessment.
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helpful comments.
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6 Appendix: Background

6.1 Finite-dimensional variational analysis

Since we allow mappings to have infinite values, it is convenient to define the
extended reals R := R∪{+∞}. The effective domain of f : Rn → R , denoted
dom f ⊆ Rn, is the set on which f is finite. To avoid certain pathological
mappings the discussion is restricted to proper not everywhere infinite) lower
semi-continuous (lsc) functions. Of particular importance is the epigraph of
such functions: epi f := {(x, µ) | f(x) ≤ µ}. We have that f is lsc if and only
if epi f is closed, and f is convex if and only if epi f is convex.

Definition 8 (Subderivatives) [28, Exercise 9.15] For a locally Lipschitz
function f : Rn → R near a point u∗ ∈ Rn with f(u∗) finite,

(i) the subderivative df(u∗) : Rn → R is defined by

df(u∗)(w) := lim inf
τ↓0

f(u∗ + τw)− f(u∗)

τ
;

(ii) the regular subderivative (or the Clarke generalized directional derivative

when f is locally Lipschitz) d̂f(u∗) : Rn → R is defined by

d̂f(u∗)(w) := lim sup
u→u∗, τ↓0

f(u+ τw)− f(u)

τ
.

Definition 9 (Subgradients, Subdifferentials and Subdifferential Reg-
ularity) Consider a locally Lipschitz function f : Rn → R, a point v ∈ Rn,
and a point u∗ ∈ Rn with f(u∗) finite.

(i) [28, Theorem 8.49] The vector v is a Clarke subgradient of f at u∗ if v
satisfies

d̂f(u∗)(w) ≥ 〈v , w〉 ∀ w ∈ Rn.

We call the set of Clarke subgradients v the Clarke subdifferential of f at
u∗ and denote this set by ∂f(u∗).

(ii) [28, Corollary 8.19] f : Rn → R is said to be subdifferentially regular (or
Clarke regular) at u∗ ∈ dom f with ∂f(u∗) 6= ∅ if

df(u∗)(w) = d̂f(u∗)(w) ∀w ∈ Rn.

(iii) [14, Definition 2.6.1][12] The vector v is a B-subgradient of f at u∗ if

v = lim
uk→u∗

∇f(uk), where f is differentiable at uk.

We call the set of B-subgradients v of f at u∗ the B-subdifferential of f at
u∗ and denote this set by ∂Bf(u∗).
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(iv) [28, Definition 8.3] The vector v is an M-subgradient of f at u∗ if there are
sequences uk → u∗ and vk → v with

lim inf
u→uk

f(u)− f(uk)−
〈
vk , u− uk

〉
‖u− uk‖

≥ 0.

We call the set of M -subgradients v of f at u∗ the M-subdifferential of f
at u∗ and denote this set by ∂Mf(u∗).

Remark 6 In [28], the notion of subdifferential regularity is defined in [28,
Definition 7.25]. In the definition given above we employ characterizations of
this notion given by the cited results. Note that subdifferential mappings are
multi-functions.

Definition 10 (Strict Continuity and Strict Differentiability) Let H :
D → Rm , D ⊆ Rn, and h : Rn → R .

(i) [Strict Continuity [28, Definition 9.1]] We say that H is strictly continuous
at x̄ ∈ int (D) if

lipH(x̄) := lim sup
x,x′→x̄
x 6=x′

‖H(x′)−H(x)‖
‖x′ − x‖

<∞ .

(ii) [Strict Differentiability [28, Definition 9.17]] We say that h is strictly dif-
ferentiable at a point x̄ ∈ domh if h is differentiable at x̄ and

lim
x,x′→x̄
x 6=x′

h(x′)− h(x)− 〈∇h(x̄) , x′ − x〉
‖x′ − x‖

= 0 .

It is easily seen that if h is continuously differentiable on an open set
U , then h is strictly differentiable and subdifferentially regular on U with
∂h(x) = {∇h(x)} for all x ∈ U ( [28, Theorem 9.18 and Exercise 9.64]).

The notion of strict continuity of f at a point x̄ implies the existence of
a neighborhood of x̄ on which f is Lipschitz continuous, that is, f is locally
Lipschitz continuous at x̄ where the local Lipschitz modulus is lower bounded
by lipH(x̄). In this light, Definition 8 and Definition 9(ii) combine to tell us
that

df(u∗)(w) = d̂f(u∗)(w) = lim
τ↓0

f(u∗ + τw)− f(u∗)

τ
∀w ∈ Rn, (55)

wherever f is strictly continuous and subdifferentially regular at u∗. Moreover,
in this case, [28, Theorem 8.30] tells us that

df(x)(v) = sup {〈g , v〉 | g ∈ ∂f(x)} . (56)

Remark 7 (Subdifferentials of Compositions) If g : X ⊂ Rn → R is given
as the composition of two functions f : Y ⊂ Rm → R and h : X → Y ,
i.e. g(x) = (f ◦ h)(x) = f(h(x)), then we write ∂g(x) = ∂(f ◦ h)(x). On the
other hand, we write ∂f(h(x)) to denote the subdifferential of f evaluated at
h(x).
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Theorem 9 (Strict Differentiability and the Subdifferential) [28, The-
orem 9.18] [14, Proposition 2.2.4] Let h : Rn → R with x̄ ∈ domh. Then h
is strictly differentiable at x̄ if and only if h is strictly continuous at x̄ and
∂h(x̄) = {∇h(x̄)}.

6.2 Measurable multi-functions

We now review some of the properties of measurable multi-functions used
in this paper [2,15,18,28]. For more information on this topic, we refer the
interested reader to [28, Chapter 14] and [26].

A multi-function, or multi-valued mapping, S from Rk to Rs is a mapping
that takes points in Rk to sets in Rs, and is denoted by S : Rk ⇒ Rs. The
outer limit of S at x̄ ∈ Rk relative to X ⊆ Rk is

Limsup
x→X x̄

S(x) :=
{
v ∈ Rs | ∃{xk} →X x̄, {vk} → v ∈ Rs : vk ∈ S(xk) ∀k ∈ N

}
(57)

and the inner limit of S at x̄ relative to X is

Liminf
x→X x̄

S(x) :=
{
v ∈ Rs | ∀{xk} →X x̄, ∃{vk} → v ∈ Rs : vk ∈ S(xk) ∀k ∈ N

}
.

Here the notation {xk} →X x̄ means that {xk} ⊆ X with xk → x̄. If X = Rk,
we write x → x̄ instead of x →Rk x̄. We say that S is outer semicontinuous
(osc) at x̄ relative to X if

Limsup
x→X x̄

S(x) ⊆ S(x̄).

When the outer and inner limits coincide, we write

Lim
x→X x̄

S(x) := Limsup
x→X x̄

S(x),

and say that S is contiuous at x̄ relative to X.
Let Ξ be a nonempty subset of R` and let A be a σ-field of subsets of Ξ,

called the measurable subsets of Ξ or the A-measurable subsets. Let ρ : A →
[0, 1] be a σ-finite Borel regular, complete, non-atomic, probability measure
on A. The corresponding measure space is denoted (Ξ,A, ρ). A multi-function
Ψ : Ξ ⇒ Rn is said to be A-measurable, or simply measurable, if for all open
sets {V } ⊆ Rn the set {ξ | {V } ∩ Ψ(ξ) 6= ∅} is in A. The multi-function Ψ
is said to be A ⊗ Bn-measurable if gph(Ψ) = {(ξ, v) | v ∈ Ψ(ξ)} ∈ A ⊗ Bn,
where Bn denotes the Borel σ-field on Rn and A⊗Bn is the σ-field on Ξ×Rn
generated by all sets A × D with A ∈ A and D ∈ Bn. If Ψ(ξ) is closed for
each ξ then Ψ is closed-valued. Similarly, Ψ is said to be convex-valued if Ψ(ξ)
is convex for each ξ. Finally, we note that the completeness of the measure
space guarantees the measurability of subsets of Ξ obtained as the projections
of measurable subsets {G } of Ξ × Rn:

{G } ∈ A ⊗ Bn =⇒ {ξ ∈ Ξ | ∃ v ∈ Rn with (ξ, v) ∈ {G }} ∈ A.
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In particular, this implies that the multi-function Ψ is A-measurable if and
only if gph(Ψ) is A⊗ Bn-measurable [28, Theorem 14.8].

Let Ψ : Ξ ⇒ Rn, and denote by S(Ψ) the set of ρ-measurable functions
f : Ξ → Rn that satisfy f(ξ) ∈ Ψ(ξ) for a.e. ξ ∈ Ξ. We call S(Ψ) the set of
measurable selections of Ψ .

Theorem 10 (Measurable Selections) [28, Corollary 14.6] A closed-valued
measurable map Ψ : Ξ ⇒ Rn always admits a measurable selection.

We say that the measurable multi-function Ψ : Ξ ⇒ Rn is integrably bound-
ed, or for emphasis ρ-integrably bounded, if there is a ρ-integrable function
a : Ξ → Rn+ such that

‖v‖∞ ≤ a(ξ) (58)

for all pairs (ξ, v) ∈ Ξ×Rn satisfying v ∈ Ψ(ξ). Here and elsewhere we interpret
vector inequalities as element-wise inequalities. Let 1 ≤ p ≤ ∞. When Ξ = R`,
we let Lpm(R`,A, ρ) denote the Banach space of functions mapping R` to Rm.
When p = 2, L2

m(R`,A, ρ) is a Hilbert space with the inner product on the
measure space (R`,A, ρ) given by

〈ψ, ϕ〉ρ =

∫
R`
〈ψ(ξ) , ϕ(ξ)〉 dρ,

where 〈· , ·〉 denotes the Euclidean inner product. If ρ(R`) <∞, then

Lqm(R`,A, ρ) ⊆ Lpm(R`,A, ρ) whenever 1 ≤ p ≤ q ≤ ∞.

If the function a in (58) is such that ‖a(ξ)‖
p

is integrable with respect to the
measure ρ on the measure space (Ξ,A, ρ), then the multi-function Ψ is said
to be Lp-bounded, where ‖·‖

p
denotes the p-norm of vectors.

Proposition 2 [7, Proposition 2.2] and [16, Corollary IV.8.4][Weak compact-
ness of measurable selections] Let the multi-function Ψ : R` ⇒ Rm be closed-
and convex-valued, and L2-bounded on L2

m(R`,Mn, λn), where Mn is the
Lebesgue field on Rn and λn is n-dimensional Lebesgue measure. Then the set
of measurable selections S(Ψ) is a weakly compact, convex set in L2

m(R`,Mn, λn).

We now develop some properties of integrals of multi-valued mappings.
Given a measurable multi-function Ψ : Ξ ⇒ Rn, we define the integral of Ψ
over Ξ with respect to the measure ρ by∫

Ψdρ :=

{∫
Ξ

fdρ | f ∈ S(Ψ)

}
.

The next theorem, due to Hildenbrand [18], is a restatement of Theorems 3
and 4 of Aumann [2] for multi-functions on the non-atomic measure space
(Ξ,A, ρ). These results are central to the theory of integrals of multi-valued
functions.
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Theorem 11 (Integrals of Multi-Functions) [18, Theorem 4 and Propo-
sition 7] The following properties hold for integrably bounded multi-functions
Ψ : Ξ ⇒ Rn on non-atomic measure spaces (Ξ,A, ρ).

(a) If Ψ is A⊗ Bn-measurable, then
∫
Ψdρ =

∫
conv Ψdρ.

(b) If Ψ is closed valued (not necessarily A ⊗ Bn-measurable), then
∫
Ψdρ is

compact.

We conclude this section with a very elementary, but useful lemma on
measurable tubes, i.e. multi-valued mappings Ψ : Ξ ⇒ Rn of the form

Ψ(ξ) := κ(ξ)B, (59)

where B := {x | ‖x‖2 ≤ 1} is the closed unit ball in Rn and κ : Ξ → R+ is
measurable.

Lemma 11 (Tubes) Let Ψ : Ξ ⇒ Rn be a measurable tube as in (59) with
κ ∈ L2

1(Ξ,A, ρ) non-negative a.e. on Ξ. Then, for every E ∈ A,
∫
E
Ψ(ξ)dρ ⊆[∫

E
κ(ξ)dρ

]
B ⊆ ‖κ‖2 ρ(E)B.

Proof The mapping Ψ in (59) is obviously closed valued and measurable.
Therefore, Theorem 10 tells us that S(Ψ) is non-empty. Let E ∈ A and
s ∈ S(Ψ). Then ∣∣∣∣∫

E

s(ξ)dρ

∣∣∣∣ ≤ ∫
E

|s(ξ)|dρ ≤
∫
E

κ(ξ)dρ,

so that
∫
E
s(ξ)dρ ∈

[∫
E
κ(ξ)dρ

]
B. This proves the lemma since

∫
E
κ(ξ)dρ =

〈κ , XE〉 ≤ ‖κ‖2 ρ(E).


