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A SMOOTHING PROXIMAL GRADIENT ALGORITHM FOR NONSMOOTH
CONVEX REGRESSION WITH CARDINALITY PENALTY*

WEI BIANT AND XIAOJUN CHENf?

Abstract. In this paper, we focus on the constrained sparse regression problem, where the loss function is convex
but nonsmooth, and the penalty term is defined by the cardinality function. Firstly, we give an exact continuous
relaxation problem in the sense that both problems have the same optimal solution set. Moreover, we show that
a vector is a local minimizer with the lower bound property of the original problem if and only if it is a lifted
stationary point of the relaxation problem. Secondly, we propose a smoothing prozimal gradient (SPG) algorithm
for finding a lifted stationary point of the continuous relaxation model. Our algorithm is a novel combination of
the classical proximal gradient algorithm and the smoothing method. We prove that the proposed SPG algorithm
globally converges to a lifted stationary point of the relaxation problem, has the local convergence rate of o(k~7)
with 7 € (0, %) on the objective function value, and identifies the zero entries of the lifted stationary point in finite
iterations. Finally, we use three examples to illustrate the validity of the continuous relaxation model and good
numerical performance of the SPG algorithm.

Key words. nonsmooth convex regression; cardinality penalty; proximal gradient method; smoothing method;
global sequence convergence.

AMS subject classifications. 90C46, 49K35, 90C30, 65K05

1. Introduction. For a vector x € R"™, denote its support set by A(z) = {i € {1,...,n} :
x; # 0}, its cardinality by |A(z)|, and its £yp-norm by ||z|lo = |A(x)|. We call x € R™ is sparse if
| A(z)] < n. Sparse optimization problems emerge in many scientific and engineering problems, such
as regression [52], imaging decomposition [51], visual coding [44], source separation [10], compressed
sensing [12, 22], variable selection [39], etc. Sparse optimization is also the core problem of high-
dimensional statistical learning [11, 24]. These problems aim to find the sparse solutions of a
system of linear or nonlinear equations. The optimization model with the fy-norm penalty can
improve estimation accuracy by effectively identifying the important predictors, and also enhance
its interpretability. However, it is known that the ¢y penalized optimization problems are NP-hard.

Under some conditions on the sensing matrix A € R™*" (such as the RIP and incoherence
conditions), Donoho [22], and Candeés, Romberg, Tao [12] proved that solving the ¢; minimization
can find a sparsest solution satisfying the system of linear equations Ax = b with b € R™. However,
in 2001, Fan and Li [23] pointed out that using the ¢; penalty often results in a biased estimator,
and introduced a smoothly clipped absolute deviation (SCAD) penalty. Besides SCAD, there are
many variant of continuous nonconvex penalties, such as the hard thresholding penalty [56], log-sum
penalty [13], bridge ¢, (0 < p < 1) penalty [17, 25], capped-¢; penalty [45, 47, 55] and minimax
concave penalty (MCP) [54]. These continuous but nonconvex penalties would bring better sparse
solutions than the ¢; penalty in many cases [6, 15, 28, 31]. The estimators obtained by the SCAD,
MCP and capped-¢; penalty functions satisfy the three important properties: unbiasedness, con-
tinuity in data and sparsity [23]. Meantime, there are many algorithms for solving these continuous
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2 W. BIAN AND X. CHEN

nonconvex optimization problems, such as the iterative reweighted algorithm [13, 43, 36], interior
point method [7], trust region method [18], cubic method [14], DC (difference of convex) function
algorithm [1, 37], iterative thresholding algorithm [8], primal dual active set method [27], etc.

Despite the existing literature on the nonconvex but continuous penalties for replacing the £-
norm, some important questions still remain. First of all, the relationships between the cardinality
penalty problem and its continuous relaxations are not very clear for most cases regarding the mini-
mizers. Apart from the theoretical results for the convex ¢; relaxation under restrictive hypotheses,
only a few special cases have been analyzed for the consistency. With a suitable condition on the
sensing matrix A, the equivalence between £y and £,(0 < p < 1) problems with constraint Az = b
was proved in [25] and then this result was extended to the problem with equality and inequality
constraints in [26]. In [19], the authors gave a class of smooth nonconvex penalties to approximate
the ¢y penalty in terms of the consistency of global minimizers. In the DC programming frame-
work, an approximation of the ¢y penalty with the consistency of global minimizers was studied in
[37]. Recently, Soubies, Blanc-Féraud and Aubert proposed a continuous exact ¢, (CELO) penalty
for the ¢5-¢y problem [51], where the global minimizers of both problems can be the same, and in
[50], they verified that the capped-¢; and SCAD penalties could only guarantee the consistency of
global minimizers to the ¢3-fy problem, while the MCP, truncated-£, with 0 < p < 1 and CELO
penalties could not only own the consistence of global minimizers, but also ensure that its local
minimizers are in the set of local minimizers of the ¢5-f; problem. Next, due to the nonconvexity
of the penalties, finding global minimizers of these nonconvex problems is often NP-hard. Most
existing work for these continuous nonconvex penalized problems focuses on the stationary points
in different sense [1, 7, 8, 14, 18, 31, 35, 36, 46]. Moreover, due to their nonconvexity, only the
subsequence convergence to a stationary point can be proved for the proposed algorithms. The K-L
(Kurdyka-Lojasiewicz) condition is a popular tool to obtain the algorithmic sequence convergence.
In [2], the sequence convergence to a critical point of a class of nonconvex semi-algebra problems is
established, where the K-L condition plays the key role. Most recently, the authors in [46] stated
that it would be interesting whether the sequence convergence can be established to the DC problem
by a given algorithm without the K-L condition on the objective function.

Denote z* the true estimator, which is the true solution of the considered (linear or nonlinear)
regression problem. Then, the oracle estimator is defined by
(1.1) 2 € arg  min  f(x),

T A(z*)c=0

where A(z*)¢ means the complementary set of A(z*) and f : R™ — [0,00) is the loss function to
evaluate the regression. The oracle estimator can be used as a theoretic benchmark for comparison
of computed solutions. We call that the penalized model has the oracle property if it owns a local
solution having the same asymptotic distribution as the oracle estimator. The penalized problem
with the SCAD, MCP or capped-£; penalty owns the oracle property simultaneously [23, 54, 55].
A folded concave penalized problem often has multiple local solutions and the oracle property is
established only for one of local solutions [24]. Hence, deriving some appealing properties, such
as the optimality, sparsity or statistical properties, of the relevant stationary points is interesting.
Ahn, Pang and Xin [1] established some optimality and sparsity properties of the d-stationary
points (its definition will be reminded in Section 2) of the continuous relaxation problems. Fan,
Xue and Zou [24] proved that as long as there is a reasonable initial estimator, an oracle estimator
can be obtained via the one-step local linear approximation algorithm.

In the recent years, algorithmic research on the sparse regression problems with cardinality
penalty has received much attention [4, 3, 29, 31, 32]. However, to the best of our knowledge, all
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NONSMOOTH CONVEX REGRESSION WITH CARDINALITY PENALTY 3

the existing results are built up for the problem with a continuously differentiable loss function.
The primal dual active set methods are proposed in [29, 31, 32] for the ¢3-fy problems. Under
some regularity conditions, such as the strict complementarity condition [31] or RIP condition
on the sensing matrix [29, 32], some variants of the primal dual active set methods were proved
to be convergent in finite iterations. The loss functions considered in [4, 3, 40] are continuously
differentiable and with Lipschitz continuous gradients.

Our focuses and contributions. In this paper, we consider the following penalized sparse
regression problem with cardinality penalty, that is,

(1.2) min  Fy, (x) := f(z) + A||z||o,
reX
where X = {zr e R" : | < z < wu}, f: R" — [0,00) is convex (not necessarily smooth), X is a
positive parameter, and [, u € {R, +o0}™ with [ <0 < wu and [ < w.
One application of problem (1.2) comes from the linear regression problem. It is well-known
that the least squares estimate with the ¢3-¢p model is not robust for many cases [23]. We need to
consider the problem with the outlier-resistant loss function, such as the ¢; loss function given by

(13) f(@) = | Az~ b,

or Huber’s functions [30], which are convex, but not smooth. Another important application of
problem (1.2) comes from the censored regression problem with the nonsmooth convex loss function

1 m
1.4 flx) = — max{A;x — ¢;,0} — b;|”,
(1.4) (z) om ;I { b= bil
where p € [1,2], AT € R" and ¢;,b; € R, i = 1,...,m. There are some other nonsmooth convex

loss functions, for example the negative log-quasi-likelihood function [23] or the check loss function
in penalized quantile regression [24, 33]. To the best of our knowledge, only little work has been
dedicated to the penalized sparse regression problem (1.2) with a general convex loss function.

For a given parameter v > 0, let ®(z) = Y. | ¢(z;) be a continuous relaxation of the £, penalty
with the capped-¢; function ¢ given by

(1.5) o(t) = min{1, |t]/v}.
We consider the following Lipschitz continuous optimization problem for solving (1.2):

(1.6) min  F(z) := f(z) + A\®(x).
reX

Differently from the previous work [1, 4, 3, 7, 8, 14, 18, 29, 31, 32, 35, 36, 46], this paper considers
the original cardinality penalty problem with a continuous convex loss function and uses an exact
continuous relaxation problem to solve it. In particular, we focus on problem (1.2) with a continuous
convex loss function, which is nonsmooth or whose gradient is not Lipschitz continuous. The main
contributions of this paper include the following two aspects. First, we prove that the continuous
relaxation problem (1.6) with certain v > 0 has two advantages: global minimizers of (1.2) and
(1.6) are same; any lifted stationary point of (1.6) (its definition will be reminded in Section 2) is
a local minimizer of (1.2) with a desired lower bound property. Second, we propose a smoothing
proximal gradient (SPG) algorithm with global sequence convergence to a lifted stationary point of
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4 W. BIAN AND X. CHEN

(1.6) without using the K-L condition. Moreover, the SPG algorithm owns a local convergence rate
on the objective function value of (1.6) and the finite iterative identification for the zero entries of
the limit point.

Notations. We denote N = {0,1,...} and D" = {d € R : d; € {1,2,3},i=1,...,n}. For
x € R"and 6 > 0, let ||| := ||z|l2 and Bs(z) means the open ball centered at x with radius 6. For
a nonempty, closed and convex set X C R™, Ny (z) means the normal cone to X at x € X. Let
1, € R™ be the all-ones vector and e; € R™ be the ith column of the n dimensional identity matrix.
For a locally Lipschitz continuous function ¢ : R™ — R, we denote d¢(z) the Clarke subgradient
[20] of ¥ at © € R™.

2. An exact continuous relaxation for (1.2). In this section, we analyze the relationships
between (1.2) and (1.6), where the capped-¢; penalty can let problem (1.6) own the oracle property
and then can be seen as one of the best continuous relaxations to the {y-norm penalty [45].

ASSUMPTION 1. f is Lipschitz continuous on X with Lipschitz constant L.
ASSUMPTION 2. Positive parameter v in (1.5) satisfies v < v := \/Ly.

If there is no special explanation, we suppose Assumption 1 and Assumption 2 hold throughout the
paper, and assume that Ly is large enough such that L; > %7 where

I':=min{|l;|,u; : {; #0,u; #0,i=1,...,n,j=1,...,n}.

When f is defined by the ¢; loss function or the loss function in (1.4) with p = 1, we can let
Ly = max{]|Al|o, £ }.

2.1. Lifted stationary points of (1.6). Though ¢ is piecewise linear, problem (1.6) is still
a nonconvex optimization problem. It has been proved in [6] that finding a global minimizer of
(1.6) is NP-hard in general. Note that ¢ in (1.5) can be reformulated as a DC function, i.e.

B(t) = It~ max {61 (1), Ba(). 65())
with 01(¢t) =0, 02(t) =t/v — 1 and 03(¢t) = —t/v — 1. For t € R, denote
(2.1) D(t) ={i € {1,2,3} : 0;(t) = max{61(t), 02(t),05(t)}} .

DEFINITION 2.1. [46] We say that x € X is a lifted stationary point of (1.6) if there exist
d; € D(x;) fori=1,...,n, such that

(2.2) A6 (wi)es € 0f(x) + %a (Z |xi|> + Ny ().

i=1 i=1

If (2.2) holds for all d; € D(x;), Vi =1,...,n, then we call z a d-stationary point [46]. Due to the
piecewise linearity of max {61 (t),02(t),05(t)}, = is a d-stationary point of (1.6) if and only if it is a
local minimizer. Recall that Z is a limiting stationary point [48] of (1.6), if

(2.3) 0€ d(f +\0)(Z) + Nx (),

where “0” indicates the limiting subgradient. And 7 is a Clarke stationary point of (1.6), i 0 €
A(f+AP)(Z)+Nx(z). We call T € X a critical point of (1.6) if it satisfies 0 € 0 f(z)+A0P(z)+Nx (Z).
It holds that

Sa € Siim € Siif € St € Serry
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but their inverse may not hold, where Sg, Siim, Suf, Sci and S, denote the d-stationary point set,
limiting stationary point set, lifted stationary point set, Clarke stationary point set and critical
point set of (1.6), respectively.

A natural question arises why we focus on the lifted stationary points rather than the others.
First, the lifted stationary points satisfy a sharper optimal necessary condition than the Clarke
and critical stationary points. Second, the d-stationary and limiting stationary points of (1.6) are
difficult to be computed. Though Pang, Razaviyayn and Alvarado [46] developed a novel algorithm
for computing a d-stationary point of the DC optimization problems, the algorithm in [46] cannot
be directly used to solve problem (1.6).

2.2. Characterizations of lifted stationary points of (1.6). With the computable con-
dition on v defined in Assumption 2, we first verify that the element in IT? ,D(x;) for a lifted
stationary point satisfying (2.2) is unique and well-defined.

PROPOSITION 2.2. IfZ is a lifted stationary point of (1.6), then the vector d* = (d%,...,d%)T €
[T, D(7;) satisfying (2.2) is unique. In particular, fori=1,....n,

1 if |jz| <v,
(2.4) =02 ifz>v,
3 if ZT; < —v.

Proof. If |z;| # v, then the statement in this proposition holds naturally. Hence, we only
need to consider the case |Z;| = v. When Z; = v, since D(Z;) = {1, 2}, arguing by contradiction,
we assume (2.2) holds with df = 1. By v < i, we have Z; € (I;,u;), and by (2.2), there exists
&(z) € 0f(z) such that 0 = &(Z) + A\/v, which implies A\/v = |§(z)| < Ly. This leads to a
contradiction to v < A/Ly. Then, (2.4) holds for Z; = v. Similar analysis can be given for the case
that z; = —v, which completes the proof. 0

For a given d = (di,...,d,)T € D", we define

(2.5) d(z) = Z || /v — Zedi (x4),

i=1

which is convex with respect to z. It can be verified that ®(z) = mingep» ®%(z), Vo € X. In
particular, for a fixed z € X, ®(z) = " (z) with d” defined in (2.4).

Remark 2.1. Proposition 2.2 implies that T is a local minimizer of (1.6) if and only if T is
a lifted stationary point of (1.6) and |z;| # v, Vi = 1,...,n. Moreover, due to the convezity of
f(z) + A®4(x) and the linearity of >, 0a,(z;) for a fized d € D", the assertion in Proposition 2.2
implies the following equivalent results:

T is a lifted stationary point of (1.6) < (2.2) holds at T € X with d = d* defined in (2.4)
(2.6) & & €argmingyf(z) + A0 (z)
(2.7) & T €argmingey go_ge f(7) + AO(),

where the last equivalence uses ®* (z) = ®(z) and ®" (z) > ®(x), Vo € R".

We then show a lower bound property of the lifted stationary points of (1.6).
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6 W. BIAN AND X. CHEN

LEMMA 2.3. If T € X is a lifted stationary point of (1.6), then it holds that
(2.8) Z, € (-vv) = I;=0, Vi=1,...,n.

Proof. Suppose Z is a lifted stationary point of (1.6). Assume that Z; € (—v,v)\{0} for some
i € {l,...,n}. Then, df =1 and Z; € (I;,u;). By Definition 2.1, there exists {(Z) € df(Z) such
that &(Z) + (A\/v)sign(z;) = 0. Then, A\/v = £(Z)| < ||{(Z)]| < Ly, which leads to a contradiction
to v < A/Ly. Thus, for any i € {1,...,n}, Z; € (—v,v) implies Z; = 0. O

Remark 2.2. On the one hand, if f is not continuously differentiable on X, = {x € X :
|z;| = v for some i € {1,...,n}}, a lifted stationary point of (1.6) is not necessary to be a Clarke
stationary point [46]. On the other hand, if [ is continuously differentiable on X, then T is a
lifted stationary point of (1.6) if and only if it is a limiting stationary point, but is not necessary to
be a Clarke stationary point. A counterezample can be provided by setting f(z) = (z1 + 2o — 1),
1=00,007, u= (110", A\=1and v =02 in (1.6), where v < v = 0.25. It follows from Lemma
2.9 that Sq = St J{(0,0.2)T,(0.2,0)T}, where St = {x € R? : zy + 29 = 1,21 > 0.2, 29 >
0.2} U{(0,0)T, (1,0)T, (0,1)"}.

2.3. Links between (1.2) and (1.6). The goal of this subsection is to study the links
between the ¢y penalized minimization problem (1.2) and its continuous relaxation (1.6). In light
of the lower bound characterization of the lifted stationary points of (1.6) given in Lemma 2.3, we
show the links between (1.2) and (1.6) by the two following results, where the first result focuses
on global minimizers, and the second is on local minimizers.

THEOREM 2.4. T € X is a global minimizer of (1.2) if and only if it is a global minimizer of
(1.6). Moreover, problems (1.2) and (1.6) have the same optimal value.

Proof. First, let z € X be a global minimizer of (1.6), then Z is a lifted stationary point of
(1.6). By (2.8), it gives ®(z) = ||Z||o. Then,
@)+ Mzllo = f(2) + A2(z) < f(2) + A®(2) < f(z) + Alzllo, Vo e,

where the last inequality uses ®(z) < ||z||o, Y& € R™. Thus, T is a global minimizer of (1.2).
Next, suppose T € X is a global minimizer of (1.2) but not a global minimizer of (1.6). Then
there exists a global minimizer of (1.6) denoted by & such that

F(&) + 2\B(2) < f(Z) + AD(T).

From ®(&) = ||z||o and ®(z) < ||Z]jo, we get f(&) + A||Z]lo < f(Z) + A||Z|lo, which leads to a
contradiction. Thus, any global minimizer of (1.2) must be a global minimizer of (1.6). Hence,
using Lemma 2.3, we ensure that problems (1.2) and (1.6) have the same optimal value. |

Theorem 2.4 provides that problems (1.2) and (1.6) have the same global solution set. The
following proposition and the subsequent example show that this is not always true for their local
minimizers.

PROPOSITION 2.5. If T is a lifted stationary point of (1.6), then it is a local minimizer of (1.2)
and the objective functions have the same value at T, i.e. Fo,(Z) = F(T).

Proof. Coming back to the definition of 7" defined in (2.5) and from the lower bound property
of Z in (2.8), for any z € R™, we have

n

O (x) =D fwil/v =Y bar(x) = D 1+ Y |l =|zlo+ Y |ail/v.
i=1

i=1 i|Z | >v 0| | <v :2;=0

This manuscript is for review purposes only.
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Then, there exists ¢ > 0 such that ®" (z) < ||z, V& € B,(Z). Combining this with ®(z) < ||
and (2.6) gives
f@) + Alzllo < f(2) + Allzllo, Vo € X NB, (7).

Thus, Z is a local minimizer of (1.2). |

Proposition 2.5 states that any lifted stationary point of (1.6) is a local minimizer of (1.2),
which implies that any local minimizer of (1.6) is certainly a local minimizer of (1.2). Due to the
special structure of the cardinality norm, any minimizer of mingcx f(z) is a local minimizer of
(1.2). The following example shows that a lifted stationary point of (1.6) is a local minimizer of
(1.2) with the lower bound property in (2.8) and is likely a global minimizer.

Example 2.1. Let problem (1.2) be in the form of
(2.9) ogi?,iﬁgﬂ" (x1,22) := |21 + 22 — 1| + Al|z]|o-
We can easily find that LM = {x € R? 1 21 + 29 = 1,0 < x1, 20 < 1} U {(0,0)T} is the set of local
minimizers of (2.9). Moreover, (0,0)T is the unique global minimizer when \ > 1, the global minimi-

zers are {(0,1)7,(1,0)T} when X < 1, and the global minimizers are {(0,1)T,(1,0)T,(0,0)} when
A= 1. Here, 7 in Lemma 2.3 can be min{\/2)\/2,1}. With v < min{\/2)\/2, 1}, the lifted stationary
points of (1.6) for this example are {x € R? : 1425 = 1,v < w1, 20 < 1}J{(0,0)T, (1,0)7, (0, 1)T},
which is a proper subset of LM. Specially, if vV2/2 < XA <1 and 1/2 < v < min{yv/2)/2,1}, the
lifted stationary points of (1.6) are {(1,0)T,(0,1)7,(0,0)T}.

When f is convex, T is a local minimizer of (1.2) if and only if € X satisfies
(2.10) 0€[0f(Z)+ Nx(T)]:;, Vie AT),

which is a criterion for the local minimizers of (1.2) [40]. From Lemma 2.3 and Theorem 2.4, we
find that the lower bound property in (2.8) holds for any global minimizer of (1.2), but is not true
for all of its local minimizers. This inspires us to define a class of strong local minimizers of (1.2)
by combining the optimality condition in (2.10) and the lower bound property in (2.8).

DEFINITION 2.6. We call T € X a v-strong local minimizer of (1.2), if there exist £ € Of(%)
and 7 € Nx(Z) such that for any i € A(Z), it holds
&E+m=0 and |7;] >v.

By (2.10), any v-strong local minimizer of (1.2) is a local minimizer of it. To close this section,
we give a result on the relationship between the v-strong local minimizers of (1.2) and the lifted
stationary points of (1.6).

PROPOSITION 2.7. T € X is a v-strong local minimizer of (1.2) if and only if it is a lifted
stationary point of (1.6). Moreover, if & € X is a v-strong local minimizer of (1.2), then it holds

Fuo(Z) < Fyy (), VreXN(T—ve T+ ve),
(2.11) f(@) < f(z), Vee{zeX: A(z) C Az)},
(2.12) T is an oracle solution defined in (1.1) if A(Z) = A(x*).

Proof. From Lemma 2.3, we can easily verify the first statement. By (2.6), we see that if Z is
a lifted stationary point of (1.6), then

Fio(@) = (@) + Mzllo = £(2) + AB(@) = f(2) + \0¥ (2) < f(2) + 0¥ (), Vae X,

This manuscript is for review purposes only.
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Cardinality ocal mmimizer _
penalty {global minimizer} [local mi_nimizer}h and satistying ﬁ[ v -strong local mu.umlzer}
problem (1.2) lower bound in (2.8)

Continuous lifted stationary point

relaxation [global minimizer} [10‘331 minimizer ‘[ lifted stationary point }

problem (1.6)

and satisfying
| x, [= v, ifx;, # 0, Vi

Fig. 2.1: Links between problems (1.2) and (1.6)

Due to Lemma 2.3, we then have Fy,(Z) < Fy,(z), Vo € X N (Z — v1,,T + v1,), which holds
from & () < ||z||o, Vz € (Z — v1,,Z + v1,). Recalling (2.6) again, we obtain f(z) < f(z) +
A igaw) lzil/v, Vo € X 1f A(z) € A(Z), then x; = 0 for i ¢ A(z). Hence, (2.11) holds, which
immediately implies (2.12). 0

Remark 2.3. In [50], the authors gave a unified view of exact continuous penalties for £o-Cy
minimization, which derives necessary and sufficient conditions on £y continuous relaxations such
that each (local and global) minimizer of the underlying relaxation is also a minimizer of the £a-£y
problem. However, the property that any local minimizer of the relaxation problem with the capped-
0y penalty is a local minimizer of the ly-£y problem cannot be verified by the results in [50]. In this
paper, we prove this property for the capped-£1 penalty by its lifted stationary points.

To end this section, we use Fig. 2.1 to give a brief description on the links between problems
(1.2) and (1.6) when v < .

3. Numerical Algorithm and its convergence analysis. In this section, we focus on the
numerical algorithm for finding a lifted stationary point of (1.6), which is a v-strong local minimizer
of (1.2). The first two subsections briefly introduce some useful preliminary results on smoothing
methods and the proximal gradient algorithm, the third subsection presents a new proximal gradient
algorithm combined with the smoothing method, and the last two subsections show the convergence
of the proposed algorithm for solving (1.6).

3.1. Smoothing approximation method. A well-known method for solving nonsmooth
optimization problems is to approximate the original problem by a sequence of smooth problems,
which own rich theory and powerful numerical algorithms [42]. For the sake of completeness, we
formally define a class of smoothing functions for f in (1.6).

DEFINITION 3.1. We call f : R™ x [0,a] = R with @ > 0 a smoothing function of the convex
function f in (1.6), if f(-,u) is continuously differentiable in R™ for any fized p > 0 and satisfies
the following conditions:

(1) hmz—)%ulo f(z,u) = f(.T), Vo € X;

(ii) (convezity) f(z, 1) is convex with respect to x in X for any fized p > 0;
(iii) (gradient consistency) {lim, s, .10 V2 f(2, 1)} C 0f (x), Vo € X;
(iv) (Lipschitz continuity with respect to u) there exists a positive constant k such that

|f(z, p2) — [z, p1)] < Klpy — po|, Vo€ X, py,pe € [0, f;

(v) (Lipschitz continuity with respect to x) there exists a constant L > 0 such that for any
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€ (0,f1), Vauf(-,u) is Lipschitz continuous on X with Lipschitz constant Lu~".
Throughout this paper, we denote f a smoothing function of f in (1.6). When it is clear from
the context, the derivative of f(z, ;) with respect to z is simply denoted as Vf(z, ). Definition

3.1-(iv) implies

(3.1) \f(z,p) — f(z)] < wp, Vo eX,0<p<p

Example 3.1. Many existing results in [16, 34, 49] give us some theoretical basis for con-
structing smoothing functions satisfying the conditions in Definition 3.1. A smoothing function of
the €1 loss function in (1.3) can be defined by

1 m N |S| Zf‘S‘ > My
3.2 — bi, )  with 0(s,pu) = 2
(32 H) = i 2 0w = bisp) CHZNE LS <
2u 2

For the loss function in (1.4) with p =1, a smoothing function of it can be defined by

) max{s,0} if|s| >y,
(3.3) Ze O(Aiw, ) = bi ) with  &(s, 1) = { (s + p)?

m if |s| < p

We end this subsection by giving the following notations:
Fla,u) £ fa,n) + 20%x) and  F(w,p) £ flz,p) + A0 (2),

where fisa smoothing function of f, u > 0 and d € D". For any fixed 4 > 0 and d € D", both
F(x, ) and F(z, ) are nonsmooth, F¥(z, 1) is convex, but F(x, 1) is nonconvex. Moreover,

(3.4) Flz,p) > Fz,p), YdeD", ze X, uc (0[]

3.2. Proximal gradient method. In this subsection, we consider the following constrained
convex optimization problem with given smoothing parameter p > 0 and vector d € D"

(3.5) min  F(x, p).

reX

It is good news that, for any given vectors d € D", w € R™ and a positive number 7 > 0, the
proximal operator of 7®? on X has a closed form solution, i.e.

1
. 7= i P4 e — wll?
(3.6) & = argmin {T (x) + 2||alc wl| }
can be calculated by #; = min{max{l;,y;},u;} for i = 1,...,n, where
0 if |w;] < 7/v,
(3.7) Yi = w; —7/v it w; >71/v,

’lZ)i+T/l/ if’lf)i<77'/l/,
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with w; = w; for d; = 1, w; = w; + 7/v for d; = 2 and w; = w; — 7/v for d; = 3. Toward this end,
we consider an approximation of F%(-, 1) around a given point z, given by

(33) Qual, %) = F(z ) + (o = 2,9z, + g o = =) + A2(a)

with a constant v > 0. Since ®?(x) is convex with respect to z for any fixed d € D", function
Qa~(z,z, 1) is a strongly convex function with respect to x for any fixed d, v, z and pu. Then,
minimization problem mingcx Qa4(z, 2, 1) admits a unique minimizer, denoted by &, which can
be calculated by (3.7) with 7 = My~ ‘g and w = z — v uV f (2, p).

3.3. Smoothing proximal gradient (SPG) algorithm. In this subsection, we propose a
new algorithm for finding a lifted stationary point of (1.6). Since the proposed algorithm combines
the smoothing method and the proximal gradient algorithm, we call it Smoothing Proximal Gradient
(SPQG) algorithm.

For convenience of further reading, we begin this subsection by emphasizing the following
assumptions needed in the convergence analysis of the SPG algorithm.

e (A1) Assumption 1 and Assumption 2 hold.

e (A2) f is a smoothing function of f defined in Definition 3.1.

e (A3) Fin (1.6) (or Fy, in (1.2)) is level bounded on X'*.
As the feasible region X is bounded, then assumption (A3) holds naturally. We give some more
details on the parameters in these assumptions. Parameter Ly in Assumption 1 is used to define
v such that problems (1.2) and (1.6) have the consistency in Theorem 2.4 and Proposition 2.5.
Parameter k in Definition 3.1 is used in the SPG algorithm, which can be calculated exactly for
most smoothing functions [16] and x = % for the smoothing functions in (3.2) and (3.3). The
value of L in Definition 3.1 is not necessary and we will use a simple line search method to find an
acceptable value at each iteration of the SPG algorithm. Upon the above assumptions, we present
the SPG algorithm for solving (1.6). See Algorithm 3.1.

At each iteration, this algorithm takes the proximal gradient algorithm for solving (3.5) with
fixed pr, vx and d*, and uses a simple criterion for updating pj. The values of v, are chosen
independently in Step 1 of each iteration. Step 3 updates the smoothing parameter p; by using
(3.12), where F(x*+1, y3.) + kps can be seen as an energy function and its monotone non-increasing
property will be proved in Lemma 3.3. If the energy function is decreased more than the given
scale at the current iteration, then the current smoothing parameter is still acceptable for the next
iteration, otherwise we reduce its value by the updating rule in (3.13) for the next iteration. Let

N*={k € N: pu1 # puy.},

and denote n? the rth smallest number in A/*. Then, we can obtain following updating method of

{h}
314 k __ nf,+17 MO vs 1<k< s
( . ) ne=p - (ns—I—l)‘T’ 77,7,+ — —nr+1v

which will be used in the proof of Lemma 3.2 and Lemma 3.5.

IWe call function F is level bounded on X, if for any I' > 0, the level set {x € X' : F(x) < T'} is bounded.
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Algorithm 3.1 Smoothing Proximal Gradient (SPG) algorithm
1

Input: Take initial iterates 27! = 20 € X and p_1 = po € (0,71]. Choose constants p > 1,
ce(3,1),a>0and0<y<4. Set k=0.
While a termination criterion is not met, do

Step 1. Choose v € [v,7] and let d* = d®", where d®" is defined in (2.4).

Step 2. 2a) Compute

(3.9) P = argmingey Que o (@, 2%, ).

2b) If 2++1 satisfies

~ gk

(3.10) FU@E ) < Qe qy (@5 28 ),
set
(3.11) gt = gkt

and go to Step 3. Otherwise, let v, = py; and return to 2a).
Step 3: If

(3.12) F ) + i — Fla pur) — mpies < —api,

set pg+1 = [k, otherwise, set

Ko

(3.13) [ m

Increment k by one and return to Step 1.
end while

3.4. Basic convergence analysis of the SPG algorithm. Denote {z*}, {74} and {u;}
be the sequences generated by the SPG algorithm. In this subsection, we first establish some basic
properties of the iterates {z*}, {7y} and {u} in Lemma 3.2. Then, by the level boundedness
assumption of F (or Fy,) on X, the boundedness of {x*} is obtained in Lemma 3.3. At last, the
subsequential convergence of {z* : k € N*} to a lifted stationary point of (1.6) is established in
Proposition 3.4.

LEMMA 3.2. The proposed SPG algorithm is well-defined, and the sequences {z*}, {y} and
{pr} generated by it own the following properties:

(i) {a*} C X and {3} € [y max(,pL}];
(ii) there are infinite elements in N and limy_, oo pg, = 0.

Proof. (i). Upon rearranging terms, (3.10) can be rewritten as

o ~ ~ . 1 TR
F@* ) < F@*m) + (VS o) 850 = a%) 4 Sy 18541 = o2,

Invoking Definition 3.1-(v), (3.10) holds when ~; > L. Thus the updating of 7 in Step 2 is at
most log, (L/v) + 1 times at each iteration. Hence, the SPG algorithm is well-defined and we have
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that v, < max{¥, pL}, Vk € N. From (3.11), it is easy to verify that z¥*! € X by 2% € X and
#htl e x.

(if). Since {ux} is non-increasing, to prove (ii), we assume that limg oo iy = & > 0 by
contradiction. Then, (3.13) happens finite times at most, which means that there exists K € N
such that pr = i, Yk > K. Then,

}Z(xkﬂ,pk) + kg — f(xk,pk_l) — K1 < —afi®, Yk>K+1.
We obtain from the above inequality that

(3.15) lim F(z** ) + mpp = —oc0.

k—o0

However, by {z*} C X and (3.1), we see that

(3.16) F@ ) + mpe > F@) > min F() = min 7y, (@), k2 K,

where the last equality follows from Theorem 2.4. Thus, the contradiction between (3.15) and (3.16)
implies (ii). a0
LEMMA 3.3. For any k € N, we have

_ 5 1
(3.17) F @ ) = Fah, ) < =G a1 = a2,

which implies {]:"(:E’”l,,uk) + f‘iﬂk} is mon-increasing and limg_, o ]}(karl,#k) = limy_ o0 F(2F).
Moreover, there exists R > 0 such that ||2¥|| < R, Vk € N.

Proof. Since Qgx -, (z, 2", i) is strongly convex with modulus Yipy, ', using the definition of
21 in (3.9) and ¥t = 2*+1 when (3.10) holds, we obtain

1 _
Qdk,'yk ($k+1>33k7/ik) S Qdk,’}% (1'75(;k7/1/k> - 57]@/”% lllxk+1 - .’L'||2, Vo e X.

By the definition of function Q4 -, given in (3.8), upon rearranging the terms, we have

A" (zF 1) < AD?" (z) + (x — 2" YV f(2*, )
(3.18) 1

+

1 1
5 k||2 71”mk+1 _ mk||2 _ 71||$k+1

— 5 VkMy S VEMg

_ 2
2 2 $H :

Yeuy, o — @

Moreover, (3.10) can be written as

-k . ~ 1 _ k
(3.19) F4 (@ pux) < F(2®s i) + (@ =28 O F @8 ) + Sl = 2B AT (@8,

Summing up (3.18) and (3.19), we notice that

FE @ ) < Fa®, ) + A% (@) + (& — 2%, V (2", )
(3.20) 1

_|_

k||2
2

1
O R AR R £

—1 _
iz = M - S
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For a fixed p > 0, the convexity of f (z, u) with respect to = invokes
(3.21) F@® ) 4+ (x — 2 VR ) < fle,u), VoeX.

Combining (3.20) and (3.21) and recalling the definition of F4" | one has

~ ik ~ jk 1 _ 1 —
(322)  FUH ) < P o) + i — a2 - Sy ot — a2, Ve e X

2 2
Letting 2 = 2* in (3.22) and by d* = dwk, we obtain
~ 1k 1 _ ~
(3.23) FU@ ) + s 2" =212 < F(ab, ).

2

Thanks to Fd* (2™ i) > F(2F 1, 1), (3.23) leads to (3.17).
Since F(x*, uy,) < F(x*, ur—1) + k(urp—1 — px), by (3.17), we obtain

_ 1 _
(3.24) F (@™ k) + e + o ViH, izt — 212 < Flab, o) + mppa,

which implies the non-increasing property of {]:" (2P ) + muk}. Together this result with (3.16)

ensures the existence of limy o .f(xk+1,uk) + k. By virtue of limy_,oo = 0 and Definition
3.1-(i), we get limp o0 F (2L pp) = limy o0 F(z)

Recalling the non-increasing property of {F(z**1, uz) + kit again, we see that

F(a ) < Fah ) + mu < Fah, po) + rpo < 0.

We then obtain the boundedness of {z*} from {2*} C X’ and the level bounded assumption of
F on X. Observe that

Fio(z) > F(x) = Fyy () — )\lei|<l’(1 — |=i|/v) = Foo(x) — An, Vz € R".

Then, it is easy to verify the level boundedness of F by the level boundedness of F;, on X. Hence,
the same results in Lemma 3.3 hold when F, is level bounded on X. d

The following proposition shows that there exists a subsequence of {z*} converging to a lifted
stationary point of (1.6), which lays a foundation for the sequence convergence of {z*}.

PROPOSITION 3.4. Any accumulation point of {z* : k € N*} is a lifted stationary point of
(1.6).

Proof. When F (or Fy,) is level bounded on X, by Lemma 3.3, {z*} is bounded. Suppose 7 is
an accumulation point of {z*},cas with the convergence of subsequence {x*i}y care.

Since (3.12) fails for k; € N°®, by rearranging (3.24), we obtain that 'ykiu,;_lﬂxki*l — ki
203, which gives [|#% ! — abi|| <\ /20y i} . Thus, g, |t — ki < /2o, i, , which
together with lim; o0 pur, = 0 and {7x,} C [~, max{¥, pL}] implies

2 <

Fitl _ghil=0 and lim zM*! =z

1—00

(3.25) Tim g, g1yl
—>00 K
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Recalling z¥i+1 = 2%+1 defined in (3.9) and by its first order necessary optimality condition,
we have

(3.26) (VF(a®, ) + i pi (25— ah) 4 A o — amthy >0, ek € 90t (aF ), 2 € X

Since the elements in {dki : 1 € N} are finite and lim; ghitl = T, there exists a subsequence

of {kl}, denoted as {kij}; and d S D(f) such that dkij = d_7 VJ c N. By the upper semicontinuity

of &% and lim; o0 ahii Tt = T, it gives
ki . -
(3.27) {Jim CFii o P e 90 7 (2R t)) C 09 (7).

Along with the subsequence {k;, } and letting j — oo in (3.26), from Definition 3.1-(iii), (3.25) and
(3.27), we obtain that there exist £ € df(Z) and (¢ € 9®¢(F) such that

(3.28) (E+ XLz —2)>0, Vrel.

By d € D(z), the definition of ®? in (2.5) and the convexity of X, (3.28) implies that Z is a lifted
stationary point of (1.6). d

Remark 3.1. The convezity of ® plays an important role in the analysis of the SPG algo-
rithm. It is easy to check that all the results in subsection 3.4 are true when the penalty can be
described by the min of a class of simple convex functions whose prozimal operators can be calculated
effectively.

3.5. Global sequence convergence of the SPG algorithm for problem (1.6). It is
interesting that the proposed SPG algorithm for this kind of nonconvex nonsmooth optimization
problem owns the global sequence convergence without the K-L condition or error bound condition
on the objective function, while the special structure of the continuous relaxation for ||z||o and the
updating rule for pi are the key points. Throughout this subsection, the analysis uses the same
assumptions in subsection 3.4.

We begin this subsection by giving some preliminary analysis, which are Lemma 3.5, Lemma
3.6 and Proposition 3.7. Based on these results, we present the two main results for the SPG
algorithm: the sequence convergence of {z*} in Theorem 3.8; the local convergence rate of {F(2*)}
and the finite-iteration identification of A(z*) in Theorem 3.9.

LEMMA 3.5. The following statements hold:
(1) Spo sy et — | < 2 (F(20 por) + wpoy — ming F);
~ 2
(i) Ypooui <A with A =1 (J:(xo’,u—l) + Kp—1 — mingex ]-'(x)) + 225(’,01 < 00;
(iii) A(z*+1) C A(2).
Proof. (i). Recalling (3.24), for all k£ € N, we obtain

(3.29) ey, [l — 2P <2 (J:"(xk,uk—l) + hppo1 — F(@ ) — Wk) :
Summing up the above inequality over k =0, ..., K, it gives
K ~ ~
(3.30) D el — 2R <2 (F(x07 po1) + kpy — Fa™ ) — fiux) :
k=0
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By letting K in (3.30) tend to infinity and along with (3.16), we obtain (i).
(ii). From (3.14), we have

a1 IEDY <> <
. kej\/suk r1“0n5+1 BT 201

where nf is the rth smallest element in A/*.

When &k & N*, (3.12) gives api < F(z*, up_1) + kpe—1 — F(x*, ug) — kpk, which together
with the non-increasing property of § F(z*+1, uz) + Ii/.tk} and (3.16) implies

(3.32) Z pi < — ( 20 ) 4 Rpq — mln]:)
kgNs

Combining (3.31) and (3.32), we finish the proof for the estimation in item (ii).
(iii). We only need to prove that if z¥ = 0, then z¥** = 0. If 2% = 0, we get d¥ = 1. From
(3.7) and v < A/Ly, we have

2 = i @ )| < 3 e ||V F @R || < 0o ) e

By (3.7), we obtain xf“ = 0, which completes the proof of this statement. d
For {z*}, denote

(3.33) N1 = {k € N : there exists i € {1,...,n} such that 0 < |2¥| < v}.

Next lemma gives some estimation on {z*} and {u;} when k is sufficiently large.
LEMMA 3.6. There exists K € N such that for all k > K, it holds

i) [ V7m0 < $ v+ L)
(D) [Ja+ = o < 30Vw) vy s
(iii) for any k € Ny, either ||z || < ||a*||, = 1 or ||a* T —a*|| > § (A/v — Ly) v s
(V) Xkenhor (|24 = ab|| < 00 and Fpe s g i i < 00

Proof. (i). We argue it by contradiction. Suppose there is a subsequence of {z*}, denoted by
{x*}, such that

(3.34) va( S k)

| (A/V+Lf) > Ly VieN

Since {z*} is bounded, which is proved in Lemma 3.3, there exists a subsequence of {z*} (also
denoted by {z* } for snnphmty) and Z € X such that lim;_,o, ¥ = Z. Due to lim; o pp, = 0,
the property of f in Definition 3.1-(iii), A/~ and (3.34) imply the existence of £ € 9f(%) such that
€]l > Ly, which leads to a contradiction to the definition of L; given in Assumption 1. Hence, we
establish result (i) in this lemma.

(ii). For any ¢ € {1,2,...,n}, by (3.7) and Ly < A\/v, we have

| — 2| < 200w e v \Vif(x’“,uk)’ <3V s
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which completes the proof for item (ii).

(iii). Denote w* = x* — 'y,;luka(xk,uk). For a fixed k € N7 and k > K, there exists j
such that 0 < |:1:§\ < v. Then, d? = 1 by (2.4). Next, we will prove that either xk'H =0 or
’ka ﬂ > 2 (\v— L)~ e We split the proof into three cases.

Case 1. If [wh| < (M) e, by (3.7), we get x?“ = 0, which together with A(z**1) C A(«F)
implies ||z%*+1o < [l2¥]o — 1.

Case 2. If w;-“ > (M), Lk, by (3.7) and result (i) of this lemma, we obtain that

(\v = Lg) v s

B _ ~ 1
|t — 2] = (A )y e — ‘Vk YV f (2, )| > 3

which implies
(3.35) ka+1 kH > /\/V — L)y,

Case 3. If w;“ < —(M\v)7y;, ', similar to the analysis in Case 1, we see that (3.35) holds. Thus,
we complete the proof of statement (iii).

(iv). We introduce the notations Ny = {k € Ny : k > K, ||2"*!]| < [j2*]|, — 1} and
Nia ={k: k> K,k € N1\N11}. By Lemma 3.5-(iii), A1 has at most n elements. From result (iii)
of this lemma, we have %M;l ka‘H — ackH > %()\/V — Ly), Vk € Nq2. Then, we have
(3.36)

%(A/V L) Y et e < ST gt | -2 <2 (f(wo,uq) +Rpy = m);nf) ,
kEN12 kENT2

where the second inequality follows from Lemma 3.5-(i). (3.36) implies D, . [|a* T — 2k < oo,

which together with the finiteness of the elements in Nj; gives Zke/\h k> K kaﬂ — ka < ©00.
Moreover, -

St =2 = S (et [ = 2F) Mk> v —=Lp)* Y v s
keN72 kEN12 keN12

which together with the second inequality of (3.36) and Lemma 3.2-(i) implies >, - px < 00,
By > peny, Mk < npo, we conclude that D7) vy s i ik < 00.

The next proposition explores that all accumulation points of {x*} own a common support set

and a unified lower bound, which provides the main technical support for the forthcoming Theorem
3.8.

PROPOSITION 3.7. Denote X = {Z € X : I is an accumulation point of {z*}}, then there
exists A(X) C{1,2,...,n} such that for any T € X, it holds that

|Z;| > v for any i € A(X) and Z; = 0 for any i ¢ A(X).
Proof. We first prove the following result:
(3.37) for any # € X and any i € {1,...,n}, either #; = 0 or |z;| > v.

If (3.37) does not hold, there exists # € X with the convergence sequence {z*/} and + € {1,...,n}
such that 0 < |#,| < v. In what follows, without loss of generality, we suppose Z, > 0.
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Since any accumulation point of {z*}1eprs is an accumulation point of {z*}, there exists z € X
and a subsequence of {*}, denoted by {z'}, such that lim;_, 2% = Z. By taking subsequences of
{x*i} and {2} if necessary, we assume for the simplicity of notation that k; < t; < k;41, Vj € N.
Combining Proposition 2.5, Lemma 2.3 and Proposition 3.4, either z, = 0 or |Z,| > v.

Let € = min { v=2, ‘”’i} > 0. If z, = 0, there exists J € N such that

|k — 2, <e and |zb|<e, V>,

which implies

3 z, 1, 1 .
(3.38) Zﬁcbgiyfegxfj <e+z, < vt <v and % <zl < 1% Vi>J
Then, 27 — 217 > $&,,Vj > J. Thus,
(3.39) > |zl — 2| = +oo.
j=J

If there exists r > J, such that x!* = 0, Lemma 3.5-(iii) gives xf'i“ =0, Vj > r, which leads to a
contradiction to the first inequality in (3.38). Thus, (3.38) gives 0 < \xfﬂ <vand 0 < |z7] < v,
which implies {27, x%i : j > J} C N} with A] defined in (3.33). Together this with Lemma 3.6-(ii),
(iv) and limy_, o0 g, = 0, there exists J; > J such that

Z |xt1 — :C § Z kaﬂ — ka < 00,

Jj=J1 kEN k> K

which leads to a contradiction to (3.39). Likewise, we can obtain a similar contradiction when

|Z,| > v. Therefore, the above analysis ensures the validity of statement (3.37). Together (3.37)

with limy_ o [|[2¥T! — 2¥|| = 0, we complete the proof of this proposition. d
We next prove the global sequence convergence of iterates {*}.

THEOREM 3.8. The iterates {x*} generated by the SPG algorithm is globally convergent to
a lifted stationary point of (1.6), i.e. there exists a lifted stationary point T of (1.6) such that
limy o0 z° = Z.

Proof. Let K be a positive integer such that the estimations in Lemma 3.6 hold and Z be an
accumulation point of {z¥}rears. Suppose {z¥/} is a subsequence of {z*} such that
(3.40) lim 2% = z.

Jj—o0

By Proposition 3.4, z is a lifted stationary point of (1.6).

From Lemma 2.3, for any ¢ € {1,...,n}, either Z; = 0 or |Z;| > v. Denote

N(@) ={keN:df eD;),Yi=1,...,n},

where D(z;) is defined in (2.1). We then evaluate ||z¥T! — z||? by considering two cases.

~ Case 1: In this case, we consider the iteration for k& € N(Z), which implies that Fd* (T, pi) =
F(Z, ux). Letting x = Z in (3.22), we have

L

1 1
Sy [l* - 3 — 5k

FO(H ) = F@ ) <
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combining which with (3.1) and (3.4), we obtain

(3.41) 27 o (F@T, ) + mpn — F(@)) < ||l = 2]* = [|o"4 = 2]* + dra k.

Due to the non-increasing property of {]:'(a:k*‘l, ur) + /@',uk} and limy,_, o0 ]:'(a:k*‘l, wr)+rp = F(T),

we obtain
(3.42) "+ —2|° < ||o* — 2|)* + drvg it VR € N (@)

Case 2: In this case, we consider the iteration for k & A (z). From Proposition 3.7, there exists
K7 > K such that for any k£ > K7, it holds

|z < v/2 for i ¢ A(X) and |2F| > v/2 for i € A(X),

where A(X) is defined in Proposition 3.7. B
Hence, for k ¢ N'(Z) and k > K, there exists ¥ € A(X) such that v/2 < |25 | < v, which
means that £ € N7 with V] defined in (3.33). Then,

||xk+1 _ fH2 _ ka _ a‘c||2 + kaﬂ _ ka2 n 2<xk+1 _ xlcvxk 7

(3.43) ,
< |la* - | + copd + AR||2 — 2¥||, VE £ N (@),

where ¢; = 9(A/v)*ny~? follows from Lemma 3.6-(ii), and R comes from Lemma 3.3.
By (3.42) and (3.43), for any ¢t > K; and s € N, we have

t+s+1 =2 t =2 - 2 - k+1 K
(3.44) || z|" < [Ja* — 2| + 2 E py +4R g || |,
k=t k=t,
k & N(z)

where ¢; = max{4ry~!, 1 }.
Fix an € > 0. There exists Ky > K such that when k; > K>, it holds that

(3.45) o5 — 2| < /3, S ud < /3, S [ttt -2t < /12R,
k=k; k=kj,
k & N(z)

where the first inequality follows from (3.40), the second inequality follows from Lemma 3.5-(ii),

and the third inequality follows from and {k : k > K1,k € N (Z)} C N; and Lemma 3.6-(iv).
Letting t = k; in (3.44) with k; > K», from (3.45), we obtain ||z* — Z|| < €, Vk > K3, where

K3 =min{k; : k; > Ky}. Due to the arbitrariness of € > 0, we get limy_ oo k= 7. O

The lower bound property is used to prove the estimation in Lemma 3.6-(iii), which is the key
point to guarantee the global sequence convergence of {x*}. Without this lower bound property,
due to the nonconvexity of the objective function in (1.6), it is almost impossible to propose a global
sequence convergence algorithm without the regularity conditions. Among the existing penalties,
only capped-f; penalty can be expressed by the min of a class of simple convex functions and make
the stationary points of the corresponding minimization problem own a unified lower bound. This
is the main motivation of this paper on studying the cardinality penalty problem by the capped-¢;
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relaxation. Moreover, from the proof of Theorem 3.9, we find that the descent criterion and the
updating method for y, are also important to guarantee the global sequence convergence of {z*},
since it needs that 22, u2 < +oo.

The limit point of {*} is most likely different with different initial iterates z° and po. The
zero vector is a trivial v-strong local minimizer of (1.2), which is not we want. By property (iii)
of Lemma 3.5, our theoretical results hold for any initial iterate 2° € X. To find interesting v-
strong local minimizers, we chose z° without zero component in the numerical experiments. How to
choose an initial point such that the accumulation point of {x*} is a global minimizer (or an oracle
solution) of (1.2) is an interesting work. To the best of our knowledge, it is still an open problem.
[24, Theorem 1] gave some discussion on this topic for the linear approximation algorithm to solve
the sparsity problem with SCAD penalty. Similar results can be expected for the SPG algorithm.

The following theorem gives a local convergence rate of the SPG algorithm on the objective
function values of problem (1.6) and the finite iteration convergence of {z*} in a subspace.

THEOREM 3.9. There exist ¢ > 0 and K € N such that, for k > K, we have

(346) }'(xk'H) _ ]:(i') < ck= =9 and Hxﬁ\(f)c — T Az)e|| = 0,
where T is the limit of {x*}.
Proof. Denote € = min {v,min{|Z;| — v : |%;| > v, i =1,...,n}}. From Theorem 3.8, there ex-

ists K1 € N such that ||z* — Z|| <€, Vk > K;. Then, k € N'(7), Vk > K;.
From the proof of Theorem 3.8, (3.41) holds for any k¥ > K;. Summing up (3.41) for k =
Kl,Kl + ].,...,Kl +t, we have

2t max{7, pL} i, 14 (f($K1+t+17 forc ) + BUE 4t — f@))
(3.47) K 2 K 1 2 £ 1,2
< =z = l2F T -2+ 4k > g,
k=K1

where we use F(zF+1, i) + ke > F(2), {7} € [7, max{7, pL}], and the non-increasing property
of {ur} and {ﬁ(:c’““,/%) + Ii,uk}.
We first consider the right hand side of (3.47). We observe that 4k ZkK:};tl vtk < 4y~ IA,
where A is defined in Lemma 3.5-(ii). Then,
2 2 !
(3.48) H:I:Kl — 3‘5” — ||:vK1+tJrl — :Z‘H + 4k Z vt < AR + 4ky'A, VtEN,
k=K,
with R defined in Lemma 3.3.

By x40 > po(K1 +1)~7 and F(x 0 g o) + mpg, 10 > F(afHH1) ) Wt € N, we observe
from (3.47) and (3.48) that

2 —1 _ -
F(zFtt+ly — F(z) < <(4R +4ry” A max{y, pL}) ((Kl +1) ) .
2/,&0 t
Therefore, letting ¢ = (4R? + 4ky~'A) max{¥, pL}/uo, we obtain
kU
k— K

F(z*t) — F(z) < g ( ) < k=79 vk > 2K;.
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To prove the second statement in (3.46), we argue it by contradiction. If there is no K € N
such that ¥ = 0 for all i € A(Z)¢ and k > K, then there is a subsequence of {z*}, denoted by
{z*}, and 7 € A(Z)° such that \:z:f”| # 0. Since A(x**1) C A(2*) and limy_,o 2* = 7, the above
assumption implies that there exists K; € N such that 0 < |xf| < v, Yk > K;. Thus, for all
k > Ky, it gives k € N7 with NV given in (3.33). Recalling Lemma 3.6-(iv), we get Y27 ;- px < 0.
However, due to ur > puok™? with o < 1, we have Z,;“;Kl i = 00, which leads to a contradiction.
Therefore, the second statement in (3.46) holds. |

Following the proof of Theorem 3.9, the local convergence rate of F(z*) — F(7) is O(ﬁ)
Moreover, thanks to the lower bound property, the SPG algorithm owns the finite iteration identi-
fication on the support set of the limit point of {z*}, which inspires us that the local convergence
rate can be improved when f satisfies some proper conditions. For example, when f is strongly
convex with modulus § > 0, then the local convergence rate can be exponential; when f satisfies
the K-L inequality on X with exponent a € [0, 1), then {z*} is convergent finitely if a = 0, linearly
if o € (0, 4] and sublinearly if a € (1,1).

4. Numerical experiments. To verify and illustrate the performance of the continuous re-
laxation (1.6) and the SPG algorithm, we use a test example and generate two examples randomly
with normal distribution. All experiments are performed in MATLAB 2016a on a Lenovo PC
(3.00GHz, 2.00GB of RAM). In the following examples, the stopping criterion is set as

(4.1) number of iterations < Maxiter or e < €.

Denote # the output of iterate z*, Iter the number of running iterations and Time the CPU time
of the SPG algorithm by the criterion in (4.1). Examples 4.1 and 4.2 are for the under-determined
linear regression problems. Moreover, Example 4.1 is a typical under-determined linear regression
problem, which shows that the proposed method in this paper can find a global solution with certain
sparsity. The aim of Example 4.2 is to solve a random generated under-determined sparse linear
regression problem, while Example 4.3 is to solve a over-determined censored regression problem.

Example 4.1. (A test example) We consider the problem in Example 2.1 to verify the
validity of the theoretical results and the efficiency of SPG algorithm. Problem (2.9) is an example
of problem (1.2) with the ¢; loss function given in (1.3), where m =1, A= (11) and b = 1.

Let the smoothing function of f be defined by (3.2). Some fixed parameters in the SPG
algorithm are given as follows:

y=5=Vv2,a=1,0=08, p=1.1, Maxiter = 10*, e = 107, k = 1/2, L; = V2.

Let LM, v — LM and GM denote the sets of local minimizers, v-strong local minimizers and
global minimizers of (2.9), respectively. When v < /Ly,

v—LM={x:x +xo=1,v<x,20 < 1} U{(1,0)7, (0, )T, (0,0)7}.

Set g = 0.1 and z° = (1,0.8)7. The other parameters and the numerical results are listed in
Table 4.1, where the global minimizers are same for the cases in one line. For problem (2.9), many
different values of A and the corresponding v if v < A\/Ly are given in Table 4.1, which shows that
Z is always a v-strong local minimizer and sometimes a global minimizer of (2.9). In particular,
when A = 0.7, v = 0.4 and 2° = (1,0.8)7, the SPG algorithm finds a global solution of (2.9).
Moreover, we consider the influence of the values of v on the SPG algorithm for solving (2.9) in
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Table 4.1. When A = 1, v as defined in Assumption 2 is 0.7071. From Table 4.1, we find that the
SPG algorithm finds different v-strong local minimizer for different values of v satisfying v < v.
And it is interesting that when v > 0.5, the SPG algorithm converges to a global minimizer. We
notice that when v is a lower bound for the global minimizers, it holds that

(4.2) GM C v1-LM C vg-LM, Yo, < vy <.

Hence when v is a lower bound for the global minimizers, the larger v is likely to let the SPG
algorithm converge to a global minimizer with higher possibility.

The updating rule for uj in the SPG algorithm is to ensure its global sequence convergence.
How to improve the local convergence rate with the guarantee of global sequence convergence is an
interesting work for further research.

A gM v Iter
0.7/0.8/0.9 (1,0), (0,1) 0.4/0.5/0.6 | 18/19/10 (1,0)/(1,0)/( 0)
1/1/1 (1,0), (0,1), (0,0) | 0.7/0.5/0.3 | 21/11/5 | (0,0)/(1,0)/(0.6,0.4)
1.1/1.2/1.3 (0,0) 0.7/0.9/1 | 18/17/16 (0,0)/(0,0)/(0,0)

Table 4.1: Numerical results of the SPG algorithm for problem (2.9) with different A and v

Using the same parameters and initial point, the IRL1 and IRTight algorithms in [43] may
generate
(4.3) o = arg

min |z, + x9 — 1|

0<z1,22<1
for k > 0 with z¥ = (a, 8) > 0 and a+3 = 1. Obviously, 2* is not a global minimizer of (2.9). Hence
almost surely the reweighted algorithms in [43] cannot find a global minimizer (2.9). In fact, at any
point 2% > 0, the derivative of ||z¥||o is (0,0)T and #¥*! = (o, 8) > 0 with a + 3 = 1 is an optimal
solution of the subproblem ming<y, 4,<1 [#1 + 22 — 1] in the algorithms. Hence the SPG algorithm
has better performance than the algorithms in [43] for solving the nonsmooth optimization problem
with cardinality penalty (1.2).

Example 4.2. (Linear regression problem) Linear regression problem is the most repre-
sentative problem in sparse regression, which has been widely used in information theory [12],
image restoration[5, 10, 41], signal precessing [10, 41] and variable selection [23, 24] problems. Le-
ast square function is the most frequently used loss function due to its convexity and differentiability
[24, 29, 31, 32, 54]. However, the ¢; loss function often owns the stronger outlier-resistant property
than the least square loss function [23]. So, in this example, we consider the following cardinality
penalty problem with ¢; loss function:

min

4.4
(4.4) 0<z<101,

1
Fio(2) = — | Az = bll + Allzlo,

where b € R™ and A € R™*"™ with m < n.

Generating data and setting parameters. For positive integers m, n and s, we generate the
original signal «* with ||z*||g = s, sensing matrix A € R™*™ and observation b € R™ as follows:
index=randperm(n); index=index(1l:s); x*=zeros(n,1); B=randn(n,m);
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2* (index)=unifrnd (2,10, [s,1]); A=orth(B)’; b = Axz*+ 0.0l*randn(size(b)).
In the proposed SPG algorithm, we use the smoothing function of f in (3.2) and set the parameters
as below
y=y=1,a=1, uy=>50,p=11,0=09 Maxiter = 10, k = 1/2.

It is not hard to show that all assumptions in sections 2 and 3 hold. Thus, the sequence {z*}
of the SPG algorithm should be convergent to a v-strong local minimizer of (4.4).

Generate A, b and x* with m = 80, n = 160 and s = 16, set A = 18.8in (4.4) and € = 1073 in the
stopping criterion (4.1). We calculate that Ly = 10.6168 and define v = 1.77, 2% = 1.97*ones(n, 1).
The numerical results are shown in Fig. 4.1. Fig. 4.1(a) plots * and Z. From Fig 4.1(a), we see
that the output of z* is very close to the original generated signal and satisfies the lower bound
property in (2.8). Fig. 4.1(b) exhibits the convergence of u* and F(z*) — F ().
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Fig. 4.1: Numerical results of the SPG algorithm for Example 4.2

Example 4.3. (Censored regression problem) A typical class of censored regression pro-
blem is the linear regression model with left-censoring (or right-censoring) at zero, i.e.

max{A;x —¢;,0} = b;, i=1,...,m,

where A;, b; and ¢; are defined as in (1.4). This class of problems have wide applications in wireless
communication [38], machine learning [21], variable selection[23, 53], economics [9], etc. To solve
it, the loss function is often defined by (1.4), which is nonsmooth for any p € [1,2]. So the censored
regression problem is a typical class of sparse regression problems with nonsmooth convex loss
functions [53]. Different from the case considered in Example 4.2, we let m > n in this example,
which comes from the stochastic optimization models in the portfolio management.

In this example, we let I = 0 and u = 1,, in (1.2), and define the loss function f by (1.4) with

¢i=0,7=1,...,m and p = 1. The aim of this model is to find a sparse signal z* € [0,1,] for
the nonlinear system max{Ax*,0} ~ b with some unobservable noise, where A = (AT,... AT)T
and b = (by,...,bn)T. We use the relative error (rel-err), sparsity regression rate (spa-rat) and

successful rate (suc-rat) to judge the performance of the continuous relaxation model for (1.2)
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and the proposed SPG algorithm. Here, the relative error (rel-err) and sparsity regression rate
(spa-rat) of Z with respect to z* are defined by

le—atl o LAE)NA@)
el P A A

rel-err :=

where |Z| means the cardinality of set II with finite elements. The running regression test is regarded
as a successful one, if the relative error is smaller then 1072 and A(Z) = A(x*).
For the given positive integers m, n and s, the data are generated by
index = randperm(n); index = index(l:s); x*=zeros(n,1);
x*(index)=unifrnd(0,0.9,[s,1]); a*=sign(z*)*(abs(z*)+0.1)
A=randn(m,n); b =max{A*2*+0.01*randn(size(b)),0},
which let z* satisfies |zf| > 0.1, Vi € A(z*).

We use the smoothing function of f in (3.3). Let Ly = ||A||o and set v = min{\/Ls,1}. Set
2% = 0.1 x ones(n, 1), o = 1 and € = 0.01. Let the other parameters in the SPG algorithm be the
same as in Example 4.2.

For each group of given numbers m, n and s, we generate the codes with 100 independent trials,
and the results displayed in Table 4.2 are the average values for these 100 independent tests. For
each test, regarding the lower bound of the true solution z*, we run the SPG algorithm for problem
(1.2) with X := 6Ly for 6 € [0.001 : 0.001 : 0.1], and report the result with the smallest rel-err
for this test. From the displayed results in Table 4.2, we see that the the proposed SPG algorithm
can find the true solution with high possibility, and all the sparsity regression rates are more than
90%. In particular, when m = 2000 and n = 400, the SPG algorithm can identify almost all the
locations of A(z*) when the sparsity levels of z* are 10%, 20% and 30%. Correctly identifying the
zero and nonzero locations of the true solution is the most important thing in solving the variable
selection and classification problems. When m = 1000 and n = 200, the values of relative error and
sparsity regression rates by the 100 tests are plotted in Fig. 4.2 for s = 20, 40 and 60, respectively.

m n s | Time | Iter | rel-err | A(Z) | spa-rat | suc-rat
1000 | 200 | 20 | 0.612 | 166 173e-3 | 19.99 100% 99%
1000 | 200 | 40 | 0.659 | 178 5.73e-3 39.96 99.7% 89%
1000 | 200 | 60 | 0.708 | 204 | 9.12¢-3 | 59.94 | 92.7% 69%

2000 | 400 | 40 | 2.079 | 181 1.96e-3 40 100% 96%
2000 | 400 | 80 | 2.686 | 217 6.93e-3 79.89 99.7% 83%
2000 | 400 | 120 | 3.658 | 291 9.34e-3 | 119.91 99.3% 64%

Table 4.2: Average numerical results of the SPG algorithm for the censored regression problem

5. Conclusions. Problem (1.2) includes a class of constrained optimization problems with the
objective function defined by the sum of a nonsmooth convex function and a cardinality function.
Using the capped-¢; penalty, we propose a continuous relaxation (1.6) of problem (1.2). We prove
that the sets of global minimizers of problems (1.2) and (1.6) are same, and local minimizers of
(1.6) are local minimizers of (1.2) with the lower bound property. Moreover, Z is a local minimizer
of (1.2) satisfying a desired lower bound property if and only if it is a lifted stationary point of
the continuous relaxation problem (1.6). Though problem (1.6) is a nonsmooth and nonconvex
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Fig. 4.2: The values of relative error and sparsity regression rate for the 100 tests with m = 1000
and n = 200

optimization problem, its piecewise linear penalty offers us the opportunity to solve it efficiently.
Following this idea, we propose the SPG algorithm based on the smoothing method and the proximal
gradient algorithm to solve problem (1.6), which can find a “good” local minimizer of (1.2) that
satisfies the desired lower bound. The proposed algorithm is simple, whose subproblem has a
closed form solution, and can be run efficiently. We prove the global sequence convergence without
using the K-L condition. Another interesting result is that the local convergence rate of the SPG
algorithm on the objective function value is o(k~") with 7 € (0, §) and the zero entries of a lifted
stationary point of (1.6) can be identified in finite iterations.
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