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Abstract. This paper studies first order conditions (Karush–Kuhn–Tucker conditions) for dis-
cretized optimal control problems with nonsmooth constraints. We present a simple condition which
can be used to verify that a local optimal point satisfies the first order conditions and that a point
satisfying the first order conditions is a global or local optimal solution of the optimal control problem.
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1. Introduction. We consider the distributed optimal control problem

minimize
1

2

∫
Ω

(y − yd)2dω +
α

2

∫
Ω

(u− ud)2dω

subject to −�y + λmax(0, y) = u in Ω, y = g on Γ,(1.1)

u ∈ U,

where yd, ud ∈ L2(Ω), g ∈ C(Γ), α > 0, and λ > 0 are constants, Ω is an open
bounded convex subset of RN , N ≤ 3, with smooth boundary Γ, and

U = {u ∈ L2(Ω) |u(x) ≤ q(x) a.e in Ω},
q ∈ L∞(Ω).

This problem is a special case of semilinear elliptic control problems whose con-
straints involve a semilinear elliptic equation [3]

�y = f(x, y, u) in Ω,
y = g on Γ,

where f : Ω × R2 → R is a continuous function. Optimality conditions for semilin-
ear elliptic control problems have been studied extensively. However, most of papers
assume that f is continuously differentiable with respect to the second and third vari-
ables [3]. These results are not applicable to (1.1) because the elliptic equation in (1.1)
has a nonsmooth term λmax(0, y). Such nonsmooth equations can be found in equi-
librium analysis of confined magnetohydrodynamics (MHD) plasmas [4, 5, 11], thin
stretched membranes partially covered with water [9], or reaction-diffusion problems
[1].

In this paper, we study first order conditions for the discretized nonsmooth con-
strained optimal control problems derived from a finite difference approximation or a
finite element approximation of (1.1), which has the form

minimize
1

2
(y − yd)TH(y − yd) +

α

2
(u− ud)TM(u− ud)
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subject to Ay + λDmax(0, y) = Nu,(1.2)

u ≤ b.

Here yd ∈ Rn, ud, b ∈ Rm, H ∈ Rn×n, M ∈ Rm×m, A ∈ Rn×n,D ∈ Rn×n, N ∈
Rn×m, and max(·) is understood coordinatewise. Moreover, H,M,A,D are symmetric
positive definite matrices. We assume that D is a diagonal matrix. This assumption
holds for finite difference discretization and finite element discretization with mass
lumping.

For every u ∈ Rm, there is a unique vector y satisfying the equality constraints
in (1.2), since Ay+ λDmax(0, y) is strongly monotone. Therefore, (1.2) is equivalent
to

minimize
1

2
(y(u) − yd)TH(y(u) − yd) +

α

2
(u− ud)TM(u− ud)

subject to u ≤ b,(1.3)

where y(u) is the solution function defined by the equations in the constraints of (1.2).
We show that y(·) is a piecewise linear function in the next section.

Let E(y) be an n× n diagonal matrix whose diagonal elements satisfy

Eii(y) =

{
1 if yi > 0,
0 otherwise.

It is easy to verify that E(y) is the Jacobian of the function max(0, ·) at y if y has no
zero component.

Since A is a symmetric positive definite matrix and λDE(y) is a nonnegative
diagonal matrix, the matrix A+ λDE(y) is nonsingular and its inverse is symmetric
positive definite.

We say (y, u) satisfies first order conditions for (1.2) or (y, u) is a Karush–Kuhn–
Tucker (KKT) point of (1.2) if it together with some (s, t) ∈ Rn ×Rm satisfies


H(y − yd) +As+ λDE(y)s
αM(u− ud) −NT s+ t
Ay + λDmax(0, y) −Nu
min(t, b− u)


 = 0.(1.4)

The vectors s ∈ Rn and t ∈ Rm are referred to as Lagrange multipliers.
We say u satisfies first order conditions for (1.3) or u is a KKT point of (1.3) if it

together with some t ∈ Rm satisfies(
((A+ λDE(y(u)))−1N)TH(y(u) − yd) + αM(u− ud) + t
min(t, b− u)

)
= 0.(1.5)

For λ = 0, the constraints in (1.1) involve only linear Dirichlet problems. In this
case, problem (1.2) is a convex programming problem with linear constraints, and the
function y(·) in problem (1.3) can be expressed explicitly as y(u) = A−1Nu. Moreover,
(1.4) and (1.5) are equivalent in the sense that if (y, u) is a KKT point of (1.2), then
u is a KKT point of (1.3); conversely, if u is a KKT point of (1.3), then (A−1Nu, u) is
a KKT point of (1.2). Furthermore, the convexity implies that (y, u) is a KKT point
of (1.2) if and only if (y, u) is a global solution of (1.2). Therefore, problems (1.2),
(1.3), (1.4), and (1.5) are equivalent in the case λ = 0. Many algorithms for solving
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(1.1) based on the equivalent relation have been developed; we refer the reader to a
comprehensive paper written by Bergounioux, Ito, and Kunisch [2].

For λ > 0, the constraints in (1.1) involve nonsmooth partial differential equa-
tions. In this case, problem (1.2) is a nonconvex programming problem with nondif-
ferentiable constraints. It fails to satisfy the constraint qualification in mathematical
programming [7] in the sense that the set of feasible directions and the set of feasible
directions for the linearized constraint set are not same at points where the constraint
is not differentiable. There are examples in [7] which show that a KKT point is not
necessarily a minimizer for a nonconvex programming problem, and a minimizer is
not necessarily a KKT point if the constraint qualification fails.

Recently many numerical methods for solving nonsmooth equations have been
developed [4, 5, 8, 12]. We can find a solution of nonsmooth equation (1.4) or (1.5) by
a fast (superlinearly convergent) algorithm. However, we do not know if the solution
of (1.4) or (1.5) is a minimizer of (1.2) or (1.3). There are open questions in the
relations between the four problems:

(1.2) ⇔ (1.3)
� �

(1.4) ⇔ (1.5)

λ = 0

|
|
|

(1.2) ⇔ (1.3)
? ?

(1.4) ? (1.5)

λ > 0

In this paper, we provide a necessary and sufficient condition for the solution
function y(·) to be differentiable at a point u. By using the differentiability results,
we show that problems (1.4) and (1.5) are equivalent. Moreover, we present a simple
condition which can be used to verify that a local optimal solution of (1.3) is a solution
of (1.5) and that a solution of (1.4) is a global or local optimal solution of (1.2).

We introduce our notation. For any matrix B ∈ Rm×n, let BKJ be the submatrix
of B whose entries lie in the rows of B indexed by K and the columns indexed by J .
If J = {1, 2, . . . , n}, we simply denote BKJ by BK. Let ei ∈ Rn be the ith column of
the identity matrix I ∈ Rn×n.

2. Differentibility. In this section, we study the function

F (y, u) = Ay + λDmax(0, y) −Nu

and the solution function y(u) defined by

F (y, u) = 0.

For a given y ∈ Rn, we define the index sets

J (y) := { i | yi > 0},
K(y) := { i | yi = 0},
L(y) := { i | yi < 0}.

Note that J (y), K(y), and L(y) are mutually disjoint, and J (y)∪K(y)∪L(y) =
{1, 2, . . . , n}. Using the function E, we can write the functions F and y(·) as follows:

F (y, u) = (A+ λDE(y))y −Nu

and

y(u) = (A+ λDE(y(u)))−1Nu.
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Moreover, for any u, v ∈ Rm, we have

max(0, y(u)) − max(0, y(v)) = V (y(u) − y(v)),

where V is an n× n diagonal matrix whose diagonal elements are defined by

Vii =




1, yi(u) > 0, yi(v) > 0,
yi(u)

yi(u)−yi(v) , yi(u) > 0, yi(v) ≤ 0,
−yi(v)

yi(u)−yi(v) , yi(u) ≤ 0, yi(v) > 0,

0, yi(u) ≤ 0, yi(v) ≤ 0.

Since Vii ∈ [0, 1], A+ λDV is symmetric positive definite and it holds that

‖y(u) − y(v)‖2 = ‖(A+ λDV )−1N(u− v)‖2

≤ ‖A−1‖2‖N‖2‖u− v‖2.

Hence y is a Lipschitz continuous function.
Theorem 2.1. (i) The function F : Rn × Rm → Rn is differentiable at (y, u) if

and only if K(y) = ∅; in this case the derivative of F at (y, u) is given by

F ′(y, u) = (A+ λDE(y),−N).

(ii) The function y(·) : Rm → Rn is differentiable at u if and only if either
K(y(u)) = ∅ or

((A+ λDE(y(u)))−1N)K(y(u)) = 0;(2.1)

in this case the derivative of y(·) at u is given by

y′(u) = (A+ λDE(y(u)))−1N.

Proof. (i) If K(y) = ∅, then there is an open neighborhood Ny of y such that for
all z ∈ Ny, J (z) = J (y),L(z) = L(y), and

F (z, u) ≡ (A+ λDE(y))z −Nu.

Hence F is differentiable at (y, u) and F ′(y, u) = (A+ λDE(y),−N).
Suppose that there is an i ∈ K(y). Then for any ε > 0, we have

E(y + εei)(y + εei) = E(y)y + εei

and

E(y − εei)(y − εei) = E(y)y.

It follows that

F (y + εei, u) − F (y, u)

= εAei + λD(E(y + εei)(y + εei) − E(y)y)

= (A+ λD)(εei)

and

F (y − εei, u) − F (y, u)

= −εAei + λD(E(y − εei)(y − εei) − E(y)y)

= −εAei.
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This shows that

lim
ε↓0

F (y + εei, u) − F (y, u)

ε
�= − lim

ε↓0
F (y − εei, u) − F (y, u)

ε
.

Hence F is not differentiable with respect to y at (y, u). Consequently, if F is differ-
entiable at (y, u), then K(y) = ∅.

(ii) If K(y(u)) = ∅, the differentiability of y(·) follows directly from the first part
of this theorem and the implicit function theorem, Theorem 5.2.4 in [10].

Now we consider the case that K(y(u)) �= ∅ and (2.1) holds.
In order to simplify the notation, for a given ū ∈ Rn, we denote the unique vector

y(ū) ∈ Rn by ȳ and the associated index sets by

J = J (ȳ), K = K(ȳ), L = L(ȳ).

By the continuity of y(·), there is a neighborhood N of ū such that for all w ∈ N
we have

yJ (w) > 0 and yL(w) < 0,

which implies that J ⊆ J (w) and L ⊆ L(w). Assume that for a vector w ∈ N there is
a nonempty subset K1 of K such that J ∪K1 = J (y(w)). From (2.1) and the equality

N(w − ū) = (A+ λDE(ȳ))(y(w) − ȳ) + λD(E(y(w)) − E(ȳ))y(w),

we obtain

0 = ((A+ λDE(ȳ))−1N(w − ū))K1

= (y(w) − ȳ + λ(A+ λDE(ȳ))−1D(E(y(w)) − E(ȳ))y(w))K1

= (IK1K1 + λ(A+ λDE(ȳ))−1
K1K1

(DE(y(w)))K1K1)y(w)K1 ,

where the last equality uses that Eii(ȳ) = 0 for i ∈ K1 and

Eii(y(w)) − Eii(ȳ) = 0 for i �∈ K1.

This implies that y(w)K1
= 0, since λ(A + λDE(ȳ))−1

K1K1
and (DE(y(w)))K1K1

are
symmetric positive definite. This is a contradiction to K1 ⊂ J (y(w)). Hence we have
J (y(w)) = J , which gives E(y(w)) = E(ȳ). The results ensure that the solution
function y(·) in the neighborhood N can be expressed by

y(w) = (A+ λDE(ȳ))−1Nw.

Hence y(·) is differentiable at ū and

y′(ū) = (A+ λDE(ȳ))−1N.

Conversely, we assume that y(·) is differentiable at ū. According to the positive
definite property of A+ λDE(ȳ), for any h ∈ Rm the system

(A+ λDE(ȳ))z + φ(z) = Nh(2.2)

has a unique solution where

φi(z) =

{
0, i ∈ J ∪ L,
λDii max(0, zi), i ∈ K.
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Letting t > 0 be sufficiently small, we can therefore be assured that

(A+ λDE(ȳ))y(ū+ th) + φ(y(ū+ th)) = N(ū+ th).

Moreover, from ȳK = 0, we have

φ(y(ū+ th)) − φ(ȳ) = φ(y(ū+ th)) = φ(y(ū+ th) − ȳ).

Hence we find

(A+ λDE(ȳ))(y(ū+ th) − ȳ) + φ(y(ū+ th) − ȳ) = N(ū+ th) −Nū = tNh.

Note that (A + λDE(ȳ))(tz) + φ(tz) = tNh for t > 0. This establishes that the
unique solution of system (2.2) is the directional derivative y′(ȳ;h) of y(·) along a
direction h ∈ Rm at ū, since

y(ū+ th) − y(ū) = ty′(ū;h)

for sufficiently small t > 0, which gives

lim
t↓0

y(ū+ th) − y(ū)

t
= y′(ū;h).

Moreover, the differentiability of y(·) at ū implies

y′(ū)h = y′(ū;h) = −y′(ū;−h),

from which we obtain that

(A+ λDE(ȳ))y′(ū;h) + φ(y′(ū;h)) = Nh

and

−(A+ λDE(ȳ))y′(ū;h) + φ(−y′(ū;h)) = −Nh.
It follows that

φ(y′(ū;h)) + φ(−y′(ū;h)) = 0.

Since φ is nonnegative, we have φ(y′(ū;h)) = 0. Consequently, we obtain

y′(ū;h) = (A+ λDE(ȳ))−1Nh = y′(ū)h for all h ∈ Rm,

which implies

y′(ū) = (A+ λDE(ȳ))−1N.

Now we show (y′(ū))K = 0.
We have found that in a neighborhood N of ū, the function y(·) is linear and can

be expressed by

y(w) = ȳ + (A+ λDE(ȳ))−1N(w − ū) for all w ∈ N .(2.3)

From (2.3) and the equalities

N(w − ū) = (A+ λDE(ȳ))(y(w) − ȳ) + λD(E(y(w)) − E(ȳ))y(w)
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we obtain

λ(A+ λDE(ȳ))−1D(E(y(w)) − E(ȳ))y(w) = 0.

Since λ(A+λDE(ȳ))−1D is nonsingular, this implies that (E(y(w))−E(ȳ))y(w) = 0,
that is, yi(w) ≤ 0 for all i ∈ K.

If there is an i ∈ K such that yi(w) < 0, we can choose t > 0 sufficiently small
such that

w̃ = ū− t(w − ū) ∈ N .

Then from the linearity of y(·) in the neighborhood N , we get

y(w̃) = ȳ − t(y(w) − ȳ)

and

λ(A+ λDE(ȳ))−1D(E(y(w̃)) − E(ȳ))y(w̃) = 0.

However, ((E(y(w̃)) − E(ȳ))y(w̃))i = yi(w̃) > 0. This is a contradiction. Therefore,
we have that yK(·) ≡ 0 in the neighborhood N , and thus (y′(ū))K = 0.

Since ū is arbitrarily chosen, we obtain the deserved result.
A function f : Rm → Rn is called piecewise linear if there exists a finite number

of linear functions f (i) : Rm → Rn, i ∈ {1, . . . , )}, such that the active index set
{i|f(u) = f (i)(u)} is nonempty for every u ∈ Rm.

Theorem 2.1 states that there exists a finite number of linear functions

y(1)u = A−1Nu, y(i)u =


A+ λD

∑
j∈Ii

eje
T
j




−1

Nu,

Ii ⊆ {1, 2, . . . , n}, such that the index set {i | y(u) = y(i)(u)} is nonempty for every
u ∈ Rm. Hence y(·) is a piecewise linear function and the number of pieces is not
more than 2n.

The following example illustrates the differentiability of y(·) in the two cases of
Theorem 2.1.

Example 2.1. Let n = 2,m = 1, λ = 1, b = 1, D = I,

A =

(
2 −1

−1 2

)
, and N =

(
3

−1

)
.

The solution function y(·) can be given explicitly as

y(u) =




(
u
0

)
, u ≥ 0,

(
5u/3
u/3

)
, u < 0.

The solution function y(·) is differentiable at every point in R except u = 0. Moreover,
2 ∈ K(y(u)) for u > 0. Let

y(1)(u) = A−1Nu =

(
5/3
1/3

)
u, y(2)(u) = (A+ e1e

T
1 )−1Nu =

(
1
0

)
u,



FIRST ORDER CONDITIONS FOR NONSMOOTH CONTROL 2011

y(3)(u) = (A+ e2e
T
2 )−1Nu =

(
8/5
1/5

)
u, y(4)(u) = (A+ I)−1Nu =

(
1
0

)
u.

We have

y(u) = y(2)(u) = y(4)(u), u > 0,
y(u) = y(1)(u), u < 0,
y(u) = y(1)(u) = y(2)(u) = y(3)(u) = y(4)(u), u = 0.

Hence y is a piecewise linear function and the number of pieces is less than 2n. It is
interesting to notice that (A+ I)−1N = (A+E(y(u)))−1N for u > 0. We can explain
it theoretically.

The generalized Jacobian [6] of the function max(0, ·) at a point y is the convex
hull of the set defined by a finite number of matrices:

∂max(0, y) = co

{
{E(y)} ∪

{
E(y) +

∑
i∈I

eie
T
i | I ⊆ K(y)

}}
.

Lemma 2.2. If K(y) �= ∅ and ((A + λDE(y))−1N)K(y) = 0, then for any W ∈
∂max(0, y), we have

(A+ λDW )−1N = (A+ λDE(y))−1N.

Proof. For a fixed point y ∈ Rn which has r zero components, any element
W ∈ ∂max(0, y) can be expressed by

W = E(y) +

r∑
j=1

αj

∑
i∈Ij

eie
T
i ,

where 1 ≥ αj ≥ 0 and Ij are subsets of K(y). Let

V = (A+ λDE(y))−1N and U = (A+ λDW )−1N.(2.4)

We set B = A + λDE(y), C = λD(W − E(y)), K = K(y), M = J (y) ∪ L(y). From
(2.4), we get(

BMM BMK
BKM BKK

)(
VM
VK

)
=

(
BMM BMK
BKM (B + C)KK

)(
UM
UK

)
.

From VK = 0, we have

BMM(VM − UM) −BMKUK = 0(2.5)

and

BKM(VM − UM) − (B + C)KKUK = 0.(2.6)

Since B is symmetric positive definite, BMM is nonsingular. Thus (2.5) and (2.6)
yield

(BKMB−1
MMBMK − (B + C)KK)UK = 0.(2.7)
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The submatrix BKMB−1
MMBMK − (B + C)KK is the Schur complement of the non-

singular matrix

(
BMM BMK
BKM (B + C)KK

)
,

and thus it is nonsingular. It follows from (2.7) that UK = 0. Moreover, (2.5) and
UK = 0 imply VM = UM. We complete the proof.

Lemma 2.3. For any W ∈ ∂max(0, y), the following two systems are equivalent:




H(y − yd) +As+ λDWs
αM(u− ud) −NT s+ t
Ay + λDmax(0, y) −Nu
min(t, b− u)


 = 0(2.8)

and (
((A+ λDW )−1N)TH(y(u) − yd) + αM(u− ud) + t
min(t, b− u)

)
= 0.(2.9)

Proof. Note that eTi ȳ = 0 for i ∈ K(ȳ), and any element W ∈ ∂max(0, ȳ) can be
expressed by

W = E(ȳ) +
r∑

j=1

αj

∑
i∈Ij

eie
T
i ,

where 1 ≤ r ≤ n, 0 ≤ αj ≤ 1, Ij ⊆ K(ȳ). Hence we have

max(0, ȳ) = E(ȳ)ȳ = Wȳ for anyW ∈ ∂max(0, ȳ).(2.10)

Suppose that (ȳ, ū, s, t) satisfies (2.8). Then we have y(ū) = ȳ and

((A+ λDW )−1N)TH(y(ū) − yd) + αM(ū− ud) + t

= −((A+ λDW )−1N)T (A+ λDW )s+ αM(ū− ud) + t

= −NT s+ αM(ū− ud) + t

= 0.

Suppose that (ū, t) satisfies (2.9). By the definition of y(·) and (2.10), we have
Aȳ + λDmax(0, ȳ) −Nū = 0 with ȳ = y(ū). Let s = −(A+ λDW )−1H(ȳ − yd). We
get

H(ȳ − yd) + (A+ λDW )s = 0

and

αM(ū− ud) −NT s+ t = αM(ū− ud) + t

+NT (A+ λDW )−1H(ȳ − yd) = 0.
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3. First order conditions. In this section we show the relations between (1.2),
(1.3), (1.4), and (1.5). To simplify the notation, we denote, respectively, the objective
functions of (1.2) and (1.3) by

f(y, u) =
1

2
(y − yd)TH(y − yd) +

α

2
(u− ud)TM(u− ud)

and

θ(u) =
1

2
(y(u) − yd)TH(y(u) − yd) +

α

2
(u− ud)TM(u− ud).

From Lemma 2.3 and E(y) ∈ ∂max(0, y), we can see that (1.4) and (1.5) are
equivalent.

Theorem 3.1. If (ȳ, ū, s̄, t̄) is a solution of (1.4), then (ū, t̄) is a solution of (1.5).
Conversely, if (ū, t̄) is a solution of (1.5), then (y(ū), ū,−(A+λDE(y(ū)))−1H(y(ū)−
yd), t̄) is a solution of (1.4).

Now we show that (1.4) implies (1.2) and that (1.3) implies (1.5) under certain
conditions.

Theorem 3.2. If (y∗, u∗, s∗, t∗) is a solution of (1.4), then all feasible points
(y, u) of (1.2) satisfy

f(y, u) ≥ f(y∗, u∗) + λ(D(E(y) − E(y∗))y)T s∗.

Moreover, if either K(y∗) = ∅ or ((A + λDE(y∗))−1N)K(y∗) = 0, then (y∗, u∗) is a
strict local optimal solution of (1.2).

Proof. The objective function in (1.2) is quadratic. If (y∗, u∗, s∗, t∗) is a solution
of (1.4), then we have

f(y, u) − f(y∗, u∗)

= (y − y∗)TH(y∗ − yd) + α(u− u∗)TM(u∗ − ud)

+
1

2
(y − y∗)TH(y − y∗) +

α

2
(u− u∗)TM(u− u∗)

≥ (y − y∗)TH(y∗ − yd) + α(u− u∗)TM(u∗ − ud)

≥ (y − y∗)TH(y∗ − yd) + α(u− u∗)TM(u∗ − ud) + (u− b)T t∗

= −(y − y∗)T (A+ λDE(y∗))s∗ + (u− u∗)T (NT s∗ − t∗) + (u− u∗ + u∗ − b)T t∗

= −(y − y∗)T (A+ λDE(y∗))s∗ + (u− u∗)TNT s∗

= −((A+ λDE(y∗))(y − y∗) −N(u− u∗))T s∗

= λ(D(E(y) − E(y∗))y)T s∗,

where the second inequality uses u ≤ b and t∗ ≥ 0, the third equality uses (u∗−b)T t∗ =
0, and the fifth equality uses (A+ λDE(y))y = Nu.

If K(y∗) = ∅ or ((A + λDE(y∗))−1N)K(y∗) = 0, by Theorem 2.1, there is a
neighborhood Ny of y∗ such that for all feasible points y ∈ Ny, we have y = (A +
λDE(y∗))−1Nu and

(E(y) − E(y∗))y = (E(y) − E(y∗))(A+ λDE(y∗))−1Nu = 0.

Hence (y∗, u∗) is a local optimal solution of (1.2). Moreover, the first inequality above
is strict if y �= y∗, which implies that (y∗, u∗) is a strict local optimal solution.
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Theorem 3.3. Suppose that u∗ is a local optimal solution of (1.3). If either
K(y(u∗)) = ∅ or ((A + λDE(y(u∗)))−1N)K(y(u∗)) = 0, then there is t∗ such that
(u∗, t∗) is a solution of (1.5).

Proof. By Theorem 2.1, the function y(·) is differentiable at u∗ and can be
expressed by

y(u) = (A+ λDE(y∗))−1Nu

in a neighborhood Nu of u∗. The gradient of θ at u∗ is

θ′(u∗) = ((A+ λDE(y∗))−1N)TH(y(u∗) − yd) + αM(u∗ − ud).

Let W = (A+ λDE(y∗))−1N . For all u ∈ Nu we have

θ(u) = θ(u∗) + θ′(u∗)T (u− u∗) + (u− u∗)(WTHW + αM)(u− u∗) ≥ θ(u∗),

which implies that there is a sufficiently small ε > 0 such that if ‖u− u∗‖ ≤ ε, then

θ′(u∗)T (u− u∗) ≥ 0.(3.1)

By choosing m feasible points

u
(i)
j =

{
u∗i − ε, j = i,
u∗j , j �= i,

for i = 1, 2, . . .m, we find θ′(u∗) ≤ 0. From u∗ ≤ b, this gives

θ′(u∗)T (b− u∗) ≤ 0.

If θ′(u∗)T (b − u∗) < 0, then there is an i(1 ≤ i ≤ m) such that θ′i(u
∗) < 0 and

bi − u∗i > 0. We define a feasible point ũ by

ũi = u∗i + min(ε, bi − u∗i ), ũj = u∗j (j �= i).

Then we have

θ′(u∗)T (ũ− u∗) < 0.

This contradicts (3.1). Hence we obtain θ′(u∗)T (b− u∗) = 0. Let t∗ = −θ′(u∗). Then
(u∗, t∗) is a solution of (1.5). We complete the proof.

Corollary 3.4.
1. Let (y∗, u∗, s∗, t∗) be a solution of (1.4). If y∗ = yd, then (y∗, u∗) is a global

optimal solution of (1.2).
2. Let u∗ be a local optimal solution of (1.3). If y(u∗) = yd, then (u∗,−αM(u∗−
ud)) is a solution of (1.5). Moreover, u∗ is a global optimal solution of (1.3).

Proof. 1. From the first equality of (1.4), we find that s∗ = 0. Then the result is
derived from Theorem 3.2.

2. By the relation between (1.2) and (1.3), (yd, u
∗) is a local optimal solution of

(1.2) and

f ′(yd, u∗)T (u− u∗) = α(u− u∗)TM(u∗ − ud) ≥ 0

for u being sufficiently close to u∗. Let t∗ = αM(u∗−ud).We can show that max(t∗, b−
u∗) = 0 by using the same technique in the proof for Theorem 3.3. Moreover, by
Theorem 3.1 and part 1 of this corollary, u∗ is a global optimal solution of (1.3).
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4. Final remarks. This paper presents new theoretical results on the first order
conditions for the discretization problem arising from nonsmooth constrained optimal
control problems. The results generalize existing results for smooth discretized con-
strained optimal control problems and answer some open questions on first order
conditions for two kinds of discretization problems. Theorem 3.1 states that the
first order conditions for problem (1.2) are equivalent to the first order conditions
for problem (1.3). Theorems 3.2 and 3.3 show that the condition K(y) = ∅ and
((A + λDE(y))−1N)K(y) = 0 can be used to verify a local optimal point satisfies
the first order conditions and that a point satisfying the first order conditions is a
local optimal solution. Notice that ((A+ λDE(y))−1N)K(y) = 0 does not imply that
F (y, u) = Ay + λDmax(0, y) −Nu is differentiable at (y, u).
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