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Abstract. We consider a class of constrained optimization problems where the objective func-
tion is a sum of a smooth function and a nonconvex non-Lipschitz function. Many problems in sparse
portfolio selection, edge preserving image restoration and signal processing can be modelled in this
form. First we propose the concept of the Karush-Kuhn-Tucker (KKT) stationary condition for the
non-Lipschitz problem and show that it is necessary for optimality under a constraint qualification
called the relaxed constant positive linear dependence (RCPLD) condition which is weaker than the
Mangasarian-Fromovitz constraint qualification and holds automatically if all the constraint func-
tions are affine. Then we propose an augmented Lagrangian method (AL) in which the augmented
Lagrangian subproblems is solved by a non-monotone proximal gradient method. Under the assump-
tion that a feasible point is known, we show that any accumulation point of the sequence generated by
our method must be a feasible point. Moreover, if RCPLD holds at such an accumulation point, then
it is a KKT point of the original problem. Finally we conduct numerical experiments to compare the
performance of our AL method and the interior point (IP) method for solving two sparse portfolio
selection models. The numerical results demonstrate that our method is not only comparable to the
IP method in terms of solution quality, but also substantially faster than the IP method.
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1. Introduction. In this paper, we consider the following non-Lipschitz nonlin-
ear programming problem:

min f(x) + Φ(x)

s.t. c(x) = 0, d(x) ≤ 0,
(1.1)

where f : IRn → IR, c : IRn → IRm and d : IRn → IRp are continuously differ-
entiable functions, and Φ : IRn → IR is a lower semi-continuous function (possibly
non-Lipschitz).

Problem (1.1) has an intriguing property that its local minimizers are often sparse
for a certain class of non-Lipschitz functions Φ with Φ(0) = 0 (see, e.g., [15]). In fact, it
has been shown in [13] that the magnitude of all nonzero entries of local minimizers of
problem (1.1) is greater than a certain positive number under some suitable conditions
on the objective and constraint functions. Due to this property, problem (1.1) has
been widely used to find a sparse solution in the context such as sparse regression [33],
sparse feature selection in machine learning [30], edge preserving image restoration
[31], compressed sensing in signal processing [9, 22] and joint power and admission
control [24]. It has also found applications in sparse portfolio selection [8, 12].

The augmented Lagrangian (AL) method and its various variants are a well-
known class of optimization methods for solving constrained optimization problems
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that have been studied for more than four decades (see, e.g., [3]). Very recently,
Curtis et al. [17] proposed an adaptive AL method for solving problem (1.1) where
Φ(x) ≡ 0, d(x) ≤ 0 is a box constraint and all functions are smooth. The adaptive
AL method has a novel adaptive updating scheme for the penalty parameter which
greatly improves the overall performance of the algorithm. However, as observed
from its convergence analysis, this method may converge to an infeasible point. This
pathological behavior also exists in most of existing AL methods in the literature.

To remedy the aforementioned pathological behavior of AL methods, Lu and
Zhang [28] proposed an AL method for solving nonlinear programming problems where
the objective function is a sum of a smooth term and a nonsmooth convex term,
and established global convergence under Robinson’s constraint qualification which
reduces to the Mangasarian-Fromovitz constraint qualification (MFCQ) in the setting
of problem (1.1). Their method differs from the classical AL methods in that the
values of the AL function along the solution sequence generated by the method are
bounded from above, and moreover, the magnitude of penalty parameters outgrows
that of Lagrange multipliers. It is noteworthy that the results of [28] cannot be
directly applied to problem (1.1) since the regularization function Φ is assumed to be
convex and hence locally Lipschitz continuous in their problem setting.

In this paper, we propose an AL method for solving problem (1.1) that is con-
siderably more general than the problems studied in [17, 28]. The non-Lipschitzness
of the regularization term Φ brings some challenges and requires some special treat-
ments when studying the necessary optimality conditions of problem (1.1) and the
convergence of the proposed AL method. This is reflected in the horizon subdiffer-
ential of the non-Lipschitz term in the statement of the Fritz John type necessary
optimality condition for non-Lipschitz optimization problem which was first shown in
Mordukhovich [29, Theorem 1(b)] and was reproved by Borwein et al. in [7, Corol-
lary 2.6]. For smooth nonlinear programs, the Fritz John condition is equivalent to
a Karush-Kuhn-Tucker (KKT) condition under MFCQ. However, MFCQ may be re-
strictive for some applications. For example, when all the constraint functions are
affine, MFCQ may not necessarily hold. Recently, Andreani et al. [1] proposed a
constraint qualification that is called the relaxed constant positive linear dependence
(RCPLD) condition which is weaker than MFCQ and holds automatically when all
constraints are affine.

The main purpose of this paper is to derive necessary optimality conditions of
problem (1.1), propose an AL method for problem (1.1), and establish its convergence
under RCPLD and a suitable condition called the basic qualification (BQ), which is
used to handle the non-Lipschitzness of the objective function. We summarize our
main contributions as follows:

• We derive a KKT necessary optimality condition (Theorem 2.1) for problem
(1.1) under RCPLD and BQ. We also derive a KKT necessary optimality
condition (Theorem 2.2) for some special cases of problem (1.1) under RCPLD
only. Such special cases are extensions of the linearly constrained problems in
[4, 12, 25] to nonlinearly constrained problems. To the best of our knowledge,
no such optimality conditions are available in the literature for non-Lipschitz
nonconvex programming problems.

• We propose a new AL method for problem (1.1). We show in Theorem 3.1
that any accumulation point of the sequence generated by the AL method is
a KKT point of problem (1.1) under RCPLD and BQ. Moreover, we establish
in Theorem 3.2 the convergence result for some special cases of problem (1.1)
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under RCPLD only. These convergence results are new even for the case
where the regularization function Φ is locally Lipschitz continuous.

• We conduct numerical experiments to compare the performance of our AL
method and an interior point (IP) method for solving sparse portfolio selection
models. The numerical results demonstrate that our method is not only
comparable to the IP method in terms of solution quality, but also much
faster than the IP method.

The rest of the paper is organized as follows. In Section 2 we derive necessary
optimality conditions for problem (1.1). In Section 3 we propose an AL method for
solving problem (1.1) and establish its global convergence. We present in Section 4
numerical results of the AL method for solving three sparse portfolio selection models.

1.1. Notation and terminology. For any vector x, let xi denote the ith entry
of x, x+ := max{x, 0} the nonnegative part of x, Diag(x) the diagonal matrix whose

ith diagonal entry is xi, and ‖x‖q := (
∑n
i=1 |xi|q)

1/q
for any q > 0. Let ‖ · ‖ denote

the Euclidean norm of a vector or the induced norm of a matrix. Let ei be the ith
standard unit vector, whose dimension shall be clear from the context. Given a point
x ∈ IRn and δ > 0, Bδ(x) denotes a closed ball centered at x with radius δ. Given
an index set I ⊆ {1, . . . , n}, AI denotes the submatrix of A formed by its columns
indexed by I and xI denotes the subvector of x indexed by I. We denote by AT the
transpose of matrix A. Let dist(x,D) denote the Euclidean distance from a point x
to a closed set D. Given a mapping ψ : IRn → IRm and x ∈ IRn, ∇ψ(x) ∈ IRn×m

stands for the transposed Jacobian of ψ at x.
We recall from [32, Definition 8.3] that for a lower semi-continuous function φ :

IRn → IR with IR := [−∞,∞] and a point x ∈ IRn where φ(x) is finite, the limiting
and horizon subdifferentials are defined respectively as

∂φ(x) :=

{
v

∣∣∣∣ ∃xk φ→ x, vk → v with lim inf
z→xk

φ(z)− φ(xk)− 〈vk, z − xk〉
‖z − xk‖ ≥ 0 ∀k

}
,

∂
∞
φ(x) :=

{
v

∣∣∣∣ ∃xk φ→ x, tkv
k → v, tk ↓ 0 with lim inf

z→xk

φ(z)− φ(xk)− 〈vk, z − xk〉
‖z − xk‖ ≥ 0 ∀k

}
where tk ↓ 0 means tk > 0 and tk → 0 and xk

φ→ x means that xk → x and
φ(xk) → φ(x). Moreover, if φ is convex, the limiting subdifferential coincides with
the classical subdifferential in convex analysis [32, Proposition 8.12]. Furthermore,
for a continuously differentiable function φ, we simply have ∂φ(x) = {∇φ(x)} [32,
Exercise 8.8(b)]. In addition, it follows from [32, Theorem 9.13] that φ is Lipschitz
continuous at x if and only if ∂∞φ(x) = {0}. Recall from [32, Definition 5.4] that a
set-valued mapping Ψ : IRn ⇒ IRm is said to be outer semi-continuous at x ∈ IRn if{

v | ∃xk → x, vk → v , vk ∈ Ψ(xk)
}
⊆ Ψ(x).

The indicator function of a set D is denoted by δD andND(x) := ∂δD(x) is the limiting
normal cone at x ∈ D. If D is a convex set, then ND(x) coincides with the classical
normal cone in the convex analysis. It is well known that the limiting normal cone
mapping ND, the limiting subdifferential mapping ∂φ and the horizon subdifferential
mapping ∂

∞
φ are all outer semi-continuous everywhere (see, e.g., [32, Propositions 6.6

and 8.7]).

2. Necessary optimality conditions. In this section, we derive constraint
qualifications under which a local minimizer of problem (1.1) satisfies the KKT nec-
essary optimality conditions defined as follows.
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Definition 2.1. Let F be the feasible region of problem (1.1). We say that a
point x∗ ∈ IRn is a KKT point of problem (1.1) provided that x∗ ∈ F and there exist
µ ∈ IRm and ν ∈ IRp

+ such that

0 ∈ ∇f(x∗) + ∂Φ(x∗) +∇c(x∗)µ+∇d(x∗)ν, νidi(x
∗) = 0 i = 1, . . . , p.

Notice that Φ is possibly non-Lipschitz and F is possibly nonconvex. To ensure that
a local minimizer x∗ of problem (1.1) is a KKT point, one generally needs to consider
not only the constraint qualification at x∗, but also the relation between the horizon
subdifferential of the objective function and the limiting normal cone of F at x∗.

A standard constraint qualification for smooth nonlinear programs is MFCQ.
Recall that MFCQ holds at x∗ ∈ F if the gradients {∇c1(x∗), . . . ,∇cm(x∗)} are
linearly independent and there exists a vector v ∈ IRn such that

∇ci(x∗)T v = 0 i = 1, . . . ,m, ∇di(x∗)T v < 0 i ∈ Id(x∗),

where Id(x∗) := {i | di(x∗) = 0} denotes the set of active inequality constraints at x∗.
It is well known that MFCQ is equivalent to the positive linear independence of the
gradient vectors, i.e., there is no µ ∈ IRm and ν ∈ IRp

+ not all zero such that

∇c(x∗)µ+∇d(x∗)ν = 0, νidi(x
∗) = 0 i = 1, . . . , p.

MFCQ may be relatively restrictive for some applications. For example, it does not
necessarily hold when the constraints are all affine, even though it is known that
having affine constraints is itself a constraint qualification. Recently, Andreani et al.
[1] introduced a weaker constraint qualification called the relaxed constant positive
linear dependence (RCPLD) condition.

Definition 2.2. [1, Definition 4] Let x∗ ∈ F , and let I ⊆ {1, · · · ,m} be such
that {∇ci(x∗) | i ∈ I} is a basis for span {∇ci(x∗) | i = 1, . . . ,m}. We say that
RCPLD holds for the system c(x) = 0, d(x) ≤ 0 at x∗ if there exists δ > 0 such that

• {∇ci(x) | i = 1, . . . ,m} has the same rank for each x ∈ Bδ(x∗);
• for each J ⊆ Id(x∗), if ({∇ci(x∗)|i ∈ I}, {∇dj(x∗)|j ∈ J }) are positively

linearly dependent, i.e., there exist {αi ∈ IR | i ∈ I} and {βj ≥ 0 | j ∈
J } not all zero such that

∑
i∈I αi∇ci(x∗) +

∑
j∈J βj∇dj(x∗) = 0, then

{∇ci(x), ∇dj(x)| i ∈ I, j ∈ J } is linearly dependent for each x ∈ Bδ(x∗).
Note that the definition of RCPLD is independent of the choice of I. In addition,

RCPLD is stable in the sense that if it holds at a given feasible point, then it must
hold at every feasible point in some neighborhood of that point. For ease of reference,
we now state this property below, which will be used in the convergence analysis of
our method proposed in the next section.

Proposition 2.1. [1, Theorem 4] If RCPLD holds at x∗ ∈ F , then there exists
δ > 0 such that RCPLD holds at any x ∈ Bδ(x∗) ∩ F .

The following result shows that under RCPLD condition, the normal cone can be
represented as a finitely generated cone.

Proposition 2.2. If RCPLD holds for the system c(x) = 0, d(x) ≤ 0 at x∗ ∈ F ,
then

NF (x∗) =
{
∇c(x∗)µ+

∑
i∈I∗

νi∇di(x∗) | µ ∈ IRm, νi ≥ 0 i ∈ I∗
}
,

where I∗ = Id(x∗).
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Proof. On one hand, by [23, Theorem 3.2], under RCPLD we have

NF (x∗) ⊆
{
∇c(x∗)µ+

∑
i∈I∗

νi∇di(x∗) | µ ∈ IRm, νi ≥ 0 i ∈ I∗
}
.

On the other hand, by [32, Theorem 6.14], since all constraint functions are continu-
ously differentiable, we have

NF (x∗) ⊇
{
∇c(x∗)µ+

∑
i∈I∗

νi∇di(x∗) | µ ∈ IRm, νi ≥ 0 i ∈ I∗
}
.

The desired result follows immediately. The proof is complete.
Since the objective function of problem (1.1) is not locally Lipschitz continuous,

the Fritz John necessary optimality condition involves the horizon subdifferential of
the non-Lipschitz term (see [7, Example 2.8]). Hence a local minimizer of problem
(1.1) may not be a KKT point under RCPLD only. To ensure a local minimizer is a
KKT point, we also need the following basic qualification.

Definition 2.3. We say that the basic qualification (BQ) holds at x∗ ∈ F if

−∂∞Φ(x∗) ∩NF (x∗) = {0}. (2.1)

Obviously BQ (2.1) holds automatically if Φ is locally Lipschitz continuous at x∗ or
Φ is non-Lipschitz continuous at an interior point x∗ of F , since ∂∞Φ(x∗) = {0} in
the first case and NF (x∗) = {0} in the second case. In the following, we show that
the KKT condition is necessary for optimality under BQ and RCPLD.

Theorem 2.1. Let x∗ be a local minimizer of problem (1.1). If BQ (2.1) and
RCPLD hold at x∗, then x∗ is a KKT point of problem (1.1).

Proof. Using the indicator function δF , problem (1.1) can be equivalently rewrit-
ten as

min
x
f(x) + Φ(x) + δF (x).

It follows from Fermat’s rule (see, e.g., [32, Theorem 10.1]) that

0 ∈ ∇f(x∗) + ∂(Φ + δF )(x∗). (2.2)

Notice that ∂δF (x∗) = ∂∞δF (x∗) = NF (x∗). By this and the assumption that
BQ (2.1) holds at x∗, one has −∂∞Φ(x∗) ∩ ∂∞δF (x∗) = {0}. Using this relation,
∂δF (x∗) = NF (x∗), and the sum rule of the limiting subdifferential (see, e.g., [32,
Corollary 10.9]), we have

∂(Φ + δF )(x∗) ⊆ ∂Φ(x∗) + ∂δF (x∗) = ∂Φ(x∗) +NF (x∗),

which together with (2.2) yields 0 ∈ ∇f(x∗) + ∂Φ(x∗) +NF (x∗). Since RCPLD holds
at x∗, it follows from Proposition 2.2 that

NF (x∗) =
{
∇c(x∗)µ+

∑
i∈I∗

νi∇di(x∗) | µ ∈ IRm, νi ≥ 0 i ∈ I∗
}
, I∗ = Id(x∗).

Combining the last two relations implies that x∗ is a KKT point.
Now we show that if BQ (2.1) holds at a given point, then it must hold at any

point in some neighborhood of that point. This result will be useful for proving the
convergence of our proposed method in the next section.
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Proposition 2.3. For any lower semi-continuous function Ψ : IRn → IR and
closed set D, if −∂∞Ψ(x∗) ∩ ND(x∗) = {0}, then there exists δ > 0 such that
−∂∞Ψ(x) ∩ND(x) = {0} for any x ∈ Bδ(x∗) ∩ D.

Proof. Suppose for contradiction that the conclusion does not hold. Then there
exists a sequence {xk} ⊆ D converging to x∗ and vk 6= 0 such that vk ∈ −∂∞Ψ(xk)∩
ND(xk). Since −∂∞Ψ(xk) ∩ND(xk) is a cone, it then follows that

ωk :=
vk

‖vk‖
∈ −∂∞Ψ(xk) ∩ND(xk). (2.3)

Without loss of generality, we assume that ωk → ω∗ with ‖ω∗‖ = 1 as k → ∞. In
addition, taking limits on both sides of (2.3) as k → ∞, it follows from the outer
semi-continuity of the horizon subdifferential and the limiting normal cone that ω∗ ∈
−∂∞Ψ(x∗) ∩ ND(x∗). This contradicts the assumption that −∂∞Ψ(x∗) ∩ ND(x∗) =
{0}. The proof is complete.

Recently, necessary optimality conditions of optimization problems with special
non-Lipschitz objective functions and linear constraints have been derived in [4, 12, 25]
without imposing BQ (2.1) but with the aid of a relatively restricted problem. In the
following, we apply such an approach to these non-Lipschitz objective functions in
[4, 12, 25] with nonlinear constraints.

Theorem 2.2. Let x∗ be a local minimizer of problem (1.1). Suppose Φ(x) =∑n
i=1 φi(xi) for some lower semi-continuous functions φi : IR→ IR, i = 1, . . . , n. Let

I = {i | ∂∞φi(x∗i ) = {0}} and Ic be the complement of I with respect to {1, . . . , n}.
Assume further that for any i ∈ Ic, ∂φi(x∗i ) = IR and RCPLD holds at x∗I for the
system c(xI , x

∗
Ic) = 0, d(xI , x

∗
Ic) ≤ 0. Then x∗ is a KKT point of problem (1.1).

Proof. Observe that x∗I is a local minimizer of the restricted problem

min
xI

f(xI , x
∗
Ic) + Φ(xI , x

∗
Ic)

s.t. c(xI , x
∗
Ic) = 0, d(xI , x

∗
Ic) ≤ 0

(2.4)

and RCPLD holds at x∗I for the system c(xI , x
∗
Ic) = 0, d(xI , x

∗
Ic) ≤ 0. In addition,

by the assumption that ∂∞φi(x
∗
i ) = {0} for all i ∈ I, one can see that BQ holds at

x∗I for problem (2.4). It thus follows from Theorem 2.1 that x∗I is a KKT point of
problem (2.4). That is, there exist µ ∈ IRm and ν ∈ IRp

+ such that

0 ∈ ∇xIf(x∗) + ∂xIΦ(x∗) +∇xIc(x∗)µ+∇xId(x∗)ν, νidi(x
∗) = 0 i = 1, . . . , p,

where ∇xI and ∂xI denote the gradient and the limiting subdifferential with respect
to xI respectively. Since the regularization term Φ(x) is assumed to be separable, it
follows from [32, Proposition 10.5] that the limiting subdifferential is separable in the
sense that

∂Φ(x∗) = ∂φ1(x∗1)× ∂φ2(x∗2)× · · · × ∂φn(x∗n)

and hence ∂Φ(x∗) = ∂xIΦ(x∗) × ∂xIcΦ(x∗). Since ∂φi(x
∗
i ) is the whole real line for

each i ∈ Ic, the inclusion

0 ∈ ∇xIc f(x∗) + ∂xIcΦ(x∗) +∇xIc c(x
∗)µ+∇xIcd(x∗)ν

always holds. Therefore x∗ is a KKT point of problem (1.1).
Corollary 2.1. Let x∗ be a local minimizer of problem (1.1). Suppose Φ(x) :=∑n

i=1 |xi|q with q ∈ (0, 1). Let I := {i | x∗i 6= 0} and Ic := {i | x∗i = 0}. If RCPLD
holds at x∗I for the system c(xI , x

∗
Ic) = 0, d(xI , x

∗
Ic) ≤ 0, then x∗ is a KKT point.
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Proof. Since φi(xi) = |xi|q for all i, it follows from [14, Lemma 2.5] that
∂∞φ(x∗i ) = {0} for every i ∈ I and ∂φ(x∗i ) = IR for any i ∈ Ic. The conclusion
of this corollary follows from Theorem 2.2 immediately.

A special case of problem (1.1) was recently considered in [25], where Φ(x) =∑l
i=1(bi − aTi x)q+ and the mappings c and d are affine. We next study a more gen-

eral problem with possibly nonlinear constraints. In particular, we establish a KKT
necessary optimality condition for this problem.

Corollary 2.2. Suppose Φ(x) =
∑l
i=1(bi − aTi x)q+, where bi ∈ IR, ai ∈ IRn and

q ∈ (0, 1). Let x∗ be a local minimizer of problem (1.1) and

J := {i | bi − aTi x∗ = 0}, K := {i | bi − aTi x∗ > 0}.

If RCPLD holds at x∗ for the system

c(x) = 0, d(x) ≤ 0, bi − aTi x ≤ 0, i ∈ J , (2.5)

then there exist u ∈ IRm, v ∈ IRp
+ and µ ∈ IR

|J |
+ such that

∇f(x∗) +∇c(x∗)u+∇d(x∗)v −
∑
i∈K

q(bi − aTi x∗)q−1ai −
∑
i∈J

µiai = 0,

di(x
∗)vi = 0 i = 1, . . . , p.

Proof. Let J and K be defined above, I := {i | bi − aTi x
∗ < 0} and y∗i :=

(bi − aTi x∗)+ for every i = 1, . . . , l. Clearly, y∗i = 0 for every i ∈ I ∪ J and y∗i > 0
for any i ∈ K. Since x∗ is a local minimizer of problem (1.1), it is easy to see that
(x∗, y∗) is a local minimizer of the problem

min f(x) +

l∑
i=1

|yi|q

s.t. c(x) = 0, d(x) ≤ 0, bi − aTi x ≤ yi, yi ≥ 0 i = 1, . . . , l. (2.6)

Let φ(t) := |t|q. In view of the fact y∗i = 0,∀i ∈ I ∪ J and y∗i > 0,∀i ∈ K, one can
see that ∂φ(y∗i ) = IR for i ∈ I ∪J and ∂∞φ(y∗i ) = {0} for i ∈ K. By assumption that
RCPLD holds at x∗ for the system (2.5), it is not hard to verify that RCPLD also
holds at (x∗, y∗K) for the system

c(x) = 0; d(x) ≤ 0; bi − aTi x ≤ yi, i ∈ K; bi − aTi x ≤ 0, i ∈ J .

Observe that the constraints

bi − aTi x ≤ 0, i ∈ I; yi ≥ 0, i ∈ K

are inactive at (x∗, y∗K). These imply that RCPLD holds at (x∗, y∗K) for the system

c(x) = 0; d(x) ≤ 0; bi − aTi x ≤ yi, i ∈ K; bi − aTi x ≤ 0, i ∈ I ∪ J ; yi ≥ 0, i ∈ K.

In view of this and the fact that ∂φ(y∗i ) = IR for i ∈ I ∪ J and ∂∞φ(y∗i ) = {0} for
i ∈ K, one can see that the assumptions of Theorem 2.2 hold at (x∗, y∗) for problem
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(2.6). By applying Theorem 2.2 to problem (2.6), we conclude that (x∗, y∗) is a KKT
point of (2.6). Hence, there exist u ∈ IRm, v ∈ IRp

+, µ ∈ IRl
+ and ν ∈ IRl

+ such that

∇f(x∗) +∇c(x∗)u+∇d(x∗)v −
l∑
i=1

µiai = 0, (2.7)

0 ∈ ∂φ(y∗i )− µi − νi, i = 1, . . . , l, (2.8)

di(x
∗)vi = 0, i = 1, . . . , p, (2.9)

(bi − aTi x∗ − y∗i )µi = 0, y∗i νi = 0, i = 1, . . . , l. (2.10)

By (2.10), we have µi = 0, i ∈ I and νi = 0, i ∈ K. Then it follows from (2.8) that
qy∗i

q−1 − µi = 0, i ∈ K. The last two relations together with (2.7) indicate that

∇f(x∗) +∇c(x∗)u+∇d(x∗)v −
∑
i∈K

qy∗i
q−1ai −

∑
i∈J

µiai = 0. (2.11)

The desired result follows from (2.9)–(2.11) and the definition of y∗ immediately. The
proof is complete.

3. An augmented Lagrangian method for problem (1.1). In this section
we present an AL method for solving problem (1.1). In practice, problem (1.1) often
involves two types of constraints: easy and hard constraints. For example, the lower
and upper bound constraints can be viewed as easy constraints. For practical effi-
ciency, we handle the easy constraints directly while penalizing the hard constraints
into the AL function. To this aim, we divide the mappings c and d into two parts:
c(x) = (ch(x), ce(x)), d(x) = (dh(x), de(x)) where ch : IRn → IRm1 , ce : IRn → IRm2

and dh : IRn → IRp1 , de : IRn → IRp2 with m1 + m2 = m and p1 + p2 = p. Here, the
superscripts h and e stand for “hard” and “easy”, respectively. For convenience of
presentation, let

X := {x | ce(x) = 0, de(x) ≤ 0},

represent the set of easy constraints that can be handled in the AL method directly
and efficiently. Therefore, problem (1.1) can be rewritten as

min
x∈X

f(x) + Φ(x)

s.t. ch(x) = 0, dh(x) ≤ 0.
(3.1)

For any given penalty parameter ρ > 0 and Lagrange multipliers µ, ν, the AL
function for problem (3.1) is defined as

L(x, µ, ν, ρ) := f(x)+Φ(x)+
1

2ρ
(‖µ+ρch(x)‖2−‖µ‖2)+

1

2ρ
(‖[ν+ρdh(x)]+‖2−‖ν‖2).

(3.2)
Inspired by the classical AL method, at each outer iteration we approximate problem
(3.1) by an AL subproblem in the form of

(P ρµ,ν) min
x∈X

L(x, µ, ν, ρ). (3.3)

For convenience, we write the AL function as a sum of a smooth term and the
regularization term: L(x, µ, ν, ρ) = ϕ(x, µ, ν, ρ) + Φ(x), where

ϕ(x, µ, ν, ρ) := f(x)+
1

2ρ
(‖µ+ρch(x)‖2−‖µ‖2)+

1

2ρ
(‖[ν+ρdh(x)]+‖2−‖ν‖2). (3.4)
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It is well known that the classical AL method may converge to an infeasible point.
To remedy this pathological behavior, we adopt the strategies proposed by Lu and
Zhang [28] so that the values of the AL function along the solution sequence generated
by the method are bounded from above and also the magnitude of penalty parameters
outgrows that of Lagrange multipliers.

Throughout this section, assume that at least one feasible solution of problem
(3.1) is known, which is denoted by xfeas. It is generally not easy to find such xfeas.
However, for many practical problems, xfeas can be simply found without computation
or can be easily computed such as the problems with polyhedral constraints or Stiefel
manifold. We are now ready to present the AL method for solving problem (3.1) (or
equivalently (1.1)).

Algorithm 3.1. Choose µ0 ∈ IRm1 , ν0 ∈ IRp1
+ , x0init ∈ X , ρ0 > 0, γ ∈ (1,∞),

τ, η ∈ (0, 1), a nonnegative sequence {εk}, and a constant

Υ ≥ max{f(xfeas) + Φ(xfeas),L(x0init, µ
0, ν0, ρ0)}.

Set k = 0.
1) Solve problem (3.3) with µ = µk, ν = νk and ρ = ρk to find an approximate

stationary point xk ∈ X such that

dist
(

0,∇xϕ(xk, µk, νk, ρk) + ∂(Φ + δX )(xk)
)
≤ εk, L(xk, µk, νk, ρk) ≤ Υ. (3.5)

2) Set

µk+1 = µk + ρkc
h(xk), νk+1 = [νk + ρkd

h(xk)]+, (3.6)

ζk+1 = min{νk+1/ρk,−dh(xk)}. (3.7)

3) If k > 0 and

max
{
‖ch(xk)‖, ‖ζk+1‖

}
≤ ηmax

{
‖ch(xk−1)‖, ‖ζk‖

}
, (3.8)

then set ρk+1 = ρk. Otherwise, set

ρk+1 = max{γρk, ‖µk+1‖1+τ , ‖νk+1‖1+τ}. (3.9)

4) Set k ← k + 1 and go to Step 1).
Remark: As to be discussed in subsection 3.1, xk satisfying (3.5) can be found

by a non-monotone proximal gradient (NPG) method if a Lipschitz constant of ∇ϕ
is known. Hence Algorithm 3.1 is well-defined. In addition, x0init is used as an initial
point for the NPG method when solving (3.3) with µ = µ0, ν = ν0 and ρ = ρ0.

We next establish the convergence of Algorithm 3.1. Before proceeding, we state
a result that may be viewed as a corollary of Carathéodory lemma.

Lemma 3.1. [1, Lemma 1] If x =
∑m+p
i=1 αivi with αi 6= 0, i = 1, . . . ,m and

{vi | i = 1, · · · ,m} being linearly independent, then there exist J ⊆ {m+1, · · · ,m+p}
and {ᾱi | i ∈ {1, · · · ,m} ∪ J } such that

• x =
∑

i∈{1,··· ,m}∪J
ᾱivi with αiᾱi > 0 for every i ∈ J ;

• {vi | i ∈ {1, · · · ,m} ∪ J } is linearly independent.
The following result will also be useful in proving the convergence of the AL

method.



10 X. Chen, L. Guo, Z. Lu and J. J. Ye

Proposition 3.1. For any x ∈ F , if −∂∞Φ(x)∩NF (x) = {0}, then −∂∞Φ(x)∩
NX (x) = {0}.

Proof. Since F ⊆ X , by the definition of the limiting normal cone, we have
NX (x) ⊆ NF (x) for any x ∈ X . It thus follows that −∂∞Φ(x)∩NX (x) ⊆ −∂∞Φ(x)∩
NF (x). In addition, it is clear to observe that 0 ∈ −∂∞Φ(x)∪NX (x). The conclusion
then immediately follows from these relations.

We are now ready to establish the convergence of Algorithm 3.1.

Theorem 3.1. Suppose that lim
k→∞

εk = 0 for Algorithm 3.1. Let {xk} be the

sequence generated by Algorithm 3.1 and x∗ an accumulation point of {xk}. Assume
that the function f + Φ is bounded below in X . Then the following statements hold:

(i) ch(xk)→ 0 and [dh(xk)]+ → 0 as k →∞.
(ii) x∗ is a feasible point of problem (1.1).

(iii) If BQ (2.1) holds at x∗, and RCPLD holds at x∗ respectively for the system
c(x) = 0, d(x) ≤ 0 and the system ce(x) = 0, de(x) ≤ 0, then x∗ is a KKT
point of problem (1.1).

Proof. Notice that {xk} ⊆ X . This and the assumption that f + Φ is bounded
below in X imply that {f(xk) + Φ(xk)} is bounded below. In addition, by the closed-
ness of X and the fact that x∗ is an accumulation point of {xk}, one can easily see
that x∗ ∈ X .

(i) We now prove statement (i) by considering two separate cases as follows.

Case (a): {ρk} is bounded. In view of this and its updating scheme, one can see
that {ρk} is updated by (3.9) only for finite times. It thus implies that (3.8) holds for
all k ≥ k0 for some k0, that is,

max
{
‖ch(xk)‖, ‖ζk+1‖

}
≤ ηmax

{
‖ch(xk−1)‖, ‖ζk‖

}
, ∀k ≥ k0.

It then follows that

lim
k→∞

max
{
‖ch(xk)‖, ‖ζk+1‖

}
= 0. (3.10)

By the definition of ζk+1, one can observe that dh(xk) ≤ −ζk+1 and hence [dh(xk)]+ ≤
[−ζk+1]+, which implies ‖[dh(xk)]+‖ ≤ ‖[−ζk+1]+‖ ≤ ‖ζk+1‖. It along with (3.10)
yields

lim
k→∞

max
{
‖ch(xk)‖, ‖[dh(xk)]+‖

}
= 0,

which clearly implies that statement (i) holds.

Case (b): {ρk} is unbounded. By its updating scheme, one can observe that {ρk}
must be updated by (3.9) for infinite times. Let {ρj1 , ρj2 , . . .} denote all elements in
{ρk} that are updated by (3.9) and J = {j1, j2, . . .} arranged in increasing order. It
then follows that {ρj`} → ∞ as `→∞ and

ρi = ρj` , j` ≤ i < j`+1, ` ≥ 1, (3.11)

ρj` = max{γρj`−1, ‖µj`‖1+τ , ‖νj`‖1+τ}, ` ≥ 1. (3.12)

Let j(k) := max{j ∈ J | k ≥ j} for every k ≥ j1.



An AL method for Non-Lipschitz Nonlinear Programming 11

Claim that for every k ≥ j1,

‖νk‖
ρk
≤ ‖ν

j(k)‖
ρj(k)

+
∥∥∥[dh(xj(k))]+

∥∥∥+

k−j(k)−1∑
i=1

∥∥∥[dh(xj(k)+i)]+

∥∥∥ , (3.13)

‖µk‖
ρk
≤ ‖µ

j(k)‖
ρj(k)

+ ‖ch(xj(k))‖+

k−j(k)−1∑
i=1

‖ch(xj(k)+i)‖. (3.14)

To this end, let k ≥ j1 be arbitrarily chosen. Clearly, (3.13) and (3.14) hold when
k = j(k). We now suppose k > j(k). It then follows from the definition of j(k) that
ρj(k)+i = ρj(k) for 0 < i ≤ k − j(k). In view of this and the second relation in (3.6),
one has

‖νj(k)+i‖
ρj(k)+i

=
‖νj(k)+i‖
ρj(k)+i−1

=

∥∥∥∥∥
[
νj(k)+i−1

ρj(k)+i−1
+ dh(xj(k)+i−1)

]
+

∥∥∥∥∥
≤

∥∥∥νj(k)+i−1∥∥∥
ρj(k)+i−1

+

∥∥∥∥[dh(xj(k)+i−1)
]
+

∥∥∥∥ , 0 < i ≤ k − j(k),

where the last inequality is due to νj(k)+i−1 ≥ 0. Summing up the above inequalities
for i = 1, . . . , k − j(k) yields (3.13). The inequality (3.14) can be proved by using a
similar argument and the first relation in (3.6).

We next show that for every k ≥ j1,

‖νk‖
ρk
≤ ‖ν

j(k)‖
ρj(k)

+
∥∥∥[dh(xj(k))]+

∥∥∥+
η

1− η
max{‖ch(xj(k))‖, ‖ζj(k)+1‖}, (3.15)

‖µk‖
ρk
≤ ‖µ

j(k)‖
ρj(k)

+ ‖ch(xj(k))‖+
η

1− η
max{‖ch(xj(k))‖, ‖ζj(k)+1‖}. (3.16)

Indeed, let k ≥ j1 be arbitrarily chosen. Clearly, it follows from (3.13) and (3.14) that
(3.15) and (3.16) hold when k = j(k) or j(k) + 1. We now suppose k > j(k) + 1. It
follows from the definition of j(k) and the updating scheme of {ρ`} that

max{‖ch(xj(k)+i)‖, ‖ζj(k)+i+1‖}
≤ ηmax{‖ch(xj(k)+i−1)‖, ‖ζj(k)+i‖}, 0 < i < k − j(k),

which leads to

max{‖ch(xj(k)+i)‖, ‖ζj(k)+i+1‖} ≤ ηi max{‖ch(xj(k))‖, ‖ζj(k)+1‖}, 0 < i < k−j(k).
(3.17)

In addition, from the proof of case (a), we know that ‖[dh(xj(k)+i)]+‖ ≤ ‖ζj(k)+i+1‖
for every i, which along with (3.13) and (3.17) implies

‖νk‖
ρk
≤ ‖ν

j(k)‖
ρj(k)

+
∥∥∥[dh(xj(k))]+

∥∥∥+

k−j(k)−1∑
i=1

∥∥∥ζj(k)+i+1
∥∥∥

≤ ‖ν
j(k)‖
ρj(k)

+
∥∥∥[dh(xj(k))]+

∥∥∥+

k−j(k)−1∑
i=1

ηi

max{‖ch(xj(k))‖, ‖ζj(k)+1‖}.
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The relation (3.15) follows from this and the fact
∑∞
`=1 η

` ≤ η/(1 − η). By (3.14),
(3.17) and a similar argument, one can also see that (3.16) holds.

Next we show that

lim
k→∞

‖µj(k)‖/ρj(k) = 0, lim
k→∞

‖νj(k)‖/ρj(k) = 0, (3.18)

lim
k→∞

‖ch(xj(k))‖ = 0, lim
k→∞

‖[dh(xj(k))]+‖ = 0, lim
k→∞

‖ζj(k)+1‖ = 0. (3.19)

Indeed, recall that {ρj`} → ∞ as ` → ∞. It thus follows that ρj(k) → ∞ as k →∞.

By (3.12) and the definition of j(k), one has

ρj(k) = max
{
γρj(k)−1, ‖µj(k)‖1+τ , ‖νj(k)‖1+τ

}
, k ≥ j1.

This yields

‖µj(k)‖1+τ ≤ ρj(k), ‖νj(k)‖1+τ ≤ ρj(k), k ≥ j1,

which implies that

‖µj(k)‖/ρj(k) ≤ (ρj(k))
− τ

1+τ , ‖νj(k)‖/ρj(k) ≤ (ρj(k))
− τ

1+τ , k ≥ j1.

The relations (3.18) then follows from this and {ρj(k)} → ∞ as k → ∞. Further, by

the second relation in (3.5) and the definition of the AL function (3.2), one has

f(xj(k)) + Φ(xj(k))

+
‖µk + ρj(k)c

h(xj(k))‖2 − ‖µj(k)‖2

2ρj(k)
+
‖[νj(k) + ρj(k)d

h(xj(k))]+‖2 − ‖νj(k)‖2

2ρj(k)
≤ Υ,

which leads to ∥∥∥∥∥ch(xj(k)) +
µj(k)

ρj(k)

∥∥∥∥∥
2

+

∥∥∥∥∥
[
dh(xj(k)) +

νj(k)

ρj(k)

]
+

∥∥∥∥∥
2

≤ 2

ρj(k)
[Υ− f(xj(k))− Φ(xj(k))] +

‖µj(k)‖2 + ‖νj(k)‖2

ρ2j(k)
. (3.20)

Using this, (3.18), the lower boundedness of {f(xj(k))+Φ(xj(k))} and ρj(k) →∞, one
can see that

lim
k→∞

∥∥∥∥∥ch(xj(k)) +
µj(k)

ρj(k)

∥∥∥∥∥ = 0, lim
k→∞

∥∥∥∥∥
[
dh(xj(k)) +

νj(k)

ρj(k)

]
+

∥∥∥∥∥ = 0, (3.21)

which together with (3.18) implies that the first two relations in (3.19) hold. In
addition, by (3.7) and the second relation in (3.6), one has

ζj(k)+1 = min

{
νj(k)+1

ρj(k)
,−dh(xj(k))

}
= min

{[
dh(xj(k)) +

νj(k)

ρj(k)

]
+

,−dh(xj(k))

}
,

which implies that

−[dh(xj(k))]+ ≤ ζj(k)+1 ≤

[
dh(xj(k)) +

νj(k)

ρj(k)

]
+

.
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It then follows from this, (3.21) and [dh(xj(k))]+ → 0 that ζj(k)+1 → 0. Hence the
last relation in (3.19) holds.

In view of (3.15), (3.16), (3.18) and (3.19), we conclude that

lim
k→∞

‖µk‖/ρk = 0, lim
k→∞

‖νk‖/ρk = 0. (3.22)

By the same argument as for proving (3.20), one can show that∥∥∥∥ch(xk) +
µk

ρk

∥∥∥∥2 +

∥∥∥∥∥
[
dh(xk) +

νk

ρk

]
+

∥∥∥∥∥
2

≤ 2

ρk
[Υ− f(xk)− Φ(xk)] +

‖µk‖2 + ‖νk‖2

ρ2k
,

which together with (3.22) and the lower boundedness of {f(xk)+Φ(xk)} implies that
ch(xk)→ 0 and [dh(xk)]+ → 0 as k →∞. This completes the proof of statement (i).

(ii) Statement (ii) is a direct consequence of statement (i). Indeed, since x∗

is an accumulation point of {xk}, it follows from the continuity of ch and dh and
statement (i) that max

{
‖ch(x∗)‖, ‖[dh(x∗)]+‖

}
= 0, which clearly yields ch(x∗) = 0

and dh(x∗) ≤ 0. Recall that x∗ ∈ X . Hence, x∗ is a feasible point of problem (1.1).
(iii) Since x∗ is an accumulation point of {xk}, there exists a subsequence K such

that {xk}K → x∗. Claim that

{νk+1
i }K → 0, ∀i /∈ Idh(x∗) := {i | dhi (x∗) = 0}. (3.23)

Indeed, let i /∈ Idh(x∗) be arbitrarily chosen. We next prove (3.23) by considering
two separate cases as follows.

Case (a): {ρk} is bounded. By (3.10), one has that ζk+1 → 0 as k → ∞. Since
i /∈ Idh(x∗) and {xk}K → x∗, we have dhi (xk) < dhi (x∗)/2 < 0 for sufficiently large
k ∈ K. It follows from this and (3.7) that {νk+1

i /ρk}K → 0, which together with the
boundedness of {ρk} yields (3.23).

Case (b): {ρk} is unbounded. Recall from the proof of statement (i) that ‖νk‖/ρk
→ 0. From above, we know that dhi (xk) < dhi (x∗)/2 < 0 for sufficiently large k ∈ K.
It follows from these and the second relation of (3.6) that for sufficiently large k ∈ K,

νk+1
i = ρk[νki /ρk + dhi (xk)]+ = 0,

and hence (3.23) holds.
For convenience, let

Ide(x) := {i | dei (x) = 0}, Idh(x) := {i | dhi (x) = 0}, ∀x ∈ IRn.

Since BQ (2.1) holds at x∗, it follows from Proposition 3.1 that −∂∞Φ(x∗)∩NX (x∗) =
{0}. Hence by Proposition 2.3 there exists δ0 > 0 such that for any x ∈ Bδ0(x∗) ∩ X ,

−∂∞Φ(x) ∩NX (x) = {0}.

Moreover, by the assumption, RCPLD holds at x∗ for the system ce(x) = 0, de(x) ≤ 0.
Then it follows from the sum rule of the limiting subdifferential [32, Corollary 10.9]
and Propositions 2.1 and 2.2 that there exists δ ∈ (0, δ0) such that for any x ∈ Bδ(x∗),

∂(Φ + δX )(x) ⊆ ∂Φ(x) +NX (x)

= ∂Φ(x) +

∇ce(x)α+
∑

i∈Ide (x)

βi∇dei (x) | α ∈ IRm2 , βi ≥ 0 i ∈ Ide(x)

 .(3.24)
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Let Ike := Ide(xk) and I∗h := Idh(x∗). By (3.4), (3.24), the first relation in (3.5)

and Step 2) in Algorithm 3.1, there exist αk+1 ∈ IRm2 , βk+1 ∈ IR
|Ike |
+ and ξk ∈ IRn

such that

ξk ∈ ∇f(xk) + ∂Φ(xk) +

m1∑
i=1

µk+1
i ∇chi (xk)

+

m2∑
i=1

αk+1
i ∇cei (xk) +

p1∑
i=1

νk+1
i ∇dhi (xk) +

∑
i∈Ike

βk+1
i ∇dei (xk) (3.25)

and ‖ξk‖ ≤ εk for all k. It then follows from εk → 0 that ξk → 0.
Recall that c(x) = (ch(x), ce(x)). Let I be such that {∇ci(x∗) | i ∈ I} is a

basis for span {∇ci(x∗) | i = 1, . . . ,m}. This together with {xk}K → x∗ implies that
{∇ci(xk) | i ∈ I} is linearly independent for any sufficiently large k ∈ K. Then it
follows from RCPLD at x∗ that {∇ci(xk) | i ∈ I} is a basis for span {∇ci(xk) | i =
1, . . . ,m} for any sufficiently large k ∈ K. Thus it follows from (3.25) that for every
sufficiently large k ∈ K, there exists {µ̂k+1

i | i ∈ I} such that

ξ̃k ∈ ∇f(xk) + ∂Φ(xk) +
∑
i∈I

µ̂k+1
i ∇ci(xk) +

∑
i∈I∗h

νk+1
i ∇dhi (xk) +

∑
i∈Ike

βk+1
i ∇dei (xk),

where ξ̃k := ξk −
∑
i/∈I∗h

νk+1
i ∇dhi (xk). Then by Lemma 3.1, for every sufficiently

large k ∈ K, there exist

{µ̄k+1
i | i ∈ I}, {ν̄k+1

i ≥ 0 | i ∈ J k1 }, {β̄k+1
i ≥ 0 | i ∈ J k2 }

with J k1 ⊆ I∗h and J k2 ⊆ Ike such that

ξ̃k ∈ ∇f(xk) + ∂Φ(xk)

+
∑
i∈I

µ̄k+1
i ∇ci(xk) +

∑
i∈J k1

ν̄k+1
i ∇dhi (xk) +

∑
i∈J k2

β̄k+1
i ∇dei (xk) (3.26)

and

{∇ci(xk),∇dhj (xk),∇de` (xk) | i ∈ I, j ∈ J k1 , ` ∈ J k2 } is linearly independent. (3.27)

Since the number of the possible sets J k1 and J k2 is finite, we can find a subsequence
K1 in K such that J k1 ≡ J1 and J k2 ≡ J2 for every k ∈ K1. Moreover, we may
assume that (3.26) and (3.27) hold for all k ∈ K1. Note also that J1 ⊆ I∗h and
J2 ⊆ I∗e := Ide(x∗). In addition, by {xk}K → x∗, ξk → 0, (3.23) and the definition
of ξ̃k, one can observe that {ξ̃k}K1

→ 0.
If I ∪ J1 ∪ J2 = ∅, then it follows from (3.26), {ξ̃k}K1

→ 0 and the outer semi-
continuity of the limiting subdifferential that 0 ∈ ∇f(x∗) + ∂Φ(x∗), which implies
that x∗ is a KKT point of problem (1.1). We now suppose I ∪ J1 ∪ J2 6= ∅. Let

tk := max
{
|µ̄k+1
i |, |ν̄k+1

j |, |β̄k+1
` | | i ∈ I, j ∈ J1, ` ∈ J2

}
.

We claim that {tk}K1 is bounded. Suppose on the contrary that {tk}K1 is unbounded.
Without loss of generality, we assume that as K1 3 k →∞, tk →∞ and

µ̄k+1
i

tk
→ µ̄∗i i ∈ I,

ν̄k+1
j

tk
→ ν̄∗j j ∈ J1,

β̄k+1
`

tk
→ β̄∗` ` ∈ J2.
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It is clear to see that

max
{
|µ̄∗i |, |ν̄∗j |, |β̄∗` | | i ∈ I, j ∈ J1, ` ∈ J2

}
= 1. (3.28)

Moreover, since ν̄k+1
j ≥ 0, β̄k+1

` ≥ 0 for all j ∈ J1, ` ∈ J2 and k ∈ K1, we have

ν̄∗j ≥ 0 j ∈ J1, β̄∗` ≥ 0 ` ∈ J2. (3.29)

Dividing (3.26) by tk and taking limits on both sides as K1 3 k →∞, it follows from
{ξ̃k}K1

→ 0 and the definition of the horizon subdifferential that

0 ∈ ∂∞Φ(x∗) +
∑
i∈I

µ̄∗i∇ci(x∗) +
∑
j∈J1

ν̄∗j∇dhj (x∗) +
∑
`∈J2

β̄∗`∇de` (x∗).

Moreover, it follows from Proposition 2.2 that∑
i∈I

µ̄∗i∇ci(x∗) +
∑
j∈J1

ν̄∗j∇dhj (x∗) +
∑
`∈J2

β̄∗`∇de` (x∗) ∈ NF (x∗).

Then it follows from BQ (2.1) and the last two relations that∑
i∈I

µ̄∗i∇ci(x∗) +
∑
j∈J1

ν̄∗j∇dhj (x∗) +
∑
`∈J2

β̄∗`∇de` (x∗) = 0.

This together with (3.28), (3.29) and RCPLD implies that for any x sufficiently close
to x∗,

{∇ci(x),∇dhj (x),∇de` (x) | i ∈ I, j ∈ J1, ` ∈ J2}

is linearly dependent. This contradicts (3.27). Thus {tk}K1 is bounded as desired.
It then follows from the definition of tk that {µ̄k+1

i }K1
, {ν̄k+1

j }K1
and {β̄k+1

` }K1
are

bounded for all i ∈ I, j ∈ J1 and ` ∈ J2. Without loss of generality, we assume that
as K1 3 k →∞,

µ̄k+1
i → µ∗i i ∈ I; ν̄k+1

j → ν∗j j ∈ J1; β̄k+1
` → β∗` ` ∈ J2.

Moreover, by a similar argument as in the proof of (3.29), one can have

ν∗j ≥ 0 j ∈ J1; β∗` ≥ 0 ` ∈ J2. (3.30)

Taking limits on both sides of (3.26) as K1 3 k →∞, we then have

0 ∈ ∇f(x∗) + ∂Φ(x∗) +
∑
i∈I

µ∗i∇ci(x∗) +
∑
j∈J1

ν∗j∇dhj (x∗) +
∑
`∈J2

β∗j∇de` (x∗). (3.31)

Since J1 ∪ J2 ⊆ I∗h ∪ I∗e , it follows from (3.30) and (3.31) that x∗ is a KKT point of
problem (1.1). The proof is complete.

If the set X is bounded, then the sequence {xk} generated by Algorithm 3.1 is
bounded and thus an accumulation point exists. Note that when the function Φ is
Lipschitz continuous at x∗, ∂∞Φ(x∗) = {0} and so BQ (2.1) required in Theorem
3.1 is superfluous. We point out that even in the case where Φ is convex, Theorem
3.1 improves [28, Theorem 3.3] since RCPLD is weaker than Robinson’s constraint
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qualification that is required in [28, Theorem 3.3]. Another case where BQ (2.1) is
superfluous is considered in the following theorem.

Theorem 3.2. Assume that Φ(x) =
∑n
i=1 φi(xi) with lower semi-continuous

functions φi : IR → IR, i = 1, . . . , n and X is a box in IRn. Suppose that lim
k→∞

εk = 0

for Algorithm 3.1. Let {xk} be a sequence generated by Algorithm 3.1 and x∗ an
arbitrary accumulation point of {xk}. Let I := {i | ∂∞φi(x∗i ) = {0}} and Ic be the
complement of I with respect to {1, . . . , n}. Assume further that for any i ∈ Ic,
∂φi(x

∗
i ) = IR and RCPLD holds for the system c(xI , x

∗
Ic) = 0, d(xI , x

∗
Ic) ≤ 0 at x∗I .

Then x∗ is a KKT point of problem (1.1).
Proof. Similarly as in the proof of Theorem 2.2, by the separability of the function

Φ(x) and the fact that ∂φi(x
∗
i ) = IR for any i ∈ Ic, we only need to focus on the

components associated with the index set I.
It was shown that x∗ is a feasible point of problem (1.1) in Theorem 3.1. Now

we show that x∗ is a KKT point. Since the regularization term Φ(x) is assumed to
be separable and the set X is a box, the function Φ + δX is also separable. It follows
from [32, Proposition 10.5] that the partial limiting subdifferential is separable and
hence

∂(Φ + δX )(x) = ∂xI (Φ + δX )(x)× ∂xIc (Φ + δX )(x) ∀x ∈ X .

Thus it follows from the first relation in (3.5) that

dist
(
0,∇xIϕ(xk, µk, νk, ρk) + ∂xI (Φ + δX )(xk)

)
≤ dist

(
0,∇xϕ(xk, µk, νk, ρk) + ∂(Φ + δX )(xk)

)
≤ εk. (3.32)

By the assumption ∂∞xIΦ(x∗) = {0}, one has ∂∞xIΦ(x∗)∩ [NX (x∗)]I = {0}. This along
with Proposition 2.3 and the separability of Φ and X implies that there exists δ > 0
such that ∂∞xIΦ(x)∩ [NX (x)]I = {0} for any x ∈ Bδ(x∗). It then follows from this, the
separability of Φ and X , and the sum rule of the limiting subdifferential [32, Corollary
10.10] that ∂xI (Φ + δX )(x) ⊆ Πi∈I∂φi(xi) + NXI (xI) for every x ∈ Bδ(x∗), where
XI := {xI | cei (xi) = 0, dei (xi) ≤ 0, i ∈ I}. Notice that XI is a linear system. Hence,
RCPLD holds at every point in XI . By these facts and Proposition 2.2, we have that
for every x ∈ Bδ(x∗),

∂xI (Φ + δX )(x) ⊆ Πi∈I∂φi(xi) +NXI (xI) ⊆ Πi∈I∂φi(xi)

+

∇xIce(x)α+
∑

i∈Ide (x)

βi∇xIdei (x) | α ∈ IRm2 , βi ≥ 0 i ∈ Ide(x)

 . (3.33)

Using (3.32) instead of the first relation in (3.5) and (3.33) instead of (3.24), the rest
of the proof is in line with the proof process of Theorem 3.1 by focusing only on the
components associated with the index set I. The proof is complete.

3.1. Non-monotone proximal gradient method for subproblems (3.3).
In this subsection, we discuss how to find an approximate stationary point xk of the
kth AL subproblem (3.3) satisfying (3.5) as required in Step 1) of Algorithm 3.1.

In particular, we apply a non-monotone proximal gradient (NPG) method to solve
subproblem (3.3). As shown subsequently in Theorem 3.4, the point xk obtained by
the NPG method satisfies the first relation of (3.5) when the associated tolerance
parameter is suitably chosen. Moreover, such xk also satisfies the second relation of
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(3.5), provided that the initial point of the NPG method is properly chosen. Indeed, let
xkinit ∈ X be the initial point of the NPG method when applied to the kth subproblem
(3.3), which is specified as follows:

xkinit =

{
xfeas if L(xk−1, µk, νk, ρk) > Υ,
xk−1 otherwise,

k ≥ 1, (3.34)

where xk−1 is an approximate stationary point of the (k− 1)th AL subproblem (3.3)
obtained by the NPG method. Since ch(xfeas) = 0 and dh(xfeas) ≤ 0, it follows from
(3.2) and the definition of Υ that

L(xfeas, µk, νk, ρk) ≤ f(xfeas) + Φ(xfeas) ≤ Υ.

This inequality and the above choice of xkinit imply that L(xkinit, µ
k, νk, ρk) ≤ Υ. In

addition, as observed below, the NPG method has a feature that the objective function
values at all iterates generated are bounded above by that at the initial point. Thus
we have

L(xk, µk, νk, ρk) ≤ L(xkinit, µ
k, νk, ρk) ≤ Υ,

and thus the second relation of (3.5) is satisfied at xk.
We now discuss an NPG method for solving the AL subproblem (3.3). In par-

ticular, Wright et al. [34] recently proposed an NPG method for solving a class of
problems in the form of

min
x

h(x) + Ψ(x),

where h : IRn → IR is continuously differentiable with a globally Lipschitz continuous
gradient and Ψ : IRn → IR is lower semi-continuous. More recently, it was shown in
[14] that if the objective function of this problem has bounded level sets, then the
global Lipschitz continuity of ∇h can be weakened to the local Lipschitz continuity
of ∇h. We now adopt the NPG method [34] to solve the AL subproblem (3.3).

Algorithm 3.2. Let σ ∈ (0, 1), θ > 1, Lmax > Lmin > 0 and a nonnegative
integer M be given. Choose an arbitrary point z0 ∈ IRn and set  = 0.

1) Choose L0
 ∈ [Lmin, Lmax] arbitrarily. Set L = L0

 .
1a) Solve the following subproblem to obtain z+1:

min
x∈X

ϕ(z, µ, ν, ρ)+∇xϕ(z, µ, ν, ρ)T (x−z)+
L
2
‖x−z‖2+Φ(x). (3.35)

1b) If

L(z+1, µ, ν, ρ) ≤ max
[−M ]+≤i≤

L(zi, µ, ν, ρ)− σ

2
‖z+1 − z‖2 (3.36)

is satisfied, then go to Step 2). Otherwise, set L ← θL and go to Step
1a).

2) Set ← + 1 and go to Step 1).
We now make some remarks regarding Algorithm 3.2. Observe that Step 1a) in

Algorithm 3.2 is a proximal gradient method since the first three terms in the objective
function of (3.35) can be viewed as a quadratic separable approximation to ϕ near
z. The constant σ in (3.36) is usually chosen to be close to zero. Step 1b) means
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that the candidate will be accepted as the new iterate if its objective function value
L(z+1, µ, ν, ρ) is slightly smaller than the largest value of the objective function over
the past M + 1 iterations. This method is non-monotone since the objective function
value is not always descent at each step. In addition, in our implementation we set
L0
0 = 1 and update L0

 by the same strategy as in [2], that is,

L0
 = max

{
Lmin,min

{
Lmax,

(∆g)T∆x

‖∆x‖2

}}
,

where ∆x = z+1 − z and ∆g = ∇xϕ(z+1, µ, ν, ρ)−∇xϕ(z, µ, ν, ρ).
It is not hard to observe that problem (3.35) is equivalent to the problem

min
x∈X

1

2
‖x− w‖2 +

1

L
Φ(x) (3.37)

where w = z−∇xϕ(z, µ, ν, ρ)/L. If Φ and X have some special structure, one can
solve problem (3.37) and hence problem (3.35) efficiently. For example, in practical
applications, we often have Φ(x) =

∑n
i=1 φi(xi) for some lower semi-continuous func-

tion φi : IR → IR, i = 1, . . . , n, and X = [l, u] with l < u. Due to the separability of
such Φ and X , problem (3.37) can be solved as n number of one-dimensional problems:

min 1
2 (xi − wi)2 + 1

L
φi(xi)

s.t. li ≤ xi ≤ ui

for i = 1, . . . , n. These problems either have a closed-form solution or can be converted
to a univariate root-finding problem for various φ such as bridge penalty [20], capped-l1
penalty [35], fraction penalty [31], logistic penalty [22], l0-quasi-norm [6, 26], l1-norm
[33, 11] and SCAD [19].

For ease of presentation, let Ω(x0) := {x ∈ X | L(x, µ, ν, ρ) ≤ L(x0, µ, ν, ρ), where
x0 is the initial point of Algorithm 3.2. Throughout this subsection, we make the
following assumption regarding ϕ, L and X .

Assumption 3.1. ∇ϕ(·, µ, ν, ρ) is globally Lipschitz continuous over X and
L(·, µ, ν, ρ) is uniformly continuous on X ; or ∇ϕ(·, µ, ν, ρ) is locally Lipschitz con-
tinuous in X and Ω(x0) is bounded.1

The following lemma shows that condition (3.36) is satisfied in finite iterations,
whose proof is similar to [34, Lemma 3] and [14, Proposition A.1].

Lemma 3.2. There exists L0 > 0 such that z+1 satisfies condition (3.36) when-
ever L ≥ L0.

The following lemma follows from [34, Lemma 4] immediately.
Lemma 3.3. Let {z} be a sequence generated by Algorithm 3.2. Then z+1−z →

0 as →∞.
We are now ready to establish the convergence result for Algorithm 3.2.
Theorem 3.3. Let {z} be a sequence generated by Algorithm 3.2. Then any

accumulation point z∗ of {z} satisfies 0 ∈ ∇xϕ(z∗, µ, ν, ρ) + ∂(Φ + δX )(z∗).
Proof. Let J be a subsequence such that z → z∗ as J 3  → ∞. By Lemma

3.3, one can see that z+1 → z∗ as J 3 →∞. Since z+1 is a minimizer of problem
(3.35), it follows from the first-order optimality condition that

0 ∈ ∇xϕ(z, µ, ν, ρ) + L(z
+1 − z) + ∂(Φ + δX )(z+1). (3.38)

1When Ω(x0) is compact, Assumption 3.1 implies that ∇ϕ(·, µ, ν, ρ) is globally Lipschitz on
Ω(x0).
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By Lemma 3.2, we know that {L} is bounded. Using this fact, Lemma 3.3 and
the outer semi-continuity of the limiting subdifferential, taking limits on both sides
of (3.38) as J 3  → ∞ yields 0 ∈ ∇xϕ(z∗, µ, ν, ρ) + ∂(Φ + δX )(z∗). The proof is
complete.

Definition 3.1. Let z ∈ X . Given any ε > 0, we say that z is an ε-approximate
stationary point of problem (3.3) if dist (0,∇xϕ(z, µ, ν, ρ) + ∂(Φ + δX )(z)) ≤ ε.

As a consequence of Theorem 3.3, we next show that when  is sufficiently large,
z+1 generated by Algorithm 3.2 is an ε-approximate stationary point of (3.3).

Theorem 3.4. Let {z} be generated by Algorithm 3.2 and ε > 0 be given. Then
when  is sufficiently large,

‖z+1 − z‖ ≤ ε

Lϕ + L̄
(3.39)

holds, and as a consequence, z+1 is an ε-approximate stationary point of (3.3), where
Lϕ is the Lipschitz constant of ∇xϕ(·, µ, ν, ρ) in Ω(x0) and L̄ := max{Lmax, θ(Lϕ +
η)}.

Proof. Let L̄ be defined above. By a similar argument as in [14, Proposition A.1],
one can show that 0 < L ≤ L̄ for all . It then follows from Lemma 3.3 that (3.39)
holds when  is sufficiently large. Using this relation, the Lipschitz continuity of ∇xϕ
and the fact that 0 < L ≤ L̄ for all , we have

‖∇xϕ(z+1, µ, ν, ρ)−∇xϕ(z, µ, ν, ρ)‖+ ‖L(z+1 − z)‖ ≤ (Lϕ + L)‖z+1 − z‖
≤ ε. (3.40)

Notice from (3.38) that

∇xϕ(z+1, µ, ν, ρ)−∇xϕ(z, µ, ν, ρ)− L(z+1 − z)
∈ ∇xϕ(z+1, µ, ν, ρ) + ∂(Φ + δX )(z+1).

This together with (3.40) implies that when  is sufficiently large,

dist
(
0,∇xϕ(z+1, µ, ν, ρ) + ∂(Φ + δX )(z+1)

)
≤ ‖∇xϕ(z+1, µ, ν, ρ)−∇xϕ(z, µ, ν, ρ)− L(z+1 − z)‖ ≤ ε.

The conclusion follows from this inequality and Definition 3.1.
Remark: By Theorem 3.4 and the specific choice of xkinit given in (3.34), one

can see that xk satisfying (3.5) can be found by the NPG method. However, for a
given point x, ∂(Φ+δX )(x) may not be easily evaluated. It thus can be hard to verify
explicitly the first condition in (3.5). Fortunately, Theorem 3.4 provides a practical
approach to verify it. Indeed, let {z} be the sequence generated by the NPG applied
to the AL subproblem (3.3) with µ = µk, ν = νk and ρ = ρk. By Theorem 3.4,
one knows that there must exist some  such that (3.39) holds with ε = εk, which
implies that xk = z+1 satisfies the first condition in (3.5). Therefore, to verify such
a condition, it suffices to verify (3.39).

4. Numerical experiments. In this section we conduct numerical experiments
to test the performance of the proposed AL method (Algorithm 3.1). In particular,
we apply it to solve some `q-regularized portfolio selection models with q ∈ (0, 1) and
also compare it with an interior point (IP) method proposed in [12].

Given a set of assets S = {s1, . . . , sN}, let ri denote the expected return per unit
of asset si, r0 a desirable profit, Q the covariance matrix and xi the proportion of
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the total funds invested on asset si. The following Markowitz seminal mean-variance
(MV) model

min 1
2x

TQx

s.t. eTx = 1, rTx = r0, x ≥ 0

has been widely used in portfolio selections. However, it is observed that some solu-
tions of the MV model contain extremely small elements [16]. In practice, a portfolio
with a large number of assets with very small holdings for some assets is clearly not
desirable due to transaction costs and management complexity. Thus, investors would
be willing to sacrifice a small degree of performance for a more manageable sparse
portfolio. It is known that using the `q quasi-norm (0 < q < 1) as a regularizer often
leads to a sparser solution (see, e.g., [10, 15]) than using `1 norm. Motivated by the
`1-regularized Markowitz model [8] and the `2-norm constrained minimum-variance
model [18], Chen et al. [12] recently proposed several `q-regularized Markowitz mod-
els. One of their models is of the form:

min 1
2x

TQx− αrTx+ λ‖x‖qq
s.t. eTx = 1, x ≥ 0,

(4.1)

where λ > 0, q ∈ (0, 1), e is the all-ones vector, and the scale 1/α with α > 0 is the
risk-aversion coefficient to measure the tradeoff between the risk and the return of
the portfolio. They also proposed the `2-`q double regularized Markowitz model

min 1
2x

TQx− αrTx+ %‖x‖22 + λ‖x‖qq
s.t. eTx = 1,

(4.2)

where % > 0. Clearly, models (4.1) and (4.2) are special cases of problem (1.1).
Interior point methods are an important class of optimization methods, and have

been used for solving optimization problems where the objective function involves the
`q quasi-norm [5, 12, 21]. In particular, Chen et al. [12] proposed an IP method for
solving (4.1) and (4.2). In this section, we apply the AL method and the IP method
[12] for solving models (4.1) and (4.2), and compare their performance. For the AL
method, when applied to solve models (4.1) and (4.2), the constraint eTx = 1 is
treated as a hard constraint while the constraint x ≥ 0 is viewed as an easy one. The
parameters of the AL method are chosen as follows. We set ρ0 = 1, µ0 = 0, γ = 10,
τ = 10−2, η = 0.9 and

Υ = max{f(xfeas) + Φ(xfeas),L(x0init, µ
0, ρ0)},

where xfeas = e/n is a feasible solution of (4.1) and (4.2), and x0init = e/n is the
initial point of the AL method. In addition, in Step 1) of the AL method, we apply
the NPG method (Algorithm 3.2) to solve the AL subproblem (3.3) with µ = µk,
ν = νk and ρ = ρk. As discussed in the second paragraph after Algorithm 3.2, (3.35)
is a separable minimization problem with n one dimensional problems. By using the
monotonicity of objective functions, these one-dimensional problems can be easily
solved by Newton’s method. For the NPG method, we set Lmin = 1, Lmax = 108,
θ = 5, M = 10 and σ = 10−4. The NPG method is terminated once condition (3.5)
is satisfied with εk = 10−5. We terminate the AL method once the approximate
solution xk of the kth AL subproblem satisfies max{|eTxk − 1|, ‖xk −xk−1‖} ≤ 10−5.
For the IP method, the parameters are the same as those in [12], the initial point and
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the termination condition are set same as the AL method, that is, the IP method
started from e/n and terminated when the distance between the points generated in
two consecutive iterations is not greater than 10−5 (the feasibility condition eTx = 1
is automatically satisfied at every iteration point for IP method). The AL method
and the IP method are both coded in Matlab and all computations are performed on
a Lenovo laptop (1.80 GHz–2.40 GHz, 7.92GB RAM) with Matlab R2015b.

In the first experiment, we apply the AL and IP methods to solve model (4.1)
with q = 1/2 in which Q and r are randomly generated. In particular, we generate the
matrix Q by setting Q = Q̂T Q̂, where the entries of matrix Q̂ are randomly chosen
from the standard normal distribution. The vector r is also randomly generated by
the standard normal distribution.

The numerical results of the AL and IP methods for the above instances are
reported in Tables 4.1 and 4.2 for α = 0.05 and α = 0.2, respectively. In detail, the
problem size n and the regularization parameter λ are listed in the first two columns,
respectively. We report the objective function value of model (4.1) in the columns
named ObjVal, where x is an approximate solution found by these two methods.
The CPU time (in seconds) of both methods is given in the columns named CPU.
As observed in our experiment, the approximate solution x found by the IP method
is fully dense. For a fair comparison with the AL method, similarly as in [12], we only
count the number of entries of |x| greater than 10−5, which is referred to as the number
of truncated nonzeros (NTNZ). We report NTNZ for both methods in the columns
named ntnz. Besides, in the column named nnz we present the number of hard
(actual) zeros of the approximate solution of the AL method. From Tables 4.1 and
4.2, we observe that the approximate solutions obtained by these two methods have
similar NTNZ and also objective function values but the AL method is substantially
faster than the IP method. Moreover, for both methods, the NTNZ decreases and
the objective function value increases as λ increases.

Table 4.1
Comparison of the AL and IP methods for (4.1) with random instances and α = 0.05

Data IP Method AL Method

n λ ObjVal ntnz CPU ObjVal ntnz nnz CPU

500 1e-5 9.3e-02 331 8.1 9.3e-02 329 329 1.4

1e-4 9.5e-02 326 7.9 9.5e-02 324 324 0.9

1e-3 1.1e-01 308 6.4 1.1e-01 305 305 1.2

1e-2 2.5e-01 251 4.8 2.5e-01 236 236 2.0

1000 1e-5 9.5e-02 669 39.8 9.9e-02 663 663 2.3

1e-4 9.7e-02 660 49.7 1.0e-01 650 650 2.8

1e-3 1.2e-01 624 41.3 1.2e-01 602 602 4.3

1e-2 3.2e-01 476 38.6 3.2e-01 439 439 4.1

1500 1e-5 1.1e-01 1026 120.6 1.1e-01 1007 1008 2.8

1e-4 1.1e-01 1012 150.4 1.1e-01 994 994 5.7

1e-3 1.4e-01 925 91.4 1.4e-01 898 898 7.7

1e-2 3.8e-01 695 151.4 3.8e-01 601 601 7.9

2000 1e-5 1.1e-01 1355 300.0 1.0e-01 1347 1352 4.2

1e-4 1.1e-01 1342 322.0 1.0e-01 1318 1318 6.7

1e-3 1.4e-01 1228 256.7 1.4e-01 1206 1206 10.3

1e-2 4.2e-01 896 348.1 4.1e-01 788 788 7.4

In the second experiment, we appy the AL and IP methods to solve model (4.1)
in which Q and r are estimated from some samples collected from stock market. In
particular, we set q = 1/2 and α = 0.1, 0.2, 0.3, 0.4 for model (4.1). To estimate
Q and r, we collect historical daily stock return data of A-shares in Shanghai and
Shenzhen Stock Exchanges from China Stock Market Trading Database provided by
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Table 4.2
Comparison of the AL and IP methods for (4.1) with random instances and α = 0.2

Data IP Method AL Method

n λ ObjVal ntnz CPU ObjVal ntnz nnz CPU

500 1e-5 5.3e-02 315 9.6 5.3e-02 315 315 0.8

1e-4 5.5e-02 314 8.6 5.5e-02 313 313 0.8

1e-3 7.0e-02 294 6.1 6.9e-02 288 288 1.7

1e-2 2.1e-01 248 8.8 2.1e-01 229 229 1.1

1000 1e-5 6.1e-02 654 31.9 7.4e-02 643 643 1.9

1e-4 6.4e-02 647 58.5 7.6e-02 633 633 2.7

1e-3 8.5e-02 599 46.0 9.7e-02 598 598 4.1

1e-2 2.8e-01 470 54.2 2.9e-01 419 419 3.7

1500 1e-5 7.0e-02 970 117.7 8.0e-02 965 966 3.0

1e-4 7.3e-02 953 185.8 8.2e-02 950 950 3.6

1e-3 9.9e-02 892 157.1 1.1e-01 879 879 8.4

1e-2 3.4e-01 674 209.9 3.5e-01 592 592 7.6

2000 1e-5 7.9e-02 1301 279.6 6.5e-02 1283 1285 3.4

1e-4 8.2e-02 1288 449.7 6.9e-02 1255 1255 8.0

1e-3 1.1e-01 1196 366.8 9.8e-02 1138 1138 11.0

1e-2 3.9e-01 890 352.6 3.6e-01 785 785 10.9

China Stock Market and Accounting Research (CSMAR) center, which spans from
January 1, 2007 to December 31, 2014. It shall be mentioned that we only concentrate
on the stocks which have at least 80% observations during the entire data period. This
results in 1468 stocks with 1944 observations. We then estimate Q and r as the sample
covariance and the sample mean of these samples. The initial point, the termination
criterion and all the parameters for the AL method and the IP method are the same
as those mentioned above.

The numerical results of the AL and IP methods on model (4.1) with real-world
data are reported in Table 4.3. In detail, the coefficients λ and α are listed in the first
two columns, respectively. The other columns of Table 4.3 have the same meaning
as those in Tables 4.1 and 4.2. From Table 4.3, we observe that the approximate
solutions obtained by these two methods have similar NTNZ and objective function
values but the AL method is much faster than the IP method. Moreover, for both
methods, the NTNZ and objective function value decrease as α increases.

Table 4.3
Comparison of the AL and IP methods for (4.1) with real-world data

Data IP Method AL Method

λ α ObjVal ntnz CPU ObjVal ntnz nnz CPU

5e-8 0.1 -1.2e-04 52 139.0 -1.2e-04 55 55 35.1

0.2 -4.1e-04 40 209.9 -4.1e-04 41 41 34.5

0.3 -7.3e-04 37 191.7 -7.3e-04 37 37 38.7

0.4 -1.1e-03 30 173.2 -1.1e-03 32 32 31.6

1e-7 0.1 -1.2e-04 47 113.0 -1.2e-04 55 55 33.8

0.2 -4.1e-04 40 165.8 -4.1e-04 41 41 27.8

0.3 -7.3e-04 37 187.7 -7.3e-04 37 37 31.4

0.4 -1.1e-03 30 175.3 -1.1e-03 31 31 33.4

1e-6 0.1 -1.1e-04 39 207.8 -1.1e-04 46 46 27.9

0.2 -4.0e-04 36 168.4 -4.0e-04 38 38 46.9

0.3 -7.3e-04 32 167.6 -7.3e-04 34 34 20.4

0.4 -1.1e-03 27 181.7 -1.1e-03 30 30 20.2

5e-6 0.1 -9.2e-05 30 226.2 -9.2e-05 35 35 22.2

0.2 -3.8e-04 28 252.4 -3.8e-04 33 33 18.3

0.3 -7.1e-04 28 222.5 -7.1e-04 30 30 21.2

0.4 -1.1e-03 23 234.0 -1.1e-03 26 26 18.8

In the third experiment, we apply the AL and IP methods to solve model (4.2)
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where q = 1/2 and α = 0.1, where Q and r are the same as those in the second
experiment. The initial point, the termination criterion and all the parameters for
the AL method and the IP method are the same as those mentioned above.

The numerical results of the AL and IP methods on model (4.2) with real-world
data are reported in Table 4.4. In detail, the coefficients % and λ are listed in the
first second columns respectively while the other columns have the same meaning as
those in Table 4.3. From Table 4.4, we observe that the AL method is comparable to
the IP method in terms of solution quality. However, the AL method is substantially
faster than the IP method.

Table 4.4
Comparison of the AL and IP methods for (4.2) with real-world data

Data IP Method AL Method

% λ ObjVal ntnz CPU ObjVal ntnz nnz CPU

0.01 5e-8 -1.4e-04 1390 713.3 -1.4e-04 697 1468 8.7

1e-7 -1.3e-04 1311 811.9 -1.3e-04 648 1095 14.9

1e-6 -8.1e-05 782 1028.1 -4.8e-05 222 229 24.0

5e-6 4.2e-06 157 2001.7 6.7e-06 149 149 8.2

0.005 5e-8 -2.3e-04 1410 731.7 -2.3e-04 643 1222 17.0

1e-7 -2.3e-04 1319 820.0 -2.2e-04 578 1058 21.7

1e-6 -1.6e-04 826 1261.9 -9.2e-05 173 186 23.2

5e-6 -4.0e-05 149 1952.2 -2.5e-05 100 100 9.9

0.002 5e-8 -4.1e-04 1402 928.6 -4.0e-04 592 1174 41.1

1e-7 -4.0e-04 1333 1294.1 -3.8e-04 526 998 32.0

1e-6 -3.0e-04 815 1861.1 -1.7e-04 152 174 24.8

5e-6 -1.1e-04 125 2080.6 -5.4e-05 70 70 13.2

0.001 5e-8 -6.0e-04 1416 1052.8 -5.8e-04 569 1140 68.0

1e-7 -5.8e-04 1362 1292.9 -5.6e-04 493 961 78.9

1e-6 -4.6e-04 783 2580.9 -2.4e-04 135 160 38.0

5e-6 -1.6e-04 105 2159.2 -7.0e-05 52 52 15.0

To end this section, we consider the `2-`q double regularized Markowitz model
with a noise tolerance

min 1
2x

TQx+ %‖x‖22 + λ‖x‖qq
s.t. ‖Ax− b‖2 ≤ ε2,

(4.3)

where A := (e, r)T , b := (1, r0)T and ε > 0. Problem (4.3) has quadratic and
non-Lipschitz functions in the objective and a nonlinear function in the constraint.
Algorithms for solving such a problem are hard to find in the literature. We now apply
our AL method to solve problem (4.3) in which r0 = 0.0005, % = 0.005, q = 1/2, and
Q and r are the same as those in the second experiment. The initial point, the
termination condition and all the parameters for the AL method are the same as
those mentioned above except ν0 = 0, xfeas = A†b and

Υ = max{f(xfeas) + Φ(xfeas),L(x0init, ν
0, ρ0)},

where A† denotes the Moore–Penrose pseudoinverse of matrix A. It is clear to see
that such A†b is a feasible solution to problem (4.3). The numerical results of the AL
method for model (4.3) with real-world data are reported in Table 4.5. In detail, the
noise tolerance ε is listed in the first column while the other columns are similar to
those presented in Table 4.3. The numerical results demonstrate that our AL method
is capable of solving non-Lipschitz programming with nonlinear constraints.
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Table 4.5
Results of the AL method for (4.3) with real-world data

ε λ ObjVal ntnz nnz CPU λ ObjVal ntnz nnz CPU

1e-1 5e-8 6.3e-05 653 1151 6.7 1e-7 6.6e-05 587 977 5.3

1e-2 7.6e-05 658 1246 4.2 7.8e-05 602 1089 4.0

1e-3 7.7e-05 657 1239 4.4 8.0e-05 603 1097 4.4

1e-4 7.7e-05 657 1249 4.3 8.0e-05 599 1073 4.2

1e-1 1e-6 9.6e-05 181 181 3.6 5e-6 1.4e-04 111 111 3.7

1e-2 1.1e-04 182 183 2.5 1.6e-04 111 111 2.6

1e-3 1.2e-04 182 183 2.7 1.6e-04 111 111 2.6

1e-4 1.1e-04 196 201 2.6 1.6e-04 111 111 2.6
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