ANDERSON ACCELERATION FOR A CLASS OF NONSMOOTH FIXED-POINT
PROBLEMS*
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Abstract. We prove convergence of Anderson acceleration for a class of nonsmooth fixed point problems
for which the nonlinearities can be split into a smooth contractive part and a nonsmooth part which has a small
Lipschitz constant. These problems arise from compositions of completely continuous integral operators and pointwise
nonsmooth functions. We illustrate the results with two examples.
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1. Introduction. In this paper we prove convergence of Anderson acceleration [1] for a class
of nonsmooth fixed point problems.

Anderson acceleration was originally designed for integral equations and is now very common in
electronic structure computations (see [6] and many references since then). Anderson acceleration
is essentially the same as DIIS (Direct Inversion on the Iterative Subspace) [18,19,26,27], nonlinear
GMRES [2, 21,23, 32], and interface quasi-Newton [7,13,20]. It is also closely related to Pulay
mixing [25], also known as CDIIS, [10, 15, 16, 26].

Convergence analysis has been reported in the literature only recently and most of that work
assumes at least continuous differentiability of the fixed point map. There are convergence re-
sults for the linear case [30,31], the continuously differentiable case [3], the Lipschitz-continuously
differentiable case [29,30] and even smoother cases [8,24].

In this paper we assume that nonlinearities can be split into a smooth part and a nonsmooth
part with a small Lipschitz constant. The splittings we use in this paper are similar to ones used
in nonsmooth nonlinear equations [5,14,17]. In those papers the norm of the nonsmooth part was
small enough so that using the derivative of the smooth part led to a rapidly convergent Newton-like
iteration. In this paper the splitting is only used in the analysis and the algorithm does not change.
However, the classes of problems to which the methods apply are very similar.

1.1. Notation and Problem Setting. In this paper we use bold faced fonts for vectors and
operators which are finite dimensional or generic vectors and operators which can be either finite
or infinite dimensional. We will use standard fonts for operators and (in § 3) vectors which are only
defined in infinite dimensional function spaces.

The objective is to solve fixed point problems of the form

(1.1) u = G(u),
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where G is a Lipschitz continuous function define on a Banach space X. We will make the following
assumptions on G throughout this paper.

ASSUMPTION 1.1. G is a contraction with contractivity constant ¢ € (0,1) in a closed convex
set B in a Banach space X. u* is the fixed point of G in B.

The Anderson acceleration algorithm is

Anderson(m) (ug, G, m)

u; = G(UO); FO = G(uo) — Up.

for k=1,... do
Choose my, < min(m, k).
Fk = G(uk) — Ug.
Minimize || 3272, a?Fk,mkﬂ-H subject to >, a? =1.
Uil = Zj:ko ag?G(uk—Mk-&-j)'

end for

The depth m is the amount of storage needed beyond that of Anderson(0), which is simple
Picard iteration
Ug+1 = G(uk).

We call the as the coefficients.

The algorithm does not specify any norm and the theory, for the most part, is independent of
the choice of norm. Some results for Anderson(1) (see § 1.2.2) require a Hilbert space norm. In the
case of a Hilbert space norm, the optimization problem can be formulated as a linear least squares
problem [1]. For L' and L> norms in finite dimension, the optimization problem can be formulated
as a linear programming problem [30]. The examples in § 3 use the L? and the L> norms.

The first convergence results for Anderson acceleration were reported in [30]. We state Theo-
rem 1.1, one of the results from that paper, as generalized in [3], in order to compare it to the main
results in this paper.

We allow for several ways to solve the optimization problem and also for different formulations
(see § 1.2.1). Hence, following [30], we make an assumption on the optimization problem for the
coefficients and its solution.

ASSUMPTION 1.2. The solution {a?} of the optimization problem satisfies
L 0B ()] < [F ()],
2. Y ok =1, and
3. there is M, such that for all k > 0, Z;nz’“l |0z§| < M,,.

The first two parts on Assumption 1.2 simply state the optimization problem finds an objective
function value no larger than that for Picard iteration (m = 0 or afnk = 1) and that the constraints
hold. To see this write the optimization problem as

gleig o(@)

where

mp
Q= 66Rmk+1|2a§:1

Jj=0
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ANDERSON ACCLERATION 3

Let
a’ = argmingeqo(@).

Since ¢p(a*) < ¢(@) for all @ € Q, we have ¢(a*) = mingeg ¢(@) < ¢((0,0,...,1)) = [|F(ug)].

The third part is generally not a consequence of the optimization problem formulation (unless
m = 1 and || - || is a Hilbert space norm, or we add a nonnegativity constraint) and is critical in
the proof. We have never observed that the bound of the ¢! norm of the coefficients is problematic
(see [30] where we looked at this numerically).

As is standard, we denote the error u — u* by e.

THEOREM 1.1. [3,30] Let Assumptions 1.1 and 1.2 hold. Let G be continuously differentiable
m
B(p) ={ufflu—u"| <p} C B.
for some p > 0. Let ¢ < 1 be the contractivity constant from Assumption 1.1. Then if ||eg]|

is sufficiently small, the Anderson(m) iteration remains in B(p), converges to u* r-linearly with
r-factor c

. LA
(1.2) lim sup < <cg,
k—oo  \|[F(uo)]
which implies
1/k
(1.3) lim sup (”ek”> <c
k—o0 lleoll

1.2. Previous Results for Nonsmooth Nonlinearaties. While the formulation of Ander-
son acceleration does not involve derivatives, there has been very little analysis of the method for
nonsmooth G. In this section we will discuss the results for general Lipschitz contractions. Those
results, which we review in § 1.2.1 and § 1.2.2 are unsatisfactory because the estimate of the con-
vergence rate is larger than c. Theorem 1.2 is a global convergence result and the poor convergence
rate is only a problem when the iteration is far from the solution. This is the result we extend in
§2.2.

The second result in § 1.2.2 is only for Anderson(1) and imposes the strong restriction ¢ < 2—+/3.
This result is interesting for two reasons. The first is that the original form of this result in [30]
assumed differentiability, but that assumption is not necessary. Our proof in the non-differentiable
case is new, but borrows heavily from the analysis in [30]. Secondly, the proof we give motivates
the one for result in § 2.1, where we show g-linear convergence with g-factor ¢ for Anderson(1) for
a class of nonsmooth problems.

1.2.1. The EDIIS Algorithm. The EDIIS [18] algorithm adds a nonnegativity constraint
to the optimization problem. The new optimization problem is

my—1 2
Minimize ||Fy, — Z a?(Fk,mkﬂ- —Fu) ,
7=0 2
subject to
mp—1
Z a? =1la; >0
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This problem is harder to solve than the linear least squares problem one must solve for Anderson
acceleration, but one can obtain convergence from initial iterates in a larger set. Note that the so-
lution of the EDIIS optimization problem satisfies all three parts of Assumption 1.2 by construction
. -1

with M, = Z;n:ko oz? =1.

The result from [3] is

THEOREM 1.2. If G is Lipschitz continuous with Lipschitz constant ¢ € (0,1) in a convex set
B then the EDIIS iteration converges for any ug € B and

(1.4) ler | < */™+ D e]].

Moreover, if G is continuously differentiable, then the local convergence rate is no worse than that
of Picard iteration, i. e. ,

. IF (w) |\
(1.5) hlrcri}sotip (|F(uo)|) <ec

The estimate (1.4) is valid for any Lipschitz continuous contraction, but has a very pessimistic
convergence rate. Continuous differentiability was necessary for the proof of (1.5). One contribution
of this paper is to show that (1.5) holds for a class of nonsmooth problems.

1.2.2. Local Convergence for Anderson(1). The proof of Theorem 1.3, the result in this
section, is a direct extension of a proof in [28,30] (Theorem 2.4 pg 812 in [30]) of a similar result
for the differentiable case. As we said earlier, the proof in [30] used continuous differentiability,
but really did not need it. We give the proof here in detail both for completeness and to illustrate
the primary components in the new results in the paper. The convergence rate in Theorem 1.3 is
g-linear rather than r-linear. In [30] (Corollary 2.5, pg 814) smoothness is used in an important
way to obtain g-linear convergence with g-factor ¢ for all ¢ € (0,1). Theorem 2.1 in § 2.1 in this
paper extends that result to a class of nonsmooth problems.

THEOREM 1.3. Let X be a Hilbert space with scalar product (-,-). Assume that the optimization
problem is solved in the norm of X. Let G be Lipschitz continuous with Lipschitz constant ¢ < 2—/3
in a ball of radius p about a fized point u*. Then for ug sufficiently close to u*, the Anderson(1)
residuals converge q-linearly to u* with g-factor

3¢ —c?

<1
1—c¢

¢é
in the sense that for all k sufficiently large
(1.6) [F (uk41)[| < el F (ur)l],

and up, — u* r-linearly in the sense that

llex]\ "
(1.7) lim sup < > <é.
il ol

Proof. We proceed by induction and allow for a “warm start” which may have an inferior
convergence rate as EDIIS could. For example this could be the final ky + 1 iterations of a longer
EDIIS initialization phase or several Picard iterations. Assume that for 0 < j < kg that

u; € B(p) = {u[lu—u’[| < p},
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and for 0 < j < k and some ¢ < ¢ <1
(1.8) IF (uj1)]] < [|F(uy)l]-

This assumption is clearly satisfied if u; = G(ug) and kg = 0.
Note that if u € B(p), then

(1.9) (1 =alell < [F(w)]| = [[G(u) —ul| = [|G(u) - G(u") = (w—u?)[| < (1 +¢)le]|.

We now show that (1.6) holds for all k£ > k¢ if (1.8) (which is implied by (1.6)) holds for all
smaller k. The optimization problem can be solved in closed form for m = 1. We have

(1.10) Ui = (1— Oék)G(llk) + osz(uk_l),
where

o = Fur), Fuy) — Fug_1))
IF (ug) — F(up—1)]?

We estimate o using the induction hypothesis.

[F (ur) |l
¥ (ug)—F(uk-1)]l

IN

o]
(1.11)

AP Dl
T olF ] = %= T2

Our first task is to show that if |leo|| < p is sufficiently small then w41 € B(p). The formula
(1.10) implies that

ert1 = (1 - a")(G(up) — G(u") + a*(G(uy_1) — G(u))
and hence
lexs1ll < c(1+a)llex + caller—1ll.
The induction hypothesis and (1.9) imply that, for 0 < j <k,

| (u;)| & #(1+c)
< < < 7
legll < 20 < [P (uo)]l < ——

lleoll-

Hence,
lersill < c(l+a)llexl + callex—il

c(1+ @) T |lgg || 4 ca T4t gy |

1+c
= F @+ (L4 a)2) el
Since ¢, ¢ < 1, we have & + (1 + @)é < (1 +2a) and cé*~' < 1. Hence

(1+¢)(1 + 2a)

P ol <

lextall <

if
(1—c)p

leoll < T3 o1 138
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which we will assume throughout.
Now we obtain the asymptotic result (1.6). Write

F(ugt1) = G(ugq1) — ugy1 = Ag + By,

where

A = G(uk+1) — G((l — ozk)uk + akuk_l)
and
(1.12) B = G((1 — &®)ug + aFup_y) — upys.

We next estimate || Ag|| and || B|| separately.
The estimation for || A|| is straightforward, as it will be throughout the paper.

[l = 1G k1) = G((1 = a*)uy + aFuyy) |

k

IN

cllupsr1 — (1 — a®)ug — oFuy_q ||
(1.13)

cll(1 = a*)(G(ug) — up) + a*(G(up—1) — wp)||

= c]|(1 = a*)F(ug) + o"F(up—1) || < el F(u)]l,

where the last inequality follows from optimality of the coeflicients.

The estimate for || By|| is where differentiability was used, but not really needed, in [3,30]. The
analysis in those papers used the fundamental theorem of calculus to estimate the left side of (1.14)
in terms of the errors and, in the case of [30] the Lipschitz constant of the Jacobian. The more
recent paper [3] used the modulus of continuity of the Jacobian and we employ similar logic in the

proof of Theorem 2.1 (see equation (2.5)).
We begin by using (1.12) and (1.10) to obtain

By =G((1-a*)u, +afup_) — (1 - a¥)G(ug) — a*G(ug_1)
(1.14)
= G(uy + a*dy) — G(uy) + o (G(ug) — G(uy-1)).

Using contractivity, we obtain
1Bl < 2¢la®| |6l

where 0, = u,_1 — u;. The next step is to estimate the product |o*|||d]|.
The difference in residuals is

F(uk) — F(uk_l) = G(uk) - G(uk_l) + 0.
Using contractivity ||G(ug) — G(uk—1)| < ¢||0k|| we obtain
[F(ux) = F(ug—1)[ = (1 =) [|dk]-
Hence

(1.15) [0kl < [[F(ug) = Flag-1)[[/(1 = ¢).
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Finally, we use the formula for o* to obtain

aF LACHI JIF ()| )||
(1.16) | [l < TF ()~ Flu )”HékH < e
So
IF (1)l < cf|F(ug)| + L('z’“)“
= 3= P(uy)| = &|[F(up)]- 0

This completes the proof.

The important point for this paper in the proof of Theorem 1.3 is the decomposition of F(ugy1)
into Ay and Bj. In the results in § 2 we use the same decomposition and, as it was in the proof
of Theorem 1.3, the estimate of ||Ax|| only uses the contractivity of G. The estimate for || By,
however, is new and uses the structure of the nonsmoothness, which we describe in the next section.

2. Splitting-Based Results for Nonsmooth Problems. The results in this section depend
on Assumption 2.1, which states that G can be locally split into smooth (Gg) and nonsmooth (G )
parts, with the nonsmooth part having a small Lipschitz constant. The motivation for this is a class
of nonsmooth compact fixed point problems, which we fully describe in § 3. We will also assume
that Assumptions 1.1 and (except for the Hilbert space case with m = 1) Assumptions 1.2 hold.

ASSUMPTION 2.1. There is p such that B(p) C B. There are nonincreasing nonnegative func-
tions o and w defined on (0,1) such that for any 0 < p <p
1. 1imt_>0 W(t) = O,
2. hmt_m U(t) = O,
3. G=G{+GY,
4. G% is uniformly (in p) continuously differentiable in the sense that

I(GS)" () = (G5)' (V)] < w(llu—vI])

for allu,v € B(p), and
5. GR; is Lipschitz continuous in B(p) with Lipschitz constant o(p).

As we said in the introduction, the splitting is only exploited in the analysis. The algorithm
is unchanged. The construction in this paper is different from the one used in nonlinear equations
[5,14,17] in that we need the nonsmooth part to have a small Lipschitz constant, not a small norm.
The examples in § 3 are compositions of nonsmooth substitution operators and integral operators
and fit nicely with Assumption 2.1.

As was the case in [30], we are able to prove g-linear convergence of the residual norms only
for m = 1. We obtain r-linear convergence for m > 1.

2.1. Anderson(1). In this section we extend Corollary 2.5 from [30] (pg 814). That result was
from the proof of Theorem 2.4 (pg 812) in that paper. We extended that result to the nonsmooth
case in Theorem 1.3 in § 1.2.2 in the present paper.

THEOREM 2.1. Let X be a Hilbert space with scalar product (-,-). Assume that the optimization
problem is solved in the norm of X. Let Assumptions 1.1 and 2.1 hold. Then for ug sufficiently
close to u*, the Anderson(1) residuals converge g-linearly to u* with g-factor ¢ in the sense that

- [[F ()
(2.1) limsup —————— <
koo [[F(up)l]

This manuscript is for review purposes only.



223 Proof. As in the proof of Theorem 1.3 we allow for a warm start and assume that (1.8) holds
224 for some p < p, ¢ < 1, and all 0 < j < kg. Most of the analysis we need in this proof can be taken
225 directly from the proof of Theorem 1.3 or Corollary 2.5 from [30].

226 We show that if (1.8) holds for all 0 < j < k, with k > kg, then

227 [F (1) < 1F(ae) (e + ex),

228 where ¢ — 0 as k — oo. This will imply that (2.1) holds. Our proof will give an explict formula
229 for ey.

230 We begin by finding pj so that

231 (2.2) uy, + ta*, € B(py/2) and uy, + 6, € B(pi/2)

232 for all ¢t € [0, 1]. This will allow us to use the splitting in our estimate of ||F(uy11)]|.
233 Using (1.9) and (1.8) we see that for j = k — 1, k,

231 (2.3) lles |l < IF(up)ll/ (1~ ¢) < @F (o)l /(1 = ¢) < &H|[F(uo)]l/(1 —c).

235 Therefore, for all ¢ € [0,1]
llex + ookl < llexll + alller] + ller—1l)
236 (2.4)
< &1+ 2a)|[F(uo)|l/(1 —¢).

237 We simplify the notation for the splitting by writing Gs = G and Gy = G4}, where

258 pr = 285711+ 28) [P (w)|| /(1 — o).

239 With this choice, (2.4) implies (2.2).

240 We split F(ugy1) into three parts

241 F(uk+1) = G(uk+1) — U411 = A+ Cp + Dy..

242 Here

243 A = G(uk+1) — G((l - O(k)uk + O(kuk_l).

244 We use (1.14) to split By, = Cy + Dy, where

245 Cr = Gg(ur + Oék(sk) — Gs(uk) + ak(Gs(uk) — Gs(ukfl))
246 and

247 Dy = GN(uk + akék) — GN(uk) —+ ak(GN(uk) — GN(uk_l)).
248 The estimate for ||Ag|| is unchanged

249 [AR[] < e[l F (ug)]-

250 The estimate for |Cy|| is done exactly the same way as in [30] or [3]. We use differentiability

251 of Gg to get the estimate (see equation (2.27), pg 813, in [30])

1
252 (2.5) 1CkN < || ||6k |l / |G (ug + tagdy) — G(ug + tdy)|| dt.
0
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We invoke Assumption 2.1 and the estimates (2.2), (2.3), and (1.16) to obtain

where

Finally we estimate || Dy]|, which is the new part of the analysis. We have, using (1.16)

Hence,

1D |

ICkll <l [0k lw (|1 — au k)

< [P (uy) || 4

1—c

& =2(1+ @)@ |F(ug) || /(1 — o).

< |Gy (ug + a®6;) — Gy (ug)| + [oF]|Gn(ur) — Gy (ur—1))|l

< 20 (pi) o |[|6k]| < 20 (pi) [F (u) ]I/ (1 = ¢).

IF (g )| < F(up)ll(c + (@(Ek) +20(px)) /(1 = ©)).

This will complete the proof with

er = (W(&k) +20(pr))/(1 = ©).

|

2.2. The Case m > 1. In this section we prove a nonsmooth analog of Theorem 1.2. As was
the case in § 2.1, we split G(ug+1) and analyze the parts separately. Many parts of the proof are
taken from the proof of Theorem 1.2 in [3] and we will simply refer to the relevant pages in [3] for
that material rather than copy the details.

The main result is Theorem 2.2.

THEOREM 2.2. Let Assumptions 1.1, 2.1, and 1.2 hold. Then if ||eg|| is sufficiently small the
Anderson(m) iterations converge and (1.5) holds.

Proof. We will allow for a warm start and assume that (1.8) holds for 0 < j < k, with k& > k.
As before, this assumption is clearly satisfied if kg = 0 and u; = G(up), a cold start. We assume
that u; € B(p) for 0 < j <k.

Let ¢ € (¢,1) be given. We will show that

(2.6)

. ||F<uk>||)”’“ .
lim sup ( <c
k—o0 ”F(UO)H

by showing that there is L such that

(2.7)

1 (ug)|| < Lé"|[F (uo)l,

which implies (2.6) since limy_,o, L'/¥ = 1. This will complete the proof of (1.5) as ¢ € (¢, 1) is

arbitrary.

We may, without loss of generality, assume that ¢ € (¢, 1), where ¢ is the convergence rate from
(1.8). The estimate (2.7) holds for k < k¢ if we use L = (¢/¢)™, which will begin an induction on

k.

We assume that (2.7) holds for k and all j < k. We also assume that

(2.8)

pen(1— 0)
LM,(1+¢)’
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284 where M, is the bound from Assumption 1.2.

285 First note that (2.7) will imply that u, € B(p) because ug € B(p) and (2.8) implies that
-0
24)(j < . < .
8 HeOH = L(l—i—c)
287 We use the formula for the Anderson iteration
mg
288 Up+1 = Za;cG(uk*mk‘Fj)
=0

289 to split F(ug4+1). We have, following [3],

F(upt1) = G(pg1) — W
290
= G(ur1) - G(ZJY, afug ) + G( i afug ) — Mg

291 We begin with the usual splitting F(ug41) = Ay + By where

myg
292 Ak = G(uk+1) — G(Z Oz;?llk,karj)

3=0
203 and .

Br = G(X]% ol ts) — Ui
294
= G( ;n:kb a;?uk—mk-&-j) - ;n:ko Q?G(uk—mk-i-j)-

295 The proof that
296 (2.9) 1AR] < el F(up)]| < Lee® | F(uo)|

297 carries over unchanged from (1.13) in this paper or from equation (2.15) on page A372 of [3].
298 Note that (2.7) and (2.8) imply that

299 u; € B(pg) for j =k —my,.... k+1,
300 and
mi
301 Wy = Za?uk,mkﬂ- € B(pg)-
7=0
302  Here,
303 (2.10) pr = LMo é" ™| F(ug)]|/(1 — ¢) < Mué* "™L(1 + ¢)|leol|/(1 — ¢).
304 Equation (2.8) implies that pj < p.
305 This allows us to split By as we did in the Anderson(1) case.
306 B = Cy + Dy,

This manuscript is for review purposes only.
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307 where
mp M
308 Cy = GS(Z afuk—mkﬂ‘) - Z a_’;GS(uk—mk"!‘j)
=0 =0
309 and
M my
310 Dy = GN(Z a?uk—mk+j) - Z a?GN(uk—mk+j)'
=0 j=0
311 The estimate for ||Cy|| uses exactly the same analysis as in [3] (pages A372-A374). We obtain
k—m 2M§UJ k ~
" 4l < 20 < (202 ) L) Plwo)| < St L ).
313 Reduce ||eg| if necessary so that
2MZw(pr)
314 (2.11 = —c)/2.
(2.11) et < (-
315 Finally, write
mp mpg
316 Dy, = (GN () afugm,+s) — Gr(u) = (O af Gy (k—m,+5) — Gy (u”))
=0 i=0
317 to obtain
1Dkl < 20(pk) Mo maxo<j<my, [|€h—mi+
318 (2.12) < % maxo<j<my, ||F(Wk—mj 1)l
< 2Lt Le*|[F (wo)l-

319 Reduce ||eg]| if necessary to make

QU(pk)Ma N
320 (2.13 —— = < (¢—c)/2.
(213) o RCEY
321 This completes the proof since (2.11) and (2.13) imply that
322 [F (s )l < AR+ ICkll + 1Dkl < LT[ F (uo)]|- o
323 2.3. Approximations. If X is finite dimensional, as it will be for discretizations of problems

324 in function space, then part 2 of Assumption 2.1 may not hold. However, as we illustrate in the
325 examples in § 3, we will still have a small (but generally non-zero) limsup o(t). We replace part 2
326 of Assumption 2.1 with

327 (2.14) limsupo(t) =7.
t—0

328 For any ¢ € (0,1) and 7 sufficiently small, we will still obtain r-linear convergence with r-factor
320 ¢+ @9, We summarize the results for Anderson(m) in the following theorem.

This manuscript is for review purposes only.



330

331

332
333

335
336
337
338
339

340
341
342

343

=

w

ot

~

w W W
[ SN SN B S

oo

12

THEOREM 2.3. Let Assumptions 1.1, 1.2 and 2.1 hold with part 2 replaced by (2.14) and

(2.15) 7 < min((l — )V, ((18—AZJ”>1/(1—q))

for some q € (0,1). Then if ||eo| is sufficiently small then the Anderson(m) iterations converge
and

. P\
(2.16) lim sup ( <c+7? <1
koo \ [[F(uo)]

Proof. We will reduce @ in the course of the proof. Set ¢ = ¢+ 7% < 1. We can then use the
proof of Theorem 2.2 with very little change. We let L = (¢/¢)™, which will play the role of L from
the proof of Theorem 2.2.

We decompose the residual

F(upy1) = A + Ci + Dy,

and use the estimates (2.9) and (2.11) without change (reducing ||eg|| as needed).
The only difference is the estimate for Dy. Let ||eg]| be small enough so that o(t) < 27 for all
t < |leo]|. We have, as before,

IDAl < e E[F(uo)]
< M Lot ().
Then (2.15) implies that
A5 M,

This estimate completes the proof exactly as it did in the proof of Theorem 2.2.

The result for Anderson(1) is similar and we omit the proof, which is essentially the same as
that for Theorem 2.3.

THEOREM 2.4. Let X be a Hilbert space with scalar product (-,-). Assume that the optimization
problem is solved in the norm of X. Let Assumptions 1.1 and 2.1 hold with part 2 replaced by (2.14).
Let g € (0,1) be given. Then if & € (0, (1 — ¢)'/9) is sufficiently small and g is sufficiently close
to u*, the Anderson(1) residuals converge g-linearly to u* with g-factor ¢ +379 in the sense that

F
(2.17) lim sup LLICTEEV |

<c+7f.
koo |[F(ug)ll

3. Examples. Our examples are compositions of nonsmooth substitution operators and non-
linear Hammerstein integral operators.

We let C' = C([0,1]) be the space of continuous functions on [0, 1] with the usual L>° norm and
L? = L?([0,1]). We have two examples. The one in § 3.1 is in L? and the other, in § 3.2 is in C.

We let g € C([0,1] x [0,1]) and let G be the integral operator given by

1
G(u)(x) = / oz, y)uly) dy.
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In all the examples in this paper g is the Greens function for the negative Laplacian in one space
dimension with zero boundary conditions. We discretize with the standard second-order central
difference scheme and realize the product of G with a vector via a tridiagonal solver. We used a
grid of N = 100 interior grid points and the composite trapezoid rule for integration.
The important properties of G are that
e G is a bounded operator on L? and
e G is a bounded operator from L? to C

1G(w)lloo < llgllsclull2-

The maps in this section are compositions of nonsmooth substitution operators and nonlinear
integral operators of the form

1
(3.1) Gf(u)(x)=g(f(U))(ff)=/o 9(x,y) f(u(y)) dy.

G maps L? to C if f(£) = O(|¢]) for large |¢| and is Fréchet differentiable if f’ is bounded. In that
case G’ (u) is the linear integral operator defined by

(Gr(w)w)(x) :/0 9(x, y)f' (u(y))w(y) dy.

G is a compact linear operator from L? to C.

Since f’ is bounded, f is Lipschitz continuous with Lipschitz constant L. This implies that
G is a Lipschitz continuous map from L? to C. In fact, for u,v € L? and z € [0, 1], we may apply
the Cauchy-Schwarz inequality to obtain

|G (u) (@) — Gr () (@) < llglloeLys fy luly) —v(y)| dy
(3.2)

< llglloc Ly llu = vlf2-

After integration of (3.2) we obtain
1Gr(u) = Gr(v)]loo < llgllooLllu = vll2-

We consider nonsmooth substitution maps ® that are based on point evaluation. Examples
include
®(u)(z) = max(u(z) + b(x), 0)
where b € C' is given. In general we assume that

ASSUMPTION 3.1. There is a real valued function 8 and b € C such that
(3.3) P (u)(x) = Bu(z) + b(x))

and B is Lipschitz continuous and differentiable except for finitely many points.

In our examples the function S will be differentiable except at one point.
If 3 is differentiable, then ® is defined and Fréchet differentiable on both C[0,1] and L2?[0, 1] if

* [B()] = O([¢]) for [¢] large and
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e ' is bounded.
In that case the Fréchet derivative ®'(u) of ® at u is the operator of multiplication by 5'(u + b)
1. e.
o' (u)w(z) = B'(u(z) + b(z))w(w).
In the examples § is nondifferentiable only at w = 0 and is uniformly Lipschitz continuously
differentiable away from w = 0. We formalize this as

ASSUMPTION 3.2. f3 is Lipschitz continuous with Lipschitz constant Lg. There is vz > 0 such
that if u and v have the same sign, then

18" (u) = B'(v)| < vplu —v|.
For example, if f(u) = |u| then v = 0.
3.1. A Class of Integral Operators. We consider fixed point maps of the form
(3.4) u=G(u)=?(Gr(u)).

We will work in L? in this example. We use the fact that G; maps L? to C in the analysis in a
significant way.

We will assume that f is a real-valued Lipschitz continuously differentiable function and that
f’ has Lipschitz constant ;.

We assume that Assumption 1.1 holds and that

B(p) = {ulu— w2 <7} C B.
If p <pand u € B(p) then (3.2) implies that
1Gr(w) = Gr(w)lloo < llgllocLypllu = u™lla < [lgllocLsp = €(p)-

We can now construct the splitting. This will motivate the assumptions of our convergence
result. Let
Qp ={z[|Gr(u")(z) + b(z)| < 26(p)}

and let x, be the characteristic function of 2.
We define

G (u)(x) = Xp(2)G(u)(2)
and
G%(u)(x) = G(u)(z) — GR(u)(z) = (1 — x,(2))G(u)(2).

Suppose u € B(p). Then Gr(u)(x)+ b(z) has the same sign as Gr(u*)(z) + b(x) for all x € QfF,
the complement of Q,. This implies that G is differentiable at v and for all w € IL? and 2 ¢ Q,,

(G5) (Ww(x) = B'(Gr(u)(z) + b(2))(GS) (w)w)(x)
= 3/(G1(w)(x) +b(x)) Jy 9(x.9) ' (u())w(y) dy.
For z € Q,, (G%)' (u)w(x) = 0. Moreover, if v € B>(p) then

(3.6) I(GS) (u) = (GS) (V)2 < ¥8llgllscvrlle — vll2-

(3.5)
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As for the nonsmooth part, note that for x € [0,1] we may use (3.2) to obain
GR (u)(2) = GR(0)(@)] < X,(2)|2(G1(u)(2)) — 2(Gr(v)(2))]
< Xp(@)Lgllglloo Lsllu = vll2.
Hence, using the Cauchy-Schwarz inequality again
IG% (1) = GR(v)ll2 < lglloo Ly Lay/ 1(€)[[u = v]l2,

because the L? norm of the characteristic function of €, is \/u(f2,) where x is Lebesque measure.

The critical assumption is the splitting method in [14,17] is that the support of nonsmoothness
for w* is small. In the setting of this paper, we assume that

T 1u(€2,) = 0.

So we have the splitting with

o(p) = llgllecLsLpr/ () and w(p) = vllgllecvsp-

3.1.1. Norms in Finite Dimension. In the computations we must, of course, approximate
the integrals by quadratures. We use the composite trapezoid rule. A more subtle point is that we
must scale the norm so that discretizations of constant functions have the same norm independently
of N. Hence we use the discrete £2 norm

and ¢! norm
XN
Il = 5 > gl
j=1

Using the scaled norm does not matter in Anderson acceleration because the scaling is irrelevant
in the optimization problem and cancels in the relative residuals. However, it does matter when
computing the Lipschitz constant. In the example in § 3.1.2 G(u*)(z)+b(x) = 0 at only two points.
For the approximate finite dimensional problem, this means that the set €, for p sufficently small,
contains at most two grid points. The correct computation of 1(€2,) is to use the discrete L' norm
and therefore, to apply Theorem 2.3 to this example we would use

o< Lng\/Q/N.
3.1.2. Obstacle Bratu Problem. The equation in this section is an integral equations for-

mulation of the obstacle Bratu problem [22],

(3.7 u = min(AG(e"), a).
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451 Here « is a given function of x. In the example here A = 5 and
152 a(r) =1+ sin(2mz)/2.
453 The right side of Figure 3.1 is a plot of the solution and the upper bound. One can see that the
454 AG(e") is equal to «v at only two points. The left of the plot is the iteration history. We have tuned
155 A to make Picard iteration perform poorly. The Anderson(m) iterations for m = 1,2, 3 perform
156 equally well and significantly better than Picard iteration.
Fig. 3.1: Example 1: Obstacle Bratu Problem
10°& . 15
Anderson(1)
N —==—=Anderson(2)
N —e— Anderson(3)
102 ¢ D) RN — = Picard
\ \
A N
1N\ N 1
= 4 N
= 10 \ v
= N\
- N
= 10%} \ R
\ * \ 051
i N
108} R A
i
i
10*10 L . . . 0 . . L L
0 5 10 15 20 25 0 02 04 06 08 1
iterations
457 We can quantify the observations in Figure 3.1 by estimating the r-factors for the four methods.
458 As we did in [3] we estimate the r-factory by

1P (ug) |\
159 (3.8) (IIF(UO)H)

460

where k is the final iteration index. k varies over the method-problem combinations. In Table 3.1
461

we see that the estimate rates are consistent with Figure 3.1.
Table 3.1: Convergence rates for the Bratu problem.

Picard Anderson 1 Anderson 2 Anderson 3
4.27e-01 1.42e-01 1.14e-01 1.54e-01

462 3.2. Compositions of The Form G = G(®). In this section we consider problems of the
463 form

164 (3.9)
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We can now construct the splitting. We do this via an example which readily extends to the
general case. We will solve the optimization problem in the L°° norm for this example.
For this case we let

Q, = {o|u"(z) + b(x)] < 20}.
We define
G (u)(z) = / o2, 1)@ (u)(y) dy = / oz, 9)B(uly) +b(y)) dy

3 Qp

and

G2 (u) = Gl(u) — Gly(u) = /Q 9(z,9)B(uly) + b(y)) dy

o
where ¢ is the complement of €2, in [0, 1]. Suppose u € B> (p) then u(z) + b(z) has the same sign
as u*(x) + b(x) for all z € QF. This implies that G§ is differentiable at u and for all w € C,

(3.10) (G5 (uwyw = / o, 1) (u(y) + b(y))w(y) dy.

Q

Moreover, if v € B>(p/2) then
(3.11) (GS) (u) = (GS) (W)lleo < lgllscysllu — o

As for the nonsmooth part, note that

G, (u) — Gf(v) = / o2, 5)(Bu(y) + b(y)) — B(v(y) + b(y))) dy-

2,

So, by the Holder inequality
IGR () =GR < llglleoLs Jq, [uly) — v(y)l dy
< lglloc Lpn(€2p) [ — vl oo

The critical assumption for the splitting method in [14,17] is that the support of nonsmoothness
for v* is small. In the setting for this paper, we assume that

lim p(92,) = 0.

p—0

We have constructed the splitting with

(p) = llglloc Lpp(€2y) and w(t) = [|gllocvst-

The comments in § 3.1.1 are relevant here as well. In this case we need the discrete measure of
Q, which converges to 0 as N — oo. In the example in § 3.2 this set contains only one point, so

1
o < LfLﬂN.
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3.2.1. Nonsmooth Dirichelet Probem. The example, taken from [4] is
(3.12) —v"” = Amax(v — ,0), v(0) = vg,v(1) = v1.

In this problem the nonsmoothness is in the forcing term.

We convert (3.12) to a compact fixed point problem by setting v = u + ¢, where ¢(x) =
v1x + (1 — x)vg, letting G be the integral operator which inverts —d?/dxz? with zero boundary
conditions, and then multiplying the equation by G.

We obtain a nonlinear compact fixed point problem

u= G(u) = \G(max(u + ¢ — «,0)).

In the numerical experiment we use central differences with 100 interior grid points, and solve the
problem with Anderson(m) for m =0, 1,2, 3.

In the computation we used vg = 1, v1 = .5, A = 11.65, and a = .8. The value of A\ was tuned
to make the contractivity constant large so that Picard iteration performed very poorly.

We report two sets of results one for L? optimization (Figure 3.2) and the other (Figure 3.3) for
L optimization. we plot iteration histories and graphs of the solution v, and —v”" = Amax(v—c;, 0).
The plot of —v” clearly shows that v” is nonsmooth at the solution at only one point.

The L optimization problem can be expressed as a linear programming problem [9]. We solved
that with the cvx Matlab software [11,12]. We used the SeDuMi solver and set the precision in
cvx to high. Solving the optimization problem in L? is much easier, requiring only the solution
of a linear least squares problem. It is temping to do the optimization problem in L? even though
the theory requires an L*° optimization. In Figure 3.2 we do exactly that. On the right side of
Figure 3.2 we plot graphs of v, and —v” = Amax(v — «,0). The plot of —v” clearly shows that
v is nonsmooth at the solution at only one point. On the left we plot the results using an L2
optimization rather than the L°° optimization that the theory requires.

In Figure 3.3 we use the L> norm for the optimization problem for the coefficients and show
on the left the residual norms in the L? norm to best compare two approaches. On the right we
show the residual L*° norms. The figures show that the results are very similar and that the norm
used for the optimization makes little difference.

We use (3.8) to estimate the r-factors for both L? and L° optimization. The estimates in
Table 3.2 are consistent with the results in Figures 3.2 and 3.3. In particular, we see that Picard
is slowly convergent in this example and that there is little difference between the two norms used
for optimization.

Table 3.2: Convergence rates for the Dirichlet problem.

Picard Anderson 1  Anderson 2 Anderson 3
L? optimization

8.91e-01  2.34e-01 1.70e-01 1.56e-01
L optimization

8.91e-01 2.01e-01 1.77e-01 1.52e-01
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Fig. 3.2: Example 2: Nonsmooth Forcing Term, L? optimization
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Fig. 3.3: Example 2: Nonsmooth Forcing Term, L> optimization
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4. Conclusions. In this paper we prove convergence of Anderson acceleration for a class of
nonsmooth fixed point problems. Compositions of nonsmooth substitution operators and integral
operators are examples of such problems. We illustrate the theoretical results with examples.
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