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1. Introduction. In this paper we prove convergence of Anderson acceleration [1] for a class11

of nonsmooth fixed point problems.12

Anderson acceleration was originally designed for integral equations and is now very common in13

electronic structure computations (see [6] and many references since then). Anderson acceleration14

is essentially the same as DIIS (Direct Inversion on the Iterative Subspace) [18,19,26,27], nonlinear15

GMRES [2, 21, 23, 32], and interface quasi-Newton [7, 13, 20]. It is also closely related to Pulay16

mixing [25], also known as CDIIS, [10,15,16,26].17

Convergence analysis has been reported in the literature only recently and most of that work18

assumes at least continuous differentiability of the fixed point map. There are convergence re-19

sults for the linear case [30, 31], the continuously differentiable case [3], the Lipschitz-continuously20

differentiable case [29,30] and even smoother cases [8, 24].21

In this paper we assume that nonlinearities can be split into a smooth part and a nonsmooth22

part with a small Lipschitz constant. The splittings we use in this paper are similar to ones used23

in nonsmooth nonlinear equations [5, 14, 17]. In those papers the norm of the nonsmooth part was24

small enough so that using the derivative of the smooth part led to a rapidly convergent Newton-like25

iteration. In this paper the splitting is only used in the analysis and the algorithm does not change.26

However, the classes of problems to which the methods apply are very similar.27

1.1. Notation and Problem Setting. In this paper we use bold faced fonts for vectors and28

operators which are finite dimensional or generic vectors and operators which can be either finite29

or infinite dimensional. We will use standard fonts for operators and (in § 3) vectors which are only30

defined in infinite dimensional function spaces.31

The objective is to solve fixed point problems of the form32

(1.1) u = G(u),33
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2

where G is a Lipschitz continuous function define on a Banach space X. We will make the following34

assumptions on G throughout this paper.35

Assumption 1.1. G is a contraction with contractivity constant c ∈ (0, 1) in a closed convex36

set B in a Banach space X. u∗ is the fixed point of G in B.37

The Anderson acceleration algorithm is

Anderson(m)(u0,G,m)

u1 = G(u0); F0 = G(u0)− u0.
for k = 1, . . . do

Choose mk ≤ min(m, k).
Fk = G(uk)− uk.
Minimize ‖

∑mk
j=0 α

k
jFk−mk+j‖ subject to

∑mk
j=0 α

k
j = 1.

uk+1 =
∑mk
j=0 α

k
jG(uk−mk+j).

end for

38

The depth m is the amount of storage needed beyond that of Anderson(0), which is simple39

Picard iteration40

uk+1 = G(uk).41

We call the αs the coefficients.42

The algorithm does not specify any norm and the theory, for the most part, is independent of43

the choice of norm. Some results for Anderson(1) (see § 1.2.2) require a Hilbert space norm. In the44

case of a Hilbert space norm, the optimization problem can be formulated as a linear least squares45

problem [1]. For L1 and L∞ norms in finite dimension, the optimization problem can be formulated46

as a linear programming problem [30]. The examples in § 3 use the L2 and the L∞ norms.47

The first convergence results for Anderson acceleration were reported in [30]. We state Theo-48

rem 1.1, one of the results from that paper, as generalized in [3], in order to compare it to the main49

results in this paper.50

We allow for several ways to solve the optimization problem and also for different formulations51

(see § 1.2.1). Hence, following [30], we make an assumption on the optimization problem for the52

coefficients and its solution.53

Assumption 1.2. The solution {αkj } of the optimization problem satisfies54

1. ‖
∑mk
j=0 α

k
jF(uk−mk+j)‖ ≤ ‖F(uk)‖,55

2.
∑mk
j=0 α

k
j = 1, and56

3. there is Mα such that for all k ≥ 0,
∑mk
j=1 |αkj | ≤Mα.57

The first two parts on Assumption 1.2 simply state the optimization problem finds an objective58

function value no larger than that for Picard iteration (m = 0 or αkmk = 1) and that the constraints59

hold. To see this write the optimization problem as60

min
α∈Q

φ(α)61

where62

Q =

α ∈ Rmk+1 |
mk∑
j=0

αkj = 1

 .63
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Let64

α∗ = argminα∈Qφ(α).65

Since φ(ᾱ∗) ≤ φ(α) for all α ∈ Q, we have φ(ᾱ∗) = minα∈Q φ(α) ≤ φ((0, 0, . . . , 1)) = ‖F(uk)‖.66

The third part is generally not a consequence of the optimization problem formulation (unless67

m = 1 and ‖ · ‖ is a Hilbert space norm, or we add a nonnegativity constraint) and is critical in68

the proof. We have never observed that the bound of the `1 norm of the coefficients is problematic69

(see [30] where we looked at this numerically).70

As is standard, we denote the error u− u∗ by e.71

Theorem 1.1. [3,30] Let Assumptions 1.1 and 1.2 hold. Let G be continuously differentiable72

in73

B(ρ) = {u | ‖u− u∗‖ < ρ} ⊂ B.74

for some ρ > 0. Let c < 1 be the contractivity constant from Assumption 1.1. Then if ‖e0‖75

is sufficiently small, the Anderson(m) iteration remains in B(ρ), converges to u∗ r-linearly with76

r-factor c77

(1.2) lim sup
k→∞

(
‖F(uk)‖
‖F(u0)‖

)1/k

≤ c,78

which implies79

(1.3) lim sup
k→∞

(
‖ek‖
‖e0‖

)1/k

≤ c.80

1.2. Previous Results for Nonsmooth Nonlinearaties. While the formulation of Ander-81

son acceleration does not involve derivatives, there has been very little analysis of the method for82

nonsmooth G. In this section we will discuss the results for general Lipschitz contractions. Those83

results, which we review in § 1.2.1 and § 1.2.2 are unsatisfactory because the estimate of the con-84

vergence rate is larger than c. Theorem 1.2 is a global convergence result and the poor convergence85

rate is only a problem when the iteration is far from the solution. This is the result we extend in86

§ 2.2.87

The second result in § 1.2.2 is only for Anderson(1) and imposes the strong restriction c < 2−
√

3.88

This result is interesting for two reasons. The first is that the original form of this result in [30]89

assumed differentiability, but that assumption is not necessary. Our proof in the non-differentiable90

case is new, but borrows heavily from the analysis in [30]. Secondly, the proof we give motivates91

the one for result in § 2.1, where we show q-linear convergence with q-factor c for Anderson(1) for92

a class of nonsmooth problems.93

1.2.1. The EDIIS Algorithm. The EDIIS [18] algorithm adds a nonnegativity constraint94

to the optimization problem. The new optimization problem is95

Minimize

∥∥∥∥Fk − mk−1∑
j=0

αkj (Fk−mk+j − Fk)

∥∥∥∥2

2

,96

subject to97
mk−1∑
j=0

αkj = 1, αkj ≥ 0.98
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This problem is harder to solve than the linear least squares problem one must solve for Anderson99

acceleration, but one can obtain convergence from initial iterates in a larger set. Note that the so-100

lution of the EDIIS optimization problem satisfies all three parts of Assumption 1.2 by construction101

with Mα =
∑mk−1
j=0 αkj = 1.102

The result from [3] is103

Theorem 1.2. If G is Lipschitz continuous with Lipschitz constant c ∈ (0, 1) in a convex set104

B then the EDIIS iteration converges for any u0 ∈ B and105

(1.4) ‖ek‖ ≤ ck/(m+1)‖e0‖.106

Moreover, if G is continuously differentiable, then the local convergence rate is no worse than that107

of Picard iteration, i. e. ,108

(1.5) lim sup
k→∞

(
‖F(uk)‖
‖F(u0)‖

)1/k

≤ c.109

The estimate (1.4) is valid for any Lipschitz continuous contraction, but has a very pessimistic110

convergence rate. Continuous differentiability was necessary for the proof of (1.5). One contribution111

of this paper is to show that (1.5) holds for a class of nonsmooth problems.112

1.2.2. Local Convergence for Anderson(1). The proof of Theorem 1.3, the result in this113

section, is a direct extension of a proof in [28, 30] (Theorem 2.4 pg 812 in [30]) of a similar result114

for the differentiable case. As we said earlier, the proof in [30] used continuous differentiability,115

but really did not need it. We give the proof here in detail both for completeness and to illustrate116

the primary components in the new results in the paper. The convergence rate in Theorem 1.3 is117

q-linear rather than r-linear. In [30] (Corollary 2.5, pg 814) smoothness is used in an important118

way to obtain q-linear convergence with q-factor c for all c ∈ (0, 1). Theorem 2.1 in § 2.1 in this119

paper extends that result to a class of nonsmooth problems.120

Theorem 1.3. Let X be a Hilbert space with scalar product (·, ·). Assume that the optimization121

problem is solved in the norm of X. Let G be Lipschitz continuous with Lipschitz constant c < 2−
√

3122

in a ball of radius ρ about a fixed point u∗. Then for u0 sufficiently close to u∗, the Anderson(1)123

residuals converge q-linearly to u∗ with q-factor124

ĉ ≡ 3c− c2

1− c
< 1125

in the sense that for all k sufficiently large126

(1.6) ‖F (uk+1)‖ ≤ ĉ‖F (uk)‖,127

and uk → u∗ r-linearly in the sense that128

(1.7) lim sup
k→∞

(
‖ek‖
‖e0‖

)1/k

≤ ĉ.129

Proof. We proceed by induction and allow for a “warm start” which may have an inferior130

convergence rate as EDIIS could. For example this could be the final k0 + 1 iterations of a longer131

EDIIS initialization phase or several Picard iterations. Assume that for 0 ≤ j ≤ k0 that132

uj ∈ B(ρ) ≡ {u | ‖u− u∗‖ ≤ ρ},133
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and for 0 ≤ j < k and some ĉ ≤ c̃ < 1134

(1.8) ‖F(uj+1)‖ ≤ c̃‖F(uj)‖.135

This assumption is clearly satisfied if u1 = G(u0) and k0 = 0.136

Note that if u ∈ B(ρ), then137

(1.9) (1− c)‖e‖ ≤ ‖F(u)‖ = ‖G(u)− u‖ = ‖G(u)−G(u∗)− (u− u∗)‖ ≤ (1 + c)‖e‖.138

We now show that (1.6) holds for all k ≥ k0 if (1.8) (which is implied by (1.6)) holds for all139

smaller k. The optimization problem can be solved in closed form for m = 1. We have140

(1.10) uk+1 = (1− αk)G(uk) + αkG(uk−1),141

where142

αk =
(F(uk),F(uk)− F(uk−1))

‖F(uk)− F(uk−1)‖2
.143

We estimate αk using the induction hypothesis.144

(1.11)

|αk| ≤ ‖F(uk)‖
‖F(uk)−F(uk−1)‖

≤ c̃‖F(uk−1)‖
(1−c̃)‖F(uk−1)‖ ≤ ᾱ ≡

c̃
1−c̃ .

145

Our first task is to show that if ‖e0‖ < ρ is sufficiently small then uk+1 ∈ B(ρ). The formula146

(1.10) implies that147

ek+1 = (1− αk)(G(uk)−G(u∗)) + αk(G(uk−1)−G(u∗))148

and hence149

‖ek+1‖ ≤ c(1 + ᾱ)‖ek‖+ cᾱ‖ek−1‖.150

The induction hypothesis and (1.9) imply that, for 0 ≤ j ≤ k,151

‖ej‖ ≤
‖F(uj)‖

1− c
≤ c̃j

1− c
‖F(u0)‖ ≤ c̃j(1 + c)

1− c
‖e0‖.152

Hence,153

‖ek+1‖ ≤ c(1 + ᾱ)‖ek‖+ cᾱ‖ek−1‖

≤ c(1 + ᾱ) c̃
k(1+c)
1−c ‖e0‖+ cᾱ c̃

k−1(1+c)
1−c ‖e0‖

= cc̃k−1(1+c)
1−c (ᾱ+ (1 + ᾱ)c̃)‖e0‖.

154

Since c̃, c < 1, we have ᾱ+ (1 + ᾱ)c̃ ≤ (1 + 2ᾱ) and cc̃k−1 < 1. Hence155

‖ek+1‖ ≤
(1 + c)(1 + 2ᾱ)

1− c
‖e0‖ < ρ,156

if157

‖e0‖ <
(1− c)ρ

(1 + c)(1 + 2ᾱ)
158
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which we will assume throughout.159

Now we obtain the asymptotic result (1.6). Write160

F(uk+1) = G(uk+1)− uk+1 = Ak +Bk,161

where162

Ak = G(uk+1)−G((1− αk)uk + αkuk−1)163

and164

(1.12) Bk = G((1− αk)uk + αkuk−1)− uk+1.165

We next estimate ‖Ak‖ and ‖Bk‖ separately.166

The estimation for ‖Ak‖ is straightforward, as it will be throughout the paper.167

(1.13)

‖Ak‖ = ‖G(uk+1)−G((1− αk)uk + αkuk−1)‖

≤ c‖uk+1 − (1− αk)uk − αkuk−1‖

= c‖(1− αk)(G(uk)− uk) + αk(G(uk−1)− uk−1)‖

= c‖(1− αk)F(uk) + αkF(uk−1)‖ ≤ c‖F(uk)‖,

168

where the last inequality follows from optimality of the coefficients.169

The estimate for ‖Bk‖ is where differentiability was used, but not really needed, in [3,30]. The170

analysis in those papers used the fundamental theorem of calculus to estimate the left side of (1.14)171

in terms of the errors and, in the case of [30] the Lipschitz constant of the Jacobian. The more172

recent paper [3] used the modulus of continuity of the Jacobian and we employ similar logic in the173

proof of Theorem 2.1 (see equation (2.5)).174

We begin by using (1.12) and (1.10) to obtain175

(1.14)
Bk = G((1− αk)uk + αkuk−1)− (1− αk)G(uk)− αkG(uk−1)

= G(uk + αkδk)−G(uk) + αk(G(uk)−G(uk−1)).
176

Using contractivity, we obtain177

‖Bk‖ ≤ 2c|αk| ‖δk‖,178

where δk = uk−1 − uk. The next step is to estimate the product |αk|‖δk‖.179

The difference in residuals is180

F(uk)− F(uk−1) = G(uk)−G(uk−1) + δk.181

Using contractivity ‖G(uk)−G(uk−1)‖ ≤ c‖δk‖ we obtain182

‖F(uk)− F(uk−1)‖ ≥ (1− c)‖δk‖.183

Hence184

(1.15) ‖δk‖ ≤ ‖F(uk)− F(uk−1)‖/(1− c).185

This manuscript is for review purposes only.



ANDERSON ACCLERATION 7

Finally, we use the formula for αk to obtain186

(1.16) |αk|‖δk‖ ≤
‖F(uk)‖

‖F(uk)− F(uk−1)‖
‖δk‖ ≤

‖F(uk)‖
1− c

.187

So188

‖F(uk+1)‖ ≤ c‖F(uk)‖+ 2c‖F(uk)‖
1−c

= 3c−c2
1−c ‖F(uk)‖ = ĉ‖F(uk)‖.189

This completes the proof.190

The important point for this paper in the proof of Theorem 1.3 is the decomposition of F(uk+1)191

into Ak and Bk. In the results in § 2 we use the same decomposition and, as it was in the proof192

of Theorem 1.3, the estimate of ‖Ak‖ only uses the contractivity of G. The estimate for ‖Bk‖,193

however, is new and uses the structure of the nonsmoothness, which we describe in the next section.194

2. Splitting-Based Results for Nonsmooth Problems. The results in this section depend195

on Assumption 2.1, which states that G can be locally split into smooth (GS) and nonsmooth (GN )196

parts, with the nonsmooth part having a small Lipschitz constant. The motivation for this is a class197

of nonsmooth compact fixed point problems, which we fully describe in § 3. We will also assume198

that Assumptions 1.1 and (except for the Hilbert space case with m = 1) Assumptions 1.2 hold.199

Assumption 2.1. There is ρ such that B(ρ) ⊂ B. There are nonincreasing nonnegative func-200

tions σ and ω defined on (0, 1) such that for any 0 < ρ < ρ201

1. limt→0 ω(t) = 0,202

2. limt→0 σ(t) = 0,203

3. G = Gρ
S + Gρ

N ,204

4. Gρ
S is uniformly (in ρ) continuously differentiable in the sense that205

‖(Gρ
S)′(u)− (Gρ

S)′(v)‖ ≤ ω(‖u− v‖)206

for all u,v ∈ B(ρ), and207

5. Gρ
N is Lipschitz continuous in B(ρ) with Lipschitz constant σ(ρ).208

As we said in the introduction, the splitting is only exploited in the analysis. The algorithm209

is unchanged. The construction in this paper is different from the one used in nonlinear equations210

[5,14,17] in that we need the nonsmooth part to have a small Lipschitz constant, not a small norm.211

The examples in § 3 are compositions of nonsmooth substitution operators and integral operators212

and fit nicely with Assumption 2.1.213

As was the case in [30], we are able to prove q-linear convergence of the residual norms only214

for m = 1. We obtain r-linear convergence for m > 1.215

2.1. Anderson(1). In this section we extend Corollary 2.5 from [30] (pg 814). That result was216

from the proof of Theorem 2.4 (pg 812) in that paper. We extended that result to the nonsmooth217

case in Theorem 1.3 in § 1.2.2 in the present paper.218

Theorem 2.1. Let X be a Hilbert space with scalar product (·, ·). Assume that the optimization219

problem is solved in the norm of X. Let Assumptions 1.1 and 2.1 hold. Then for u0 sufficiently220

close to u∗, the Anderson(1) residuals converge q-linearly to u∗ with q-factor c in the sense that221

(2.1) lim sup
k→∞

‖F(uk+1)‖
‖F(uk)‖

≤ c.222
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Proof. As in the proof of Theorem 1.3 we allow for a warm start and assume that (1.8) holds223

for some ρ < ρ, c̃ < 1, and all 0 ≤ j ≤ k0. Most of the analysis we need in this proof can be taken224

directly from the proof of Theorem 1.3 or Corollary 2.5 from [30].225

We show that if (1.8) holds for all 0 ≤ j ≤ k, with k ≥ k0, then226

‖F(uk+1)‖ ≤ ‖F(uk)‖(c+ εk),227

where εk → 0 as k → ∞. This will imply that (2.1) holds. Our proof will give an explict formula228

for εk.229

We begin by finding ρk so that230

(2.2) uk + tαkδk ∈ B(ρk/2) and uk + tδk ∈ B(ρk/2)231

for all t ∈ [0, 1]. This will allow us to use the splitting in our estimate of ‖F(uk+1)‖.232

Using (1.9) and (1.8) we see that for j = k − 1, k,233

(2.3) ‖ej‖ ≤ ‖F(uj)‖/(1− c) ≤ c̃j‖F(u0)‖/(1− c) ≤ c̃k−1‖F(u0)‖/(1− c).234

Therefore, for all t ∈ [0, 1]235

(2.4)
‖ek + tαkδk‖ ≤ ‖ek‖+ ᾱ(‖ek‖+ ‖ek−1‖)

≤ c̃k−1(1 + 2ᾱ)‖F(u0)‖/(1− c).
236

We simplify the notation for the splitting by writing GS = Gρk
S and GN = Gρk

N , where237

ρk = 2c̃k−1(1 + 2ᾱ)‖F(u0)‖/(1− c).238

With this choice, (2.4) implies (2.2).239

We split F(uk+1) into three parts240

F(uk+1) = G(uk+1)− uk+1 = Ak + Ck +Dk.241

Here242

Ak = G(uk+1)−G((1− αk)uk + αkuk−1).243

We use (1.14) to split Bk = Ck +Dk where244

Ck = GS(uk + αkδk)−GS(uk) + αk(GS(uk)−GS(uk−1))245

and246

Dk = GN (uk + αkδk)−GN (uk) + αk(GN (uk)−GN (uk−1)).247

The estimate for ‖Ak‖ is unchanged248

‖Ak‖ ≤ c‖F(uk)‖.249

The estimate for ‖Ck‖ is done exactly the same way as in [30] or [3]. We use differentiability250

of GS to get the estimate (see equation (2.27), pg 813, in [30])251

(2.5) ‖Ck‖ ≤ |αk|‖δk‖
∫ 1

0

‖G′S(uk + tαkδk)−G′S(uk + tδk)‖ dt.252
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We invoke Assumption 2.1 and the estimates (2.2), (2.3), and (1.16) to obtain253

‖Ck‖ ≤ |αk|‖δk‖ω(|1− αk|δk)

≤ ‖F(uk)‖ω(ξk)
1−c

254

where255

ξk = 2(1 + ᾱ)c̃k−1‖F(u0)‖/(1− c).256

Finally we estimate ‖Dk‖, which is the new part of the analysis. We have, using (1.16)257

‖Dk‖ ≤ ‖GN (uk + αkδk)−GN (uk)‖+ |αk|‖GN (uk)−GN (uk−1))‖

≤ 2σ(ρk)|αk|‖δk‖ ≤ 2σ(ρk)‖F(uk)‖/(1− c).
258

Hence,259

‖F(uk+1)‖ ≤ ‖F(uk)‖(c+ (ω(ξk) + 2σ(ρk))/(1− c)).260

This will complete the proof with261

εk = (ω(ξk) + 2σ(ρk))/(1− c).262

2.2. The Case m ≥ 1. In this section we prove a nonsmooth analog of Theorem 1.2. As was263

the case in § 2.1, we split G(uk+1) and analyze the parts separately. Many parts of the proof are264

taken from the proof of Theorem 1.2 in [3] and we will simply refer to the relevant pages in [3] for265

that material rather than copy the details.266

The main result is Theorem 2.2.267

Theorem 2.2. Let Assumptions 1.1, 2.1, and 1.2 hold. Then if ‖e0‖ is sufficiently small the268

Anderson(m) iterations converge and (1.5) holds.269

Proof. We will allow for a warm start and assume that (1.8) holds for 0 ≤ j ≤ k, with k ≥ k0.270

As before, this assumption is clearly satisfied if k0 = 0 and u1 = G(u0), a cold start. We assume271

that uj ∈ B(ρ) for 0 ≤ j ≤ k.272

Let ĉ ∈ (c, 1) be given. We will show that273

(2.6) lim sup
k→∞

(
‖F(uk)‖
‖F(u0)‖

)1/k

≤ ĉ274

by showing that there is L such that275

(2.7) ‖F(uk)‖ ≤ Lĉk‖F(u0)‖,276

which implies (2.6) since limk→∞ L1/k = 1. This will complete the proof of (1.5) as ĉ ∈ (c, 1) is277

arbitrary.278

We may, without loss of generality, assume that c̃ ∈ (ĉ, 1), where c̃ is the convergence rate from279

(1.8). The estimate (2.7) holds for k ≤ k0 if we use L = (c̃/ĉ)m, which will begin an induction on280

k.281

We assume that (2.7) holds for k and all j < k. We also assume that282

(2.8) ‖e0‖ <
ρcm(1− c)
LMα(1 + c)

,283
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where Mα is the bound from Assumption 1.2.284

First note that (2.7) will imply that uk ∈ B(ρ) because u0 ∈ B(ρ) and (2.8) implies that285

‖e0‖ ≤
ρ(1− c)
L(1 + c)

.286

We use the formula for the Anderson iteration287

uk+1 =

mk∑
j=0

αkjG(uk−mk+j)288

to split F(uk+1). We have, following [3],289

F(uk+1) = G(uk+1)− uk+1

= G(uk+1)−G(
∑mk
j=0 α

k
juk−mk+j) + G(

∑mk
j=0 α

k
juk−mk+j)− uk+1.

290

We begin with the usual splitting F(uk+1) = Ak +Bk where291

Ak = G(uk+1)−G(

mk∑
j=0

αkjuk−mk+j)292

and293

Bk = G(
∑mk
j=0 α

k
juk−mk+j)− uk+1

= G(
∑mk
j=0 α

k
juk−mk+j)−

∑mk
j=0 α

k
jG(uk−mk+j).

294

The proof that295

(2.9) ‖Ak‖ ≤ c‖F(uk)‖ ≤ Lcĉk‖F(u0)‖296

carries over unchanged from (1.13) in this paper or from equation (2.15) on page A372 of [3].297

Note that (2.7) and (2.8) imply that298

uj ∈ B(ρk) for j = k −mk, . . . , k + 1,299

and300

wk =

mk∑
j=0

αkjuk−mk+j ∈ B(ρk).301

Here,302

(2.10) ρk = LMαĉ
k−mk‖F(u0)‖/(1− c) ≤Mαĉ

k−mL(1 + c)‖e0‖/(1− c).303

Equation (2.8) implies that ρk < ρ.304

This allows us to split Bk as we did in the Anderson(1) case.305

Bk = Ck +Dk,306
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where307

Ck = GS(

mk∑
j=0

αkjuk−mk+j)−
mk∑
j=0

αkjGS(uk−mk+j)308

and309

Dk = GN (

mk∑
j=0

αkjuk−mk+j)−
mk∑
j=0

αkjGN (uk−mk+j).310

The estimate for ‖Ck‖ uses exactly the same analysis as in [3] (pages A372–A374). We obtain311

‖Ck‖ ≤ 2Mαω(ρk)ρk ≤ (2M2
αω(ρk)Lĉk−m)‖F(u0)‖ ≤ 2M2

αω(ρk)

ĉm(1− c)
Lĉk‖F(u0)‖.312

Reduce ‖e0‖ if necessary so that313

(2.11)
2M2

αω(ρk)

ĉm(1− c)
< (ĉ− c)/2.314

Finally, write315

Dk = (GN (

mk∑
j=0

αkjuk−mk+j)−GN (u∗))− (

mk∑
j=0

αkjGN (uk−mk+j)−GN (u∗))316

to obtain317

(2.12)

‖Dk‖ ≤ 2σ(ρk)Mα max0≤j≤mk ‖ek−mk+j‖

≤ 2σ(ρk)Mα

1−c max0≤j≤mk ‖F(uk−mk+j)‖

≤ 2σ(ρk)Mα

(1−c)ĉm Lĉk‖F(u0)‖.

318

Reduce ‖e0‖ if necessary to make319

(2.13)
2σ(ρk)Mα

(1− c)ĉm
< (ĉ− c)/2.320

This completes the proof since (2.11) and (2.13) imply that321

‖F(uk+1)‖ ≤ ‖Ak‖+ ‖Ck‖+ ‖Dk‖ < Lĉk+1‖F(u0)‖.322

2.3. Approximations. If X is finite dimensional, as it will be for discretizations of problems323

in function space, then part 2 of Assumption 2.1 may not hold. However, as we illustrate in the324

examples in § 3, we will still have a small (but generally non-zero) lim supσ(t). We replace part 2325

of Assumption 2.1 with326

(2.14) lim sup
t→0

σ(t) = σ.327

For any q ∈ (0, 1) and σ sufficiently small, we will still obtain r-linear convergence with r-factor328

c+ σq. We summarize the results for Anderson(m) in the following theorem.329
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Theorem 2.3. Let Assumptions 1.1, 1.2 and 2.1 hold with part 2 replaced by (2.14) and330

(2.15) σ < min

(
(1− c)1/q,

(
(1− c)cm

8Mα

)1/(1−q))
331

for some q ∈ (0, 1). Then if ‖e0‖ is sufficiently small then the Anderson(m) iterations converge332

and333

(2.16) lim sup
k→∞

(
‖F(uk)‖
‖F(u0)‖

)1/k

≤ c+ σq < 1.334

Proof. We will reduce σ in the course of the proof. Set ĉ = c + σq < 1. We can then use the335

proof of Theorem 2.2 with very little change. We let L̃ = (c̃/c)m, which will play the role of L from336

the proof of Theorem 2.2.337

We decompose the residual338

F(uk+1) = Ak + Ck +Dk339

and use the estimates (2.9) and (2.11) without change (reducing ‖e0‖ as needed).340

The only difference is the estimate for Dk. Let ‖e0‖ be small enough so that σ(t) ≤ 2σ for all341

t ≤ ‖e0‖. We have, as before,342

‖Dk‖ ≤ 4σMα

(1−c)ĉm L̃ĉ
k‖F(u0)‖

≤ 4σMα

(1−c)cm L̃ĉ
k‖F(u0)‖.

343

Then (2.15) implies that344

4σMα

(1− c)cm
≤ σq/2 = (ĉ− c)/2.

345

This estimate completes the proof exactly as it did in the proof of Theorem 2.2.346

The result for Anderson(1) is similar and we omit the proof, which is essentially the same as347

that for Theorem 2.3.348

Theorem 2.4. Let X be a Hilbert space with scalar product (·, ·). Assume that the optimization349

problem is solved in the norm of X. Let Assumptions 1.1 and 2.1 hold with part 2 replaced by (2.14).350

Let q ∈ (0, 1) be given. Then if σ ∈ (0, (1 − c)1/q) is sufficiently small and u0 is sufficiently close351

to u∗, the Anderson(1) residuals converge q-linearly to u∗ with q-factor c+ σq in the sense that352

(2.17) lim sup
k→∞

‖F(uk+1)‖
‖F(uk)‖

≤ c+ σq.353

3. Examples. Our examples are compositions of nonsmooth substitution operators and non-354

linear Hammerstein integral operators.355

We let C = C([0, 1]) be the space of continuous functions on [0, 1] with the usual L∞ norm and356

L2 = L2([0, 1]). We have two examples. The one in § 3.1 is in L2 and the other, in § 3.2 is in C.357

We let g ∈ C([0, 1]× [0, 1]) and let G be the integral operator given by358

G(u)(x) =

∫ 1

0

g(x, y)u(y) dy.359
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In all the examples in this paper g is the Greens function for the negative Laplacian in one space360

dimension with zero boundary conditions. We discretize with the standard second-order central361

difference scheme and realize the product of G with a vector via a tridiagonal solver. We used a362

grid of N = 100 interior grid points and the composite trapezoid rule for integration.363

The important properties of G are that364

• G is a bounded operator on L2 and365

• G is a bounded operator from L2 to C366

‖G(u)‖∞ ≤ ‖g‖∞‖u‖2.367

The maps in this section are compositions of nonsmooth substitution operators and nonlinear368

integral operators of the form369

(3.1) GI(u)(x) = G(f(u))(x) =

∫ 1

0

g(x, y)f(u(y)) dy.370

GI maps L2 to C if f(ξ) = O(|ξ|) for large |ξ| and is Fréchet differentiable if f ′ is bounded. In that371

case G′I(u) is the linear integral operator defined by372

(G′I(u)w)(x) =

∫ 1

0

g(x, y)f ′(u(y))w(y) dy.373

G′I is a compact linear operator from L2 to C.374

Since f ′ is bounded, f is Lipschitz continuous with Lipschitz constant Lf . This implies that375

GI is a Lipschitz continuous map from L2 to C. In fact, for u, v ∈ L2 and x ∈ [0, 1], we may apply376

the Cauchy-Schwarz inequality to obtain377

(3.2)
|GI(u)(x)−GI(v)(x)| ≤ ‖g‖∞Lf

∫ 1

0
|u(y)− v(y)| dy

≤ ‖g‖∞Lf‖u− v‖2.
378

After integration of (3.2) we obtain379

‖GI(u)−GI(v)‖∞ ≤ ‖g‖∞Lf‖u− v‖2.380

We consider nonsmooth substitution maps Φ that are based on point evaluation. Examples381

include382

Φ(u)(x) = max(u(x) + b(x), 0)383

where b ∈ C is given. In general we assume that384

Assumption 3.1. There is a real valued function β and b ∈ C such that385

(3.3) Φ(u)(x) = β(u(x) + b(x))386

and β is Lipschitz continuous and differentiable except for finitely many points.387

In our examples the function β will be differentiable except at one point.388

If β is differentiable, then Φ is defined and Fréchet differentiable on both C[0, 1] and L2[0, 1] if389

• |β(ξ)| = O(|ξ|) for |ξ| large and390
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• β′ is bounded.391

In that case the Fréchet derivative Φ′(u) of Φ at u is the operator of multiplication by β′(u+ b)392

i. e. ,393

Φ′(u)w(x) = β′(u(x) + b(x))w(x).394

In the examples β is nondifferentiable only at w = 0 and is uniformly Lipschitz continuously395

differentiable away from w = 0. We formalize this as396

Assumption 3.2. β is Lipschitz continuous with Lipschitz constant Lβ. There is γβ > 0 such397

that if u and v have the same sign, then398

|β′(u)− β′(v)| ≤ γβ |u− v|.399

For example, if β(u) = |u| then γβ = 0.400

3.1. A Class of Integral Operators. We consider fixed point maps of the form401

(3.4) u = G(u) = Φ(GI(u)).402

We will work in L2 in this example. We use the fact that GI maps L2 to C in the analysis in a403

significant way.404

We will assume that f is a real-valued Lipschitz continuously differentiable function and that405

f ′ has Lipschitz constant γf .406

We assume that Assumption 1.1 holds and that407

B(ρ) = {u | ‖u− u∗‖2 ≤ ρ} ⊂ B.408

If ρ ≤ ρ and u ∈ B(ρ) then (3.2) implies that409

‖GI(u)−GI(u∗)‖∞ ≤ ‖g‖∞Lf‖u− u∗‖2 ≤ ‖g‖∞Lfρ ≡ ε(ρ).410

We can now construct the splitting. This will motivate the assumptions of our convergence411

result. Let412

Ωρ = {x | |GI(u∗)(x) + b(x)| < 2ε(ρ)}413

and let χρ be the characteristic function of Ωρ.414

We define415

GρN (u)(x) = χρ(x)G(u)(x)416

and417

GρS(u)(x) = G(u)(x)−GρN (u)(x) = (1− χρ(x))G(u)(x).418

Suppose u ∈ B(ρ). Then GI(u)(x) + b(x) has the same sign as GI(u
∗)(x) + b(x) for all x ∈ Ωcρ,419

the complement of Ωρ. This implies that GρS is differentiable at u and for all w ∈ L2 and x 6∈ Ωρ,420

(3.5)

(GρS)′(u)w(x) = β′(GI(u)(x) + b(x))(GρS)′(u)w)(x)

= β′(GI(u)(x) + b(x))
∫ 1

0
g(x, y)f ′(u(y))w(y) dy.

421

For x ∈ Ωρ, (GρS)′(u)w(x) = 0. Moreover, if v ∈ B∞(ρ) then422

(3.6) ‖(GρS)′(u)− (GρS)′(v)‖2 ≤ γβ‖g‖∞γf‖u− v‖2.423
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As for the nonsmooth part, note that for x ∈ [0, 1] we may use (3.2) to obain424

|GρN (u)(x)−GρN (v)(x)| ≤ χρ(x)|Φ(GI(u)(x))− Φ(GI(v)(x))|

≤ χρ(x)Lβ‖g‖∞Lf‖u− v‖2.
425

Hence, using the Cauchy-Schwarz inequality again426

‖GρN (u)−GρN (v)‖2 ≤ ‖g‖∞LfLβ
√
µ(Ωρ)‖u− v‖2,427

because the L2 norm of the characteristic function of Ωρ is
√
µ(Ωρ) where µ is Lebesque measure.428

The critical assumption is the splitting method in [14,17] is that the support of nonsmoothness429

for u∗ is small. In the setting of this paper, we assume that430

lim
ρ→0

µ(Ωρ) = 0.431

So we have the splitting with432

σ(ρ) = ‖g‖∞LfLβ
√
µ(Ωρ) and ω(ρ) = γβ‖g‖∞γfρ.433

3.1.1. Norms in Finite Dimension. In the computations we must, of course, approximate434

the integrals by quadratures. We use the composite trapezoid rule. A more subtle point is that we435

must scale the norm so that discretizations of constant functions have the same norm independently436

of N . Hence we use the discrete `2 norm437

‖u‖2 =
1√
N

√√√√ N∑
j=1

u2
j438

and `1 norm439

‖u‖1 =
1

N

N∑
j=1

|uj |.440

Using the scaled norm does not matter in Anderson acceleration because the scaling is irrelevant441

in the optimization problem and cancels in the relative residuals. However, it does matter when442

computing the Lipschitz constant. In the example in § 3.1.2 GI(u
∗)(x)+b(x) = 0 at only two points.443

For the approximate finite dimensional problem, this means that the set Ωρ, for ρ sufficently small,444

contains at most two grid points. The correct computation of µ(Ωρ) is to use the discrete L1 norm445

and therefore, to apply Theorem 2.3 to this example we would use446

σ ≤ LfLβ
√

2/N.447

3.1.2. Obstacle Bratu Problem. The equation in this section is an integral equations for-448

mulation of the obstacle Bratu problem [22],449

(3.7) u = min(λG(eu), α).450
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Here α is a given function of x. In the example here λ = 5 and451

α(x) = 1 + sin(2πx)/2.452

The right side of Figure 3.1 is a plot of the solution and the upper bound. One can see that the453

λG(eu) is equal to α at only two points. The left of the plot is the iteration history. We have tuned454

λ to make Picard iteration perform poorly. The Anderson(m) iterations for m = 1, 2, 3 perform455

equally well and significantly better than Picard iteration.456

Fig. 3.1: Example 1: Obstacle Bratu Problem
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We can quantify the observations in Figure 3.1 by estimating the r-factors for the four methods.457

As we did in [3] we estimate the r-factory by458

(3.8)

(
‖F(uk̄)‖
‖F(u0)‖

)1/k̄

459

where k̄ is the final iteration index. k̄ varies over the method-problem combinations. In Table 3.1460

we see that the estimate rates are consistent with Figure 3.1.461

Table 3.1: Convergence rates for the Bratu problem.

Picard Anderson 1 Anderson 2 Anderson 3
4.27e-01 1.42e-01 1.14e-01 1.54e-01

3.2. Compositions of The Form G = G(Φ). In this section we consider problems of the462

form463

(3.9) u = G(u) = G(Φ(u)).464
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We can now construct the splitting. We do this via an example which readily extends to the465

general case. We will solve the optimization problem in the L∞ norm for this example.466

For this case we let467

Ωρ = {x | |u∗(x) + b(x)| < 2ρ}.468

We define469

GρN (u)(x) =

∫
Ωρ

g(x, y)Φ(u)(y) dy =

∫
Ωρ

g(x, y)β(u(y) + b(y)) dy470

and471

GρS(u) = G(u)−GρN (u) =

∫
Ωcρ

g(x, y)β(u(y) + b(y)) dy472

where Ωcρ is the complement of Ωρ in [0, 1]. Suppose u ∈ B∞(ρ) then u(x) + b(x) has the same sign473

as u∗(x) + b(x) for all x ∈ Ωcρ. This implies that GρS is differentiable at u and for all w ∈ C,474

(3.10) (GρS)′(u)w =

∫
Ωcρ

g(x, y)β′(u(y) + b(y))w(y) dy.475

Moreover, if v ∈ B∞(ρ/2) then476

(3.11) ‖(GρS)′(u)− (GρS)′(u)‖∞ ≤ ‖g‖∞γβ‖u− v‖∞.477

As for the nonsmooth part, note that478

GρN (u)−GρN (v) =

∫
Ωρ

g(x, y)(β(u(y) + b(y))− β(v(y) + b(y))) dy.479

So, by the Hölder inequality480

‖GρN (u)−GρN (v)‖ ≤ ‖g‖∞Lβ
∫

Ωρ
|u(y)− v(y)| dy

≤ ‖g‖∞Lβµ(Ωρ)‖u− v‖∞.
481

The critical assumption for the splitting method in [14,17] is that the support of nonsmoothness482

for u∗ is small. In the setting for this paper, we assume that483

lim
ρ→0

µ(Ωρ) = 0.484

We have constructed the splitting with485

σ(ρ) = ‖g‖∞Lβµ(Ωρ) and ω(t) = ‖g‖∞γβt.486

The comments in § 3.1.1 are relevant here as well. In this case we need the discrete measure of487

Ωρ which converges to 0 as N →∞. In the example in § 3.2 this set contains only one point, so488

σ ≤ LfLβ
1

N
.489
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3.2.1. Nonsmooth Dirichelet Probem. The example, taken from [4] is490

(3.12) − v′′ = λmax(v − α, 0), v(0) = v0, v(1) = v1.491

In this problem the nonsmoothness is in the forcing term.492

We convert (3.12) to a compact fixed point problem by setting v = u + φ, where φ(x) =493

v1x + (1 − x)v0, letting G be the integral operator which inverts −d2/dx2 with zero boundary494

conditions, and then multiplying the equation by G.495

We obtain a nonlinear compact fixed point problem496

u = G(u) ≡ λG(max(u+ φ− α, 0)).497

In the numerical experiment we use central differences with 100 interior grid points, and solve the498

problem with Anderson(m) for m = 0, 1, 2, 3.499

In the computation we used v0 = 1, v1 = .5, λ = 11.65, and α = .8. The value of λ was tuned500

to make the contractivity constant large so that Picard iteration performed very poorly.501

We report two sets of results one for L2 optimization (Figure 3.2) and the other (Figure 3.3) for502

L∞ optimization. we plot iteration histories and graphs of the solution v, and−v′′ = λmax(v−α, 0).503

The plot of −v′′ clearly shows that v′′ is nonsmooth at the solution at only one point.504

The L∞ optimization problem can be expressed as a linear programming problem [9]. We solved505

that with the cvx Matlab software [11, 12]. We used the SeDuMi solver and set the precision in506

cvx to high. Solving the optimization problem in L2 is much easier, requiring only the solution507

of a linear least squares problem. It is temping to do the optimization problem in L2 even though508

the theory requires an L∞ optimization. In Figure 3.2 we do exactly that. On the right side of509

Figure 3.2 we plot graphs of v, and −v′′ = λmax(v − α, 0). The plot of −v′′ clearly shows that510

v′′ is nonsmooth at the solution at only one point. On the left we plot the results using an L2511

optimization rather than the L∞ optimization that the theory requires.512

In Figure 3.3 we use the L∞ norm for the optimization problem for the coefficients and show513

on the left the residual norms in the L2 norm to best compare two approaches. On the right we514

show the residual L∞ norms. The figures show that the results are very similar and that the norm515

used for the optimization makes little difference.516

We use (3.8) to estimate the r-factors for both L2 and L∞ optimization. The estimates in517

Table 3.2 are consistent with the results in Figures 3.2 and 3.3. In particular, we see that Picard518

is slowly convergent in this example and that there is little difference between the two norms used519

for optimization.520

Table 3.2: Convergence rates for the Dirichlet problem.

Picard Anderson 1 Anderson 2 Anderson 3
L2 optimization

8.91e-01 2.34e-01 1.70e-01 1.56e-01
L∞ optimization

8.91e-01 2.01e-01 1.77e-01 1.52e-01
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Fig. 3.2: Example 2: Nonsmooth Forcing Term, L2 optimization
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Fig. 3.3: Example 2: Nonsmooth Forcing Term, L∞ optimization
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4. Conclusions. In this paper we prove convergence of Anderson acceleration for a class of521

nonsmooth fixed point problems. Compositions of nonsmooth substitution operators and integral522

operators are examples of such problems. We illustrate the theoretical results with examples.523
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