ANDERSON ACCELERATION FOR NONSMOOTH FIXED POINT PROBLEMS*

WEI BIANT AND XIAOJUN CHEN#

Abstract. We give new convergence results of Anderson acceleration for the composite max fixed point problem.
We prove that Anderson(1l) and EDIIS(1) are g-linear convergent with a smaller g-factor than existing g-factors.
Moreover, we propose a smoothing approximation of the composite max function in the contractive fixed point
problem. We show that the smoothing approximation is a contraction mapping with the same fixed point as the
composite max fixed point problem. Our results rigorously confirm that the nonsmoothness does not affect the
convergence rate of Anderson acceleration method when we use the proposed smoothing approximation for the
composite max fixed point problem. Numerical results for constrained minimax problems, complementarity problems
and nonsmooth differential equations are presented to show the efficiency and good performance of the proposed
Anderson acceleration method with smoothing approximation.
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1. Introduction. In this paper, we focus on the convergence analysis of Anderson(m) and
EDIIS(m) for the following composite max fixed point problem

(1.1) u=G(u) := H(Po(Q(u))),

where H : RY — R™ and @ : R* — R! are Lipschitz continuously differentiable functions, € is
a box subset of R!, and Py is the projection on Q. Problem (1.1) arises from many applications
in engineering and finance including minimax problems, complementarity problems, nonsmooth
integral equations and nonsmooth differential equations.

Anderson acceleration was originally introduced in the context of integral equations by Ander-
son in 1965 [2]. It is a class of methods for solving the fixed point problem v = G(u), where G is
a continuous function from D C R” to D, and uses a history of search directions to improve the
convergence rate of the fixed point method

(12) U1 = G(’U,k)

Anderson acceleration method has been widely used in electronic structure computation [2, 6, 11,
22, 24, 25], chemistry and physics [1, 23], and specific optimization problems [13, 25]. In particular,
Anderson acceleration is designed to solve the fixed point problem when computing the Jacobian
of G is impossible or too costly. Anderson acceleration is also known as the Pilay mixing [20],
DIIS (direct inversion on iterative subspace) [14, 15, 23], nonlinear GMRES method [4, 16, 26],
and interface quasi-Newton [10, 12]. A formal description of Anderson acceleration is presented in
Algorithm 1.1 and often called Anderson(m).

Anderson(m) maintains a history of function values of G(-) at uk—m,+j, j =0, ..., my, where
my, is an algorithmic parameter that indicates the depth of the accelerated Anderson iterations.
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Algorithm 1.1 Anderson(m)

Choose ug € D and a positive integer m. Set u1 = G(ug) and Fy = G(ug) — ug.
for k=1,2,... do

set F, = G(ug) — ug;

choose my, = min{m, k};

solve

(1.3) min HZZ’:@ @ Fmyts s.t. Z;":’“O a;j =1
to find a solution {a;? :7=0,...,mg}, and set

(1.4) Ukl = Zzo el (T—— )

end for

Using these function values, Anderson(m) defines a new iterate by a linear combination of the last
my, + 1 iterates, where the coefficients of the linear combination are computed at each iteration by
the convex optimization problem in (1.3). When m = 0, Anderson acceleration is the fixed point
method in (1.2), which is also known as the Picard method. In practice, each my may be different
to maintain the acceptable conditioning of (Fi—m,+;)7- [25] and can be dynamically updated to
improve the performance [18]. The optimization problem (1.3) in Anderson(m) does not specify the
norm in its general form and using different norms will not affect the convergence [24]. Throughout
this paper, we consider problem (1.3) in the sense of Euclidean norm. Notice that the description
of Anderson(m) in Algorithm 1.1 is convenient for analysis, but the readers may refer to [24, 25]
and references therein for its efficient implementation.

The EDIIS(m) [14] differs from Anderson(m) by adding nonnegativity constraints in (1.3), that
is, replacing (1.3) by the following minimization problem

my mpg
min E (oY NE—— s.t. E aj =1, o;>20,5=0,...,my.
=0 =0

Suppose G : D — D is a contraction mapping with factor ¢ € (0, 1) in the Euclidean norm | - ||
on a closed set D C R™, that is,

1G(u) = G(v)]| < ¢llu =, Vu,v € D.

By the contraction mapping theorem [17], G has a unique fixed point «* € D, which is the unique
solution of the system of nonlinear equations

F(u) :=G(u) —u=0.

Without loss of generality, we assume that there is B(d,u*) := {u € R" : ||lu —u*|| < §} C D with
0 > 0. For a contraction mapping G, it is known that the fixed-point method in (1.2) has g-linear
convergence rate, that is |lugs1 — v*|] < ¢|lup — u*|| holds in B(d,u*). However, the theoretical
convergence analysis of Anderson(m) had not been proved for a long time after it being brought
forward and widely used. The first mathematical convergence result for Anderson(m) was given by
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Toth and Kelley in 2015 [24]. Under the assumption that G is Lipschitz continuously differentiable
in D, Toth and Kelley [24] showed the r-linear convergence of Anderson(m) with r-factor é € (¢, 1)

as follows,

R N 1+c) . N
IF(ug)|| < E|F(uo)ll and  [lug — u|| < (l—c) Flug — u*].

Without the differentiability of G, Chen and Kelley [6] showed the r-linear convergence of EDIIS(m)
with r-factor ¢ = ¢/(m*1) ag follows,

s = u*|| < & fluo — ]|

Moreover, Bian, Chen and Kelley [3] showed the g-linear convergence of Anderson(1) and EDIIS(1)
with g-factor (3¢ — ¢?)/(1 — ¢) for general nonsmooth fixed point problems in a Hilbert space, and
r-linear convergence of Anderson(m) and EDIIS(m) with r-factor é € (¢, 1) for a class of integral
equations in which the operator can be written as the sum of a smooth term and a nonsmooth
term having a sufficiently small Lipschitz constant. Zhang et al [27] proposed a globally convergent
variant of Anderson acceleration for nonsmooth fixed point problems, but did not provide a rate of
convergence. The first mathematical view to show the superiority of local convergence of Anderson
method for the discretizations of the steady Navier-Stokes equations was proved by Pollock, Rebholz
and Xiao in [19]. And the similar idea was extended to a more general fixed-point iterations by
Evans, Pollock, Rebholz, and Xiao [9]. Most recently, Pollock and Rebholz [18] showed a novel
one-step bound of Anderson method with a more general acceleration iteration, which not only
sharpens the convergence results for contractive mapping in [9], but also explains some mechanism
of Anderson acceleration for noncontractive cases. Overall, Anderson acceleration can significantly
improve the computational performance of the fixed point method in practice. We refer the readers
to [9, 11, 18, 25] and references therein for detailed discussions on its research history and practical
applications.
Throughout this paper, we suppose 2 is defined by

(1.5) Q={weR w<w<w}

with w € {{—oc} UR}, w € {{oo} UR} and w < w. Then, P, can be expressed by the following
composite max form

(1.6) Po(w) = argmin, q||v — w|* = max{w — w, 0} + w — max{w — w, 0},

where “max” means componentwise. The formulation of Py in (1.6) will play a key role in the
analysis of this paper. Here we declare that (—00) —a = —oo and a — (00) = —o0 for any a € R.
When Q = R), := {w € R |w > 0}, the expression of Py in (1.6) is reduced to

Po(w) = max{—w, 0} + w.

In particular, if w, = —oo and wW; = oo for all ¢ € {1,...,1}, then G = H(Q(u)) is Lipschitz
continuously differentiable on D, which is the case considered in [24]. Thus, we focus on the case
that there is at least an ¢ € {1,...,l} such that —co < w, or W; < oo, which means that G is
nonsmooth on D in general.

The contributions of this paper are new convergence results of Anderson acceleration method
for composite max fixed point problem (1.1). In section 2, we prove that Anderson(1) and EDIIS(1)

2c—c?
l—c

are g-linear convergent for problem (1.1) with g-factor é € ( 1), which can be strictly smaller
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than the existing g-factor (3¢ — ¢2)/(1 — ¢) proved in [3, 24]. In section 3, we give the contrac-
tion consistent properties between GG and its smoothing approximations. Then, we propose a new
smoothing approximation G(-, ) of G. We show that there is i > 0, such that G(-, u) is continuously
differentiable, contractive on D, and v* = G(u*, u) = G(u*), for any fixed u € (0, z]. To improve
the ability and performance of Anderson acceleration method for solving problem (1.1), we propose
a smoothing Anderson acceleration (s-Anderson(m)) in Algorithm 3.1 with the proposed smooth-
ing function of G and updating scheme for smoothing parameters. We prove that s-Anderson(m)
for (1.1) owns the same r-linear convergence rate as Anderson(m) for continuously differentiable
problems. In section 4, we use numerical examples from constrained minimax problems, pricing
American options and nonsmooth Dirichlet problem to illustrate our theoretical results. Prelim-
inary numerical results show that s-Anderson(m) can efficiently solve the nonsmooth fixed point
problem (1.1) and outperform Anderson(m) in most cases.

2. g-linear convergence of Anderson(1) and EDIIS(1). For m; = 1, the optimal solution
of problem (1.3) owns the closed form (1 — ag, o)™ with

Fl(F = Fr1)

2.1 ap = —————""

2 “ S B Bl

and the iterate can be expressed as

(22) Ukt+1 = (1 — ak)G(uk) + osz(uk_l).

In the remainder of this paper, we need the following assumption.

ASSUMPTION 2.1. Functions Q and H in (1.1) satisfy the following conditions.
(i) @Q is Lipschitz continuously differentiable on D with Lipschitz constant cq.
(i) H is Lipschitz continuously differentiable on an open set Dy containing Q as a subset with
Lipschitz constant cg .

(i11) ¢ :=cpecg < 1.

Note that the Lipschitz continuous differentiability of () and H cannot imply the differentiability
of G on D due to the existence of projection operator P in its formulation. Since P is Lipschitz
continuous with Lipschitz constant 1, from

1H (Po(Q(w))) — H(Po(Q(v)))|| <crl|Pa(Q(u)) — Po(Q(v))|
<cr[|Q(u) — Q)| < cacgllu — v,

we find that G in (1.1) is a contraction mapping on D with factor ¢ = cgycg under Assumption 2.1.
Then, it gives

(2.3) (I =9fu—u| < [[F(u)| <A +0)flu—u®l, VueD.

The following theorem shows that the local g-linear convergence factor of Anderson(1) and
EDIIS(1) can be improved to any ¢ € (2“‘32 ,1) for (1.1), which can be strictly smaller than the

1—c
3c—c?
1—c
THEOREM 2.1. Let {uy} be the sequence generated by Anderson(1) for (1.1). Suppose Assump-
tion 2.1 holds and ¢ = % < 1. For any ¢ € (¢,1), if ug is sufficiently close to u*, then {uy}
converges to u* g-linearly with factor ¢, i.e.

(2.4) IE (urg )|l < el F(un)ll,  k=0,1,....

factor given in [3, 24].
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Proof. Give € > 0. Reduce § > 0 if necessary such that § < e and B(6,u*) C D. Since
¢ < €< ¢ (2.4) is trivially true for k = 0. Then, we prove (2.4) by induction and assume it holds
for 0 <k < K. Let

0 <o <min{l,(w; —w,)/3:i=1,2,...,1}.

Here we declare that w; — w, = oo if W; = 0o or/and w, = —c0.
By (2.1), we have
[ () | £ (ure— )
(2.5) lag| < and |1 —ay| < , VE.
1 (ug) — F(up—1)| 1F (ur) = F(ug—1)||
Similar to the analysis in [3, Theorem 1.3] and by the hypothesis in (2.4) for 0 < k < K, we
have that

F &k (1 %
(2:6) log] < ——  and Jugp —u']| < (£ ()| < ¢ (L +c)lluo — w||
- - -

Then,

Jugsr —u*l| =) (1 = ax) Glu) + axGlug—_1) — Gu")]

* * 26(1 +C)6K *
<cll —aklllux = u"| + clag|luxk—1 — u*|| < m”uo —u*.
Similarly,
; 2(1 +c)e” ;
H(l—aK)UK'*‘OZKUKfl—U Hgmnuo—u ||

Thus, there exists dp > 0 such that if ug € B(dg, u*), then

ug € B(o,u*), k=0,...,K+1 and (1-ag)ux+agux_1 € B(5,u").
Now we estimate ||F(ug11)|| by using
(2.7) [F(urt1)ll = [Glur+1) — urall < Akl + | B |l;
where
A =Glugs+1) — G((1 — ag)ug + agurx—1), Brx =Gl —ag)ux + agurx_1) — UK+1-
The estimate of Ay is straightforward as it is in [3, 6, 24], which gives
(28) Akl < el(1 — ax)(Glux) — ux) + ax (Glux 1) — ure 1|l < el Fug).
max{0,t} if [t] > o
Now, we estimate || Br||. First, we note that ¢(t) = q (¢ + 0)2 is a smoothing approx-

-_ if [t <
1o if [t| <o

imation of max{t,0}. Then, by (1.6),

O(w) =Y(w—w)+w—V(w—w)
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is a smoothing approximation of Pn(w), where

V(v) = ((vr),..., ()"

By virtue of the value of g, for any i € {1,...,I} and w; € R, at most one of |w;, — w;| < ¢ and
|w; — ;| < o holds. Then, since |[¢/(t)| < 1, Vt € R, for any w, @ € R!, we obtain

(2.9) [@(w) — ()| < 2[lw — w]|.
Next, recalling the definition of 1, we have

o o 0 if [t| > o
max{t,0} — (t) = —(o—[t)%/40 ift| <o,

which implies the absolute value and Lipschitz constant of max{t,0} —(¢) on R are upper bounded
by o/4 and 1/2, respectively. Then, for any w,w € R!, we have

(2.10) | Po(w) — ®(w)|| < Vie/4,
(2.11) [Pa(w) — ®(w) — (Pa(@) — ®(w))]| < 3llw -]
Denote

Gs(u) = H®(Q(w))) and Gn(u) = G(u) — Gg(u).
Then from the definition of ug 11 in (2.2), we have
(2.12) IBrll < [[Mkll + [Nkl
with
Mg = Gs((l — aK)uK + OéKUKfl) — (1 — aK)GS(uK) — aKGs(qul)
and
Ng = GN((]. — aK)uK + OéKqul) — (]. — aK)GN(uK) — OéKGN('LLKfl).

Notice that 1 is Lipschitz continuously differentiable on R. By the Lipschitz continuous differ-
entiability of @ and H, Gg is Lipschitz continuously differentiable on B(d, u*), which inspires us to
estimate M}, exactly by the same way as in [24, Corollary 2.5] to get

Yeak|]l — aglllug —uk 1| < AF(ug—1)
2 S o op

by < T35

1
Pl
where 7 is the Lipschitz constant of G's on B(d, u*) and we use ||[F(ug_1)|| < (1+¢)|jux—1 —u*|| <
(14 ¢)d < (14 c)e in the last inequality.

The final stage of this proof is to evaluate || Nk||, which is the main part in this proof.

To do this, the first thing is to evaluate the Lispchitz constant of Gy around w*. For any
u,v € B(d,u*), by the Lipschitz continuous differentiability of H and the mean value theorem for a
vector-valued function, we have

G () — G (o) = [|H(Pa(Q(w) — H@(Q(u))) — H(Pa(Q())) + H®QW))]
M/H/ y @W»JM@W%(AH«mwywmm—wmm>

(2.13)  [[M] <

)
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where £(t) = tPo(Q(v)) + (1 — t)Po(Q(u)) and &(t) = t®(Q(v)) + (1 — t)®(Q(u)). Denote

then
1GN(u) = Gn ()| < G+ G-

By (2.9), (2.10), and the definitions of £(¢) and £(t), for any t € [0, 1], it holds
(2.14) €)= E@)| < 1Pa(Q(v)) = 2(Q(v))]| + [1Pa(Q(x)) — 2(Q(u))l| < Vie /2.

Due to the convexity of Q, £(t) € Q for all t € [0,1]. Then, by (2.14), we can suppose £(t) € Dy for
all ¢ € [0,1] by reducing ¢ if necessary. Moreover, since u,v € B(8,u*), &(t) and &(t) are bounded
for all ¢ € [0,1]. Then, using the Lipschitz continuous differentiability of H, there exists § > 0 such
that it holds

/ e — €| ae < 0 s 1) — €0,
0 Sis

combining which with (2.14) gives

IGNI < ( / | - | dt) |Pa(Q(w) = Pa(Q))]| < <”92‘9Q> Ju = o]l

Thus, by reducing o if necessary, we obtain
(2.15) IGN I < ellu—].

To evaluate G%;, by (2.11) and £(t) € Dy for all t € [0, 1], we have

163 < ( / ||H'<s<t>>||dt) 1Pa(Qu)) — (Q(w)) — (Pa(Q(v)) — B(Q)))]

1

(2.16) k
<sencallu— vl = Sellu - vl.

Hence, (2.16) together with (2.15) gives that the Lipschitz constant of Gy around «* can be bounded
by %c + €. Using it to Nk, we have

[Nk || =GN (ur — ax(ux —uk-1)) — Gn(uk) + ax(Gn(ux) — Gr(uk-1))||
(2.17) 1
<(ge+e2larlllux —ux-l.

Then, (2.5) and (2.17) imply

c+ 2¢
1—c¢

(2.18) [Nkl < [ F ()]l
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We obtain from (2.7), (2.8), (2.12), (2.13) and (2.18) that

[1F(urc 1) < (€4 ce) || F(ur)

with ¢ = 2”((11_+CC))2 + 2. Due to the arbitrariness of e € (0,1), the estimation in (2.4) holds for
k = K + 1 by reducing e if necessary so that te < ¢ — ¢. This completes the proof. ]

The important technique in the proof of Theorem 2.1 is the decomposition method of F'(ug41),
especially the structure and analysis of N, which reduces the Lipschitz constant of the nonosmooth
part of By by half.

In EDIIS(1), oy is chosen as the minimizer of the optimization problem

1
min§||(1fa)Fk+aFk_1H2, st. 0<a<l.

This is a convex optimization problem and its solution «y can be expressed by the formulation with
the middle operator as
F(Fp — Fr_1)
ap =mid{0, SE Tk okl gt
{ [Fe—1 — Fi|?

Following the proof of Theorem 2.1, it is clear that (2.13) and (2.18) hold for ay, = 0 and oy, = 1,
which are the points that we only need to check for the EDIIS(1) with respect to Anderson(1).
Thus, we have the following statement.

COROLLARY 2.2. Suppose that the assumptions of Theorem 2.1 hold. Then the sequence {uy}
generated by EDIIS(1) satisfies (2.4).

Since the results in Theorem 2.1 and Corollary 2.2 are local convergence results of Anderson(1)
and EDIIS(1), the Lipschitz continuous differentiability of @ and H around «* and Pqo(Q(u*)) is
enough to guarantee these statements.

3. Anderson acceleration method with smoothing approximation.

3.1. Smoothing approximation. In this subsection, we introduce some smoothing approx-
imations of the nonsmooth contraction mapping G for finding its fixed point. For a function
w: R" x (0,1] = R", w'(y,u) always denotes the derivative of w with respect to y for fixed
w € (0,1] in what follows. We define a smoothing function of max{t,0} at first.

DEFINITION 3.1. [5] We call ¢ : R x (0,1] — R a smoothing function of max{t,0} in R, if
P(-, 1) is continuously differentiable in R for any fized p > 0, and the following conditions hold.
(i) There is a ky > 0 such that for any t € R and p € (0,1], |¢(t, ) — max{t,0}] < kyp.
(ii) For anyt € R, it holds {limgs_¢ , 0% (s, 1)} C O (max{t,0}), where 0 indicates the Clarke
subdifferential [8].

Definition 3.1-(i) implies that lims_; 0 % (s, p) = max{t, 0} and Definition 3.1-(ii) implies the
gradient consistency. Smoothing functions for the max function have been studied in numerical
methods for optimization and differential equations [5]. Four widely used smoothing functions of

0, a<O0
'mid(0,a,1) ={ a, a€]0,1]
1, a>1.
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max{t,0} are as follows:

. 1
wl(tvu):t+ﬂln(1+6_ﬂ)v w2(tvﬂ):§(t+ Vt2+4ﬂ2)7
(3.1) max{0,t} if[t| > p t+ ge‘ﬁ ift > 0
Ys(t,p) = (t+p)? Yalt,p) = )
(4M> if [t] < u, geﬁ ift <o0.

Let ¢ be a smoothing function of max{t,0}. For v € R, set

(3'2) CI)(Unu) = <¢1(Ula /J), ¢2('U27/1')a SR (bl(vl’,u))T’
where
(33) d)z(tvﬂ) = Q/J(wl - tvM) +t— w(t - @7;7/“'L)’ i = 1a2, s al'

It is clear that ®(-, 1) is continuously differentiable on R! for any fixed u € (0, 1], and by (1.6), we
have

(3.4) lim ¢;(s, 1) = Py, w,)(t) and  [¢i(t, 1) — Py, w,) (D) < 26yp, VEER, pe (0,1].

s—t pul0
Then, since w; < w; for all i = 1,2,...,1, we obtain
lim  ¢(s,u) = {0} ift <w,; ort>w;
s—t,ul0
(35) S_}gillo(bz(svu) { } I w, <t< W
{ lim d);(s,,u)} cl0,1] ift=w, ort=w;.
s—t,pul0

PROPOSITION 3.2. Let ¢ be a smoothing function of max{t,0} with parameter ky in Definition
3.1-(1). Suppose Assumption 2.1 holds and Q2 + B(?Iﬁ:w\ﬁ, 0) C Dy, then the function

(3.6) G(u, 1) = H(®(Q(u), 1))

owns the following properties.
i) G(-, p) is continuously differentiable on D for any fized p € (0,1].

(ii) There is a kg > 0 such that for any uw € D and p € (0,1], ||G(u, ) — G(u)|| < kagp.

(iii) For any w € D, limsup,_,, .o 1G"(z, p)|| < e

(iv) For anycg € (c,1), there exists i € (0, 1] such that for any fixved pu € (0, i), |G (u, p)|| < cs,
Yu € D, which implies that G(-, ) is a contraction mapping on D with factor cg, i.e.

(37) ||g(u7:u’)_g(va:u)H SCS”U’_UHa fOT all U7U€D7 JUBS (Oa/l]

(v) Let u, be a fized point of G(-,p), then |u, — u*|| < (1’“_@0> W, which further implies

lim,_,ou, = u*.
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Proof. From (3.4), we can claim that

(3.8) 12(Q(u), 1) = Pa(Qu)] < 264 Vip.

Since Q + B(2k4V1,0) C Dy, by the continuous differentiability of @, H and ®(-, ), (i) and (ii)
hold with kg = QCHIiw\ﬁ.

Note that
(3.9) G'(z, 1) = H' (w)w=a(Q(z).m) @' (v; Wv=q(2) Q' (2)-
Recalling (3.5) and the definition of ® in (3.2), we get
(3.10) 19" (v, 1) v=q) | = lldiag(¢; (vi, w)o,=@u())II < 1.

Then, the continuous differentiability of H and @ combining with the estimations in (3.8), (3.9)
and (3.10) gives that

limsuF 19"z il < 1 H (W) w=Pa@p QW) < cucg = c,
Z—U,
which guarantees items (iii) and (iv).
Since u, and u* are the fixed points of G(-, 1) and G on D, respectively, by (ii), we have

ey — | = G, 1) = G| < Gt 1) = Gl )| + G u) = G| < wep+ e, —
which gives the results in (v) by simple deduction. We complete the proof. ]

If G satisfies Assumption 2.1, Proposition 3.2-(iv) says that its smoothing approximations in
(3.6) also own the contractive property when pu is sufficiently small. Inspired by the proof of
Proposition 3.2, if u* is an approximate fixed point of G(u, ;) with accuracy tolerance ey, i.e.
G (¥, up) — u¥|| < e, then we also have limy,_ oo u* = u*, if limy_so0 g = 0 and limy_so € = 0.
Moreover, the error estimation in Proposition 3.2-(v) holds always no matter G(-, 1) is contractive
or not. Proposition 3.2-(v) also gives an upper bound of the error on the fixed point of G and its
smoothing approximation, which is defined by the parameter kg coming from the structure of the
smoothing approximation function and the contraction factor of G.

Remark 3.1. Following the proof of Proposition 3.2, condition 2 +B(2/@¢ﬂ, 0) C Dy is only
used to guarantee ®(Q(u), ) € Dy for allu € D and p € (0,1]. So, the statements (i) and (ii) in
Proposition 3.2 hold for any p € (0, fi] with parameter fi € (0, 1] satisfying Q+B(2kyV1ji, 0) C Dy

3.2. A modified Anderson(m) algorithm. In this subsection, we will propose an Ander-
son acceleration algorithm for the nonsmooth fixed point problem (1.1) based on the smoothing
approximation method. At first, we study the new smoothing function of max{t,0} as follows,
which has more desirable properties for solving (1.1):

0 ift<0
t2
— fo<t<up
2p
1 1
(3.11) Y(t,p) = Z(t—u)%rt—ﬁu if p<t<p+ /i
1
—Z(t—p—Q\/ﬁ)ert if pu+ u<t<p+2yp
t it t > p+2./pn
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Fig. 3.1: Smoothing functions of max{t,0}: (a) (¢, p) in (3.11) with different values of pu; (b)
max{t,0}, ¥(t, 1) in (3.11) and the four smoothing functions v;(t, 1) in (3.1) with u = 0.3.

Fig. 3.1(a) shows the smoothing function (-, ) in (3.11) with different values of u, while Fig.
3.1(b) shows the relationships of max{t,0} and its smoothing functions defined in (3.1) and (3.11).
Since 9 in (3.11) is a smoothing function of max{¢,0} with Definition 3.1, the results in Proposition
3.2 also holds for G(u, 1) defined in (3.6) with ¢ in (3.11). In what follows, we will present some
more desirable properties of ¢ in (3.11).

PROPOSITION 3.3. Function ¢(t,p) in (5.11) is continuously differentiable with respect to t for
any fixed i € (0,1] and satisfies the following properties.
(i) [¢(t, ) — max{t,0} < Spu, for any t € R and p € (0,1].
(i) ¥ (t, ) = max{t,0} if t <0 ort > p+2,/p.
(iii) For any p € (0,1], ¥/'(t,p) =0 ift <0, 0 < ¢'(t,p) <1+ 2 /mif 0 <t < p+2\/n, and
W) =1 if t > p+ 2/
Proof. By the definition of v in (3.11), we obtain

0 ift<0

[t2/2p —t| < /2 ifo<t<pu
((t—p)?/A—p/2] <p/2 ifp<t<p+ R
(t—p—2yw?/a<p/d ifp+p<t<p+2/p
0 itt>p+2/1,

which implies the statements in (i) and (ii).

By straightforward calculation, we can verify that (¢, ) is continuously differentiable with
respect to ¢ for any fixed u € (0,1] and the estimation in (iii) holds. ad

By Proposition 3.3-(ii), it holds that for any fixed t € R, there exists i > 0 such that (¢, u) =
max{t,0}, Yu € (0, i], which is the main advantage of ¢ in (3.11) compared with the other four

1h(t, p) — max{t,0}] =
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smoothing functions of max{¢,0} in (3.1). Following the proof of Proposition 3.3, we can further
obtain the following properties of ¢; in (3.3) with ¢ in (3.11).
PROPOSITION 3.4. For any fized 1 € (0,1], functions ¢;(-, 1) in (3.3) with ¢ in (3.11), i =
1,2,...,1, are continuously differentiable and satisfy the following properties:
(i) [i(t, 12) = Plu, w1 ()| < 34, for any t € R;
(ii) ¢i(t, 1) = P, () if t Sw; — p— 2/ or w; <t <W; or t > W; + pu+ 2/11;
(iil) |@L(t, )| <1, for any t € R.

Proof. By Proposition 3.3-(ii), we have
P(w; —t, u) = max{w; —t,0} ift >w; ort <w; —p—2\/1,
Y(t — Wy, p) = max{t —w;,0} if t <w; or t >W; + p+ 2./
Then, for any p € (0,1] and ¢ € R, at most one of ¢¥(w; — t, u) = max{w, —t,0} and (t —w;, u) =
max{t — w;,0} holds. Then, the results (i) and (ii) in Proposition 3.3 imply items (i) and (ii) in

this proposition.
In what follows, we consider the estimation in item (iii). From (3.11), we have

|5 (t, )] =[¢"(w; =, 1) + 1 = ' (t = W;, )

0 iftgyi—u—%/ﬁ
lw; =t —p=2y/pl/2< /2w, —p—2/p<t<w;—p— /i
|t +p—w;|/2 < V2 fw, —p—p<t<w —p
(3.12) t—w; +pl/p<l ffwi—u§i<wi
=<1 ifw, <t<w;
lp+w; —t|/u<1 ifw, <t<w;+p
[t —w; —pl/2 < \/1/2 ifw; +p <t<w;+p+ /1
[t —; — p—2/pl/2 < Vij2 W +p+ i<t <W+p+ 20
0 if t > W; + p+ 2,/0.
Thus, (iii) holds. 1]

In what follows, we will use the smoothing function of max{¢,0} in (3.11) to construct a
smoothing approximation of Pq(v) on R, which is also with the formulation in (3.2). Then, we can
give a smoothing approximation of G in (1.1) by the formulation of (3.6) with (3.11).

Set w1 = min{3,w; — Q;(uv*) : i € {i : Q;(u*) < w;}}, wo2 = min{3,Q;(u*) —w; : i € {i:
Q;(u*) > w;}}, and by Assumption 2.1-(ii), denote n € (0, 1] the parameter such that

(3.13) Q+ B(Vin/2,0) C Dy.
Then, we define parameter fi by
(3.14) fu = min{n, (w1/3)%, (@2/3)}.

THEOREM 3.5. Suppose Assumption 2.1 holds. Besides the properties in Proposition 3.2, func-
tion G(u, p) in (3.6) with ¢ defined in (3.11) owns the following properties.
(i) For any fized 1 € (0,m], G(-, 1) s a contractive mapping on D with contraction factor no
larger than c in Assumption 2.1.
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(ii) (|G (u, p) — G(w)|| < wp for allu € D and p € (0,n] with k = cxV1/2;
(i) G(u*, p) = G(u*) = u*, Vu € (0, ], where fi is defined by (3.14).
Proof. By Proposition 3.4-(i), it holds

(3.15) 19(Q(w), 1) = Po(Qu)| < Vip/2.

Then, ®(Q(u), ) € Dy for all u € D and u € (0,7n] can be guaranteed by the condition Q +
(i) Using the Lipschitz property of H and @ again, for any u,v € D and u € (0,7], we obtain

G 1) — G (v, )| <en | B(Qu). 1) — BQ(v), )|
<cn||Q(u) — Q)| < creqllu o] = cllu— o],

where the second inequality follows from Proposition 3.4-(iii). Thus, for any p € (0,7], G(u, 1) is a
contractive mapping on D with factor no larger than c.
(ii) By the Lipschitz property of H on Dy and ®(Q(u), ) € Dy for all w € D and p € (0,7,

it holds
1G(u, p) = G(u)|| = H(®(Q(w), ) — H(max{Q(u), 0})]
<cn||2(Q(u), ) — max{Q(u), 0} < rp,
where the last inequality follows from (3.15) with x = Vicy /2.
(iii) Denote I; = {i: Q;(u*) < w;}, o = {i: w; < Qi(v*) <w;} and I3 = {i : Q;(u*) > w,}.
First, we can easily find that
¢i(Qi(u”), 1) = Qi(u*) = Py, w,)(Qi(u")), Vi€ Ia.
Next, for i € I, by the definition of w; and ji < (w;/3)? < 1, we have

Qi) <w; —w =w;, —3WVE<w; —p—2/u, Vielh,0<u<p,

by Proposition 3.4-(ii), which implies
(3.16) 6:(Quu")t) = Py (Qulw?), Vi€ L, 0< <
Similarly, for ¢ € I3, we obtain

Qi(u") >w; +p+2/p, Viels, 0<p<p,

which gives (3.16) for ¢ € Is. Thus, for any u € (0, ], we have ®(Q(u*), u) = Po(Q(u*)) and thus
G(u*, p) = G(u*) = u*. We complete the proof. 0

*

Inspired by Theorem 3.5-(iii), when p < i with & defined in (3.14), u* is also the fixed point

of G(u, u), and from Theorem 3.5-(i), we further have
(3.17) (1 =lu = < [Flu, )| < A+ )flu—u, VueD,pne(0,n,

where F(u, 1) = G(u, p) — u.

Remark 3.2. Proposition 3.4-(ii) shows that G(u,n) = G(u), for any p € (0,1] and u € D
satisfying Q(u) € Q. Thus, if u* is the fixed point of G(-, 1) for a given u € (0,1] and Q(u*) € Q,
then we can justify that u* is also the fized point of G.
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Algorithm 3.1 s-Anderson(m)
Choose ug € D and a positive integer m.
Set parameters 01,09 € (0,1), v > 0 and a sufficiently small positive parameter € < || F(ug)
Let Fy = G(ug) — uo, po = || Fol|?, Fo = G(uo, po) — uo and uy = G(uo, o).
for k=1,2,... do
set Fj, = G(uy) — ug,
if ||Fx|| < 01|/ Fx—1]|, then let

I

HEe = Hk—1,
otherwise, let
pr = max{e,oafip—1};

set Fi = G(ug, pur) — uk;
choose my, = min{m, k};

solve
mp mi
(3.18) min Zaj‘/_—.k*mk+j s.t. Zaj =1
§=0 §=0
to find a solution {a? :j=0,...,mg}, and set
my
(319) Uk+1 = Z a;?g(ukfkarﬁ Mk*mk“’j);
§=0
end for

By Theorem 3.5, when we use (3.6) with (3.11) as the smoothing approximation of G, G(-, )
is contractive and u,, = u* for p € (0, ii], where u,, is the fixed point of G(-, ). Then, we can apply
Anderson(m) or EDIIS(m) to find a fixed point of G by using G(-, 1) in the algorithms. If wug is
sufficiently close to u*, then ug := 7||F(ug)||> < ji. In such case, we can let uy := g for all k.
However, v* is unknown, and the value of i in (3.14) is often difficult to be evaluated in practice.
Thus, we use an updating scheme on puj in Algorithm 3.1 to improve the ability and performance
of the Anderson acceleration methods for nonsmooth fixed point problems. In s-Anderson(m), we
replace G(u) in Anderson(m) by G(u, ) and update p step by step. The strategy for updating g
in Algorithm 3.1 is based on the reduction of the norms of the residual function at uy and ug_1. If
|Fx|l < o1||Fr—1]|, then it means that using 1 can reduce the norm of the residual function at wuy
sufficiently. Hence we let pp = pg—1 for the next iteration. Otherwise, we set u, = max{e, oapip—1}-

Same as the condition on the coefficients {a? :j=1,...,my} used in [6, 24], we need the
following assumption on them in (3.18).

ASSUMPTION 3.1. There exists an M, > 1 such that Z;.nz"'o |a§?| < M, holds for all k > 1.

Before proving the local r-linear convergence of s-Anderson(m), we need predefine some neces-
sary parameters used in the forthcoming proof and give some preliminary analysis.

e a: Combining (3.9), (3.10) with the Lipschitz property of Q'(u), diag(¢'(Q;(u),u)) and

H'(®(Q(u), 1)) on D, there exists a constant a > 0 such that G’ (u, p) is Lipschitz continuous
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334 on B(4,u*) with constant a. This means,
395 (3:20)  Glup) = G(u*, ) +G'(u ) (u —u) + Ay, V€ BG,u%), i € [,
336 where [|A,[| < Lallu — u*|2.
337 e J1: Since G(u, pt) is Lipschitz continuous, from Theorem 2.2 in [6], there exists §; € (0, ]
338 such that if ||ug — u*|| < 1, we have the r-linear convergence of Anderson(m) on solving
339 F(u, i) :== G(u, t) —u = 0 with any i € [e, fi], that is
k

. |7 (e )]
340 (3.21) lim sup ( <cg,

koo \ [ F (o, )]
341 where ¢ is a contraction factor of G(u, i) on D by Theorem 3.5-(i).
342 e 0g: Let

] 1-— 1-—

343 (3.22) 50 = min{o;, —YF Vi (=)o 1,

VIl+e) Al +ce) My(l+¢) =
a(M24+My)(14¢)+2MoViegy(1+e)?(1—c)
2(1—c)? .

345 LEMMA 3.6. If |[ug — u*|| < &, then for the sequences {ux}, {u*} and {F} generated by
346 s-Anderson(m) in Algorithm 3.1, it holds that

344 where i is defined in (3.14) and w =

317 (3.23) i <f, Q4+ BVl 2,0) C Dy, wuy, € B(61,u*) and ||F|| < || Fol-

Proof. Since
Y (o)l < (1 + ¢)?[luo — w*||* < min{z, n},
348 then pyp < min{fi,n} by the updating method of uj in s-Anderson(m) for k£ > 0. From (3.13), we

349 find that the first two relations in (3.23) hold.
350 Then, by Theorem 3.5-(i) and (iii), we have

o1 (3.24) G(u', ) = G(u”) = w” and [|G(u, pr) — G(v, )| < ellu —of|, k>0, u,v € B(d1, u”).

352 We next prove the last two statements of (3.23) by induction, where we see that they are true for
353 k=0 and we suppose both of them hold for 0 < k£ < K.
Owning to (3.24), we have

mi
luscir = ul| =D ol Gk mrjs b mpcts) — D 0f G, ik et )

Jj=0

Myc
SMacmax ur—mp+j = @[l < 77 max | Fr—me+]

M C Mac(1+c) *
H D g ),

‘F
= 7| < =

354  which gives ug+1 € B(d1,u*) by the condition of §y. Then, the third result in (3.23) holds for
5 k=K+1.

w
ot
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356 Similarly, 3 7% UK gty € B(61,u*) € D. Formulas (3.19) and (3.24) imply

357 [Freiall = [1G(urs1, r41) — wra|
mig mg mgeg

358 < cllurcir =Y af wr sl +1GQ af wr s 1) = Y af Gk e tgs e +5) |
j=0 =0 =0

359 (3.25) < ¢|Fk| + Ak + Bk,

where
MK mKg
K K
Ax = || af ur—mycrgs 1) = DGRyt i) |+
j=0 j=0
MK mg
Bx = 79l ) = a6l » )
K — aj qumK+ju,U/K+1 ij qumKJr]aMKmeJr]
j=0 j=0

360  Then, by (3.20), we estimate ||Ax|| by the same way as in [6, 24] to get

K
”AKH = AET:% aqu,mK+j - Zaj AUK—mK+j

<a(M2 + M,)
361 (3.26) - 2
a(M?+ M,,)
= 2(1—-02
< WME + Mo)(1 +)lug —
- 2(1 —¢)?

ma i1~ 0

max [ FK e+l

*
e

362 To evaluate || B, by Theorem 3.5-(ii), (2.3), (3.17) and (3.24), we have

(3.27)
Mo kv (1 + ¢)?||ug — u*
363 ||Brl|l € Mab(pr—myp + pis1) < 2Makpo = 2Mary || F(uo)||* < 7( )*lluo |

L 1ol

Together (3.25), (3.26), (3.27) with the assumption of (3.23) for k = K, gives
[Frepall < (e + @lluo —u* ()] Foll-

364 Then the fourth relation in (3.23) holds for k = K + 1 by §y satisfying ¢ + @wdp < 1. We complete
365  the proof for (3.23). d

366 THEOREM 3.7. Suppose Assumption 2.1 and Assumption 3.1 hold. If ug is sufficiently close to
367 u*, then the sequence {u*} generated by s-Anderson(m) in Algorithm 3.1 converges to the solution
368 of (1.1) with the r-linear convergence rates of

* 1/k 1/k
— F
360 (3.28) lim sup <||uku|> <c¢ and limsup (”(uk)”> <ec.
k—oo \|[to — u*|| k—oo  \[[F(uo)
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Proof. Let ||ug — u*|| < do with &g in (3.22). Then, py < fi. By the updating method of iy,
there exist K and [i € [e, i] such that py = f, for all k > K.
By Lemma 3.6, as ||ug — u*|| < dg, we have ||lug — u*|| < é;. Then, by (3.21), we have

1/ (k- K)
( |]:(uk7uk)||”) <.

y
P\ 1 F Cuks i) -

k—o0

which implies

<ec.

(3.29) lim sup

k—o0

(Hf(uk,uk)n)”k
17 (uo, o)

From (3.17), we obtain

(1 Cares i) || (1 - 0> g — u]]

17 (uo, o) | — \1+¢) |luo — wr||’
1/k
which combines with (3.29) and limsupy,_, .. (L‘_ﬁ = 1 gives the first estimation in (3.28). In
light of (2.3) and the first relation in (3.28), we further obtain the second result in (3.28). O

From the updating method of {p} in s-Anderson(m), it is a case that limy_, oo g, > €, which
means that there exists K such that ||Fg| < o1||Fr—1|, Vk > K. Combining this with Theorem
3.7, we note that if limg_, o ur > €, then s-Anderson(m) not only owns the r-linear convergence
in (3.29), but also has the g-linear convergence on residual ||F'(ug)| with factor o1. Moreover,
following the statements in Theorem 3.7, even if we have no knowledge on g and 7, the local
convergence properties of s-Anderson(m) in Theorem 3.7 are always valid with any 1,02 € (0, 1)
by setting e sufficiently small. In particular, if pg is sufficiently small such that py is unchanged
in s-Anderson(m), then s-Anderson(m) is just Anderson(m) on G(u, tig). A simple consideration is
that the results in Theorem 3.7 also hold if we let puy := € with € being sufficiently small. Similar
results in Theorem 3.7 also hold for the EDIIS(m) with the same smoothing approach.

Remark 3.3. According to Rademacher’s theorem, a locally Lipschitz continuous function G
is differentiable almost everywhere. If 1 is a smoothing function of max{t,0}, Proposition 3.2 says
that the contraction factor of G(-,u) on D can be sufficiently close to the contraction factor of G
as p is sufficiently small. Theorem 3.5 gives an upper bound of the contraction factor of G(-, 1) on
D with 1 defined in (3.11). By the structure of ¥ in (3.11), if G is not continuously differentiable
at u*, which means that there is i € {1,...,1} such that Q;(u*) = w, or W;, then the contraction
factor of G(-, ) with (3.11) can be strictly smaller than the contraction factor of G around u* as u
is smaller than a threshold.

For example, if G(u) = (max{u;/2,0},1—us/4)T, the exact contraction factor of G around its
fized point u* = (0,4/5)T is 1/2. Let G(u,p) = (¥(u1/2, 1), 1 — ua/4)T with the definition of 1 in
(3.11). For any given u € [e, 1], we note that

16" (u, wl| < max{lu|/(2u),1/4},  Vu € B(6,u")

with § < €/2, which implies that the contraction factor of G(-, 1) is no larger than 1/4 when p € [, 1].
These results combining the analysis in Theorem 3.7 show that as ug is sufficiently close to u*, s-
Anderson(m) is r-linearly convergent to the fixed point of G with factor no larger than 1/4, which
is strictly smaller than the contraction factor of G around u*. And the contraction factor of G(u, )
on B(0,u*) is decreasing as f is increasing in [e, 1].
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4. Numerical applications and examples. In this section, we illustrate our new conver-
gence results of Anderson acceleration for nonsmooth fixed point problem (1.1) by three appli-
cations. All the numerical experiments are performed in MATLAB 2016a on a Lenovo PC547
(3.00GHz, 2.00GB of RAM). When m > 2, proceeding as in [11, 25], we write the problem in (1.3)
by the following equivalent form

k . mk—l
(4.1) 6" € arg min ’ Fy — ijo 0; (Fr—mytj+1 — Frmits) ‘
and then )
mg—
U1 = Glug) — ijo 05 (G(uk—mytj1) = GUk—myt5)))s

in terms of the original iterations o in (1.3), where af = 0, off = 0¥ —0% | for 1 < j <my—1and
ok =1-6F . Tosolve (4.1), we consult the method based on the pseudoinverse introduced in
[11], and it has been shown that the deteriorating condition of the least-squares matrix does not
necessarily interfere with convergence [24]. This method is also used to find the a;? in s-Anderson(m)
in Algorithm 3.1. For s-Anderson(m), we always set ¢ = 1071, v = 1/n and o; = 0o = 0.6 for

comparison. And we stop Anderson(m) in Algorithm 1.1 and s-Anderson(m) in Algorithm 3.1 when

F
(4.2) IECO)l 4511 o0 g > 7000,

[1E (o) |

It should be noticed that the stopped criterion for s-Anderson(m) also uses the value of
|E'(ug)||/ || F(uo)|| not the residual on smoothing approximation F(u, ). From these numerical
results in Examples 4.1-4.3, we have the following observations.

(i) Both Anderson(m) and s-Anderson(m) can be used to solve the considered problems, in
which the contraction mappings G are nonsmooth at the fixed points. Though the the-
oretical results of them are built up for local convergence, it is satisfactory that all the
numerical experiments in this section are convergent with random initial points.

(ii) For both Anderson(m) and s-Anderson(m), as presented in the experiments, the best choice
of m is problem dependent.

(iii) s-Anderson(m) performs better than Anderson(m) for most cases, and the local convergence
of ||F(ug)||/||F (uo)|| by s-Anderson(m) is also faster. Since the mapping G(u, u) used in
s-Anderson(m) only has small difference with G(u) in Anderson(m), the generated uy in
the former iterations cannot bring obvious differences on || Fg||/|| Fo|| when ||Fy|| is relatively
large. However, after certain iterations, ||Fi|| is reduced significantly and the advantages
of s-Anderson(m) appears clearly. So it is reasonable that s-Anderson(m) outperforms
Anderson(m) when the accuracy is high.

(iv) The superiorities of s-Anderson(m) over Anderson(m) become more and more obvious as
the number of elements in {i : Q;(u*) = w, or W;} increases.

4.1. Minimax optimization problem. Constrained minimax optimization problem is often
modeled by

4.3 i
(4.3) min max [z, y),

where f: X x Y — R is a convex-concave function over closed, convex sets X C R™ and Y C R"2.
Such models are widely used in game theory, machine learning and parallel computing. Due to the

This manuscript is for review purposes only.



439
440

442
443

444

445

146
447

448

449

460
461

462

163

19

convexity and concavity of f with respect to 2 and y, respectively, ((z*)T, (y*)T)7T is a saddle point
of (4.3), if and only if it satisfies

(4.4) {x = Px(a" — aVof(z",y"))

y* = Py(y* + BV, f(z",y"))

with a, 8 > 0. Denote

u= < “Z > A= ( O‘{)’“ B?nz >,L(u) = L(z,y) = ( _va”ﬁé’cf’y)) ) Q=X xD.

Then, (4.4) is expressed by u* = Po(u* — AL(u*)), which is reduced to a fixed point problem of G
with

(4.5) G(u) := Po(u — AL(u)).

The mapping in (4.5) can be formulated by (1.1) with Q(u) =« — AL(u) and H(v) = v.

AssUMPTION 4.1. The mapping L is strongly monotone and Lipschitz continuous, i.e. there
exist positive parameters T, and cy, such that for all u,u € 2, it holds

(L(u) = L(@)) " (u — @) > 7pllu —al|?,
[1L(u) = L(@)|| < cpllu—all.
For u, @ € Q, by the Lipschitz property of Py and Assumption 4.1, when o = 3, we obtain
|Pa(u — aL(u)) — Po(a — aL(a))|?
<|lu — aL(u) — @+ aL(a)|?
=llu—al* + o®||L(u) = L(@)|]* - 2a(u — @) (L(u) — L(a))
< (1+ o’y —2ar) [lu—al>.

It is easy to verify that 1+ o?c2 —2ar;, € (0,1), if a € (07 27’[,/0%). Hence under Assumption 4.1,

if « = B € (0,27, /c?), then G in (4.5) is a contractive mapping with factor ¢ = /1 + a?c? — 2a7y,
and the conclusions in Theorem 3.7 hold for G in (4.5), which prompts us to find the fixed point
of G by using s-Anderson(m) with the smoothing approximation of G defined in (3.6). To show
the effectiveness of the corresponding theoretical results and the effect of s-Anderson(m) on solving
problem (4.3), we conduct the numerical experiment on a special case of (4.3), which comes from
the two-payers Nash game problems.

Example 4.1. Consider

1 1
(4.6) min max f(z,9):= 2T Az + 2" By — —yTCy +a 2z — by,
z€R! yeR]? 2 2

where A € R™M*™ qnd C € R™*™ qre symmetric positive definite matrices, B € R™*"2 g €
R™ and b € R™ are random matriz and vectors. Denote Amin(A4) and Amin(C) the minimal
eigenvalues of A and C, respectively. Let @ = R and L(u) = Mu + d with u = (2%, y™)7T,

M = < _gT g ) and d = ( Z ), which satisfies Assumption /.1 with

(4.7) 7, = min{A\nin(A), \min(C)}  and ¢ = ||M||.
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Based on the above analysis, the solution of (4.6) can be transformed to the fized point of (4.5),
and when we choose

(4.8) a=pf=rL/c},

G in (4.5) is a contractive mapping with factor ¢ = ||I,4n, — aM||. For given positive integers
n1 = 1000, no = 500 and s; = 0.3, we generate matrices A, C' and B as follows:

Al =1+ axrand(ns,1);Ul = orth(rand(ns,n;)); A = U1’ x diag(A1) * UL;
Cl = 2+ b*rand(ny, 1); U2 = orth(rand(ny,ny)); C = U2’ x diag(C1) * U2;
B = sprand(n;,n,,s;); B = full(B)/norm(B);

Then, we set n = ny + ng, « and B be defined by (4.8) with the parameters in (4.7). It is clear
that G in (4.5) is nonsmooth at u* if there exists i such that (Mu* +d); =0 and uf = 0. So, for
given s3 = 0.5, we generate the fixed point u* (sol in the code) with n X sy elements of 0 and vector
d € R™ such that the corresponding elements of Mu* + d are also 0 by the following codes:

index = randperm(n); index1 = index(1 : sy * n);
sol = 0.1 + 0.9 xrand(n,1); sol(indexl) = 0;M=[A B;—B’ C(];d = —Mxsol;

Let ug = zeros(n, 1). For different values of a and b, which influence the contractive factor of
G in (4.5), the number of iterations of Anderson(m) and s-Anderson(m) to find uy satisfying (4.2)
are shown in Table 4.1, where the values are the mean values of 50 random experiments. From
Table 4.1, we see that though the contractive factors of G are all very close to 1, both Anderson(m)
and s-Anderson(m) work well, and s-Anderson(m) performs better for most cases. Throughout the
whole table, the smallest iterations for all cases are presented by s-Anderson(m) with m = 3 or
m = 5. Fig. /.1 plots the convergence behaviors of s-Anderson(1) and s-Anderson(8) with some
different values of o1 = o3, where the best is located at 01 = 09 = 0.6. This is an interesting thing
that we can let the value of € be sufficiently small to guarantee the efficiency of s-Anderson(m),
and control the values of o1 and oo to improve its convergence behaviours. How to choose better
parameters is an interesting topic for further study.

Parameters Anderson(m)/s-Anderson(m)

a,b c m =20 m=1 m =2 m=3 m=2>5 m =10
0.835 || 150/148 72/65 60/57 58/48 62/43 78/54
0.893 || 230/218 68/85 71/71 71/65 80/58 80/66
0.895 | 246/236 | 74/92 | 76/73 | 77/65 | 84/71 | 94/80
0.943 | 465/446 | 147/129 | 113/105 | 117/102 | 125/107 | 159/126
0.941 | 407/379 | 114/104 | 105/96 | 108/93 | 111/94 | 122/102
0.961 || 609/565 | 194/194 | 136/123 | 144/123 | 149/122 | 174/139

b

W wHE=NO
WH N R~ O

Table 4.1: Numerical results of Anderson(m) and s-Anderson(m) for Example 4.1

4.2. Complementarity problem. Given a continuously differentiable function f : R™ — R"”,
the complementarity problem is to find v such that

v>0, f(v)>0 vTf(v)=0.
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Fig. 4.1: Convergence of ||Fy||/||Fo|| by s-Anderson(1) and s-Anderson(3) with different values of
o1 = o9 for Example 4.1

This problem is denoted as CP(f), which is equivalent to v = max{v— f(v),0}. Let Q(v) = v— f(v).
If | I — f'(v)| <e<1,then G(v) = max{Q(v), 0} is a contraction mapping with factor c.

If f(v) = Mv + q with M € R™™ and ¢ € R", the CP(f) is the linear complementarity
problem, denoted as LCP(g, M). Suppose M = (mj;)nxn is strictly diagonally dominate with
positive diagonal elements in the following sense,

n n
Z |mij| < my;  and Z [mij| < mu;.
i=1,i#j Jj=1,j#i

Let A =diag(m;;). Then LCP(g, M) is equivalent to
Av >0, MA'Av+¢>0, (A)'(MA'Av+¢)=0

and can be solved via LCP (g, MA~!). Moreover, from

17— MA~H < VA = M)A fI(A = M)A~

n n

= max Z |mi;|, | max Z |mi| =1 e <1,
Mt 21 M i

G(u) = max((I — MA=)u — ¢,0) is a contraction mapping. Let Q(u) = (I — MA~Yu —q. We
define a smoothing approximation of G by (3.6), which is also a contraction mapping with factor ¢
and satisfies the conditions in Assumption 2.1. Thus, if u* is the fixed point of the above defined
G, then v* = A~u* is the solution of LCP(q, M).

Example 4.2. Pricing American options in a partial differential equation framework with fi-
nite difference methods or finite element methods lead to a linear complementarity problem

(4.9) v—a>0, Mv—b>0, (v—a)"(Mv—-b)=0,
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501  where v is the value of an American option, a is from a given payoff function, b is from an initial
502 guess of the value and its changing rate, and M is from differential operators [21].
503 Letu=v—a and g = Ma — b, then (4.9) is the standard form of LCP(q,M). We set

2+vh? —1+40.5h7
—1—0.5hm 2+ 99h? —1+0.5hm

M = .
2+ Yp_1h? —140.5h7,_1
—1—0.5h7, 2 + v h?
Here, M is the matriz from the centered difference formulate for
0%V oV
04 at a fized time t, where h = 1/(n + 1) is the mesh size of discretization, and y(t,z) > 0 and 7(t,x)
05 are giwen functions. If |7;| = |mip1] < 2(n+1), i = 1,2,...,n — 1, the matriz M is a strictly

6 diagonal dominate matriz, and thus a P-matriz. Then, the LCP(q, M) has a unique solution u* for
7 any q € R™, which is also the fized point of the nonsmooth fixed point problem

508 (4.10) u= G(u) =max{(I — nM)u — nq,0},

509  with n = ﬁ Here function G in (4.10) is a contraction mapping with the contraction factor
510 ¢ =2n and G; is not differentiable at the solution u* for

511 (4.11) teN ={i: (I-nM)u* —nq); =0}

512 Throughout this evample, we choose uy = 0.5 * ones(n, 1) and set y(t,x) = 103, 7(t,x) = —1.
513 For givenn and © € (0,1) (theta), we randomly generate the solution u* (sol) and corresponding
514 q as follows

515 (4.12) sol = max{rand(n, 1) — theta,0}; q= —M=xsol;

516 By the setting of this problem, there are around © x n components in N defined by (4.11).

517 First, we compare the performance of Anderson(m) and s-Anderson(m) with different values
518 of m. Set © = 0.4, and n = 200, 300 in (4.12). The convergence of | Fx||/||Fol| for Anderson(m)
519 and s-Anderson(m) with m = 0,1,2,3,10 are plotted in Fig. 4.2, from which we can see that
520 s-Anderson(m) is faster than Anderson(m) always and s-Anderson(10) is the best. In [18], the
521 following dynamically updating of depth my is introduced and used,

522 (4.13) my, = median([mq;mg;me])  with My = ceil(—logy, || Fx||),

523 where m1 and mo are positive integers to control the lower and upper bounds of m. In particular,
524 if my = ma, then the corresponding algorithms are just Anderson(m) and s-Anderson(m) with
525 m = mq = mg. Fig. 4.3 shows the number of iterations of Anderson(m) and s-Anderson(m) to
526 satisfy the stop criterion in (4.2) using dynamic depth selection (4.13) with m = my = mgy and
527 my % ma, in which the best result is located at m = my = mg = 8 by s-Anderson(m). From Fig. 4.3,
528  we find that the number of iterations is not monotone decreasing as m is increasing. Whether the
529  dynamic depth selection approaches can improve the convergence of Anderson acceleration methods
o

w

is an interesting topic for further research.
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Fig. 4.2: Convergence of ||Fy||/||Fol| by Anderson(m) and s-Anderson(m) for Example 4.2 with
n = 200 and n = 300
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Fig. 4.3: Performance of Anderson(m) and s-Anderson(m) using dynamic depth selection (4.13)
with m = my = mo and m; # ms for Example 4.2

Next, we test the performance of Anderson(m) and s-Anderson(m) for different values of ©,
since its value controls the number of dimensions, on which G is nonsmooth at u*. Letn = 200. For
© =0.2, 0.4, 0.6 and 0.8, we plot the convergence of | Fy||/||Fol| by Anderson(m) and s-Anderson(m,)
with m = 1,10 in Fig. 4.4. The displayed results in Fig. 4.4 show that s-Anderson(m) is faster
than Anderson(m) for all these cases. In particular, as © is larger, the superiority on the local
convergence rate of s-Anderson(m) compared with Anderson(m) is more obvious, which corresponds
to the observation (iv) given at the beginning of this section.

4.3. Nonsmooth Dirichlet problem. Consider the Dirichlet problem [7]

[1]

in

(4.14) { —Av+ v = Amax{v — ¢(2,y),0} + P(z,y)

v =f(z,y) on E
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Fig. 4.4: Performance of Anderson(m) and s-Anderson(m) with m = 1,10 for Example 4.2 with
four different values of ©

where = = (0,1) x (0,1), Z denotes the boundary of Z, ¢,y € C(£) N CY(Z), f € C(Z), B> 0 and
A € R. Using the five point centered finite difference method for the Dirichlet problem (4.14) with
a mesh size h at grid (z;,y,) gives

(415) = w1 = Vi1 +4vig — viry — vimg + BhPvi; = AP max{vi; — 945, 0} + 2y ;.
By transforming (v; ;) to a vector u, (4.15) can be illustrated by the following system
(4.16) (=L 441 — U + Bh*Iu = Ah* max{u + p,0} + q,

where L and U are lower and upper diagonal matrices with nonnegative elements, h = 1/(y/n+1),
p,q € R™ are the corresponding vectors transformed by ¢; ; and h21/11-7j. Then, (4.16) is equivalent
to the following fixed point problem

1 h2\ 1
4.1 = = — (L I —— _ _q.
(4.17) u=G(u) 4—|—ﬂh2( +U)u+4+6h2max{u+p,0}+4+ﬂh2q
When g > ||, from
4+ AR
G - Gl < T3 ol
the function G in (4.17) is a contraction mapping with factor ¢ : 44"12%;2.

Example 4.3. We consider the nonsmooth fized point problem (4.17) from the finite difference
discretization of the mnonsmooth Dirichlet problem (4.14). Let the solution of problem (4.14) be
v(z,y) = max(—sin(zm) sin(ym) + 0.5,0), and u* present the values of v(x,y) at the mesh points
for given mesh size h = 1/(y/n +1). We randomly generate p = —0.4 x rand(n, 1) and set ¢ =
(4 + Bh*)u* — (L + U)u* — Ah? max{u* + p,0} with A\ =1 and 8 = 2. Notice that the contraction
factor of G is very close to 1 at this situation.

When n = 64 x 64, the original function is plotted in Fig. 4.5(a), in which we can see that
it is nonsmooth. Choosing the initial point uy = 0.5 *x rand(n, 1), the convergence performance of
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Fig. 4.5: Solution and convergence performance of s-Anderson(m) for Example 4.3 with n = 64 x 64

[ E: /| Eo|| for s-Anderson(m) are plotted in Fig. 4.5(b). For different values of n, the convergence
rates at the stopped point, defined by (| Fx||/||Fol|)*/*, are listed in Table 4.2. This example shows
that s-Anderson(m) can effectively solve this problem with a contraction factor very close to 1, and
s-Anderson(m) is faster as m increases from 0 to 20.

Vvn 1-c m =20 m=1 m =2 m=3 m=>5 m =10 m = 20
16 8.635e-4 9.793e-01 | 9.789e-01 | 9.632e-01 | 9.519e-01 | 9.191e-01 | 8.501e-01 | 7.750e-01
32 2.294e-4 9.944e-01 | 9.940e-01 | 9.897e-01 | 9.860e-01 | 9.784e-01 | 9.480e-01 | 9.078e-01
64 5.916e-5 9.978e-01 | 9.978e-01 | 9.968e-01 | 9.959e-01 | 9.946e-01 | 9.832e-01 | 9.758e-01
128 | 1.502e-5 9.991e-01 | 9.985e-01 | 9.983e-01 | 9.976e-01 | 9.976e-01 | 9.964e-01 | 9.930e-01

Table 4.2: Values of (|| Fg||/||Fol])'/* by s-Anderson(m) for Example 4.3

5. Conclusions. Anderson acceleration does not use derivatives in its iterations, but it is
difficult to prove its convergence without continuous differentiability. Most existing convergence
results of Anderson acceleration are established under the assumption that the involved function
is continuously differentiable [6, 9, 19, 24, 25]. For a special class of nonsmooth functions that
is a sum of a smooth term and a nonsmooth term with a small Lipschitz constant, convergence
of Anderson acceleration is proved in a recent paper [3]. In this paper, we give new convergence
results of Anderson acceleration for nonsmooth fixed point problem (1.1), which has a composite
max function in G. Theorem 2.1 shows that Anderson(1) is g-linear convergent with a g-factor
¢ € (2‘13:22 ,1), which can be strictly smaller than 3;:‘5 given in [3, 24]. Moreover, we construct
a smoothing approximation G(-, ) for the nonsmooth function G in (3.6), where G(-, 1) is also a
contraction mapping and has the same fixed point as G. Then, we propose an Anderson acceler-
ated algorithm with G(u, ) and prove its local r-linear convergence with factor ¢ for nonsmooth
fixed point problem (1.1), which is same as the convergence rate of Anderson acceleration for the
continuously differentiable case.
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