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Abstract. We give new convergence results of Anderson acceleration for the composite max fixed point problem.3
We prove that Anderson(1) and EDIIS(1) are q-linear convergent with a smaller q-factor than existing q-factors.4
Moreover, we propose a smoothing approximation of the composite max function in the contractive fixed point5
problem. We show that the smoothing approximation is a contraction mapping with the same fixed point as the6
composite max fixed point problem. Our results rigorously confirm that the nonsmoothness does not affect the7
convergence rate of Anderson acceleration method when we use the proposed smoothing approximation for the8
composite max fixed point problem. Numerical results for constrained minimax problems, complementarity problems9
and nonsmooth differential equations are presented to show the efficiency and good performance of the proposed10
Anderson acceleration method with smoothing approximation.11
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1. Introduction. In this paper, we focus on the convergence analysis of Anderson(m) and15

EDIIS(m) for the following composite max fixed point problem16

(1.1) u = G(u) := H(PΩ(Q(u))),17

where H : Rl → Rn and Q : Rn → Rl are Lipschitz continuously differentiable functions, Ω is18

a box subset of Rl, and PΩ is the projection on Ω. Problem (1.1) arises from many applications19

in engineering and finance including minimax problems, complementarity problems, nonsmooth20

integral equations and nonsmooth differential equations.21

Anderson acceleration was originally introduced in the context of integral equations by Ander-22

son in 1965 [2]. It is a class of methods for solving the fixed point problem u = G(u), where G is23

a continuous function from D ⊆ Rn to D, and uses a history of search directions to improve the24

convergence rate of the fixed point method25

(1.2) uk+1 = G(uk).26

Anderson acceleration method has been widely used in electronic structure computation [2, 6, 11,27

22, 24, 25], chemistry and physics [1, 23], and specific optimization problems [13, 25]. In particular,28

Anderson acceleration is designed to solve the fixed point problem when computing the Jacobian29

of G is impossible or too costly. Anderson acceleration is also known as the Pilay mixing [20],30

DIIS (direct inversion on iterative subspace) [14, 15, 23], nonlinear GMRES method [4, 16, 26],31

and interface quasi-Newton [10, 12]. A formal description of Anderson acceleration is presented in32

Algorithm 1.1 and often called Anderson(m).33

Anderson(m) maintains a history of function values of G(·) at uk−mk+j , j = 0, . . . ,mk, where34

mk is an algorithmic parameter that indicates the depth of the accelerated Anderson iterations.35
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Algorithm 1.1 Anderson(m)

Choose u0 ∈ D and a positive integer m. Set u1 = G(u0) and F0 = G(u0)− u0.
for k = 1, 2, ... do

set Fk = G(uk)− uk;
choose mk = min{m, k};
solve

(1.3) min
∥∥∥∑mk

j=0
αjFk−mk+j

∥∥∥ s.t.
∑mk

j=0
αj = 1

to find a solution {αkj : j = 0, . . . ,mk}, and set

(1.4) uk+1 =
∑mk

j=0
αkjG(uk−mk+j).

end for

Using these function values, Anderson(m) defines a new iterate by a linear combination of the last36

mk + 1 iterates, where the coefficients of the linear combination are computed at each iteration by37

the convex optimization problem in (1.3). When m = 0, Anderson acceleration is the fixed point38

method in (1.2), which is also known as the Picard method. In practice, each mk may be different39

to maintain the acceptable conditioning of (Fk−mk+j)
mk
j=0 [25] and can be dynamically updated to40

improve the performance [18]. The optimization problem (1.3) in Anderson(m) does not specify the41

norm in its general form and using different norms will not affect the convergence [24]. Throughout42

this paper, we consider problem (1.3) in the sense of Euclidean norm. Notice that the description43

of Anderson(m) in Algorithm 1.1 is convenient for analysis, but the readers may refer to [24, 25]44

and references therein for its efficient implementation.45

The EDIIS(m) [14] differs from Anderson(m) by adding nonnegativity constraints in (1.3), that
is, replacing (1.3) by the following minimization problem

min

∥∥∥∥∥∥
mk∑
j=0

αjFk−mk+j

∥∥∥∥∥∥ s.t.

mk∑
j=0

αj = 1, αj ≥ 0, j = 0, . . . ,mk.

Suppose G : D → D is a contraction mapping with factor c ∈ (0, 1) in the Euclidean norm ∥ · ∥
on a closed set D ⊂ Rn, that is,

∥G(u)−G(v)∥ ≤ c∥u− v∥, ∀u, v ∈ D.

By the contraction mapping theorem [17], G has a unique fixed point u∗ ∈ D, which is the unique
solution of the system of nonlinear equations

F (u) := G(u)− u = 0.

Without loss of generality, we assume that there is B(δ, u∗) := {u ∈ Rn : ∥u− u∗∥ ≤ δ} ⊂ D with
δ > 0. For a contraction mapping G, it is known that the fixed-point method in (1.2) has q-linear
convergence rate, that is ∥uk+1 − u∗∥ ≤ c∥uk − u∗∥ holds in B(δ, u∗). However, the theoretical
convergence analysis of Anderson(m) had not been proved for a long time after it being brought
forward and widely used. The first mathematical convergence result for Anderson(m) was given by
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Toth and Kelley in 2015 [24]. Under the assumption that G is Lipschitz continuously differentiable
in D, Toth and Kelley [24] showed the r-linear convergence of Anderson(m) with r-factor ĉ ∈ (c, 1)
as follows,

∥F (uk)∥ ≤ ĉk∥F (u0)∥ and ∥uk − u∗∥ ≤
(
1 + c

1− c

)
ĉk∥u0 − u∗∥.

Without the differentiability of G, Chen and Kelley [6] showed the r-linear convergence of EDIIS(m)
with r-factor ĉ = c1/(m+1) as follows,

∥uk − u∗∥ ≤ ĉk∥u0 − u∗∥.

Moreover, Bian, Chen and Kelley [3] showed the q-linear convergence of Anderson(1) and EDIIS(1)46

with q-factor (3c− c2)/(1− c) for general nonsmooth fixed point problems in a Hilbert space, and47

r-linear convergence of Anderson(m) and EDIIS(m) with r-factor ĉ ∈ (c, 1) for a class of integral48

equations in which the operator can be written as the sum of a smooth term and a nonsmooth49

term having a sufficiently small Lipschitz constant. Zhang et al [27] proposed a globally convergent50

variant of Anderson acceleration for nonsmooth fixed point problems, but did not provide a rate of51

convergence. The first mathematical view to show the superiority of local convergence of Anderson52

method for the discretizations of the steady Navier-Stokes equations was proved by Pollock, Rebholz53

and Xiao in [19]. And the similar idea was extended to a more general fixed-point iterations by54

Evans, Pollock, Rebholz, and Xiao [9]. Most recently, Pollock and Rebholz [18] showed a novel55

one-step bound of Anderson method with a more general acceleration iteration, which not only56

sharpens the convergence results for contractive mapping in [9], but also explains some mechanism57

of Anderson acceleration for noncontractive cases. Overall, Anderson acceleration can significantly58

improve the computational performance of the fixed point method in practice. We refer the readers59

to [9, 11, 18, 25] and references therein for detailed discussions on its research history and practical60

applications.61

Throughout this paper, we suppose Ω is defined by62

(1.5) Ω = {w ∈ Rl |w ≤ w ≤ w}63

with w ∈ {{−∞} ∪ R}l, w ∈ {{∞} ∪ R}l and w < w. Then, PΩ can be expressed by the following64

composite max form65

(1.6) PΩ(w) = argminv∈Ω∥v − w∥2 = max{w − w, 0}+ w −max{w − w, 0},66

where “max” means componentwise. The formulation of PΩ in (1.6) will play a key role in the
analysis of this paper. Here we declare that (−∞) − a = −∞ and a − (∞) = −∞ for any a ∈ R.
When Ω = Rl+ := {w ∈ Rl |w ≥ 0}, the expression of PΩ in (1.6) is reduced to

PΩ(w) = max{−w, 0}+ w.

In particular, if wi = −∞ and wi = ∞ for all i ∈ {1, . . . , l}, then G = H(Q(u)) is Lipschitz67

continuously differentiable on D, which is the case considered in [24]. Thus, we focus on the case68

that there is at least an i ∈ {1, . . . , l} such that −∞ < wi or wi < ∞, which means that G is69

nonsmooth on D in general.70

The contributions of this paper are new convergence results of Anderson acceleration method71

for composite max fixed point problem (1.1). In section 2, we prove that Anderson(1) and EDIIS(1)72

are q-linear convergent for problem (1.1) with q-factor ĉ ∈ ( 2c−c
2

1−c , 1), which can be strictly smaller73
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than the existing q-factor (3c − c2)/(1 − c) proved in [3, 24]. In section 3, we give the contrac-74

tion consistent properties between G and its smoothing approximations. Then, we propose a new75

smoothing approximation G(·, µ) of G. We show that there is µ̄ > 0, such that G(·, µ) is continuously76

differentiable, contractive on D, and u∗ = G(u∗, µ) = G(u∗), for any fixed µ ∈ (0, µ̄]. To improve77

the ability and performance of Anderson acceleration method for solving problem (1.1), we propose78

a smoothing Anderson acceleration (s-Anderson(m)) in Algorithm 3.1 with the proposed smooth-79

ing function of G and updating scheme for smoothing parameters. We prove that s-Anderson(m)80

for (1.1) owns the same r-linear convergence rate as Anderson(m) for continuously differentiable81

problems. In section 4, we use numerical examples from constrained minimax problems, pricing82

American options and nonsmooth Dirichlet problem to illustrate our theoretical results. Prelim-83

inary numerical results show that s-Anderson(m) can efficiently solve the nonsmooth fixed point84

problem (1.1) and outperform Anderson(m) in most cases.85

2. q-linear convergence of Anderson(1) and EDIIS(1). Formk = 1, the optimal solution86

of problem (1.3) owns the closed form (1− αk, αk)
T with87

(2.1) αk =
FT
k (Fk − Fk−1)

∥Fk − Fk−1∥2
88

and the iterate can be expressed as89

(2.2) uk+1 = (1− αk)G(uk) + αkG(uk−1).90

In the remainder of this paper, we need the following assumption.91

Assumption 2.1. Functions Q and H in (1.1) satisfy the following conditions.92

(i) Q is Lipschitz continuously differentiable on D with Lipschitz constant cQ.93

(ii) H is Lipschitz continuously differentiable on an open set DH containing Ω as a subset with94

Lipschitz constant cH .95

(iii) c := cHcQ < 1.96

Note that the Lipschitz continuous differentiability ofQ andH cannot imply the differentiability97

of G on D due to the existence of projection operator PΩ in its formulation. Since PΩ is Lipschitz98

continuous with Lipschitz constant 1, from99

∥H(PΩ(Q(u)))−H(PΩ(Q(v)))∥ ≤cH∥PΩ(Q(u))− PΩ(Q(v))∥
≤cH∥Q(u)−Q(v)∥ ≤ cHcQ∥u− v∥,

100

we find that G in (1.1) is a contraction mapping on D with factor c = cHcQ under Assumption 2.1.101

Then, it gives102

(2.3) (1− c)∥u− u∗∥ ≤ ∥F (u)∥ ≤ (1 + c)∥u− u∗∥, ∀u ∈ D.103

The following theorem shows that the local q-linear convergence factor of Anderson(1) and104

EDIIS(1) can be improved to any ĉ ∈ ( 2c−c
2

1−c , 1) for (1.1), which can be strictly smaller than the105

factor 3c−c2
1−c given in [3, 24].106

Theorem 2.1. Let {uk} be the sequence generated by Anderson(1) for (1.1). Suppose Assump-107

tion 2.1 holds and c̄ = 2c−c2
1−c < 1. For any ĉ ∈ (c̄, 1), if u0 is sufficiently close to u∗, then {uk}108

converges to u∗ q-linearly with factor ĉ, i.e.109

(2.4) ∥F (uk+1)∥ ≤ ĉ∥F (uk)∥, k = 0, 1, . . . .110
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Proof. Give ϵ > 0. Reduce δ > 0 if necessary such that δ ≤ ϵ and B(δ, u∗) ⊆ D. Since
c ≤ c̄ < ĉ, (2.4) is trivially true for k = 0. Then, we prove (2.4) by induction and assume it holds
for 0 ≤ k ≤ K. Let

0 < ϱ ≤ min{1, (wi − wi)/3 : i = 1, 2, . . . , l}.

Here we declare that wi − wi = ∞ if wi = ∞ or/and wi = −∞.111

By (2.1), we have112

(2.5) |αk| ≤
∥F (uk)∥

∥F (uk)− F (uk−1)∥
and |1− αk| ≤

∥F (uk−1)∥
∥F (uk)− F (uk−1)∥

, ∀k.113

Similar to the analysis in [3, Theorem 1.3] and by the hypothesis in (2.4) for 0 ≤ k ≤ K, we114

have that115

(2.6) |αk| ≤
ĉ

1− ĉ
and ∥uk − u∗∥ ≤ ∥F (uk)∥

1− c
≤ ĉk(1 + c)∥u0 − u∗∥

1− c
.116

Then,

∥uK+1 − u∗∥ =∥(1− αK)G(uK) + αKG(uK−1)−G(u∗)∥

≤c|1− αK |∥uK − u∗∥+ c|αK |∥uK−1 − u∗∥ ≤ 2c(1 + c)ĉK

(1− c)(1− ĉ)
∥u0 − u∗∥.

Similarly,

∥(1− αK)uK + αKuK−1 − u∗∥ ≤ 2(1 + c)ĉK

(1− c)(1− ĉ)
∥u0 − u∗∥.

Thus, there exists δ0 > 0 such that if u0 ∈ B(δ0, u∗), then117

uk ∈ B(δ, u∗), k = 0, . . . ,K + 1 and (1− αK)uK + αKuK−1 ∈ B(δ, u∗).118

Now we estimate ∥F (uK+1)∥ by using119

(2.7) ∥F (uK+1)∥ = ∥G(uK+1)− uK+1∥ ≤ ∥AK∥+ ∥BK∥,120

where121

AK = G(uK+1)−G((1− αK)uK + αKuK−1), BK = G((1− αK)uK + αKuK−1)− uK+1.122

The estimate of Ak is straightforward as it is in [3, 6, 24], which gives123

(2.8) ∥AK∥ ≤ c∥(1− αK)(G(uK)− uK) + αK(G(uK−1)− uK−1)∥ ≤ c∥F (uK)∥.124

Now, we estimate ∥BK∥. First, we note that ψ(t) =


max{0, t} if |t| > ϱ

(t+ ϱ)2

4ϱ
if |t| ≤ ϱ

is a smoothing approx-

imation of max{t, 0}. Then, by (1.6),

Φ(w) = Ψ(w − w) + w −Ψ(w − w)
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is a smoothing approximation of PΩ(w), where

Ψ(v) = (ψ(v1), . . . , ψ(vl))
T.

By virtue of the value of ϱ, for any i ∈ {1, . . . , l} and wi ∈ R, at most one of |wi − wi| ≤ ϱ and125

|wi − wi| ≤ ϱ holds. Then, since |ψ′(t)| ≤ 1, ∀t ∈ R, for any w, w̃ ∈ Rl, we obtain126

(2.9) ∥Φ(w)− Φ(w̃)∥ ≤ 2∥w − w̃∥.127

Next, recalling the definition of ψ, we have128

max{t, 0} − ψ(t) =

{
0 if |t| > ϱ

− (ϱ− |t|)2/4ϱ if |t| ≤ ϱ,
129

which implies the absolute value and Lipschitz constant of max{t, 0}−ψ(t) on R are upper bounded130

by ϱ/4 and 1/2, respectively. Then, for any w, w̃ ∈ Rl, we have131

∥PΩ(w)− Φ(w)∥ ≤
√
lϱ/4,(2.10)132

∥PΩ(w)− Φ(w)− (PΩ(w̃)− Φ(w̃))∥ ≤ 1
2∥w − w̃∥.(2.11)133

Denote134

GS(u) = H(Φ(Q(u))) and GN (u) = G(u)−GS(u).135

Then from the definition of uK+1 in (2.2), we have136

(2.12) ∥BK∥ ≤ ∥MK∥+ ∥NK∥,137

with138

MK = GS((1− αK)uK + αKuK−1)− (1− αK)GS(uK)− αKGS(uK−1)139

and140

NK = GN ((1− αK)uK + αKuK−1)− (1− αK)GN (uK)− αKGN (uK−1).141

Notice that ψ is Lipschitz continuously differentiable on R. By the Lipschitz continuous differ-142

entiability of Q and H, GS is Lipschitz continuously differentiable on B(δ, u∗), which inspires us to143

estimate Mk exactly by the same way as in [24, Corollary 2.5] to get144

(2.13) ∥Mk∥ ≤ γ|αK ||1− αK |∥uK − uK−1∥2

2
≤ γ∥F (uK−1)∥

2(1− c)2
∥F (uK)∥ ≤ γ(1 + c)ϵ

2(1− c)2
∥F (uK)∥,145

where γ is the Lipschitz constant of G′
S on B(δ, u∗) and we use ∥F (uK−1)∥ ≤ (1+ c)∥uK−1−u∗∥ ≤146

(1 + c)δ ≤ (1 + c)ϵ in the last inequality.147

The final stage of this proof is to evaluate ∥NK∥, which is the main part in this proof.148

To do this, the first thing is to evaluate the Lispchitz constant of GN around u∗. For any149

u, v ∈ B(δ, u∗), by the Lipschitz continuous differentiability of H and the mean value theorem for a150

vector-valued function, we have151

∥GN (u)−GN (v)∥ = ∥H(PΩ(Q(u)))−H(Φ(Q(u)))−H(PΩ(Q(v))) +H(Φ(Q(v)))∥

=

∥∥∥∥(∫ 1

0

H ′(ξ̂(t))dt

)
(PΩ(Q(u))− PΩ(Q(v)))−

(∫ 1

0

H ′(ξ̄(t))dt

)
(Φ(Q(u))− Φ(Q(v)))

∥∥∥∥ ,152
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where ξ̂(t) = tPΩ(Q(v)) + (1− t)PΩ(Q(u)) and ξ̄(t) = tΦ(Q(v)) + (1− t)Φ(Q(u)). Denote153

G1
N =

(∫ 1

0

H ′(ξ̂(t))dt

)
(PΩ(Q(u))− PΩ(Q(v)))−

(∫ 1

0

H ′(ξ̄(t))dt

)
(PΩ(Q(u))− PΩ(Q(v))),154

155

G2
N =

(∫ 1

0

H ′(ξ̄(t))dt

)
(PΩ(Q(u))− PΩ(Q(v)))−

(∫ 1

0

H ′(ξ̄(t))dt

)
(Φ(Q(u))− Φ(Q(v)),156

then157

∥GN (u)−GN (v)∥ ≤ ∥G1
N∥+ ∥G2

N∥.158

By (2.9), (2.10), and the definitions of ξ̂(t) and ξ̄(t), for any t ∈ [0, 1], it holds159

(2.14) ∥ξ̂(t)− ξ̄(t)∥ ≤ ∥PΩ(Q(v))− Φ(Q(v))∥+ ∥PΩ(Q(u))− Φ(Q(u))∥ ≤
√
lϱ / 2 .160

Due to the convexity of Ω, ξ̂(t) ∈ Ω for all t ∈ [0, 1]. Then, by (2.14), we can suppose ξ̄(t) ∈ DH for

all t ∈ [0, 1] by reducing ϱ if necessary. Moreover, since u, v ∈ B(δ, u∗), ξ̄(t) and ξ̂(t) are bounded
for all t ∈ [0, 1]. Then, using the Lipschitz continuous differentiability of H, there exists θ > 0 such
that it holds ∫ 1

0

∥∥∥H ′(ξ̂(t))−H ′(ξ̄(t))
∥∥∥dt ≤ θ max

0≤t≤1
∥ξ̂(t)− ξ̄(t)∥,

combining which with (2.14) gives161

∥G1
N∥ ≤

(∫ 1

0

∥∥∥H ′(ξ̂(t))−H ′(ξ̄(t))
∥∥∥dt) ∥PΩ(Q(u))− PΩ(Q(v))∥ ≤

( √
lϱθcQ
2

)
∥u− v∥.162

Thus, by reducing ϱ if necessary, we obtain163

(2.15) ∥G1
N∥ ≤ ϵ∥u− v∥.164

To evaluate G2
N , by (2.11) and ξ̄(t) ∈ DH for all t ∈ [0, 1], we have165

(2.16)
∥G2

N∥ ≤
(∫ 1

0

∥H ′(ξ̄(t))∥dt
)
∥PΩ(Q(u))− Φ(Q(u))− (PΩ(Q(v))− Φ(Q(v)))∥

≤1

2
cHcQ∥u− v∥ =

1

2
c∥u− v∥.

166

Hence, (2.16) together with (2.15) gives that the Lipschitz constant ofGN around u∗ can be bounded167

by 1
2c+ ϵ. Using it to NK , we have168

(2.17)
∥NK∥ =∥GN (uK − αK(uK − uK−1))−GN (uK) + αK(GN (uK)−GN (uK−1))∥

≤(
1

2
c+ ϵ)2|αK |∥uK − uK−1∥.

169

Then, (2.5) and (2.17) imply170

(2.18) ∥NK∥ ≤ c+ 2ϵ

1− c
∥F (uK)∥.171
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We obtain from (2.7), (2.8), (2.12), (2.13) and (2.18) that172

∥F (uK+1)∥ ≤ (c̄+ ιϵ) ∥F (uK)∥173

with ι = γ(1+c)
2(1−c)2 + 2

1−c . Due to the arbitrariness of ϵ ∈ (0, 1), the estimation in (2.4) holds for174

k = K + 1 by reducing ϵ if necessary so that ιϵ ≤ ĉ− c̄. This completes the proof.175

The important technique in the proof of Theorem 2.1 is the decomposition method of F (uk+1),176

especially the structure and analysis of Nk, which reduces the Lipschitz constant of the nonosmooth177

part of Bk by half.178

In EDIIS(1), αk is chosen as the minimizer of the optimization problem179

min
1

2
∥(1− α)Fk + αFk−1∥2 , s.t. 0 ≤ α ≤ 1.180

This is a convex optimization problem and its solution αk can be expressed by the formulation with
the middle operator as

αk = mid

{
0,
FT
k (Fk − Fk−1)

∥Fk−1 − Fk∥2
, 1

}
1.

Following the proof of Theorem 2.1, it is clear that (2.13) and (2.18) hold for αk = 0 and αk = 1,181

which are the points that we only need to check for the EDIIS(1) with respect to Anderson(1).182

Thus, we have the following statement.183

Corollary 2.2. Suppose that the assumptions of Theorem 2.1 hold. Then the sequence {uk}184

generated by EDIIS(1) satisfies (2.4).185

Since the results in Theorem 2.1 and Corollary 2.2 are local convergence results of Anderson(1)186

and EDIIS(1), the Lipschitz continuous differentiability of Q and H around u∗ and PΩ(Q(u∗)) is187

enough to guarantee these statements.188

3. Anderson acceleration method with smoothing approximation.189

3.1. Smoothing approximation. In this subsection, we introduce some smoothing approx-190

imations of the nonsmooth contraction mapping G for finding its fixed point. For a function191

ω : Rn × (0, 1] → Rn, ω′(y, µ) always denotes the derivative of ω with respect to y for fixed192

µ ∈ (0, 1] in what follows. We define a smoothing function of max{t, 0} at first.193

Definition 3.1. [5] We call ψ : R × (0, 1] → R a smoothing function of max{t, 0} in R, if194

ψ(·, µ) is continuously differentiable in R for any fixed µ > 0, and the following conditions hold.195

(i) There is a κψ > 0 such that for any t ∈ R and µ ∈ (0, 1], |ψ(t, µ)−max{t, 0}| ≤ κψµ.196

(ii) For any t ∈ R, it holds {lims→t µ↓0 ψ
′(s, µ)} ⊆ ∂ (max{t, 0}), where ∂ indicates the Clarke197

subdifferential [8].198

Definition 3.1-(i) implies that lims→t µ↓0 ψ(s, µ) = max{t, 0} and Definition 3.1-(ii) implies the199

gradient consistency. Smoothing functions for the max function have been studied in numerical200

methods for optimization and differential equations [5]. Four widely used smoothing functions of201

1mid(0, a, 1) =

 0, a < 0
a, a ∈ [0, 1]
1, a > 1.
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max{t, 0} are as follows:202

(3.1)

ψ1(t, µ) = t+ µ ln(1 + e−
t
µ ), ψ2(t, µ) =

1

2
(t+

√
t2 + 4µ2),

ψ3(t, µ) =


max{0, t} if |t| > µ

(t+ µ)2

4µ
if |t| ≤ µ,

ψ4(t, µ) =

t+
µ

2
e−

t
µ if t > 0

µ

2
e

t
µ if t ≤ 0.

203

Let ψ be a smoothing function of max{t, 0}. For v ∈ Rl, set204

(3.2) Φ(v, µ) = (ϕ1(v1, µ), ϕ2(v2, µ), . . . , ϕl(vl, µ))
T ,205

where206

(3.3) ϕi(t, µ) = ψ(wi − t, µ) + t− ψ(t− wi, µ), i = 1, 2, . . . , l.207

It is clear that Φ(·, µ) is continuously differentiable on Rl for any fixed µ ∈ (0, 1], and by (1.6), we208

have209

(3.4) lim
s→t µ↓0

ϕi(s, µ) = P[wi,wi](t) and |ϕi(t, µ)− P[wi,wi](t)| ≤ 2κψµ, ∀t ∈ R, µ ∈ (0, 1].210

Then, since wi < wi for all i = 1, 2, . . . , l, we obtain211

(3.5)



lim
s→t,µ↓0

ϕ′i(s, µ) = {0} if t < wi or t > wi

lim
s→t,µ↓0

ϕ′i(s, µ) = {1} if wi < t < wi{
lim

s→t,µ↓0
ϕ′i(s, µ)

}
⊆ [0, 1] if t = wi or t = wi.

212

213

Proposition 3.2. Let ψ be a smoothing function of max{t, 0} with parameter κψ in Definition214

3.1-(i). Suppose Assumption 2.1 holds and Ω+ B(2κψ
√
l,0) ⊆ DH , then the function215

(3.6) G(u, µ) = H(Φ(Q(u), µ))216

owns the following properties.217

(i) G(·, µ) is continuously differentiable on D for any fixed µ ∈ (0, 1].218

(ii) There is a κG > 0 such that for any u ∈ D and µ ∈ (0, 1], ∥G(u, µ)−G(u)∥ ≤ κGµ.219

(iii) For any u ∈ D, lim supz→u,µ↓0 ∥G′(z, µ)∥ ≤ c.220

(iv) For any cS ∈ (c, 1), there exists µ̂ ∈ (0, 1] such that for any fixed µ ∈ (0, µ̂], ∥G′(u, µ)∥ ≤ cS,221

∀u ∈ D, which implies that G(·, µ) is a contraction mapping on D with factor cS, i.e.222

(3.7) ∥G(u, µ)− G(v, µ)∥ ≤ cS∥u− v∥, for all u, v ∈ D, µ ∈ (0, µ̂].223

(v) Let uµ be a fixed point of G(·, µ), then ∥uµ − u∗∥ ≤
(
κG

1−c

)
µ, which further implies224

limµ→0 uµ = u∗.225
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Proof. From (3.4), we can claim that226

(3.8) ∥Φ(Q(u), µ)− PΩ(Q(u))∥ ≤ 2κψ
√
lµ.227

Since Ω + B(2κψ
√
l,0) ⊆ DH , by the continuous differentiability of Q, H and Φ(·, µ), (i) and (ii)228

hold with κG = 2cHκψ
√
l.229

Note that230

(3.9) G′(z, µ) = H ′(w)w=Φ(Q(z),µ)Φ
′(v, µ)v=Q(z)Q

′(z).231

Recalling (3.5) and the definition of Φ in (3.2), we get232

(3.10) ∥Φ′(v, µ)v=Q(z)∥ = ∥diag(ϕ′i(vi, µ)vi=Qi(z))∥ ≤ 1.233

Then, the continuous differentiability of H and Q combining with the estimations in (3.8), (3.9)
and (3.10) gives that

lim sup
z→u,µ↓0

∥G′(z, µ)∥ ≤ ∥H ′(w)w=PΩ(Q(u))∥∥Q′(u)∥ ≤ cHcQ = c,

which guarantees items (iii) and (iv).234

Since uµ and u∗ are the fixed points of G(·, µ) and G on D, respectively, by (ii), we have

∥uµ − u∗∥ = ∥G(uµ, µ)−G(u∗)∥ ≤ ∥G(uµ, µ)−G(uµ)∥+ ∥G(uµ)−G(u∗)∥ ≤ κGµ+ c∥uµ − u∗∥,

which gives the results in (v) by simple deduction. We complete the proof.235

If G satisfies Assumption 2.1, Proposition 3.2-(iv) says that its smoothing approximations in236

(3.6) also own the contractive property when µ is sufficiently small. Inspired by the proof of237

Proposition 3.2, if uk is an approximate fixed point of G(u, µk) with accuracy tolerance ϵk, i.e.238

∥G(uk, µk) − uk∥ ≤ ϵk, then we also have limk→∞ uk = u∗, if limk→∞ µk = 0 and limk→∞ ϵk = 0.239

Moreover, the error estimation in Proposition 3.2-(v) holds always no matter G(·, µ) is contractive240

or not. Proposition 3.2-(v) also gives an upper bound of the error on the fixed point of G and its241

smoothing approximation, which is defined by the parameter κG coming from the structure of the242

smoothing approximation function and the contraction factor of G.243

Remark 3.1. Following the proof of Proposition 3.2, condition Ω+B(2κψ
√
l,0) ⊆ DH is only244

used to guarantee Φ(Q(u), µ) ∈ DH for all u ∈ D and µ ∈ (0, 1]. So, the statements (i) and (ii) in245

Proposition 3.2 hold for any µ ∈ (0, µ̃] with parameter µ̃ ∈ (0, 1] satisfying Ω+B(2κψ
√
lµ̃,0) ⊆ DH .246

3.2. A modified Anderson(m) algorithm. In this subsection, we will propose an Ander-247

son acceleration algorithm for the nonsmooth fixed point problem (1.1) based on the smoothing248

approximation method. At first, we study the new smoothing function of max{t, 0} as follows,249

which has more desirable properties for solving (1.1):250

(3.11) ψ(t, µ) =



0 if t ≤ 0

t2

2µ
if 0 < t ≤ µ

1

4
(t− µ)2 + t− 1

2
µ if µ < t ≤ µ+

√
µ

− 1

4
(t− µ− 2

√
µ)2 + t if µ+

√
µ < t ≤ µ+ 2

√
µ

t if t > µ+ 2
√
µ.

251
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Fig. 3.1: Smoothing functions of max{t, 0}: (a) ψ(t, µ) in (3.11) with different values of µ; (b)
max{t, 0}, ψ(t, µ) in (3.11) and the four smoothing functions ψi(t, µ) in (3.1) with µ = 0.3.

Fig. 3.1(a) shows the smoothing function ψ(·, µ) in (3.11) with different values of µ, while Fig.252

3.1(b) shows the relationships of max{t, 0} and its smoothing functions defined in (3.1) and (3.11).253

Since ψ in (3.11) is a smoothing function of max{t, 0} with Definition 3.1, the results in Proposition254

3.2 also holds for G(u, µ) defined in (3.6) with ψ in (3.11). In what follows, we will present some255

more desirable properties of ψ in (3.11).256

Proposition 3.3. Function ψ(t, µ) in (3.11) is continuously differentiable with respect to t for257

any fixed µ ∈ (0, 1] and satisfies the following properties.258

(i) |ψ(t, µ)−max{t, 0}| ≤ 1
2µ, for any t ∈ R and µ ∈ (0, 1].259

(ii) ψ(t, µ) = max{t, 0} if t ≤ 0 or t ≥ µ+ 2
√
µ.260

(iii) For any µ ∈ (0, 1], ψ′(t, µ) = 0 if t ≤ 0, 0 ≤ ψ′(t, µ) ≤ 1 + 1
2

√
µ if 0 < t < µ + 2

√
µ, and261

ψ′(t, µ) = 1 if t ≥ µ+ 2
√
µ.262

Proof. By the definition of ψ in (3.11), we obtain

|ψ(t, µ)−max{t, 0}| =



0 if t ≤ 0

|t2/2µ− t| ≤ µ/2 if 0 < t ≤ µ

|(t− µ)2/4− µ/2| ≤ µ/2 if µ < t ≤ µ+
√
µ

(t− µ− 2
√
µ)2/4 ≤ µ/4 if µ+

√
µ < t ≤ µ+ 2

√
µ

0 if t > µ+ 2
√
µ,

which implies the statements in (i) and (ii).263

By straightforward calculation, we can verify that ψ(t, µ) is continuously differentiable with264

respect to t for any fixed µ ∈ (0, 1] and the estimation in (iii) holds.265

By Proposition 3.3-(ii), it holds that for any fixed t ∈ R, there exists µ̄ > 0 such that ψ(t, µ) =266

max{t, 0}, ∀µ ∈ (0, µ̄], which is the main advantage of ψ in (3.11) compared with the other four267
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smoothing functions of max{t, 0} in (3.1). Following the proof of Proposition 3.3, we can further268

obtain the following properties of ϕi in (3.3) with ψ in (3.11).269

Proposition 3.4. For any fixed µ ∈ (0, 1], functions ϕi(·, µ) in (3.3) with ψ in (3.11), i =270

1, 2, . . . , l, are continuously differentiable and satisfy the following properties:271

(i) |ϕi(t, µ)− P[wi,wi](t)| ≤ 1
2µ, for any t ∈ R;272

(ii) ϕi(t, µ) = P[wi,wi](t) if t ≤ wi − µ− 2
√
µ or wi ≤ t ≤ wi or t ≥ wi + µ+ 2

√
µ;273

(iii) |ϕ′i(t, µ)| ≤ 1, for any t ∈ R.274

Proof. By Proposition 3.3-(ii), we have

ψ(wi − t, µ) = max{wi − t, 0} if t ≥ wi or t ≤ wi − µ− 2
√
µ,

ψ(t− wi, µ) = max{t− wi, 0} if t ≤ wi or t ≥ wi + µ+ 2
√
µ.

Then, for any µ ∈ (0, 1] and t ∈ R, at most one of ψ(wi− t, µ) = max{wi− t, 0} and ψ(t−wi, µ) =275

max{t − wi, 0} holds. Then, the results (i) and (ii) in Proposition 3.3 imply items (i) and (ii) in276

this proposition.277

In what follows, we consider the estimation in item (iii). From (3.11), we have278

(3.12)

|ϕ′i(t, µ)| =|ψ′(wi − t, µ) + 1− ψ′(t− wi, µ)|

=



0 if t ≤ wi − µ− 2
√
µ

|wi − t− µ− 2
√
µ|/2 ≤ √

µ/2 if wi − µ− 2
√
µ ≤ t < wi − µ−√

µ

|t+ µ− wi|/2 ≤ √
µ/2 if wi − µ−√

µ < t < wi − µ

|t− wi + µ|/µ ≤ 1 if wi − µ ≤ t < wi

1 if wi ≤ t < wi

|µ+ wi − t|/µ ≤ 1 if wi ≤ t < wi + µ

|t− wi − µ|/2 ≤ √
µ/2 if wi + µ ≤ t < wi + µ+

√
µ

|t− wi − µ− 2
√
µ|/2 ≤ √

µ/2 if wi + µ+
√
µ ≤ t < wi + µ+ 2

√
µ

0 if t ≥ wi + µ+ 2
√
µ.

279

Thus, (iii) holds.280

In what follows, we will use the smoothing function of max{t, 0} in (3.11) to construct a281

smoothing approximation of PΩ(v) on Rl, which is also with the formulation in (3.2). Then, we can282

give a smoothing approximation of G in (1.1) by the formulation of (3.6) with (3.11).283

Set ϖ1 = min{3, wi − Qi(u
∗) : i ∈ {i : Qi(u∗) < wi}}, ϖ2 = min{3, Qi(u∗) − wi : i ∈ {i :284

Qi(u
∗) > wi}}, and by Assumption 2.1-(ii), denote η ∈ (0, 1] the parameter such that285

(3.13) Ω + B(
√
lη/2,0) ⊆ DH .286

Then, we define parameter µ̄ by287

(3.14) µ̄ = min{η, (ϖ1/3)
2, (ϖ2/3)

2}.288

Theorem 3.5. Suppose Assumption 2.1 holds. Besides the properties in Proposition 3.2, func-289

tion G(u, µ) in (3.6) with ψ defined in (3.11) owns the following properties.290

(i) For any fixed µ ∈ (0, η], G(·, µ) is a contractive mapping on D with contraction factor no291

larger than c in Assumption 2.1.292
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(ii) ∥G(u, µ)−G(u)∥ ≤ κµ for all u ∈ D and µ ∈ (0, η] with κ = cH
√
l/2;293

(iii) G(u∗, µ) = G(u∗) = u∗, ∀µ ∈ (0, µ̄], where µ̄ is defined by (3.14).294

Proof. By Proposition 3.4-(i), it holds295

(3.15) ∥Φ(Q(u), µ)− PΩ(Q(u))∥ ≤
√
lµ/2.296

Then, Φ(Q(u), µ) ∈ DH for all u ∈ D and µ ∈ (0, η] can be guaranteed by the condition Ω +297

B(
√
lη/2,0) ⊆ DH .298

(i) Using the Lipschitz property of H and Q again, for any u, v ∈ D and µ ∈ (0, η], we obtain

∥G(u, µ)− G(v, µ)∥ ≤cH∥Φ(Q(u), µ)− Φ(Q(v), µ)∥
≤cH∥Q(u)−Q(v)∥ ≤ cHcQ∥u− v∥ = c∥u− v∥,

where the second inequality follows from Proposition 3.4-(iii). Thus, for any µ ∈ (0, η], G(u, µ) is a299

contractive mapping on D with factor no larger than c.300

(ii) By the Lipschitz property of H on DH and Φ(Q(u), µ) ∈ DH for all u ∈ D and µ ∈ (0, η],301

it holds302
∥G(u, µ)−G(u)∥ =∥H(Φ(Q(u), µ))−H(max{Q(u), 0})∥

≤cH∥Φ(Q(u), µ)−max{Q(u), 0}∥ ≤ κµ,
303

where the last inequality follows from (3.15) with κ =
√
lcH/2.304

(iii) Denote I1 = {i : Qi(u∗) < wi}, I2 = {i : wi ≤ Qi(u
∗) ≤ wi} and I3 = {i : Qi(u∗) > wi}.

First, we can easily find that

ϕi(Qi(u
∗), µ) = Qi(u

∗) = P[wi,wi](Qi(u
∗)), ∀i ∈ I2.

Next, for i ∈ I1, by the definition of ϖ1 and µ̄ ≤ (ϖ1/3)
2 ≤ 1, we have

Qi(u
∗) ≤ wi −ϖ1 = wi − 3

√
µ̄ ≤ wi − µ− 2

√
µ, ∀i ∈ I1, 0 < µ ≤ µ̄,

by Proposition 3.4-(ii), which implies305

(3.16) ϕi(Qi(u
∗), µ) = P[wi,wi](Qi(u

∗)), ∀i ∈ I1, 0 < µ ≤ µ̄.306

Similarly, for i ∈ I3, we obtain

Qi(u
∗) ≥ wi + µ+ 2

√
µ, ∀i ∈ I3, 0 < µ ≤ µ̄,

which gives (3.16) for i ∈ I3. Thus, for any µ ∈ (0, µ̄], we have Φ(Q(u∗), µ) = PΩ(Q(u∗)) and thus307

G(u∗, µ) = G(u∗) = u∗. We complete the proof.308

Inspired by Theorem 3.5-(iii), when µ ≤ µ̄ with µ̄ defined in (3.14), u∗ is also the fixed point309

of G(u, µ), and from Theorem 3.5-(i), we further have310

(3.17) (1− c)∥u− u∗∥ ≤ ∥F(u, µ)∥ ≤ (1 + c)∥u− u∗∥, ∀u ∈ D, µ ∈ (0, µ̄],311

where F(u, µ) = G(u, µ)− u.312

Remark 3.2. Proposition 3.4-(ii) shows that G(u, µ) = G(u), for any µ ∈ (0, 1] and u ∈ D313

satisfying Q(u) ∈ Ω. Thus, if u∗ is the fixed point of G(·, µ) for a given µ ∈ (0, 1] and Q(u∗) ∈ Ω,314

then we can justify that u∗ is also the fixed point of G.315
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Algorithm 3.1 s-Anderson(m)

Choose u0 ∈ D and a positive integer m.
Set parameters σ1, σ2 ∈ (0, 1), γ > 0 and a sufficiently small positive parameter ϵ < γ∥F (u0)∥2.
Let F0 = G(u0)− u0, µ0 = γ∥F0∥2, F0 = G(u0, µ0)− u0 and u1 = G(u0, µ0).
for k = 1, 2, ... do

set Fk = G(uk)− uk,
if ∥Fk∥ ≤ σ1∥Fk−1∥, then let

µk = µk−1,

otherwise, let
µk = max{ϵ, σ2µk−1};

set Fk = G(uk, µk)− uk;
choose mk = min{m, k};
solve

(3.18) min

∥∥∥∥∥∥
mk∑
j=0

αjFk−mk+j

∥∥∥∥∥∥ s.t.

mk∑
j=0

αj = 1

to find a solution {αkj : j = 0, . . . ,mk}, and set

(3.19) uk+1 =

mk∑
j=0

αkjG(uk−mk+j , µk−mk+j);

end for

By Theorem 3.5, when we use (3.6) with (3.11) as the smoothing approximation of G, G(·, µ)316

is contractive and uµ = u∗ for µ ∈ (0, µ̄], where uµ is the fixed point of G(·, µ). Then, we can apply317

Anderson(m) or EDIIS(m) to find a fixed point of G by using G(·, µ) in the algorithms. If u0 is318

sufficiently close to u∗, then µ0 := γ∥F (u0)∥2 < µ̄. In such case, we can let µk := µ0 for all k.319

However, u∗ is unknown, and the value of µ̄ in (3.14) is often difficult to be evaluated in practice.320

Thus, we use an updating scheme on µk in Algorithm 3.1 to improve the ability and performance321

of the Anderson acceleration methods for nonsmooth fixed point problems. In s-Anderson(m), we322

replace G(u) in Anderson(m) by G(u, µ) and update µ step by step. The strategy for updating µk323

in Algorithm 3.1 is based on the reduction of the norms of the residual function at uk and uk−1. If324

∥Fk∥ ≤ σ1∥Fk−1∥, then it means that using µk−1 can reduce the norm of the residual function at uk325

sufficiently. Hence we let µk = µk−1 for the next iteration. Otherwise, we set µk = max{ϵ, σ2µk−1}.326

Same as the condition on the coefficients {αkj : j = 1, . . . ,mk} used in [6, 24], we need the327

following assumption on them in (3.18).328

Assumption 3.1. There exists an Mα ≥ 1 such that
∑mk

j=0 |αkj | ≤Mα holds for all k ≥ 1.329

Before proving the local r-linear convergence of s-Anderson(m), we need predefine some neces-330

sary parameters used in the forthcoming proof and give some preliminary analysis.331

• a: Combining (3.9), (3.10) with the Lipschitz property of Q′(u), diag(ϕ′(Qi(u), µ)) and332

H ′(Φ(Q(u), µ)) onD, there exists a constant a > 0 such that G′(u, µ) is Lipschitz continuous333
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on B(δ, u∗) with constant a. This means,334

(3.20) G(u, µ) = G(u∗, µ) + G′(u∗, µ)(u− u∗) + ∆u, ∀u ∈ B(δ, u∗), µ ∈ [ϵ, η],335

where ∥∆u∥ ≤ 1
2a∥u− u∗∥2.336

• δ1: Since G(u, µ) is Lipschitz continuous, from Theorem 2.2 in [6], there exists δ1 ∈ (0, δ]337

such that if ∥u0 − u∗∥ ≤ δ1, we have the r-linear convergence of Anderson(m) on solving338

F(u, µ̂) := G(u, µ̂)− u = 0 with any µ̂ ∈ [ϵ, µ̄], that is339

(3.21) lim sup
k→∞

(
∥F(uk, µ̂)∥
∥F(u0, µ̂)∥

)1/k

≤ c,340

where c is a contraction factor of G(u, µ̂) on D by Theorem 3.5-(i).341

• δ0: Let342

(3.22) δ0 := min{δ1,
√
µ̄

√
γ(1 + c)

,

√
η

√
γ(1 + c)

,
(1− c)δ1
Mα(1 + c)

,
1− c

ϖ
},343

where µ̄ is defined in (3.14) and ϖ =
a(M2

α+Mα)(1+c)+2Mα

√
lcHγ(1+c)

2(1−c)
2(1−c)2 .344

Lemma 3.6. If ∥u0 − u∗∥ ≤ δ0, then for the sequences {µk}, {uk} and {Fk} generated by345

s-Anderson(m) in Algorithm 3.1, it holds that346

µk ≤ µ̄, Ω+ B(
√
lµk/2,0) ⊆ DH , uk ∈ B(δ1, u∗) and ∥Fk∥ ≤ ∥F0∥.(3.23)347

Proof. Since

γ∥F (u0)∥2 ≤ γ(1 + c)2∥u0 − u∗∥2 ≤ min{µ̄, η},

then µk ≤ min{µ̄, η} by the updating method of µk in s-Anderson(m) for k ≥ 0. From (3.13), we348

find that the first two relations in (3.23) hold.349

Then, by Theorem 3.5-(i) and (iii), we have350

(3.24) G(u∗, µk) = G(u∗) = u∗ and ∥G(u, µk)− G(v, µk)∥ ≤ c∥u− v∥, ∀k ≥ 0, u, v ∈ B(δ1, u∗).351

We next prove the last two statements of (3.23) by induction, where we see that they are true for352

k = 0 and we suppose both of them hold for 0 ≤ k ≤ K.353

Owning to (3.24), we have

∥uK+1 − u∗∥ =

∥∥∥∥∥∥
mK∑
j=0

αKj G(uK−mK+j , µK−mK+j)−
mK∑
j=0

αKj G(u∗, µK−mK+j)

∥∥∥∥∥∥
≤Mαcmax

j
∥uK−mK+j − u∗∥ ≤ Mαc

1− c
max
j

∥FK−mK+j∥

≤Mαc

1− c
∥F0∥ ≤ Mαc(1 + c)

1− c
∥u0 − u∗∥,

which gives uK+1 ∈ B(δ1, u∗) by the condition of δ0. Then, the third result in (3.23) holds for354

k = K + 1.355
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Similarly,
∑mK

j=0 α
K
j uK−mK+j ∈ B(δ1, u∗) ⊆ D. Formulas (3.19) and (3.24) imply356

∥FK+1∥ = ∥G(uK+1, µK+1)− uK+1∥357

≤ c∥uK+1 −
mK∑
j=0

αKj uK−mK+j∥+ ∥G(
mK∑
j=0

αKj uK−mK+j , µK+1)−
mK∑
j=0

αKj G(uK−mK+j , µK−mK+j)∥358

≤ c∥FK∥+AK +BK ,(3.25)359

where

AK =

∥∥∥∥∥∥G(
mK∑
j=0

αKj uK−mK+j , µK+1)−
mK∑
j=0

αKj G(uK−mK+j , µK+1)

∥∥∥∥∥∥ ,

BK =

∥∥∥∥∥∥
mK∑
j=0

αKj G(uK−mK+j , µK+1)−
mK∑
j=0

αKj G(uK−mK+j , µK−mK+j)

∥∥∥∥∥∥ .
Then, by (3.20), we estimate ∥AK∥ by the same way as in [6, 24] to get360

(3.26)

∥AK∥ =

∥∥∥∥∥∥∆∑mK
j=0 α

K
j uK−mK+j

−
mK∑
j=0

αKj ∆uK−mK+j

∥∥∥∥∥∥
≤a(M

2
α +Mα)

2
max
j

∥uK−mK+j − u∗∥2

≤a(M
2
α +Mα)

2(1− c)2
max
j

∥FK−mK+j∥2

≤a(M
2
α +Mα)(1 + c)∥u0 − u∗∥

2(1− c)2
∥F0∥.

361

To evaluate ∥BK∥, by Theorem 3.5-(ii), (2.3), (3.17) and (3.24), we have362

(3.27)

∥BK∥ ≤Mακ(µK−mK
+ µK+1) ≤ 2Mακµ0 = 2Mακγ∥F (u0)∥2 ≤ 2Mακγ(1 + c)2∥u0 − u∗∥

1− c
∥F0∥.363

Together (3.25), (3.26), (3.27) with the assumption of (3.23) for k = K, gives

∥FK+1∥ ≤ (c+ϖ∥u0 − u∗∥)∥F0∥.

Then the fourth relation in (3.23) holds for k = K + 1 by δ0 satisfying c+ϖδ0 ≤ 1. We complete364

the proof for (3.23).365

Theorem 3.7. Suppose Assumption 2.1 and Assumption 3.1 hold. If u0 is sufficiently close to366

u∗, then the sequence {uk} generated by s-Anderson(m) in Algorithm 3.1 converges to the solution367

of (1.1) with the r-linear convergence rates of368

(3.28) lim sup
k→∞

(
∥uk − u∗∥
∥u0 − u∗∥

)1/k

≤ c and lim sup
k→∞

(
∥F (uk)∥
∥F (u0)∥

)1/k

≤ c.369
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Proof. Let ∥u0 − u∗∥ ≤ δ0 with δ0 in (3.22). Then, µ0 ≤ µ̄. By the updating method of µk,370

there exist K and µ̂ ∈ [ϵ, µ̄] such that µk = µ̂, for all k ≥ K.371

By Lemma 3.6, as ∥u0 − u∗∥ ≤ δ0, we have ∥uK − u∗∥ ≤ δ1. Then, by (3.21), we have

lim sup
k→∞

(
∥F(uk, µk)∥
∥F(uK , µK)∥

)1/(k−K)

≤ c,

which implies372

(3.29) lim sup
k→∞

(
∥F(uk, µk)∥
∥F(u0, µ0)∥

)1/k

≤ c.373

From (3.17), we obtain
∥F(uk, µk)∥
∥F(u0, µ0)∥

≥
(
1− c

1 + c

)
∥uk − u∗∥
∥u0 − u∗∥

,

which combines with (3.29) and lim supk→∞

(
1−c
1+c

)1/k
= 1 gives the first estimation in (3.28). In374

light of (2.3) and the first relation in (3.28), we further obtain the second result in (3.28).375

From the updating method of {µk} in s-Anderson(m), it is a case that limk→∞ µk > ϵ, which376

means that there exists K such that ∥Fk∥ ≤ σ1∥Fk−1∥, ∀k ≥ K. Combining this with Theorem377

3.7, we note that if limk→∞ µk > ϵ, then s-Anderson(m) not only owns the r-linear convergence378

in (3.29), but also has the q-linear convergence on residual ∥F (uk)∥ with factor σ1. Moreover,379

following the statements in Theorem 3.7, even if we have no knowledge on µ̄ and η, the local380

convergence properties of s-Anderson(m) in Theorem 3.7 are always valid with any σ1, σ2 ∈ (0, 1)381

by setting ϵ sufficiently small. In particular, if µ0 is sufficiently small such that µk is unchanged382

in s-Anderson(m), then s-Anderson(m) is just Anderson(m) on G(u, µ0). A simple consideration is383

that the results in Theorem 3.7 also hold if we let µk := ϵ with ϵ being sufficiently small. Similar384

results in Theorem 3.7 also hold for the EDIIS(m) with the same smoothing approach.385

Remark 3.3. According to Rademacher’s theorem, a locally Lipschitz continuous function G386

is differentiable almost everywhere. If ψ is a smoothing function of max{t, 0}, Proposition 3.2 says387

that the contraction factor of G(·, µ) on D can be sufficiently close to the contraction factor of G388

as µ is sufficiently small. Theorem 3.5 gives an upper bound of the contraction factor of G(·, µ) on389

D with ψ defined in (3.11). By the structure of ψ in (3.11), if G is not continuously differentiable390

at u∗, which means that there is i ∈ {1, . . . , l} such that Qi(u
∗) = wi or wi, then the contraction391

factor of G(·, µ) with (3.11) can be strictly smaller than the contraction factor of G around u∗ as µ392

is smaller than a threshold.393

For example, if G(u) = (max{u1/2, 0}, 1−u2/4)T, the exact contraction factor of G around its394

fixed point u∗ = (0, 4/5)T is 1/2. Let G(u, µ) = (ψ(u1/2, µ), 1− u2/4)
T with the definition of ψ in395

(3.11). For any given µ ∈ [ϵ, 1], we note that396

∥G′(u, µ)∥ ≤ max{|u1|/(2µ), 1/4}, ∀u ∈ B(δ, u∗)397

with δ ≤ ϵ/2, which implies that the contraction factor of G(·, µ) is no larger than 1/4 when µ ∈ [ϵ, 1].398

These results combining the analysis in Theorem 3.7 show that as u0 is sufficiently close to u∗, s-399

Anderson(m) is r-linearly convergent to the fixed point of G with factor no larger than 1/4, which400

is strictly smaller than the contraction factor of G around u∗. And the contraction factor of G(u, µ)401

on B(δ, u∗) is decreasing as µ is increasing in [ϵ, 1].402
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4. Numerical applications and examples. In this section, we illustrate our new conver-403

gence results of Anderson acceleration for nonsmooth fixed point problem (1.1) by three appli-404

cations. All the numerical experiments are performed in MATLAB 2016a on a Lenovo PC547405

(3.00GHz, 2.00GB of RAM). When m ≥ 2, proceeding as in [11, 25], we write the problem in (1.3)406

by the following equivalent form407

(4.1) θk ∈ arg min
θ∈Rmk

∥∥∥∥Fk −∑mk−1

j=0
θj(Fk−mk+j+1 − Fk−mk+j)

∥∥∥∥408

and then

uk+1 = G(uk)−
∑mk−1

j=0
θkj (G(uk−mk+j+1)−G(uk−mk+j))),

in terms of the original iterations αkj in (1.3), where αk0 = θk0 , α
k
j = θkj −θkj−1 for 1 ≤ j ≤ mk−1 and409

αkmk
= 1− θkmk−1. To solve (4.1), we consult the method based on the pseudoinverse introduced in410

[11], and it has been shown that the deteriorating condition of the least-squares matrix does not411

necessarily interfere with convergence [24]. This method is also used to find the αkj in s-Anderson(m)412

in Algorithm 3.1. For s-Anderson(m), we always set ϵ = 10−10, γ = 1/n and σ1 = σ2 = 0.6 for413

comparison. And we stop Anderson(m) in Algorithm 1.1 and s-Anderson(m) in Algorithm 3.1 when414

(4.2)
∥F (uk)∥
∥F (u0)∥

≤ 10−14 or k ≥ 7000.415

It should be noticed that the stopped criterion for s-Anderson(m) also uses the value of416

∥F (uk)∥/∥F (u0)∥ not the residual on smoothing approximation F(u, µ). From these numerical417

results in Examples 4.1-4.3, we have the following observations.418

(i) Both Anderson(m) and s-Anderson(m) can be used to solve the considered problems, in419

which the contraction mappings G are nonsmooth at the fixed points. Though the the-420

oretical results of them are built up for local convergence, it is satisfactory that all the421

numerical experiments in this section are convergent with random initial points.422

(ii) For both Anderson(m) and s-Anderson(m), as presented in the experiments, the best choice423

of m is problem dependent.424

(iii) s-Anderson(m) performs better than Anderson(m) for most cases, and the local convergence425

of ∥F (uk)∥/∥F (u0)∥ by s-Anderson(m) is also faster. Since the mapping G(u, µ) used in426

s-Anderson(m) only has small difference with G(u) in Anderson(m), the generated uk in427

the former iterations cannot bring obvious differences on ∥Fk∥/∥F0∥ when ∥Fk∥ is relatively428

large. However, after certain iterations, ∥Fk∥ is reduced significantly and the advantages429

of s-Anderson(m) appears clearly. So it is reasonable that s-Anderson(m) outperforms430

Anderson(m) when the accuracy is high.431

(iv) The superiorities of s-Anderson(m) over Anderson(m) become more and more obvious as432

the number of elements in {i : Qi(u∗) = wi or wi} increases.433

4.1. Minimax optimization problem. Constrained minimax optimization problem is often434

modeled by435

(4.3) min
x∈X

max
y∈Y

f(x, y),436

where f : X ×Y → R is a convex-concave function over closed, convex sets X ⊆ Rn1 and Y ⊆ Rn2 .437

Such models are widely used in game theory, machine learning and parallel computing. Due to the438
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convexity and concavity of f with respect to x and y, respectively, ((x∗)T, (y∗)T)T is a saddle point439

of (4.3), if and only if it satisfies440

(4.4)

{
x∗ = PX (x∗ − α∇xf(x

∗, y∗))

y∗ = PY(y
∗ + β∇yf(x

∗, y∗))
441

with α, β > 0. Denote

u =

(
x
y

)
, Λ =

(
αIn1 0
0 βIn2

)
, L(u) := L(x, y) =

(
∇xf(x, y)
−∇yf(x, y)

)
, Ω = X × Y.

Then, (4.4) is expressed by u∗ = PΩ(u
∗ − ΛL(u∗)), which is reduced to a fixed point problem of G442

with443

(4.5) G(u) := PΩ(u− ΛL(u)).444

The mapping in (4.5) can be formulated by (1.1) with Q(u) = u− ΛL(u) and H(v) = v.445

Assumption 4.1. The mapping L is strongly monotone and Lipschitz continuous, i.e. there446

exist positive parameters τL and cL such that for all u, ũ ∈ Ω, it holds447

(L(u)− L(ũ))T(u− ũ) ≥ τL∥u− ũ∥2,448

∥L(u)− L(ũ)∥ ≤ cL∥u− ũ∥.449

For u, ũ ∈ Ω, by the Lipschitz property of PΩ and Assumption 4.1, when α = β, we obtain

∥PΩ(u− αL(u))− PΩ(ũ− αL(ũ))∥2

≤∥u− αL(u)− ũ+ αL(ũ)∥2

=∥u− ũ∥2 + α2∥L(u)− L(ũ)∥2 − 2α(u− ũ)T (L(u)− L(ũ))

≤
(
1 + α2c2L − 2ατL

)
∥u− ũ∥2.

It is easy to verify that 1 + α2c2L − 2ατL ∈ (0, 1), if α ∈
(
0, 2τL/c

2
L

)
. Hence under Assumption 4.1,450

if α = β ∈
(
0, 2τL/c

2
L

)
, then G in (4.5) is a contractive mapping with factor c =

√
1 + α2c2L − 2ατL451

and the conclusions in Theorem 3.7 hold for G in (4.5), which prompts us to find the fixed point452

of G by using s-Anderson(m) with the smoothing approximation of G defined in (3.6). To show453

the effectiveness of the corresponding theoretical results and the effect of s-Anderson(m) on solving454

problem (4.3), we conduct the numerical experiment on a special case of (4.3), which comes from455

the two-payers Nash game problems.456

Example 4.1. Consider457

(4.6) min
x∈Rn1

+

max
y∈Rn2

+

f(x, y) :=
1

2
xTAx+ xTBy − 1

2
yTCy + aTx− bTy,458

where A ∈ Rn1×n1 and C ∈ Rn2×n2 are symmetric positive definite matrices, B ∈ Rn1×n2 , a ∈459

Rn1 and b ∈ Rn2 are random matrix and vectors. Denote λmin(A) and λmin(C) the minimal460

eigenvalues of A and C, respectively. Let Ω = Rn1+n2
+ and L(u) = Mu + d with u = (xT, yT)T,461

M =

(
A B

−BT C

)
and d =

(
a
b

)
, which satisfies Assumption 4.1 with462

(4.7) τL = min{λmin(A), λmin(C)} and cL = ∥M∥.463
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Based on the above analysis, the solution of (4.6) can be transformed to the fixed point of (4.5),464

and when we choose465

(4.8) α = β = τL/c
2
L,466

G in (4.5) is a contractive mapping with factor c = ∥In1+n2
− αM∥. For given positive integers467

n1 = 1000, n2 = 500 and s1 = 0.3, we generate matrices A, C and B as follows:468

A1 = 1+ a ∗ rand(n1, 1); U1 = orth(rand(n1, n1)); A = U1′ ∗ diag(A1) ∗ U1;469

C1 = 2+ b ∗ rand(n2, 1); U2 = orth(rand(n2, n2)); C = U2′ ∗ diag(C1) ∗ U2;470

B = sprand(n1, n2, s1); B = full(B)/norm(B);471

Then, we set n = n1 + n2, α and β be defined by (4.8) with the parameters in (4.7). It is clear472

that G in (4.5) is nonsmooth at u∗ if there exists i such that (Mu∗ + d)i = 0 and u∗i = 0. So, for473

given s2 = 0.5, we generate the fixed point u∗ (sol in the code) with n×s2 elements of 0 and vector474

d ∈ Rn such that the corresponding elements of Mu∗ + d are also 0 by the following codes:475

index = randperm(n); index1 = index(1 : s2 ∗ n);476

sol = 0.1+ 0.9 ∗ rand(n, 1); sol(index1) = 0; M = [A B;−B′ C]; d = −M ∗ sol;477

Let u0 = zeros(n, 1). For different values of a and b, which influence the contractive factor of478

G in (4.5), the number of iterations of Anderson(m) and s-Anderson(m) to find uk satisfying (4.2)479

are shown in Table 4.1, where the values are the mean values of 50 random experiments. From480

Table 4.1, we see that though the contractive factors of G are all very close to 1, both Anderson(m)481

and s-Anderson(m) work well, and s-Anderson(m) performs better for most cases. Throughout the482

whole table, the smallest iterations for all cases are presented by s-Anderson(m) with m = 3 or483

m = 5. Fig. 4.1 plots the convergence behaviors of s-Anderson(1) and s-Anderson(3) with some484

different values of σ1 = σ2, where the best is located at σ1 = σ2 = 0.6. This is an interesting thing485

that we can let the value of ϵ be sufficiently small to guarantee the efficiency of s-Anderson(m),486

and control the values of σ1 and σ2 to improve its convergence behaviours. How to choose better487

parameters is an interesting topic for further study.

Parameters Anderson(m)/s-Anderson(m)
a, b c m = 0 m = 1 m = 2 m = 3 m = 5 m = 10
0, 0 0.835 150/148 72/65 60/57 58/48 62/43 78/54
2, 1 0.893 230/218 68/85 71/71 71/65 80/58 80/66
1, 1 0.895 246/236 74/92 76/73 77/65 84/71 94/80
1, 2 0.943 465/446 147/129 113/105 117/102 125/107 159/126
3, 1 0.941 407/379 114/104 105/96 108/93 111/94 122/102
3, 3 0.961 609/565 194/194 136/123 144/123 149/122 174/139

Table 4.1: Numerical results of Anderson(m) and s-Anderson(m) for Example 4.1

488

4.2. Complementarity problem. Given a continuously differentiable function f : Rn → Rn,
the complementarity problem is to find v such that

v ≥ 0, f(v) ≥ 0, vTf(v) = 0.
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Fig. 4.1: Convergence of ∥Fk∥/∥F0∥ by s-Anderson(1) and s-Anderson(3) with different values of
σ1 = σ2 for Example 4.1

This problem is denoted as CP(f), which is equivalent to v = max{v−f(v), 0}. Let Q(v) = v−f(v).489

If ∥I − f ′(v)∥ ≤ c < 1, then G(v) = max{Q(v), 0} is a contraction mapping with factor c.490

If f(v) = Mv + q with M ∈ Rn×n and q ∈ Rn, the CP(f) is the linear complementarity
problem, denoted as LCP(q,M). Suppose M = (mij)n×n is strictly diagonally dominate with
positive diagonal elements in the following sense,

n∑
i=1,i̸=j

|mij | < mii and

n∑
j=1,j ̸=i

|mij | < mii.

Let Λ =diag(mii). Then LCP(q,M) is equivalent to

Λv ≥ 0, MΛ−1Λv + q ≥ 0, (Λv)T(MΛ−1Λv + q) = 0

and can be solved via LCP(q,MΛ−1). Moreover, from491

∥I −MΛ−1∥ ≤
√
∥(Λ−M)Λ−1∥1∥(Λ−M)Λ−1∥∞492

=

√√√√max
1

mii

n∑
j=1,j ̸=i

|mij |

√√√√max
1

mii

n∑
i=1,i̸=j

|mij | =: c < 1,493

G(u) = max((I −MΛ−1)u − q, 0) is a contraction mapping. Let Q(u) = (I −MΛ−1)u − q. We494

define a smoothing approximation of G by (3.6), which is also a contraction mapping with factor c495

and satisfies the conditions in Assumption 2.1. Thus, if u∗ is the fixed point of the above defined496

G, then v∗ = Λ−1u∗ is the solution of LCP(q,M).497

Example 4.2. Pricing American options in a partial differential equation framework with fi-498

nite difference methods or finite element methods lead to a linear complementarity problem499

(4.9) v − a ≥ 0, Mv − b ≥ 0, (v − a)T(Mv − b) = 0,500
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where v is the value of an American option, a is from a given payoff function, b is from an initial501

guess of the value and its changing rate, and M is from differential operators [21].502

Let u = v − a and q =Ma− b, then (4.9) is the standard form of LCP(q,M). We set503

M =


2 + γ1h

2 −1 + 0.5hτ1
−1− 0.5hτ2 2 + γ2h

2 −1 + 0.5hτ2
. . .

. . .
. . .

2 + γn−1h
2 −1 + 0.5hτn−1

−1− 0.5hτn 2 + γnh
2

 .

Here, M is the matrix from the centered difference formulate for

−∂
2V

∂x2
(t, x) + τ(t, x)

∂V

∂x
(t, x) + γ(t, x)V (t, x)

at a fixed time t, where h = 1/(n+ 1) is the mesh size of discretization, and γ(t, x) > 0 and τ(t, x)504

are given functions. If |τi| = |τi+1| < 2(n + 1), i = 1, 2, . . . , n − 1, the matrix M is a strictly505

diagonal dominate matrix, and thus a P-matrix. Then, the LCP(q,M) has a unique solution u∗ for506

any q ∈ Rn, which is also the fixed point of the nonsmooth fixed point problem507

(4.10) u = G(u) = max{(I − ηM)u− ηq, 0},508

with η = 1
2+γh2 . Here function G in (4.10) is a contraction mapping with the contraction factor509

c = 2η and Gi is not differentiable at the solution u∗ for510

(4.11) i ∈ N := {i : ((I − ηM)u∗ − ηq)i = 0}.511

Throughout this example, we choose u0 = 0.5 ∗ ones(n, 1) and set γ(t, x) ≡ 103, τ(t, x) ≡ −1.512

For given n and Θ ∈ (0, 1) (theta), we randomly generate the solution u∗ (sol) and corresponding513

q as follows514

(4.12) sol = max{rand(n, 1)− theta, 0}; q = −M ∗ sol;515

By the setting of this problem, there are around Θ× n components in N defined by (4.11).516

First, we compare the performance of Anderson(m) and s-Anderson(m) with different values517

of m. Set Θ = 0.4, and n = 200, 300 in (4.12). The convergence of ∥Fk∥/∥F0∥ for Anderson(m)518

and s-Anderson(m) with m = 0, 1, 2, 3, 10 are plotted in Fig. 4.2, from which we can see that519

s-Anderson(m) is faster than Anderson(m) always and s-Anderson(10) is the best. In [18], the520

following dynamically updating of depth mk is introduced and used,521

(4.13) mk = median([m1; m̃k;m2]) with m̃k = ceil(− log10 ∥Fk∥),522

where m1 and m2 are positive integers to control the lower and upper bounds of m. In particular,523

if m1 = m2, then the corresponding algorithms are just Anderson(m) and s-Anderson(m) with524

m = m1 = m2. Fig. 4.3 shows the number of iterations of Anderson(m) and s-Anderson(m) to525

satisfy the stop criterion in (4.2) using dynamic depth selection (4.13) with m = m1 = m2 and526

m1 ̸= m2, in which the best result is located at m = m1 = m2 = 8 by s-Anderson(m). From Fig. 4.3,527

we find that the number of iterations is not monotone decreasing as m is increasing. Whether the528

dynamic depth selection approaches can improve the convergence of Anderson acceleration methods529

is an interesting topic for further research.530
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Fig. 4.2: Convergence of ∥Fk∥/∥F0∥ by Anderson(m) and s-Anderson(m) for Example 4.2 with
n = 200 and n = 300
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Fig. 4.3: Performance of Anderson(m) and s-Anderson(m) using dynamic depth selection (4.13)
with m = m1 = m2 and m1 ̸= m2 for Example 4.2

Next, we test the performance of Anderson(m) and s-Anderson(m) for different values of Θ,531

since its value controls the number of dimensions, on which G is nonsmooth at u∗. Let n = 200. For532

Θ = 0.2, 0.4, 0.6 and 0.8, we plot the convergence of ∥Fk∥/∥F0∥ by Anderson(m) and s-Anderson(m)533

with m = 1, 10 in Fig. 4.4. The displayed results in Fig. 4.4 show that s-Anderson(m) is faster534

than Anderson(m) for all these cases. In particular, as Θ is larger, the superiority on the local535

convergence rate of s-Anderson(m) compared with Anderson(m) is more obvious, which corresponds536

to the observation (iv) given at the beginning of this section.537

4.3. Nonsmooth Dirichlet problem. Consider the Dirichlet problem [7]538

(4.14)

{
−∆v + βv = λmax{v − φ(x, y), 0}+ ψ(x, y) in Ξ

v = f(x, y) on Ξ̄,
539
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Fig. 4.4: Performance of Anderson(m) and s-Anderson(m) with m = 1, 10 for Example 4.2 with
four different values of Θ

where Ξ = (0, 1)× (0, 1), Ξ̄ denotes the boundary of Ξ, φ,ψ ∈ C(Ξ̄) ∩C1(Ξ), f ∈ C(Ξ̄), β > 0 and540

λ ∈ R. Using the five point centered finite difference method for the Dirichlet problem (4.14) with541

a mesh size h at grid (xi, yj) gives542

(4.15) − vi,j+1 − vi,j−1 + 4vi,j − vi+1,j − vi−1,j + βh2vi,j = λh2 max{vi,j − φi,j , 0}+ h2ψi,j .543

By transforming (vi,j) to a vector u, (4.15) can be illustrated by the following system544

(4.16) (−L+ 4I − U + βh2I)u = λh2 max{u+ p, 0}+ q,545

where L and U are lower and upper diagonal matrices with nonnegative elements, h = 1/(
√
n+1),546

p, q ∈ Rn are the corresponding vectors transformed by φi,j and h2ψi,j . Then, (4.16) is equivalent547

to the following fixed point problem548

(4.17) u = G(u) :=
1

4 + βh2
(L+ U)u+

h2λ

4 + βh2
max{u+ p, 0}+ 1

4 + βh2
q.549

When β > |λ|, from

∥G(u)−G(v)∥ ≤ 4 + |λ|h2

4 + βh2
∥u− v∥,

the function G in (4.17) is a contraction mapping with factor c := 4+|λ|h2

4+βh2 .550

Example 4.3. We consider the nonsmooth fixed point problem (4.17) from the finite difference551

discretization of the nonsmooth Dirichlet problem (4.14). Let the solution of problem (4.14) be552

v(x, y) = max(− sin(xπ) sin(yπ) + 0.5, 0), and u∗ present the values of v(x, y) at the mesh points553

for given mesh size h = 1/(
√
n + 1). We randomly generate p = −0.4 ∗ rand(n, 1) and set q =554

(4 + βh2)u∗ − (L+ U)u∗ − λh2 max{u∗ + p, 0} with λ = 1 and β = 2. Notice that the contraction555

factor of G is very close to 1 at this situation.556

When n = 64 × 64, the original function is plotted in Fig. 4.5(a), in which we can see that557

it is nonsmooth. Choosing the initial point u0 = 0.5 ∗ rand(n, 1), the convergence performance of558
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Fig. 4.5: Solution and convergence performance of s-Anderson(m) for Example 4.3 with n = 64×64

∥Fk∥/∥F0∥ for s-Anderson(m) are plotted in Fig. 4.5(b). For different values of n, the convergence559

rates at the stopped point, defined by (∥Fk∥/∥F0∥)1/k, are listed in Table 4.2. This example shows560

that s-Anderson(m) can effectively solve this problem with a contraction factor very close to 1, and561

s-Anderson(m) is faster as m increases from 0 to 20.

√
n 1− c m = 0 m = 1 m = 2 m = 3 m = 5 m = 10 m = 20

16 8.635e-4 9.793e-01 9.789e-01 9.632e-01 9.519e-01 9.191e-01 8.501e-01 7.750e-01
32 2.294e-4 9.944e-01 9.940e-01 9.897e-01 9.860e-01 9.784e-01 9.480e-01 9.078e-01
64 5.916e-5 9.978e-01 9.978e-01 9.968e-01 9.959e-01 9.946e-01 9.832e-01 9.758e-01
128 1.502e-5 9.991e-01 9.985e-01 9.983e-01 9.976e-01 9.976e-01 9.964e-01 9.930e-01

Table 4.2: Values of (∥Fk∥/∥F0∥)1/k by s-Anderson(m) for Example 4.3

562

5. Conclusions. Anderson acceleration does not use derivatives in its iterations, but it is563

difficult to prove its convergence without continuous differentiability. Most existing convergence564

results of Anderson acceleration are established under the assumption that the involved function565

is continuously differentiable [6, 9, 19, 24, 25]. For a special class of nonsmooth functions that566

is a sum of a smooth term and a nonsmooth term with a small Lipschitz constant, convergence567

of Anderson acceleration is proved in a recent paper [3]. In this paper, we give new convergence568

results of Anderson acceleration for nonsmooth fixed point problem (1.1), which has a composite569

max function in G. Theorem 2.1 shows that Anderson(1) is q-linear convergent with a q-factor570

ĉ ∈ ( 2c−c
2

1−c , 1), which can be strictly smaller than 3c−c2
1−c given in [3, 24]. Moreover, we construct571

a smoothing approximation G(·, µ) for the nonsmooth function G in (3.6), where G(·, µ) is also a572

contraction mapping and has the same fixed point as G. Then, we propose an Anderson acceler-573

ated algorithm with G(u, µ) and prove its local r-linear convergence with factor c for nonsmooth574

fixed point problem (1.1), which is same as the convergence rate of Anderson acceleration for the575

continuously differentiable case.576
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