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Abstract. In this paper, we focus on the constrained sparse regression problem, where the loss function is convex4
but nonsmooth, and the penalty term is defined by the cardinality function. Firstly, we give an exact continuous5
relaxation problem in the sense that both problems have the same optimal solution set. Moreover, we show that6
a vector is a local minimizer with the lower bound property of the original problem if and only if it is a lifted7
stationary point of the relaxation problem. Secondly, we propose a smoothing proximal gradient (SPG) algorithm8
for finding a lifted stationary point of the continuous relaxation model. Our algorithm is a novel combination of9
the classical proximal gradient algorithm and the smoothing method. We prove that the proposed SPG algorithm10
globally converges to a lifted stationary point of the relaxation problem, has the local convergence rate of o(k−τ )11
with τ ∈ (0, 1

2
) on the objective function value, and identifies the zero entries of the lifted stationary point in finite12

iterations. Finally, we use three examples to illustrate the validity of the continuous relaxation model and good13
numerical performance of the SPG algorithm.14
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1. Introduction. For a vector x ∈ Rn, denote its support set by A(x) = {i ∈ {1, . . . , n} :18

xi 6= 0}, its cardinality by |A(x)|, and its `0-norm by ‖x‖0 = |A(x)|. We call x ∈ Rn is sparse if19

|A(x)| � n. Sparse optimization problems emerge in many scientific and engineering problems, such20

as regression [52], imaging decomposition [51], visual coding [44], source separation [10], compressed21

sensing [12, 22], variable selection [39], etc. Sparse optimization is also the core problem of high-22

dimensional statistical learning [11, 24]. These problems aim to find the sparse solutions of a23

system of linear or nonlinear equations. The optimization model with the `0-norm penalty can24

improve estimation accuracy by effectively identifying the important predictors, and also enhance25

its interpretability. However, it is known that the `0 penalized optimization problems are NP-hard.26

Under some conditions on the sensing matrix A ∈ Rm×n (such as the RIP and incoherence27

conditions), Donoho [22], and Candès, Romberg, Tao [12] proved that solving the `1 minimization28

can find a sparsest solution satisfying the system of linear equations Ax = b with b ∈ Rm. However,29

in 2001, Fan and Li [23] pointed out that using the `1 penalty often results in a biased estimator,30

and introduced a smoothly clipped absolute deviation (SCAD) penalty. Besides SCAD, there are31

many variant of continuous nonconvex penalties, such as the hard thresholding penalty [56], log-sum32

penalty [13], bridge `p (0 < p < 1) penalty [17, 25], capped-`1 penalty [45, 47, 55] and minimax33

concave penalty (MCP) [54]. These continuous but nonconvex penalties would bring better sparse34

solutions than the `1 penalty in many cases [6, 15, 28, 31]. The estimators obtained by the SCAD,35

MCP and capped-`1 penalty functions satisfy the three important properties: unbiasedness, con-36

tinuity in data and sparsity [23]. Meantime, there are many algorithms for solving these continuous37
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2 W. BIAN AND X. CHEN

nonconvex optimization problems, such as the iterative reweighted algorithm [13, 43, 36], interior38

point method [7], trust region method [18], cubic method [14], DC (difference of convex) function39

algorithm [1, 37], iterative thresholding algorithm [8], primal dual active set method [27], etc.40

Despite the existing literature on the nonconvex but continuous penalties for replacing the `0-41

norm, some important questions still remain. First of all, the relationships between the cardinality42

penalty problem and its continuous relaxations are not very clear for most cases regarding the mini-43

mizers. Apart from the theoretical results for the convex `1 relaxation under restrictive hypotheses,44

only a few special cases have been analyzed for the consistency. With a suitable condition on the45

sensing matrix A, the equivalence between `0 and `p(0 < p ≤ 1) problems with constraint Ax = b46

was proved in [25] and then this result was extended to the problem with equality and inequality47

constraints in [26]. In [19], the authors gave a class of smooth nonconvex penalties to approximate48

the `0 penalty in terms of the consistency of global minimizers. In the DC programming frame-49

work, an approximation of the `0 penalty with the consistency of global minimizers was studied in50

[37]. Recently, Soubies, Blanc-Féraud and Aubert proposed a continuous exact `0 (CEL0) penalty51

for the `2-`0 problem [51], where the global minimizers of both problems can be the same, and in52

[50], they verified that the capped-`1 and SCAD penalties could only guarantee the consistency of53

global minimizers to the `2-`0 problem, while the MCP, truncated-`p with 0 < p < 1 and CEL054

penalties could not only own the consistence of global minimizers, but also ensure that its local55

minimizers are in the set of local minimizers of the `2-`0 problem. Next, due to the nonconvexity56

of the penalties, finding global minimizers of these nonconvex problems is often NP-hard. Most57

existing work for these continuous nonconvex penalized problems focuses on the stationary points58

in different sense [1, 7, 8, 14, 18, 31, 35, 36, 46]. Moreover, due to their nonconvexity, only the59

subsequence convergence to a stationary point can be proved for the proposed algorithms. The K-L60

(Kurdyka- Lojasiewicz) condition is a popular tool to obtain the algorithmic sequence convergence.61

In [2], the sequence convergence to a critical point of a class of nonconvex semi-algebra problems is62

established, where the K-L condition plays the key role. Most recently, the authors in [46] stated63

that it would be interesting whether the sequence convergence can be established to the DC problem64

by a given algorithm without the K-L condition on the objective function.65

Denote x? the true estimator, which is the true solution of the considered (linear or nonlinear)66

regression problem. Then, the oracle estimator is defined by67

(1.1) xoracle ∈ arg min
xA(x?)c=0

f(x),68

where A(x?)c means the complementary set of A(x?) and f : Rn → [0,∞) is the loss function to69

evaluate the regression. The oracle estimator can be used as a theoretic benchmark for comparison70

of computed solutions. We call that the penalized model has the oracle property if it owns a local71

solution having the same asymptotic distribution as the oracle estimator. The penalized problem72

with the SCAD, MCP or capped-`1 penalty owns the oracle property simultaneously [23, 54, 55].73

A folded concave penalized problem often has multiple local solutions and the oracle property is74

established only for one of local solutions [24]. Hence, deriving some appealing properties, such75

as the optimality, sparsity or statistical properties, of the relevant stationary points is interesting.76

Ahn, Pang and Xin [1] established some optimality and sparsity properties of the d-stationary77

points (its definition will be reminded in Section 2) of the continuous relaxation problems. Fan,78

Xue and Zou [24] proved that as long as there is a reasonable initial estimator, an oracle estimator79

can be obtained via the one-step local linear approximation algorithm.80

In the recent years, algorithmic research on the sparse regression problems with cardinality81

penalty has received much attention [4, 3, 29, 31, 32]. However, to the best of our knowledge, all82
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NONSMOOTH CONVEX REGRESSION WITH CARDINALITY PENALTY 3

the existing results are built up for the problem with a continuously differentiable loss function.83

The primal dual active set methods are proposed in [29, 31, 32] for the `2-`0 problems. Under84

some regularity conditions, such as the strict complementarity condition [31] or RIP condition85

on the sensing matrix [29, 32], some variants of the primal dual active set methods were proved86

to be convergent in finite iterations. The loss functions considered in [4, 3, 40] are continuously87

differentiable and with Lipschitz continuous gradients.88

Our focuses and contributions. In this paper, we consider the following penalized sparse89

regression problem with cardinality penalty, that is,90

(1.2) min
x∈X

F`0(x) := f(x) + λ‖x‖0,91

where X = {x ∈ Rn : l ≤ x ≤ u}, f : Rn → [0,∞) is convex (not necessarily smooth), λ is a92

positive parameter, and l, u ∈ {R,±∞}n with l ≤ 0 ≤ u and l < u.93

One application of problem (1.2) comes from the linear regression problem. It is well-known94

that the least squares estimate with the `2-`0 model is not robust for many cases [23]. We need to95

consider the problem with the outlier-resistant loss function, such as the `1 loss function given by96

(1.3) f(x) =
1

m
‖Ax− b‖1 ,97

or Huber’s functions [30], which are convex, but not smooth. Another important application of98

problem (1.2) comes from the censored regression problem with the nonsmooth convex loss function99

(1.4) f(x) =
1

pm

m∑
i=1

|max{Aix− ci, 0} − bi|p ,100

where p ∈ [1, 2], ATi ∈ Rn and ci, bi ∈ R, i = 1, . . . ,m. There are some other nonsmooth convex101

loss functions, for example the negative log-quasi-likelihood function [23] or the check loss function102

in penalized quantile regression [24, 33]. To the best of our knowledge, only little work has been103

dedicated to the penalized sparse regression problem (1.2) with a general convex loss function.104

For a given parameter ν > 0, let Φ(x) =
∑n
i=1 φ(xi) be a continuous relaxation of the `0 penalty105

with the capped-`1 function φ given by106

(1.5) φ(t) = min{1, |t|/ν}.107

We consider the following Lipschitz continuous optimization problem for solving (1.2):108

(1.6) min
x∈X

F(x) := f(x) + λΦ(x).109

Differently from the previous work [1, 4, 3, 7, 8, 14, 18, 29, 31, 32, 35, 36, 46], this paper considers110

the original cardinality penalty problem with a continuous convex loss function and uses an exact111

continuous relaxation problem to solve it. In particular, we focus on problem (1.2) with a continuous112

convex loss function, which is nonsmooth or whose gradient is not Lipschitz continuous. The main113

contributions of this paper include the following two aspects. First, we prove that the continuous114

relaxation problem (1.6) with certain ν > 0 has two advantages: global minimizers of (1.2) and115

(1.6) are same; any lifted stationary point of (1.6) (its definition will be reminded in Section 2) is116

a local minimizer of (1.2) with a desired lower bound property. Second, we propose a smoothing117

proximal gradient (SPG) algorithm with global sequence convergence to a lifted stationary point of118
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4 W. BIAN AND X. CHEN

(1.6) without using the K-L condition. Moreover, the SPG algorithm owns a local convergence rate119

on the objective function value of (1.6) and the finite iterative identification for the zero entries of120

the limit point.121

Notations. We denote N = {0, 1, . . .} and Dn = {d ∈ Rn : di ∈ {1, 2, 3}, i = 1, . . . , n}. For122

x ∈ Rn and δ > 0, let ‖x‖ := ‖x‖2 and Bδ(x) means the open ball centered at x with radius δ. For123

a nonempty, closed and convex set X ⊆ Rn, NX (x) means the normal cone to X at x ∈ X . Let124

1n ∈ Rn be the all-ones vector and ei ∈ Rn be the ith column of the n dimensional identity matrix.125

For a locally Lipschitz continuous function ψ : Rn → R, we denote ∂ψ(x) the Clarke subgradient126

[20] of ψ at x ∈ Rn.127

2. An exact continuous relaxation for (1.2). In this section, we analyze the relationships128

between (1.2) and (1.6), where the capped-`1 penalty can let problem (1.6) own the oracle property129

and then can be seen as one of the best continuous relaxations to the `0-norm penalty [45].130

Assumption 1. f is Lipschitz continuous on X with Lipschitz constant Lf .131

Assumption 2. Positive parameter ν in (1.5) satisfies ν < ν̄ := λ/Lf .132

If there is no special explanation, we suppose Assumption 1 and Assumption 2 hold throughout the
paper, and assume that Lf is large enough such that Lf ≥ λ

Γ , where

Γ := min{|li|, uj : li 6= 0, uj 6= 0, i = 1, . . . , n, j = 1, . . . , n}.

When f is defined by the `1 loss function or the loss function in (1.4) with p = 1, we can let133

Lf = max{‖A‖∞, λΓ}.134

2.1. Lifted stationary points of (1.6). Though φ is piecewise linear, problem (1.6) is still
a nonconvex optimization problem. It has been proved in [6] that finding a global minimizer of
(1.6) is NP-hard in general. Note that φ in (1.5) can be reformulated as a DC function, i.e.

φ(t) =
1

ν
|t| −max {θ1(t), θ2(t), θ3(t)}

with θ1(t) = 0, θ2(t) = t/ν − 1 and θ3(t) = −t/ν − 1. For t ∈ R, denote135

(2.1) D(t) = {i ∈ {1, 2, 3} : θi(t) = max{θ1(t), θ2(t), θ3(t)}} .136

Definition 2.1. [46] We say that x ∈ X is a lifted stationary point of (1.6) if there exist137

di ∈ D(xi) for i = 1, . . . , n, such that138

(2.2) λ

n∑
i=1

θ′di(xi)ei ∈ ∂f(x) +
λ

ν
∂

(
n∑
i=1

|xi|

)
+NX (x).139

If (2.2) holds for all di ∈ D(xi), ∀i = 1, . . . , n, then we call x a d-stationary point [46]. Due to the140

piecewise linearity of max {θ1(t), θ2(t), θ3(t)}, x is a d-stationary point of (1.6) if and only if it is a141

local minimizer. Recall that x̄ is a limiting stationary point [48] of (1.6), if142

(2.3) 0 ∈ ∂̄(f + λΦ)(x̄) +NX (x̄),143

where “∂̄” indicates the limiting subgradient. And x̄ is a Clarke stationary point of (1.6), i 0 ∈
∂(f+λΦ)(x̄)+NX (x̄).We call x̄ ∈ X a critical point of (1.6) if it satisfies 0 ∈ ∂f(x̄)+λ∂Φ(x̄)+NX (x̄).
It holds that

Sd ⊆ Slim ⊆ Slif ⊆ Scl ⊆ Scr,
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NONSMOOTH CONVEX REGRESSION WITH CARDINALITY PENALTY 5

but their inverse may not hold, where Sd, Slim, Slif, Scl and Scr denote the d-stationary point set,144

limiting stationary point set, lifted stationary point set, Clarke stationary point set and critical145

point set of (1.6), respectively.146

A natural question arises why we focus on the lifted stationary points rather than the others.147

First, the lifted stationary points satisfy a sharper optimal necessary condition than the Clarke148

and critical stationary points. Second, the d-stationary and limiting stationary points of (1.6) are149

difficult to be computed. Though Pang, Razaviyayn and Alvarado [46] developed a novel algorithm150

for computing a d-stationary point of the DC optimization problems, the algorithm in [46] cannot151

be directly used to solve problem (1.6).152

2.2. Characterizations of lifted stationary points of (1.6). With the computable con-153

dition on ν defined in Assumption 2, we first verify that the element in Πn
i=1D(xi) for a lifted154

stationary point satisfying (2.2) is unique and well-defined.155

Proposition 2.2. If x̄ is a lifted stationary point of (1.6), then the vector dx̄ = (dx̄1 , . . . , d
x̄
n)T ∈156 ∏n

i=1D(x̄i) satisfying (2.2) is unique. In particular, for i = 1, . . . , n,157

(2.4) dx̄i =


1 if |x̄i| < ν,

2 if x̄i ≥ ν,

3 if x̄i ≤ −ν.
158

Proof. If |x̄i| 6= ν, then the statement in this proposition holds naturally. Hence, we only159

need to consider the case |x̄i| = ν. When x̄i = ν, since D(x̄i) = {1, 2}, arguing by contradiction,160

we assume (2.2) holds with dx̄i = 1. By ν < ν̄, we have x̄i ∈ (li, ui), and by (2.2), there exists161

ξ(x̄) ∈ ∂f(x̄) such that 0 = ξi(x̄) + λ/ν, which implies λ/ν = |ξi(x̄)| ≤ Lf . This leads to a162

contradiction to ν < λ/Lf . Then, (2.4) holds for x̄i = ν. Similar analysis can be given for the case163

that x̄i = −ν, which completes the proof.164

For a given d = (d1, . . . , dn)T ∈ Dn, we define165

(2.5) Φd(x) :=

n∑
i=1

|xi|/ν −
n∑
i=1

θdi(xi),166

which is convex with respect to x. It can be verified that Φ(x) = mind∈Dn Φd(x), ∀x ∈ X . In167

particular, for a fixed x̄ ∈ X , Φ(x̄) = Φd
x̄

(x̄) with dx̄ defined in (2.4).168

Remark 2.1. Proposition 2.2 implies that x̄ is a local minimizer of (1.6) if and only if x̄ is169

a lifted stationary point of (1.6) and |x̄i| 6= ν, ∀i = 1, . . . , n. Moreover, due to the convexity of170

f(x) +λΦd(x) and the linearity of
∑n
i=1 θdi(xi) for a fixed d ∈ Dn, the assertion in Proposition 2.2171

implies the following equivalent results:172

x̄ is a lifted stationary point of (1.6)⇔ (2.2) holds at x̄ ∈ X with d = dx̄ defined in (2.4)173

⇔ x̄ ∈ arg minx∈X f(x) + λΦd
x̄

(x)(2.6)174

⇔ x̄ ∈ arg minx∈X ,dx=dx̄f(x) + λΦ(x),(2.7)175

where the last equivalence uses Φd
x̄

(x̄) = Φ(x̄) and Φd
x̄

(x) ≥ Φ(x), ∀x ∈ Rn.176

We then show a lower bound property of the lifted stationary points of (1.6).177
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6 W. BIAN AND X. CHEN

Lemma 2.3. If x̄ ∈ X is a lifted stationary point of (1.6), then it holds that178

(2.8) x̄i ∈ (−ν, ν) ⇒ x̄i = 0, ∀i = 1, . . . , n.179

Proof. Suppose x̄ is a lifted stationary point of (1.6). Assume that x̄i ∈ (−ν, ν)\{0} for some180

i ∈ {1, . . . , n}. Then, dx̄i = 1 and x̄i ∈ (li, ui). By Definition 2.1, there exists ξ(x̄) ∈ ∂f(x̄) such181

that ξi(x̄) + (λ/ν)sign(x̄i) = 0. Then, λ/ν = |ξi(x̄)| ≤ ‖ξ(x̄)‖ ≤ Lf , which leads to a contradiction182

to ν < λ/Lf . Thus, for any i ∈ {1, . . . , n}, x̄i ∈ (−ν, ν) implies x̄i = 0.183

Remark 2.2. On the one hand, if f is not continuously differentiable on Xν = {x ∈ X :184

|xi| = ν for some i ∈ {1, . . . , n}}, a lifted stationary point of (1.6) is not necessary to be a Clarke185

stationary point [46]. On the other hand, if f is continuously differentiable on Xν , then x̄ is a186

lifted stationary point of (1.6) if and only if it is a limiting stationary point, but is not necessary to187

be a Clarke stationary point. A counterexample can be provided by setting f(x) = (x1 + x2 − 1)2,188

l = (0, 0)T , u = (1, 1)T , λ = 1 and ν = 0.2 in (1.6), where ν < ν̄ = 0.25. It follows from Lemma189

2.3 that Scl = Slif

⋃
{(0, 0.2)T , (0.2, 0)T }, where Slif = {x ∈ R2 : x1 + x2 = 1, x1 ≥ 0.2, x2 ≥190

0.2}
⋃
{(0, 0)T , (1, 0)T , (0, 1)T }.191

2.3. Links between (1.2) and (1.6). The goal of this subsection is to study the links192

between the `0 penalized minimization problem (1.2) and its continuous relaxation (1.6). In light193

of the lower bound characterization of the lifted stationary points of (1.6) given in Lemma 2.3, we194

show the links between (1.2) and (1.6) by the two following results, where the first result focuses195

on global minimizers, and the second is on local minimizers.196

Theorem 2.4. x̄ ∈ X is a global minimizer of (1.2) if and only if it is a global minimizer of197

(1.6). Moreover, problems (1.2) and (1.6) have the same optimal value.198

Proof. First, let x̄ ∈ X be a global minimizer of (1.6), then x̄ is a lifted stationary point of
(1.6). By (2.8), it gives Φ(x̄) = ‖x̄‖0. Then,

f(x̄) + λ‖x̄‖0 = f(x̄) + λΦ(x̄) ≤ f(x) + λΦ(x) ≤ f(x) + λ‖x‖0, ∀x ∈ X ,

where the last inequality uses Φ(x) ≤ ‖x‖0, ∀x ∈ Rn. Thus, x̄ is a global minimizer of (1.2).199

Next, suppose x̄ ∈ X is a global minimizer of (1.2) but not a global minimizer of (1.6). Then
there exists a global minimizer of (1.6) denoted by x̂ such that

f(x̂) + λΦ(x̂) < f(x̄) + λΦ(x̄).

From Φ(x̂) = ‖x̂‖0 and Φ(x̄) ≤ ‖x̄‖0, we get f(x̂) + λ‖x̂‖0 < f(x̄) + λ‖x̄‖0, which leads to a200

contradiction. Thus, any global minimizer of (1.2) must be a global minimizer of (1.6). Hence,201

using Lemma 2.3, we ensure that problems (1.2) and (1.6) have the same optimal value.202

Theorem 2.4 provides that problems (1.2) and (1.6) have the same global solution set. The203

following proposition and the subsequent example show that this is not always true for their local204

minimizers.205

Proposition 2.5. If x̄ is a lifted stationary point of (1.6), then it is a local minimizer of (1.2)206

and the objective functions have the same value at x̄, i.e. F`0(x̄) = F(x̄).207

Proof. Coming back to the definition of Φd
x̄

defined in (2.5) and from the lower bound property
of x̄ in (2.8), for any x ∈ Rn, we have

Φd
x̄

(x) =

n∑
i=1

|xi|/ν −
n∑
i=1

θdx̄i (xi) =
∑

i:|x̄i|≥ν

1 +
∑

i:|x̄i|<ν

|xi|/ν = ‖x̄‖0 +
∑
i:x̄i=0

|xi|/ν.
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Then, there exists % > 0 such that Φd
x̄

(x) ≤ ‖x‖0, ∀x ∈ B%(x̄). Combining this with Φ(x) ≤ ‖x‖0
and (2.6) gives

f(x̄) + λ‖x̄‖0 ≤ f(x) + λ‖x‖0, ∀x ∈ X ∩ B%(x̄).

Thus, x̄ is a local minimizer of (1.2).208

Proposition 2.5 states that any lifted stationary point of (1.6) is a local minimizer of (1.2),209

which implies that any local minimizer of (1.6) is certainly a local minimizer of (1.2). Due to the210

special structure of the cardinality norm, any minimizer of minx∈X f(x) is a local minimizer of211

(1.2). The following example shows that a lifted stationary point of (1.6) is a local minimizer of212

(1.2) with the lower bound property in (2.8) and is likely a global minimizer.213

Example 2.1. Let problem (1.2) be in the form of214

(2.9) min
0≤x1,x2≤1

F`0(x1, x2) := |x1 + x2 − 1|+ λ‖x‖0.215

We can easily find that LM := {x ∈ R2 : x1 + x2 = 1, 0 ≤ x1, x2 ≤ 1} ∪ {(0, 0)T } is the set of local216

minimizers of (2.9). Moreover, (0, 0)T is the unique global minimizer when λ > 1, the global minimi-217

zers are {(0, 1)T , (1, 0)T } when λ < 1, and the global minimizers are {(0, 1)T , (1, 0)T , (0, 0)T } when218

λ = 1. Here, ν̄ in Lemma 2.3 can be min{
√

2λ/2, 1}. With ν < min{
√

2λ/2, 1}, the lifted stationary219

points of (1.6) for this example are {x ∈ R2 : x1+x2 = 1, ν ≤ x1, x2 ≤ 1}
⋃
{(0, 0)T , (1, 0)T , (0, 1)T },220

which is a proper subset of LM. Specially, if
√

2/2 < λ ≤ 1 and 1/2 < ν < min{
√

2λ/2, 1}, the221

lifted stationary points of (1.6) are {(1, 0)T , (0, 1)T , (0, 0)T }.222

When f is convex, x̄ is a local minimizer of (1.2) if and only if x̄ ∈ X satisfies223

(2.10) 0 ∈ [∂f(x̄) +NX (x̄)]i, ∀i ∈ A(x̄),224

which is a criterion for the local minimizers of (1.2) [40]. From Lemma 2.3 and Theorem 2.4, we225

find that the lower bound property in (2.8) holds for any global minimizer of (1.2), but is not true226

for all of its local minimizers. This inspires us to define a class of strong local minimizers of (1.2)227

by combining the optimality condition in (2.10) and the lower bound property in (2.8).228

Definition 2.6. We call x̄ ∈ X a ν-strong local minimizer of (1.2), if there exist ξ̄ ∈ ∂f(x̄)
and η̄ ∈ NX (x̄) such that for any i ∈ A(x̄), it holds

ξ̄i + η̄i = 0 and |x̄i| ≥ ν.

By (2.10), any ν-strong local minimizer of (1.2) is a local minimizer of it. To close this section,229

we give a result on the relationship between the ν-strong local minimizers of (1.2) and the lifted230

stationary points of (1.6).231

Proposition 2.7. x̄ ∈ X is a ν-strong local minimizer of (1.2) if and only if it is a lifted232

stationary point of (1.6). Moreover, if x̄ ∈ X is a ν-strong local minimizer of (1.2), then it holds233

F`0(x̄) ≤ F`0(x), ∀x ∈ X ∩ (x̄− νe, x̄+ νe),234

f(x̄) ≤ f(x), ∀x ∈ {x ∈ X : A(x) ⊆ A(x̄)} ,(2.11)235

x̄ is an oracle solution defined in (1.1) if A(x̄) = A(x?).(2.12)236

Proof. From Lemma 2.3, we can easily verify the first statement. By (2.6), we see that if x̄ is
a lifted stationary point of (1.6), then

F`0(x̄) = f(x̄) + λ‖x̄‖0 = f(x̄) + λΦ(x̄) = f(x̄) + λΦd
x̄

(x̄) ≤ f(x) + λΦd
x̄

(x), ∀x ∈ X .
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Fig. 2.1: Links between problems (1.2) and (1.6)

Due to Lemma 2.3, we then have F`0(x̄) ≤ F`0(x), ∀x ∈ X ∩ (x̄ − ν1n, x̄ + ν1n), which holds237

from Φd
x̄

(x) ≤ ‖x‖0, ∀x ∈ (x̄ − ν1n, x̄ + ν1n). Recalling (2.6) again, we obtain f(x̄) ≤ f(x) +238

λ
∑
i 6∈A(x̄) |xi|/ν, ∀x ∈ X . If A(x) ⊆ A(x̄), then xi = 0 for i 6∈ A(x̄). Hence, (2.11) holds, which239

immediately implies (2.12).240

Remark 2.3. In [50], the authors gave a unified view of exact continuous penalties for `2-`0241

minimization, which derives necessary and sufficient conditions on `0 continuous relaxations such242

that each (local and global) minimizer of the underlying relaxation is also a minimizer of the `2-`0243

problem. However, the property that any local minimizer of the relaxation problem with the capped-244

`1 penalty is a local minimizer of the `2-`0 problem cannot be verified by the results in [50]. In this245

paper, we prove this property for the capped-`1 penalty by its lifted stationary points.246

To end this section, we use Fig. 2.1 to give a brief description on the links between problems247

(1.2) and (1.6) when ν < ν̄.248

3. Numerical Algorithm and its convergence analysis. In this section, we focus on the249

numerical algorithm for finding a lifted stationary point of (1.6), which is a ν-strong local minimizer250

of (1.2). The first two subsections briefly introduce some useful preliminary results on smoothing251

methods and the proximal gradient algorithm, the third subsection presents a new proximal gradient252

algorithm combined with the smoothing method, and the last two subsections show the convergence253

of the proposed algorithm for solving (1.6).254

3.1. Smoothing approximation method. A well-known method for solving nonsmooth255

optimization problems is to approximate the original problem by a sequence of smooth problems,256

which own rich theory and powerful numerical algorithms [42]. For the sake of completeness, we257

formally define a class of smoothing functions for f in (1.6).258

Definition 3.1. We call f̃ : Rn × [0, µ̄] → R with µ̄ > 0 a smoothing function of the convex259

function f in (1.6), if f̃(·, µ) is continuously differentiable in Rn for any fixed µ > 0 and satisfies260

the following conditions:261

(i) limz→x,µ↓0 f̃(z, µ) = f(x), ∀x ∈ X ;262

(ii) (convexity) f̃(x, µ) is convex with respect to x in X for any fixed µ > 0;263

(iii) (gradient consistency) {limz→x,µ↓0∇z f̃(z, µ)} ⊆ ∂f(x), ∀x ∈ X ;264

(iv) (Lipschitz continuity with respect to µ) there exists a positive constant κ such that

|f̃(x, µ2)− f̃(x, µ1)| ≤ κ|µ1 − µ2|, ∀x ∈ X , µ1, µ2 ∈ [0, µ̄];

(v) (Lipschitz continuity with respect to x) there exists a constant L > 0 such that for any265
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µ ∈ (0, µ̄], ∇xf̃(·, µ) is Lipschitz continuous on X with Lipschitz constant Lµ−1.266

Throughout this paper, we denote f̃ a smoothing function of f in (1.6). When it is clear from267

the context, the derivative of f̃(x, µ) with respect to x is simply denoted as ∇f̃(x, µ). Definition268

3.1-(iv) implies269

(3.1) |f̃(x, µ)− f(x)| ≤ κµ, ∀x ∈ X , 0 < µ ≤ µ̄.270

271

Example 3.1. Many existing results in [16, 34, 49] give us some theoretical basis for con-272

structing smoothing functions satisfying the conditions in Definition 3.1. A smoothing function of273

the `1 loss function in (1.3) can be defined by274

(3.2) f̃(x, µ) =
1

m

m∑
i=1

θ̃(Aix− bi, µ) with θ̃(s, µ) =


|s| if |s| > µ,

s2

2µ
+
µ

2
if |s| ≤ µ.

275

For the loss function in (1.4) with p = 1, a smoothing function of it can be defined by276

(3.3) f̃(x, µ) =
1

m

m∑
i=1

θ̃(φ̃(Aix, µ)− bi, µ) with φ̃(s, µ) =


max{s, 0} if |s| > µ,

(s+ µ)2

4µ
if |s| ≤ µ.

277

We end this subsection by giving the following notations:

F̃d(x, µ) , f̃(x, µ) + λΦd(x) and F̃(x, µ) , f̃(x, µ) + λΦ(x),

where f̃ is a smoothing function of f , µ > 0 and d ∈ Dn. For any fixed µ > 0 and d ∈ Dn, both278

F̃d(x, µ) and F̃(x, µ) are nonsmooth, F̃d(x, µ) is convex, but F̃(x, µ) is nonconvex. Moreover,279

(3.4) F̃d(x, µ) ≥ F̃(x, µ), ∀d ∈ Dn, x ∈ X , µ ∈ (0, µ̄].280

3.2. Proximal gradient method. In this subsection, we consider the following constrained281

convex optimization problem with given smoothing parameter µ > 0 and vector d ∈ Dn282

(3.5) min
x∈X

F̃d(x, µ).283

It is good news that, for any given vectors d ∈ Dn, w ∈ Rn and a positive number τ > 0, the284

proximal operator of τΦd on X has a closed form solution, i.e.285

(3.6) x̂ = arg min
x∈X

{
τΦd(x) +

1

2
‖x− w‖2

}
286

can be calculated by x̂i = min{max{li, yi}, ui} for i = 1, . . . , n, where287

(3.7) yi =


0 if |w̄i| ≤ τ/ν,

w̄i − τ/ν if w̄i > τ/ν,

w̄i + τ/ν if w̄i < −τ/ν,

288
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with w̄i = wi for di = 1, w̄i = wi + τ/ν for di = 2 and w̄i = wi − τ/ν for di = 3. Toward this end,289

we consider an approximation of F̃d(·, µ) around a given point z, given by290

(3.8) Qd,γ(x, z, µ) = f̃(z, µ) + 〈x− z,∇f̃(z, µ)〉+
1

2
γµ−1‖x− z‖2 + λΦd(x)291

with a constant γ > 0. Since Φd(x) is convex with respect to x for any fixed d ∈ Dn, function292

Qd,γ(x, z, µ) is a strongly convex function with respect to x for any fixed d, γ, z and µ. Then,293

minimization problem minx∈X Qd,γ(x, z, µ) admits a unique minimizer, denoted by x̂, which can294

be calculated by (3.7) with τ = λγ−1µ and w = z − γ−1µ∇f̃(z, µ).295

3.3. Smoothing proximal gradient (SPG) algorithm. In this subsection, we propose a296

new algorithm for finding a lifted stationary point of (1.6). Since the proposed algorithm combines297

the smoothing method and the proximal gradient algorithm, we call it Smoothing Proximal Gradient298

(SPG) algorithm.299

For convenience of further reading, we begin this subsection by emphasizing the following300

assumptions needed in the convergence analysis of the SPG algorithm.301

• (A1) Assumption 1 and Assumption 2 hold.302

• (A2) f̃ is a smoothing function of f defined in Definition 3.1.303

• (A3) F in (1.6) (or F`0 in (1.2)) is level bounded on X 1.304

As the feasible region X is bounded, then assumption (A3) holds naturally. We give some more305

details on the parameters in these assumptions. Parameter Lf in Assumption 1 is used to define306

ν such that problems (1.2) and (1.6) have the consistency in Theorem 2.4 and Proposition 2.5.307

Parameter κ in Definition 3.1 is used in the SPG algorithm, which can be calculated exactly for308

most smoothing functions [16] and κ = 1
2 for the smoothing functions in (3.2) and (3.3). The309

value of L in Definition 3.1 is not necessary and we will use a simple line search method to find an310

acceptable value at each iteration of the SPG algorithm. Upon the above assumptions, we present311

the SPG algorithm for solving (1.6). See Algorithm 3.1.312

At each iteration, this algorithm takes the proximal gradient algorithm for solving (3.5) with
fixed µk, γk and dk, and uses a simple criterion for updating µk. The values of γk are chosen
independently in Step 1 of each iteration. Step 3 updates the smoothing parameter µk by using
(3.12), where F̃(xk+1, µk)+κµk can be seen as an energy function and its monotone non-increasing
property will be proved in Lemma 3.3. If the energy function is decreased more than the given
scale at the current iteration, then the current smoothing parameter is still acceptable for the next
iteration, otherwise we reduce its value by the updating rule in (3.13) for the next iteration. Let

N s = {k ∈ N : µk+1 6= µk},

and denote nsr the rth smallest number in N s. Then, we can obtain following updating method of313

{µk}314

(3.14) µk = µn
s
r+1 =

µ0

(nsr + 1)σ
, ∀nsr + 1 ≤ k ≤ nsr+1,315

which will be used in the proof of Lemma 3.2 and Lemma 3.5.316

1We call function F is level bounded on X , if for any Γ > 0, the level set {x ∈ X : F(x) ≤ Γ} is bounded.
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Algorithm 3.1 Smoothing Proximal Gradient (SPG) algorithm

Input: Take initial iterates x−1 = x0 ∈ X and µ−1 = µ0 ∈ (0, µ̄]. Choose constants ρ > 1,
σ ∈ ( 1

2 , 1), α > 0 and 0 < γ ≤ γ̄. Set k = 0.
While a termination criterion is not met, do

Step 1. Choose γk ∈ [γ, γ̄] and let dk , dx
k

, where dx
k

is defined in (2.4).
Step 2. 2a) Compute

(3.9) x̂k+1 = arg minx∈XQdk,γk(x, xk, µk).

2b) If x̂k+1 satisfies

(3.10) F̃d
k

(x̂k+1, µk) ≤ Qdk,γk(x̂k+1, xk, µk),

set

(3.11) xk+1 = x̂k+1

and go to Step 3. Otherwise, let γk = ργk and return to 2a).
Step 3: If

(3.12) F̃(xk+1, µk) + κµk − F̃(xk, µk−1)− κµk−1 ≤ −αµ2
k,

set µk+1 = µk, otherwise, set

(3.13) µk+1 =
µ0

(k + 1)σ
.

Increment k by one and return to Step 1.
end while

3.4. Basic convergence analysis of the SPG algorithm. Denote {xk}, {γk} and {µk}317

be the sequences generated by the SPG algorithm. In this subsection, we first establish some basic318

properties of the iterates {xk}, {γk} and {µk} in Lemma 3.2. Then, by the level boundedness319

assumption of F (or F`0) on X , the boundedness of {xk} is obtained in Lemma 3.3. At last, the320

subsequential convergence of {xk : k ∈ N s} to a lifted stationary point of (1.6) is established in321

Proposition 3.4.322

Lemma 3.2. The proposed SPG algorithm is well-defined, and the sequences {xk}, {γk} and323

{µk} generated by it own the following properties:324

(i) {xk} ⊆ X and {γk} ⊆
[
γ,max{γ̄, ρL}

]
;325

(ii) there are infinite elements in N s and limk→∞ µk = 0.326

Proof. (i). Upon rearranging terms, (3.10) can be rewritten as

f̃(x̂k+1, µk) ≤ f̃(xk, µk) + 〈∇f̃(xk, µk), x̂k+1 − xk〉+
1

2
γkµ

−1
k ‖x̂

k+1 − xk‖2.

Invoking Definition 3.1-(v), (3.10) holds when γk ≥ L. Thus the updating of γk in Step 2 is at327

most logη(L/γ) + 1 times at each iteration. Hence, the SPG algorithm is well-defined and we have328
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that γk ≤ max{γ̄, ρL}, ∀k ∈ N. From (3.11), it is easy to verify that xk+1 ∈ X by xk ∈ X and329

x̂k+1 ∈ X .330

(ii). Since {µk} is non-increasing, to prove (ii), we assume that limk→∞ µk = µ̂ > 0 by
contradiction. Then, (3.13) happens finite times at most, which means that there exists K ∈ N
such that µk = µ̂, ∀k ≥ K. Then,

F̃(xk+1, µk) + κµk − F̃(xk, µk−1)− κµk−1 ≤ −αµ̂2, ∀k ≥ K + 1.

We obtain from the above inequality that331

(3.15) lim
k→∞

F̃(xk+1, µk) + κµk = −∞.332

However, by {xk} ⊆ X and (3.1), we see that333

(3.16) F̃(xk+1, µk) + κµk ≥ F(xk+1) ≥ min
x∈X
F(x) = min

x∈X
F`0(x), ∀k ≥ K,334

where the last equality follows from Theorem 2.4. Thus, the contradiction between (3.15) and (3.16)335

implies (ii).336

Lemma 3.3. For any k ∈ N, we have337

(3.17) F̃(xk+1, µk)− F̃(xk, µk) ≤ −1

2
γkµ

−1
k ‖x

k+1 − xk‖2,338

which implies
{
F̃(xk+1, µk) + κµk

}
is non-increasing and limk→∞ F̃(xk+1, µk) = limk→∞ F(xk).339

Moreover, there exists R > 0 such that ‖xk‖ ≤ R, ∀k ∈ N.340

Proof. Since Qdk,γk(x, xk, µk) is strongly convex with modulus γkµ
−1
k , using the definition of

x̂k+1 in (3.9) and xk+1 = x̂k+1 when (3.10) holds, we obtain

Qdk,γk(xk+1, xk, µk) ≤ Qdk,γk(x, xk, µk)− 1

2
γkµ

−1
k ‖x

k+1 − x‖2, ∀x ∈ X .

By the definition of function Qdk,γk given in (3.8), upon rearranging the terms, we have341

(3.18)
λΦd

k

(xk+1) ≤λΦd
k

(x) + 〈x− xk+1,∇f̃(xk, µk)〉

+
1

2
γkµ

−1
k ‖x− x

k‖2 − 1

2
γkµ

−1
k ‖x

k+1 − xk‖2 − 1

2
γkµ

−1
k ‖x

k+1 − x‖2.
342

Moreover, (3.10) can be written as343

(3.19) F̃d
k

(xk+1, µk) ≤ f̃(xk, µk) + 〈xk+1−xk,∇f̃(xk, µk)〉+ 1

2
γkµ

−1
k ‖x

k+1−xk‖2 +λΦd
k

(xk+1).344

Summing up (3.18) and (3.19), we notice that345

(3.20)
F̃d

k

(xk+1, µk) ≤ f̃(xk, µk) + λΦd
k

(x) + 〈x− xk,∇f̃(xk, µk)〉

+
1

2
γkµ

−1
k ‖x− x

k‖2 − 1

2
γkµ

−1
k ‖x

k+1 − x‖2, ∀x ∈ X .
346
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For a fixed µ > 0, the convexity of f̃(x, µ) with respect to x invokes347

(3.21) f̃(xk, µk) + 〈x− xk,∇f̃(xk, µk)〉 ≤ f̃(x, µk), ∀x ∈ X .348

Combining (3.20) and (3.21) and recalling the definition of F̃dk , one has349

(3.22) F̃d
k

(xk+1, µk) ≤ F̃d
k

(x, µk) +
1

2
γkµ

−1
k ‖x− x

k‖2 − 1

2
γkµ

−1
k ‖x

k+1 − x‖2, ∀x ∈ X .350

Letting x = xk in (3.22) and by dk = dx
k

, we obtain351

(3.23) F̃d
k

(xk+1, µk) +
1

2
γkµ

−1
k ‖x

k+1 − xk‖2 ≤ F̃(xk, µk).352

Thanks to F̃dk(xk+1, µk) ≥ F̃(xk+1, µk), (3.23) leads to (3.17).353

Since F̃(xk, µk) ≤ F̃(xk, µk−1) + κ(µk−1 − µk), by (3.17), we obtain354

(3.24) F̃(xk+1, µk) + κµk +
1

2
γkµ

−1
k ‖x

k+1 − xk‖2 ≤ F̃(xk, µk−1) + κµk−1,355

which implies the non-increasing property of
{
F̃(xk+1, µk) + κµk

}
. Together this result with (3.16)356

ensures the existence of limk→∞ F̃(xk+1, µk) + κµk. By virtue of limk→∞ µk = 0 and Definition357

3.1-(i), we get limk→∞ F̃(xk+1, µk) = limk→∞ F(xk).358

Recalling the non-increasing property of {F̃(xk+1, µk) + κµk} again, we see that

F(xk+1) ≤ F̃(xk+1, µk) + κµk ≤ F̃(x1, µ0) + κµ0 <∞.

We then obtain the boundedness of {xk} from {xk} ⊆ X and the level bounded assumption of
F on X . Observe that

F`0(x) ≥ F(x) = F`0(x)− λ
∑
|xi|<ν

(1− |xi|/ν) ≥ F`0(x)− λn, ∀x ∈ Rn.

Then, it is easy to verify the level boundedness of F by the level boundedness of F`0 on X . Hence,359

the same results in Lemma 3.3 hold when F`0 is level bounded on X .360

The following proposition shows that there exists a subsequence of {xk} converging to a lifted361

stationary point of (1.6), which lays a foundation for the sequence convergence of {xk}.362

Proposition 3.4. Any accumulation point of {xk : k ∈ N s} is a lifted stationary point of363

(1.6).364

Proof. When F (or F`0) is level bounded on X , by Lemma 3.3, {xk} is bounded. Suppose x̄ is365

an accumulation point of {xk}k∈N s with the convergence of subsequence {xki}ki∈N s .366

Since (3.12) fails for ki ∈ N s, by rearranging (3.24), we obtain that γkiµ
−1
ki
‖xki+1 − xki‖2 ≤367

2αµ2
ki

, which gives ‖xki+1 − xki‖ ≤
√

2αγ−1
ki
µ3
ki

. Thus, γkiµ
−1
ki
‖xki+1 − xki‖ ≤

√
2αγkiµki , which368

together with limi→∞ µki = 0 and {γki} ⊆
[
γ,max{γ̄, ρL}

]
implies369

(3.25) lim
i→∞

γkiµ
−1
ki
‖xki+1 − xki‖ = 0 and lim

i→∞
xki+1 = x̄.370

371
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Recalling xki+1 = x̂ki+1 defined in (3.9) and by its first order necessary optimality condition,372

we have373

(3.26) 〈∇f̃(xki , µki) + γkiµ
−1
ki

(xki+1 − xki) + λζki , x− xki+1〉 ≥ 0, ∀ζki ∈ ∂Φd
ki

(xki+1), x ∈ X .374

Since the elements in {dki : i ∈ N} are finite and limi→∞ xki+1 = x̄, there exists a subsequence375

of {ki}, denoted as {kij}, and d̄ ∈ D(x̄) such that dkij = d̄, ∀j ∈ N. By the upper semicontinuity376

of ∂Φd̄ and limj→∞ xkij+1 = x̄, it gives377

(3.27) { lim
j→∞

ζkij : ζkij ∈ ∂Φd
kij

(xkij+1)} ⊆ ∂Φd̄(x̄).378

Along with the subsequence {kij} and letting j →∞ in (3.26), from Definition 3.1-(iii), (3.25) and379

(3.27), we obtain that there exist ξ̄ ∈ ∂f(x̄) and ζ̄ d̄ ∈ ∂Φd̄(x̄) such that380

(3.28) 〈ξ̄ + λζ̄ d̄, x− x̄〉 ≥ 0, ∀x ∈ X .381

By d̄ ∈ D(x̄), the definition of Φd̄ in (2.5) and the convexity of X , (3.28) implies that x̄ is a lifted382

stationary point of (1.6).383

Remark 3.1. The convexity of Φd plays an important role in the analysis of the SPG algo-384

rithm. It is easy to check that all the results in subsection 3.4 are true when the penalty can be385

described by the min of a class of simple convex functions whose proximal operators can be calculated386

effectively.387

3.5. Global sequence convergence of the SPG algorithm for problem (1.6). It is388

interesting that the proposed SPG algorithm for this kind of nonconvex nonsmooth optimization389

problem owns the global sequence convergence without the K-L condition or error bound condition390

on the objective function, while the special structure of the continuous relaxation for ‖x‖0 and the391

updating rule for µk are the key points. Throughout this subsection, the analysis uses the same392

assumptions in subsection 3.4.393

We begin this subsection by giving some preliminary analysis, which are Lemma 3.5, Lemma394

3.6 and Proposition 3.7. Based on these results, we present the two main results for the SPG395

algorithm: the sequence convergence of {xk} in Theorem 3.8; the local convergence rate of {F(xk)}396

and the finite-iteration identification of A(xk) in Theorem 3.9.397

Lemma 3.5. The following statements hold:398

(i)
∑∞
k=0 γkµ

−1
k ‖xk+1 − xk‖2 ≤ 2

(
F(x0, µ−1) + κµ−1 −minX F

)
;399

(ii)
∑∞
k=0 µ

2
k ≤ Λ with Λ = 1

α

(
F̃(x0, µ−1) + κµ−1 −minx∈X F(x)

)
+

2µ2
0σ

2σ−1 <∞;400

(iii) A(xk+1) ⊆ A(xk).401

Proof. (i). Recalling (3.24), for all k ∈ N, we obtain402

(3.29) γkµ
−1
k ‖x

k+1 − xk‖2 ≤ 2
(
F̃(xk, µk−1) + κµk−1 − F̃(xk+1, µk)− κµk

)
.403

Summing up the above inequality over k = 0, . . . ,K, it gives404

(3.30)
K∑
k=0

γkµ
−1
k ‖x

k+1 − xk‖2 ≤2
(
F̃(x0, µ−1) + κµ−1 − F̃(xK+1, µK)− κµK

)
.405
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By letting K in (3.30) tend to infinity and along with (3.16), we obtain (i).406

(ii). From (3.14), we have407

(3.31)
∑
k∈N s

µ2
k =

∞∑
r=1

µ2
0

1

(nsr + 1)2σ
≤
∞∑
k=1

µ2
0

k2σ
≤ 2µ2

0σ

2σ − 1
,408

where nsr is the rth smallest element in N s.409

When k 6∈ N s, (3.12) gives αµ2
k ≤ F̃(xk, µk−1) + κµk−1 − F̃(xk+1, µk) − κµk, which together410

with the non-increasing property of
{
F̃(xk+1, µk) + κµk

}
and (3.16) implies411

(3.32)
∑
k 6∈N s

µ2
k ≤

1

α

(
F̃(x0, µ−1) + κµ−1 −min

X
F
)
.412

Combining (3.31) and (3.32), we finish the proof for the estimation in item (ii).413

(iii). We only need to prove that if xki = 0, then xk+1
i = 0. If xki = 0, we get dki = 1. From

(3.7) and ν < λ/Lf , we have∣∣∣xki − γ−1
k µk∇if̃(xk, µk)

∣∣∣ ≤ γ−1
k µk

∥∥∥∇f̃(xk, µk)
∥∥∥ ≤ (λγ−1

k µk)/ν.

By (3.7), we obtain xk+1
i = 0, which completes the proof of this statement.414

For {xk}, denote415

(3.33) N1 = {k ∈ N : there exists i ∈ {1, . . . , n} such that 0 < |xki | < ν}.416

Next lemma gives some estimation on {xk} and {µk} when k is sufficiently large.417

Lemma 3.6. There exists K ∈ N such that for all k ≥ K, it holds418

(i)
∥∥∥∇f̃(xk, µk)

∥∥∥ < 1
2 (λ/ν + Lf );419

(ii)
∥∥xk+1 − xk

∥∥ ≤ 3(λ/ν)
√
nγ−1µk;420

(iii) for any k ∈ N1, either
∥∥xk+1

∥∥
0
≤
∥∥xk∥∥

0
− 1 or

∥∥xk+1 − xk
∥∥ ≥ 1

2 (λ/ν − Lf ) γ−1
k µk;421

(iv)
∑
k∈N1,k≥K

∥∥xk+1 − xk
∥∥ <∞ and

∑
k∈N1,k≥K µk <∞.422

Proof. (i). We argue it by contradiction. Suppose there is a subsequence of {xk}, denoted by423

{xki}, such that424

(3.34)
∥∥∥∇f̃(xki , µki)

∥∥∥ ≥ 1

2
(λ/ν + Lf ) > Lf , ∀i ∈ N.425

Since {xki} is bounded, which is proved in Lemma 3.3, there exists a subsequence of {xki} (also426

denoted by {xki} for simplicity) and x̄ ∈ X such that limi→∞ xki = x̄. Due to limi→∞ µki = 0,427

the property of f̃ in Definition 3.1-(iii), λ/ν and (3.34) imply the existence of ξ̄ ∈ ∂f(x̄) such that428

‖ξ̄‖ > Lf , which leads to a contradiction to the definition of Lf given in Assumption 1. Hence, we429

establish result (i) in this lemma.430

(ii). For any i ∈ {1, 2, . . . , n}, by (3.7) and Lf < λ/ν, we have∣∣xk+1
i − xki

∣∣ ≤ 2(λ/ν)γ−1
k µk + γ−1

k µk

∣∣∣∇if̃(xk, µk)
∣∣∣ ≤ 3(λ/ν)γ−1

k µk,
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which completes the proof for item (ii).431

(iii). Denote wk = xk − γ−1
k µk∇f̃(xk, µk). For a fixed k ∈ N1 and k ≥ K, there exists j432

such that 0 < |xkj | < ν. Then, dkj = 1 by (2.4). Next, we will prove that either xk+1
j = 0 or433 ∣∣xk+1

j − xkj
∣∣ ≥ 1

2 (λ/ν − Lf ) γ−1
k µk. We split the proof into three cases.434

Case 1. If |wkj | ≤ (λ/ν)γ−1
k µk, by (3.7), we get xk+1

j = 0, which together with A(xk+1) ⊆ A(xk)435

implies ‖xk+1‖0 ≤ ‖xk‖0 − 1.436

Case 2. If wkj > (λ/ν)γ−1
k µk, by (3.7) and result (i) of this lemma, we obtain that∣∣xk+1

j − xkj
∣∣ ≥ (λ/ν)γ−1

k µk −
∣∣∣γ−1
k µk∇if̃(xk, µk)

∣∣∣ ≥ 1

2
(λ/ν − Lf ) γ−1

k µk,

which implies437

(3.35)
∥∥xk+1 − xk

∥∥ ≥ 1

2
(λ/ν − Lf ) γ−1

k µk.438

Case 3. If wkj < −(λ/ν)γ−1
k µk, similar to the analysis in Case 1, we see that (3.35) holds. Thus,439

we complete the proof of statement (iii).440

(iv). We introduce the notations N11 = {k ∈ N1 : k ≥ K,
∥∥xk+1

∥∥
0
≤
∥∥xk∥∥

0
− 1} and441

N12 = {k : k ≥ K, k ∈ N1\N11}. By Lemma 3.5-(iii), N11 has at most n elements. From result (iii)442

of this lemma, we have γkµ
−1
k

∥∥xk+1 − xk
∥∥ ≥ 1

2 (λ/ν − Lf ), ∀k ∈ N12. Then, we have443

(3.36)
1

2
(λ/ν − Lf )

∑
k∈N12

∥∥xk+1 − xk
∥∥ ≤ ∑

k∈N12

γkµ
−1
k

∥∥xk+1 − xk
∥∥2 ≤ 2

(
F̃(x0, µ−1) + κµ−1 −min

X
F
)
,444

where the second inequality follows from Lemma 3.5-(i). (3.36) implies
∑
k∈N12

∥∥xk+1 − xk
∥∥ <∞,

which together with the finiteness of the elements in N11 gives
∑
k∈N1,k≥K

∥∥xk+1 − xk
∥∥ < ∞.

Moreover,∑
k∈N12

γkµ
−1
k

∥∥xk+1 − xk
∥∥2

=
∑
k∈N12

(
γkµ

−1
k

∥∥xk+1 − xk
∥∥)2 γ−1

k µk ≥
1

4
(λ/ν − Lf )

2
∑
k∈N12

γ−1
k µk,

which together with the second inequality of (3.36) and Lemma 3.2-(i) implies
∑
k∈N12

µk < ∞.445

By
∑
k∈N11

µk ≤ nµ0, we conclude that
∑
k∈N1,k≥K µk <∞.446

The next proposition explores that all accumulation points of {xk} own a common support set447

and a unified lower bound, which provides the main technical support for the forthcoming Theorem448

3.8.449

Proposition 3.7. Denote X̄ = {x̄ ∈ X : x̄ is an accumulation point of {xk}}, then there
exists A(X̄ ) ⊆ {1, 2, . . . , n} such that for any x̄ ∈ X̄ , it holds that

|x̄i| ≥ ν for any i ∈ A(X̄ ) and x̄i = 0 for any i 6∈ A(X̄ ).

Proof. We first prove the following result:450

(3.37) for any x̄ ∈ X̄ and any i ∈ {1, . . . , n}, either x̄i = 0 or |x̄i| ≥ ν.451

If (3.37) does not hold, there exists x̂ ∈ X̄ with the convergence sequence {xkj} and ι ∈ {1, . . . , n}452

such that 0 < |x̂ι| < ν. In what follows, without loss of generality, we suppose x̂ι > 0.453
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Since any accumulation point of {xk}k∈N s is an accumulation point of {xk}, there exists x̄ ∈ X̄454

and a subsequence of {xk}, denoted by {xtj}, such that limj→∞ xtj = x̄. By taking subsequences of455

{xkj} and {xtj} if necessary, we assume for the simplicity of notation that kj < tj < kj+1, ∀j ∈ N.456

Combining Proposition 2.5, Lemma 2.3 and Proposition 3.4, either x̄ι = 0 or |x̄ι| ≥ ν.457

Let ε = min
{
ν−x̂ι

2 , x̂ι4
}
> 0. If x̄ι = 0, there exists J ∈ N such that

|xkjι − x̂ι| ≤ ε and |xtjι | ≤ ε, ∀j ≥ J,

which implies458

(3.38)
3

4
x̂ι ≤ x̂ι − ε ≤ xkjι ≤ ε+ x̂ι ≤

ν + x̂ι
2

< ν and − 1

4
x̂ι ≤ xtjι ≤

1

4
x̂ι, ∀j ≥ J.459

Then, x
kj
ι − xtjι ≥ 1

2 x̂ι, ∀j ≥ J . Thus,460

(3.39)

∞∑
j=J

∣∣xtjι − xkjι ∣∣ = +∞.461

If there exists r ≥ J , such that xtrι = 0, Lemma 3.5-(iii) gives x
kj+1
ι = 0, ∀j ≥ r, which leads to a

contradiction to the first inequality in (3.38). Thus, (3.38) gives 0 < |xkjι | < ν and 0 < |xtjι | < ν,
which implies {xkj , xtj : j ≥ J} ⊆ N1 with N1 defined in (3.33). Together this with Lemma 3.6-(ii),
(iv) and limk→∞ µk = 0, there exists J1 ≥ J such that

∞∑
j=J1

∣∣xtjι − xkjι ∣∣ ≤ ∑
k∈N1,k≥K

∥∥xk+1 − xk
∥∥ <∞,

which leads to a contradiction to (3.39). Likewise, we can obtain a similar contradiction when462

|x̄ι| ≥ ν. Therefore, the above analysis ensures the validity of statement (3.37). Together (3.37)463

with limk→∞ ‖xk+1 − xk‖ = 0, we complete the proof of this proposition.464

We next prove the global sequence convergence of iterates {xk}.465

Theorem 3.8. The iterates {xk} generated by the SPG algorithm is globally convergent to466

a lifted stationary point of (1.6), i.e. there exists a lifted stationary point x̄ of (1.6) such that467

limk→∞ xk = x̄.468

Proof. Let K be a positive integer such that the estimations in Lemma 3.6 hold and x̄ be an469

accumulation point of {xk}k∈N s . Suppose {xkj} is a subsequence of {xk} such that470

(3.40) lim
j→∞

xkj = x̄.471

By Proposition 3.4, x̄ is a lifted stationary point of (1.6).472

From Lemma 2.3, for any i ∈ {1, . . . , n}, either x̄i = 0 or |x̄i| ≥ ν. Denote

N (x̄) = {k ∈ N : dki ∈ D(x̄i), ∀i = 1, . . . , n},

where D(x̄i) is defined in (2.1). We then evaluate ‖xk+1 − x̄‖2 by considering two cases.473

Case 1: In this case, we consider the iteration for k ∈ N (x̄), which implies that F̃dk(x̄, µk) =474

F̃(x̄, µk). Letting x = x̄ in (3.22), we have475

F̃d
k

(xk+1, µk)− F̃(x̄, µk) ≤ 1

2
γkµ

−1
k

∥∥xk − x̄∥∥2 − 1

2
γkµ

−1
k

∥∥xk+1 − x̄
∥∥2
,476
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combining which with (3.1) and (3.4), we obtain477

(3.41) 2γ−1
k µk

(
F̃(xk+1, µk) + κµk −F(x̄)

)
≤
∥∥xk − x̄∥∥2 −

∥∥xk+1 − x̄
∥∥2

+ 4κγ−1
k µ2

k.478

Due to the non-increasing property of
{
F̃(xk+1, µk) + κµk

}
and limk→∞ F̃(xk+1, µk)+κµk = F(x̄),479

we obtain480

(3.42)
∥∥xk+1 − x̄

∥∥2 ≤
∥∥xk − x̄∥∥2

+ 4κγ−1
k µ2

k, ∀k ∈ N (x̄).481

Case 2: In this case, we consider the iteration for k 6∈ N (x̄). From Proposition 3.7, there exists
K1 ≥ K such that for any k ≥ K1, it holds∣∣xki ∣∣ < ν/2 for i 6∈ A(X̄ ) and

∣∣xki ∣∣ ≥ ν/2 for i ∈ A(X̄ ),

where A(X̄ ) is defined in Proposition 3.7.482

Hence, for k 6∈ N (x̄) and k ≥ K1, there exists ιk ∈ A(X̄ ) such that ν/2 ≤
∣∣xkιk ∣∣ < ν, which483

means that k ∈ N1 with N1 defined in (3.33). Then,484

(3.43)

∥∥xk+1 − x̄
∥∥2

=
∥∥xk − x̄∥∥2

+
∥∥xk+1 − xk

∥∥2
+ 2〈xk+1 − xk, xk − x̄〉

≤
∥∥xk − x̄∥∥2

+ c1µ
2
k + 4R

∥∥xk+1 − xk
∥∥ , ∀k 6∈ N (x̄),

485

where c1 = 9(λ/ν)2nγ−2 follows from Lemma 3.6-(ii), and R comes from Lemma 3.3.486

By (3.42) and (3.43), for any t ≥ K1 and s ∈ N, we have487

(3.44)
∥∥xt+s+1 − x̄

∥∥2 ≤
∥∥xt − x̄∥∥2

+ c2

t+s∑
k=t

µ2
k + 4R

t+s∑
k = t,

k 6∈ N(x̄)

∥∥xk+1 − xk
∥∥ ,488

where c2 = max{4κγ−1, c1}.489

Fix an ε > 0. There exists K2 ≥ K1 such that when kj ≥ K2, it holds that490

(3.45)
∥∥xkj − x̄∥∥2 ≤ ε2/3,

∞∑
k=kj

µ2
k ≤ ε2/3c2,

∞∑
k = kj,

k 6∈ N(x̄)

∥∥xk+1 − xk
∥∥ ≤ ε2/12R,491

where the first inequality follows from (3.40), the second inequality follows from Lemma 3.5-(ii),492

and the third inequality follows from and {k : k ≥ K1, k 6∈ N (x̄)} ⊆ N1 and Lemma 3.6-(iv).493

Letting t = kj in (3.44) with kj ≥ K2, from (3.45), we obtain ‖xk − x̄‖ ≤ ε, ∀k ≥ K3, where494

K3 = min{kj : kj ≥ K2}. Due to the arbitrariness of ε > 0, we get limk→∞ xk = x̄.495

The lower bound property is used to prove the estimation in Lemma 3.6-(iii), which is the key496

point to guarantee the global sequence convergence of {xk}. Without this lower bound property,497

due to the nonconvexity of the objective function in (1.6), it is almost impossible to propose a global498

sequence convergence algorithm without the regularity conditions. Among the existing penalties,499

only capped-`1 penalty can be expressed by the min of a class of simple convex functions and make500

the stationary points of the corresponding minimization problem own a unified lower bound. This501

is the main motivation of this paper on studying the cardinality penalty problem by the capped-`1502
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relaxation. Moreover, from the proof of Theorem 3.9, we find that the descent criterion and the503

updating method for µk are also important to guarantee the global sequence convergence of {xk},504

since it needs that Σ∞k=1µ
2
k < +∞.505

The limit point of {xk} is most likely different with different initial iterates x0 and µ0. The506

zero vector is a trivial ν-strong local minimizer of (1.2), which is not we want. By property (iii)507

of Lemma 3.5, our theoretical results hold for any initial iterate x0 ∈ X . To find interesting ν-508

strong local minimizers, we chose x0 without zero component in the numerical experiments. How to509

choose an initial point such that the accumulation point of {xk} is a global minimizer (or an oracle510

solution) of (1.2) is an interesting work. To the best of our knowledge, it is still an open problem.511

[24, Theorem 1] gave some discussion on this topic for the linear approximation algorithm to solve512

the sparsity problem with SCAD penalty. Similar results can be expected for the SPG algorithm.513

The following theorem gives a local convergence rate of the SPG algorithm on the objective514

function values of problem (1.6) and the finite iteration convergence of {xk} in a subspace.515

Theorem 3.9. There exist c > 0 and K ∈ N such that, for k ≥ K, we have516

(3.46) F(xk+1)−F(x̄) ≤ ck−(1−σ) and
∥∥∥xkA(x̄)c − x̄A(x̄)c

∥∥∥ = 0,517

where x̄ is the limit of {xk}.518

Proof. Denote ε = min {ν,min{|x̄i| − ν : |x̄i| > ν, i = 1, . . . , n}}. From Theorem 3.8, there ex-519

ists K1 ∈ N such that ‖xk − x̄‖ < ε, ∀k ≥ K1. Then, k ∈ N (x̄), ∀k ≥ K1.520

From the proof of Theorem 3.8, (3.41) holds for any k ≥ K1. Summing up (3.41) for k =521

K1,K1 + 1, . . . ,K1 + t, we have522

(3.47)

2tmax{γ̄, ρL}−1µK1+t

(
F̃(xK1+t+1, µK1+t) + κµK1+t −F(x̄)

)
≤‖xK1 − x̄‖2 − ‖xK1+t+1 − x̄‖2 + 4κ

K1+t∑
k=K1

γ−1
k µ2

k,
523

where we use F̃(xk+1, µk) +κµk ≥ F(x̄), {γk} ⊆
[
γ,max{γ̄, ρL}

]
, and the non-increasing property524

of {µk} and
{
F̃(xk+1, µk) + κµk

}
.525

We first consider the right hand side of (3.47). We observe that 4κ
∑K1+t
k=K1

γ−1
k µ2

k ≤ 4κγ−1Λ,526

where Λ is defined in Lemma 3.5-(ii). Then,527

(3.48)
∥∥xK1 − x̄

∥∥2 −
∥∥xK1+t+1 − x̄

∥∥2
+ 4κ

K1+t∑
k=K1

γ−1
k µ2

k ≤ 4R2 + 4κγ−1Λ, ∀t ∈ N,528

with R defined in Lemma 3.3.529

By µK1+t ≥ µ0(K1 + t)−σ and F̃(xK1+t+1, µK1+t) +κµK1+t ≥ F(xK1+t+1), ∀t ∈ N, we observe
from (3.47) and (3.48) that

F(xK1+t+1)−F(x̄) ≤

(
(4R2 + 4κγ−1Λ) max{γ̄, ρL}

2µ0

)(
(K1 + t)σ

t

)
.

Therefore, letting c = (4R2 + 4κγ−1Λ) max{γ̄, ρL}/µ0, we obtain

F(xk+1)−F(x̄) ≤ c

2

(
kσ

k −K1

)
≤ ck−(1−σ), ∀k ≥ 2K1.
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To prove the second statement in (3.46), we argue it by contradiction. If there is no K ∈ N530

such that xki = 0 for all i ∈ A(x̄)c and k ≥ K, then there is a subsequence of {xk}, denoted by531

{xkj}, and î ∈ A(x̄)c such that |xkj
î
| 6= 0. Since A(xk+1) ⊆ A(xk) and limk→∞ xk = x̄, the above532

assumption implies that there exists K1 ∈ N such that 0 < |xk
î
| < ν, ∀k ≥ K1. Thus, for all533

k ≥ K1, it gives k ∈ N1 with N1 given in (3.33). Recalling Lemma 3.6-(iv), we get
∑∞
k=K1

µk <∞.534

However, due to µk ≥ µ0k
−σ with σ < 1, we have

∑∞
k=K1

µk =∞, which leads to a contradiction.535

Therefore, the second statement in (3.46) holds.536

Following the proof of Theorem 3.9, the local convergence rate of F(xk) − F(x̄) is O( 1
kµk

).537

Moreover, thanks to the lower bound property, the SPG algorithm owns the finite iteration identi-538

fication on the support set of the limit point of {xk}, which inspires us that the local convergence539

rate can be improved when f satisfies some proper conditions. For example, when f is strongly540

convex with modulus δ > 0, then the local convergence rate can be exponential; when f satisfies541

the K-L inequality on X with exponent α ∈ [0, 1), then {xk} is convergent finitely if α = 0, linearly542

if α ∈ (0, 1
2 ] and sublinearly if α ∈ ( 1

2 , 1).543

4. Numerical experiments. To verify and illustrate the performance of the continuous re-544

laxation (1.6) and the SPG algorithm, we use a test example and generate two examples randomly545

with normal distribution. All experiments are performed in MATLAB 2016a on a Lenovo PC546

(3.00GHz, 2.00GB of RAM). In the following examples, the stopping criterion is set as547

(4.1) number of iterations ≤ Maxiter or µk ≤ ε.548

Denote x̄ the output of iterate xk, Iter the number of running iterations and Time the CPU time549

of the SPG algorithm by the criterion in (4.1). Examples 4.1 and 4.2 are for the under-determined550

linear regression problems. Moreover, Example 4.1 is a typical under-determined linear regression551

problem, which shows that the proposed method in this paper can find a global solution with certain552

sparsity. The aim of Example 4.2 is to solve a random generated under-determined sparse linear553

regression problem, while Example 4.3 is to solve a over-determined censored regression problem.554

Example 4.1. (A test example) We consider the problem in Example 2.1 to verify the555

validity of the theoretical results and the efficiency of SPG algorithm. Problem (2.9) is an example556

of problem (1.2) with the `1 loss function given in (1.3), where m = 1, A = (1 1) and b = 1.557

Let the smoothing function of f be defined by (3.2). Some fixed parameters in the SPG
algorithm are given as follows:

γ = γ̄ =
√

2, α = 1, σ = 0.8, ρ = 1.1, Maxiter = 104, ε = 10−3, κ = 1/2, Lf =
√

2.

Let LM, ν − LM and GM denote the sets of local minimizers, ν-strong local minimizers and
global minimizers of (2.9), respectively. When ν < λ/Lf ,

ν − LM ={x : x1 + x2 = 1, ν ≤ x1, x2 ≤ 1} ∪ {(1, 0)T , (0, 1)T , (0, 0)T }.

Set µ0 = 0.1 and x0 = (1, 0.8)T . The other parameters and the numerical results are listed in558

Table 4.1, where the global minimizers are same for the cases in one line. For problem (2.9), many559

different values of λ and the corresponding ν if ν < λ/Lf are given in Table 4.1, which shows that560

x̄ is always a ν-strong local minimizer and sometimes a global minimizer of (2.9). In particular,561

when λ = 0.7, ν = 0.4 and x0 = (1, 0.8)T , the SPG algorithm finds a global solution of (2.9).562

Moreover, we consider the influence of the values of ν on the SPG algorithm for solving (2.9) in563
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Table 4.1. When λ = 1, ν̄ as defined in Assumption 2 is 0.7071. From Table 4.1, we find that the564

SPG algorithm finds different ν-strong local minimizer for different values of ν satisfying ν < ν̄.565

And it is interesting that when ν ≥ 0.5, the SPG algorithm converges to a global minimizer. We566

notice that when ν is a lower bound for the global minimizers, it holds that567

(4.2) GM ⊆ ν1-LM ⊆ ν2-LM, ∀ν2 ≤ ν1 ≤ ν.568

Hence when ν is a lower bound for the global minimizers, the larger ν is likely to let the SPG569

algorithm converge to a global minimizer with higher possibility.570

The updating rule for µk in the SPG algorithm is to ensure its global sequence convergence.571

How to improve the local convergence rate with the guarantee of global sequence convergence is an572

interesting work for further research.

λ GM ν Iter x̄
0.7/0.8/0.9 (1, 0), (0, 1) 0.4/0.5/0.6 18/19/10 (1, 0)/(1, 0)/(1, 0)

1/1/1 (1, 0), (0, 1), (0, 0) 0.7/0.5/0.3 21/11/5 (0, 0)/(1, 0)/(0.6, 0.4)
1.1/1.2/1.3 (0, 0) 0.7/0.9/1 18/17/16 (0, 0)/(0, 0)/(0, 0)

Table 4.1: Numerical results of the SPG algorithm for problem (2.9) with different λ and ν

573

Using the same parameters and initial point, the IRL1 and IRTight algorithms in [43] may574

generate575

(4.3) xk = arg min
0≤x1,x2≤1

|x1 + x2 − 1|576

for k ≥ 0 with xk ≡ (α, β) > 0 and α+β = 1. Obviously, xk is not a global minimizer of (2.9). Hence577

almost surely the reweighted algorithms in [43] cannot find a global minimizer (2.9). In fact, at any578

point xk > 0, the derivative of ‖xk‖0 is (0, 0)T and xk+1 = (α, β) > 0 with α+ β = 1 is an optimal579

solution of the subproblem min0≤x1,x2≤1 |x1 + x2 − 1| in the algorithms. Hence the SPG algorithm580

has better performance than the algorithms in [43] for solving the nonsmooth optimization problem581

with cardinality penalty (1.2).582

Example 4.2. (Linear regression problem) Linear regression problem is the most repre-583

sentative problem in sparse regression, which has been widely used in information theory [12],584

image restoration[5, 10, 41], signal precessing [10, 41] and variable selection [23, 24] problems. Le-585

ast square function is the most frequently used loss function due to its convexity and differentiability586

[24, 29, 31, 32, 54]. However, the `1 loss function often owns the stronger outlier-resistant property587

than the least square loss function [23]. So, in this example, we consider the following cardinality588

penalty problem with `1 loss function:589

(4.4) min
0≤x≤101n

F`0(x) :=
1

m
‖Ax− b‖1 + λ‖x‖0,590

where b ∈ Rm and A ∈ Rm×n with m < n.591

Generating data and setting parameters. For positive integers m, n and s, we generate the592

original signal x? with ‖x?‖0 = s, sensing matrix A ∈ Rm×n and observation b ∈ Rm as follows:593

index=randperm(n); index=index(1:s); x?=zeros(n,1); B=randn(n,m);594
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x?(index)=unifrnd(2,10,[s,1]); A=orth(B)’; b = A*x?+ 0.01*randn(size(b)).595

In the proposed SPG algorithm, we use the smoothing function of f in (3.2) and set the parameters596

as below597

γ = γ̄ = 1, α = 1, µ0 = 50, ρ = 1.1, σ = 0.9, Maxiter = 104, κ = 1/2.

It is not hard to show that all assumptions in sections 2 and 3 hold. Thus, the sequence {xk}598

of the SPG algorithm should be convergent to a ν-strong local minimizer of (4.4).599

Generate A, b and x? with m = 80, n = 160 and s = 16, set λ = 18.8 in (4.4) and ε = 10−3 in the600

stopping criterion (4.1). We calculate that Lf = 10.6168 and define ν = 1.77, x0 = 1.97∗ones(n, 1).601

The numerical results are shown in Fig. 4.1. Fig. 4.1(a) plots x? and x̄. From Fig 4.1(a), we see602

that the output of xk is very close to the original generated signal and satisfies the lower bound603

property in (2.8). Fig. 4.1(b) exhibits the convergence of µk and F(xk)−F(x̄).

(a) (b)

Fig. 4.1: Numerical results of the SPG algorithm for Example 4.2

604

Example 4.3. (Censored regression problem) A typical class of censored regression pro-
blem is the linear regression model with left-censoring (or right-censoring) at zero, i.e.

max{Aix− ci, 0} ≈ bi, i = 1, . . . ,m,

where Ai, bi and ci are defined as in (1.4). This class of problems have wide applications in wireless605

communication [38], machine learning [21], variable selection[23, 53], economics [9], etc. To solve606

it, the loss function is often defined by (1.4), which is nonsmooth for any p ∈ [1, 2]. So the censored607

regression problem is a typical class of sparse regression problems with nonsmooth convex loss608

functions [53]. Different from the case considered in Example 4.2, we let m � n in this example,609

which comes from the stochastic optimization models in the portfolio management.610

In this example, we let l = 0 and u = 1n in (1.2), and define the loss function f by (1.4) with
ci = 0, i = 1, . . . ,m and p = 1. The aim of this model is to find a sparse signal x? ∈ [0,1n] for
the nonlinear system max{Ax?, 0} ≈ b with some unobservable noise, where A = (AT1 , . . . , A

T
m)T

and b = (b1, . . . , bm)T . We use the relative error (rel-err), sparsity regression rate (spa-rat) and
successful rate (suc-rat) to judge the performance of the continuous relaxation model for (1.2)
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and the proposed SPG algorithm. Here, the relative error (rel-err) and sparsity regression rate
(spa-rat) of x̄ with respect to x? are defined by

rel-err :=
‖x̄− x?‖
‖x̄‖

, spa-rat :=
|A(x?) ∩ A(x̄)|

max{|A(x̄)|, |A(x?)|}
,

where |Ξ|means the cardinality of set Π with finite elements. The running regression test is regarded611

as a successful one, if the relative error is smaller then 10−2 and A(x̄) = A(x∗).612

For the given positive integers m, n and s, the data are generated by613

index = randperm(n); index = index(1:s); x?=zeros(n,1);614

x?(index)=unifrnd(0,0.9,[s,1]); x?=sign(x?)*(abs(x?)+0.1)615

A=randn(m,n); b =max{A*x?+0.01*randn(size(b)),0},616

which let x? satisfies |x?i | ≥ 0.1, ∀i ∈ A(x?).617

We use the smoothing function of f in (3.3). Let Lf = ‖A‖∞ and set ν = min{λ/Lf , 1}. Set618

x0 = 0.1 ∗ ones(n, 1), µ0 = 1 and ε = 0.01. Let the other parameters in the SPG algorithm be the619

same as in Example 4.2.620

For each group of given numbers m, n and s, we generate the codes with 100 independent trials,621

and the results displayed in Table 4.2 are the average values for these 100 independent tests. For622

each test, regarding the lower bound of the true solution x?, we run the SPG algorithm for problem623

(1.2) with λ := δLf for δ ∈ [0.001 : 0.001 : 0.1], and report the result with the smallest rel-err624

for this test. From the displayed results in Table 4.2, we see that the the proposed SPG algorithm625

can find the true solution with high possibility, and all the sparsity regression rates are more than626

90%. In particular, when m = 2000 and n = 400, the SPG algorithm can identify almost all the627

locations of A(x?) when the sparsity levels of x? are 10%, 20% and 30%. Correctly identifying the628

zero and nonzero locations of the true solution is the most important thing in solving the variable629

selection and classification problems. When m = 1000 and n = 200, the values of relative error and630

sparsity regression rates by the 100 tests are plotted in Fig. 4.2 for s = 20, 40 and 60, respectively.631

m n s Time Iter rel-err A(x̄) spa-rat suc-rat

1000 200 20 0.612 166 173e-3 19.99 100% 99%
1000 200 40 0.659 178 5.73e-3 39.96 99.7% 89%
1000 200 60 0.708 204 9.12e-3 59.94 92.7% 69%
2000 400 40 2.079 181 1.96e-3 40 100% 96%
2000 400 80 2.686 217 6.93e-3 79.89 99.7% 83%
2000 400 120 3.658 291 9.34e-3 119.91 99.3% 64%

Table 4.2: Average numerical results of the SPG algorithm for the censored regression problem

632

5. Conclusions. Problem (1.2) includes a class of constrained optimization problems with the633

objective function defined by the sum of a nonsmooth convex function and a cardinality function.634

Using the capped-`1 penalty, we propose a continuous relaxation (1.6) of problem (1.2). We prove635

that the sets of global minimizers of problems (1.2) and (1.6) are same, and local minimizers of636

(1.6) are local minimizers of (1.2) with the lower bound property. Moreover, x̄ is a local minimizer637

of (1.2) satisfying a desired lower bound property if and only if it is a lifted stationary point of638

the continuous relaxation problem (1.6). Though problem (1.6) is a nonsmooth and nonconvex639
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Fig. 4.2: The values of relative error and sparsity regression rate for the 100 tests with m = 1000
and n = 200

optimization problem, its piecewise linear penalty offers us the opportunity to solve it efficiently.640

Following this idea, we propose the SPG algorithm based on the smoothing method and the proximal641

gradient algorithm to solve problem (1.6), which can find a “good” local minimizer of (1.2) that642

satisfies the desired lower bound. The proposed algorithm is simple, whose subproblem has a643

closed form solution, and can be run efficiently. We prove the global sequence convergence without644

using the K-L condition. Another interesting result is that the local convergence rate of the SPG645

algorithm on the objective function value is o(k−τ ) with τ ∈ (0, 1
2 ) and the zero entries of a lifted646

stationary point of (1.6) can be identified in finite iterations.647
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