Fast Hankel Tensor-Vector Product and its Application to Exponential Data Fitting ${ }^{\dagger}$

Weiyang Ding ${ }^{1}$, Liqun $\mathrm{Qi}^{2 *}$, and Yimin Wei ${ }^{3}$
${ }^{1}$ School of Mathematical Sciences, Fudan University, Shanghai, 200433, P. R. of China.
${ }^{2}$ Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong
Kong.
${ }^{3}$ School of Mathematical Sciences and Shanghai Key Laboratory of Contemporary Applied Mathematics, Fudan University, Shanghai, 200433, P. R. of China.

Abstract

SUMMARY This paper is contributed to a fast algorithm for Hankel tensor-vector products. First we explain the necessity of fast algorithms for Hankel and block Hankel tensor-vector products by sketching the algorithm for both one- and multi-dimensional exponential data fitting. For proposing the fast algorithm, we define and investigate a special class of Hankel tensors that can be diagonalized by the Fourier matrices, which is called anti-circulant tensors. Then we obtain a fast algorithm for Hankel tensor-vector products by embedding a Hankel tensor into a larger anti-circulant tensor. The computational complexity is about $\mathcal{O}\left(m^{2} n \log m n\right)$ for a square Hankel tensor of order m and dimension n, and the numerical examples also show the efficiency of this scheme. Moreover, the block version for multi-level block Hankel tensors is discussed as well. Copyright © 2014 John Wiley \& Sons, Ltd.

KEY words: Hankel tensor; block Hankel tensor; anti-circulant tensor; fast tensor-vector product; fast Fourier transform; higher-order singular value decomposition; exponential data fitting

1. Introduction

Hankel structures arise frequently in signal processing (see [1]). Besides Hankel matrices, tensors with different Hankel structures are also applied. As far as we know, the term "Hankel tensor" was first introduced by Luque and Thibon [2]. And Badeau and Boyer [3] discussed the higher-order singular value decompositions (HOSVD) of some structured tensors including Hankel tensors in detail. Moreover, Papy et al. employed Hankel tensors and other Hankel-type tensors in exponential data fitting (see $[4,5,6]$). De Lathauwer [7] also concerned the "separation" of signals that can be modelled as sums of exponentials (or more generally, as exponential polynomials) by

[^0]Hankel tensor approaches. As to the properties of Hankel tensors, Qi [8] recently investigated the spectral properties of Hankel tensor largely via the generating function. Song and Qi [9] also proposed some spectral properties of Hilbert tensors, which are special Hankel tensors.

An $m^{\text {th }}$-order tensor $\mathcal{H} \in \mathbb{C}^{n_{1} \times n_{2} \times \cdots \times n_{m}}$ is called a Hankel tensor if

$$
\mathcal{H}_{i_{1} i_{2} \ldots i_{m}}=\phi\left(i_{1}+i_{2}+\cdots+i_{m}\right)
$$

for all $i_{k}=0,1, \ldots, n_{k}-1(k=1,2, \ldots, m)$. We call \mathcal{H} a square Hankel tensor when $n_{1}=n_{2}=$ $\cdots=n_{m}$. Note that the degree of freedom of a Hankel tensor is $d_{\mathcal{H}}:=n_{1}+n_{2}+\cdots+n_{m}-m+1$. Thus a vector \mathbf{h} of length $d_{\mathcal{H}}$, which is called the generating vector of \mathcal{H}, defined by

$$
h_{k}=\phi(k), k=0,1, \ldots, d_{\mathcal{H}}-1
$$

can completely determine this Hankel tensor \mathcal{H} when the tensor size is fixed. Further when the entries of \mathbf{h} can be written as

$$
h_{k}=\int_{-\infty}^{+\infty} t^{k} f(t) \mathrm{d} t
$$

then we call $f(t)$ the generating function of \mathcal{H}. The generating function of a square Hankel tensor is essential for studying its eigenvalues, positive semi-definiteness, and copositiveness etc. (see [8]).

Fast algorithms for Hankel or Toeplitz matrix-vector products involving fast Fourier transformations (FFT) are well-known (see [10, 11, 12, 13]). However the topics on Hankel tensor computations are seldom discussed. We propose an analogous fast algorithm for Hankel tensorvector products, which has its application to exponential data fitting. We first introduce Papy et al.'s algorithm for one-dimensional exponential data fitting briefly and extend it to multidimensional case in Section 2, in which the Hankel and block Hankel tensor-vector products are dominant steps in the sense of efficiency. Then in Section 3 we define the anti-circulant tensor, which can be diagonalized by the Fourier matrices, and study its properties carefully. In Section 4, we propose a fast algorithm for Hankel and block Hankel tensor-vector products by embedding them into a larger anti-circulant and block anti-circulant tensors, respectively. Finally we employ some numerical examples to show the efficiency of our scheme in Section 5.

2. Exponential Data Fitting

We begin with one of the sources of Hankel tensors, and see where we need fast Hankel tensorvector products. Exponential data fitting is very important in many applications in scientific computing and engineering, which represents the signals as a sum of exponentially damped sinusoids. The computations and applications of exponential data fitting are generally studied, and the readers who are interested in these topics can refer to $[14,15,16]$.

Papy et al. [5, 6] introduced a higher-order tensor approach into exponential data fitting by connecting it with the Vandermonde decomposition of a Hankel tensor. As stated in [5], their algorithm is a higher-order variant of the Hankel total least squares (HTLS) method. And HTLS is a modification of the famous ESPRIT algorithm [17, 18] by employing the total least squares (TLS, see [19]) instead of the least squares, which enhances the robustness since the TLS is a type of errors-in-variables regression. Furthermore, Papy et al. concluded from numerical experiments in their papers that the Hankel tensor approach can perform better for some difficult situations than the classical one based on Hankel matrices, although there is no exact theory on how to choose the optimal size of the Hankel tensor.

In order to understand the necessity of fast algorithms for Hankel and block Hankel tensors, we sketch Papy et al.'s algorithm in this section and simply extend it to multi-dimensional exponential data fitting.

2.1. The One-Dimensional Case

Assume that we get a one-dimensional noiseless signal with N complex samples $\left\{x_{n}\right\}_{n=0}^{N-1}$, and this signal is modelled as a sum of K exponentially damped complex sinusoids, i.e.,

$$
x_{n}=\sum_{k=1}^{K} a_{k} \exp \left(\imath \varphi_{k}\right) \exp \left(\left(-\alpha_{k}+\imath \omega_{k}\right) n \Delta t\right)
$$

where $\imath=\sqrt{-1}, \Delta t$ is the sampling interval, and the amplitudes a_{k}, the phases φ_{k}, the damping factors α_{k}, and the pulsations ω_{k} are the parameters of the model that are required to estimate. The signal can also be expressed as

$$
x_{n}=\sum_{k=1}^{K} c_{k} z_{k}^{n}
$$

where $c_{k}=a_{k} \exp \left(\imath \varphi_{k}\right)$ and $z_{k}=\exp \left(\left(-\alpha_{k}+\imath \omega_{k}\right) \Delta t\right)$. Here c_{k} is called the k-th complex amplitude including the phase and z_{k} is called the k-th pole of the signal. A part of the aim of exponential data fitting is to estimate the poles $\left\{z_{k}\right\}_{k=1}^{K}$ from the data $\left\{x_{n}\right\}_{n=0}^{N-1}$. After fixing the poles, we can obtain the complex amplitudes by solving a Vandermonde system.
Denote vector $\mathbf{x}=\left(x_{0}, x_{1}, \ldots, x_{N-1}\right)^{\top}$. We first construct a Hankel tensor \mathcal{H} of a fixed size $I_{1} \times I_{2} \times \cdots \times I_{m}$ with the generating vector \mathbf{x}, e.g., when $m=3$ the Hankel tensor \mathcal{H} is

$$
\begin{align*}
& \mathcal{H}_{:,, 1}=\left[\begin{array}{ccccc}
x_{0} & x_{1} & \cdots & x_{I_{2}-2} & x_{I_{2}-1} \\
x_{1} & . \cdot & . \cdot & . & \vdots \\
\vdots & . \cdot & . \cdot & . & . \\
x_{I_{1}-1} & x_{I_{1}} & \cdots & x_{I_{1}+I_{2}-3} & x_{I_{1}+I_{2}-2}
\end{array}\right], \\
& \mathcal{H}_{:,:, 2}=\left[\begin{array}{ccccc}
x_{1} & x_{2} & \cdots & x_{I_{2}-1} & x_{I_{2}} \\
x_{2} & . \cdot & . \cdot & . \cdot & \vdots \\
\vdots & . \cdot & . \cdot & . \cdot & x_{I_{1}+I_{2}-2} \\
x_{I_{1}} & x_{I_{1}+1} & \cdots & x_{I_{1}+I_{2}-2} & x_{I_{1}+I_{2}-1}
\end{array}\right], \tag{1}\\
& \mathcal{H}_{:,:, I_{3}}=\left[\begin{array}{ccccc}
x_{I_{3}-1} & x_{I_{3}} & \cdots & x_{I_{2}+I_{3}-3} & x_{I_{2}+I_{3}-2} \\
x_{I_{3}} & . \cdot & . \cdot & . \cdot & \vdots \\
\vdots & . \cdot & . \cdot & . \cdot & x_{I_{1}+I_{2}+I_{3}-4} \\
x_{I_{1}+I_{3}-2} & x_{I_{1}+I_{3}-1} & \cdots & x_{I_{1}+I_{2}+I_{3}-4} & x_{I_{1}+I_{2}+I_{3}-3}
\end{array}\right] .
\end{align*}
$$

The order m can be chosen arbitrarily and the size I_{p} of each dimension should be no less than K and satisfy $I_{1}+I_{2}+\cdots+I_{m}-m+1=N_{1}$. Papy et al. verified that the Vandermonde decomposition of \mathcal{H} is

$$
\mathcal{H}=\mathcal{C} \times_{1} Z_{1}^{\top} \times_{2} Z_{2}^{\top} \cdots \times_{m} Z_{m}^{\top}
$$

where \mathcal{C} is a diagonal tensor with diagonal entries $\left\{c_{k}\right\}_{k=1}^{K}$, each Z_{p} is a Vandermonde matrix

$$
Z_{p}^{\top}=\left[\begin{array}{ccccc}
1 & z_{1} & z_{1}^{2} & \cdots & z_{1}^{I_{p}-1} \\
1 & z_{2} & z_{2}^{2} & \cdots & z_{2}^{I_{p}-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & z_{K} & z_{K}^{2} & \cdots & z_{K}^{I_{p}-1}
\end{array}\right]
$$

and $\mathcal{T} \times{ }_{p} M$ denotes the mode- p product (see [20]) of $\mathcal{T} \in \mathbb{C}^{n_{1} \times n_{2} \times \cdots \times n_{m}}$ and $M \in \mathbb{C}^{n_{p} \times l_{p}}$ defined by

$$
\left(\mathcal{T} \times{ }_{p} M\right)_{i_{1} \ldots i_{p-1} j_{p} i_{p+1} \ldots i_{m}}=\sum_{i_{p}=1}^{n_{p}} t_{i_{1} \ldots i_{p-1} i_{p} i_{p+1} \ldots i_{m}} m_{i_{p} j_{p}}
$$

So the target will be attained if we obtain the Vandermonde decomposition of this Hankel tensor \mathcal{H}.

In [5] the Vandermonde matrices are estimated by applying the TLS to the factor matrices in the higher-order singular value decomposition (HOSVD, see [21, 20]) of the best rank- (R, R, \ldots, R) approximation (see $[22,20]$) of \mathcal{H}. Here if K is known, then $R=K$. Otherwise, when K is unknown, R should be chosen to be much larger than a guess of K. Therefore, computing the HOSVD of the best low rank approximation of a Hankel tensor is a main part in exponential data fitting.

De Lathauwer et al. [22] proposed an effective algorithm called higher-order orthogonal iterations (HOOI) for this purpose. There are other algorithms with faster convergence such as $[23,24]$ proposed, and one can refer to [20] for more details. Nevertheless, HOOI is still very popular, because it is so simple and effective in applications. Thus Papy et al. chose HOOI in [5].

The original HOOI algorithm for general tensors is displayed as follows, and the result $\mathcal{S} \times_{1} U_{1}^{\top} \times_{2} U_{2}^{\top} \cdots \times_{m} U_{m}^{\top}$ is the best rank- $\left(R_{1}, R_{2}, \ldots, R_{m}\right)$ approximation of \mathcal{A}.
Algorithm 2.1. HOOI for the best rank- $\left(R_{1}, R_{2}, \ldots, R_{m}\right)$ approximation of $\mathcal{A} \in \mathbb{C}^{I_{1} \times I_{2} \times \cdots \times I_{m}}$. Initialize $U_{p} \in \mathbb{C}^{I_{p} \times R_{p}}(p=1,2, \ldots, m)$ by the HOSVD of \mathcal{A}
Repeat for $p=1: m$
$U_{p} \leftarrow R_{p}$ leading left singular vectors of

$$
\operatorname{Unfold}_{p}\left(\mathcal{A} \times_{1} \bar{U}_{1} \cdots \widehat{\times_{p} \bar{U}_{p}} \cdots \times_{m} \bar{U}_{m}\right)
$$

end
Until convergence
$\mathcal{S}=\mathcal{A} \times{ }_{1} \bar{U}_{1} \times{ }_{2} \bar{U}_{2} \cdots \times_{m} \bar{U}_{m}$.
Here $\operatorname{Unfold}_{p}(\cdot)$ denotes the mode- p unfolding of a tensor (see [19]), and $\mathcal{A} \times{ }_{1} \bar{U}_{1} \cdots \widehat{\times_{p} \overline{U_{p}}} \cdots \times_{m}$ \bar{U}_{m} means that we skip the p-th item. There are plenty of tensor-matrix products in the above algorithm, which can be complemented by tensor-vector products. For instance, the tensor-matrix product

$$
\left(\mathcal{A} \times_{2} \bar{U}_{2} \cdots \times_{m} \bar{U}_{m}\right)_{:, i_{2}, \ldots, i_{m}}=\mathcal{A} \times_{2}\left(\bar{U}_{2}\right)_{:, i_{2}} \cdots \times_{m}\left(\bar{U}_{m}\right)_{:, i_{m}}
$$

and others are the same. Therefore, if all the Hankel tensor-vector products can be computed by a fast algorithm, then the efficiency must be highly raised when we invoke the HOOI algorithm in exponential data fitting.

Papy et al. also studied the multi-channel case and the decimative case of exponential data fitting in $[5,6]$ using higher-order approaches. The tensors arise from these cases are not exactly Hankel tensors, but have some Hankel structures. A tensor is called partially Hankel tensor, if the lower-order subtensors are all Hankel tensors when some indexes are fixed. For instance, the tensor \mathcal{H} from the multi-channel or decimative exponential data fitting is $3^{\text {rd }}$-order, and $\mathcal{H}(:,:, k)$ are Hankel tensors for all k, so we call \mathcal{H} a $3^{\text {rd }}$-order (1,2)-Hankel tensor. The HOOI algorithm will be applied to some partially Hankel tensors. Hence the fast tensor-vector products for partially Hankel tensors are also required to discuss.

2.2. The Multi-Dimensional Case

Papy et al.'s method can be extended to multi-dimensional exponential data fitting as well, which involves the block tensors. Similarly to block matrices, a block tensor is understood as a tensor
whose entries are also tensors. The size of each block is called the level- 1 size of the block tensor, and the size of the block-entry tensor is called the level-2 size. Furthermore, a level-d block tensor can be regarded as a tensor whose entries are level- $(d-1)$ block tensor.

We take the 2-dimensional exponential data fitting (see [25, 26]) as an example to illustrate our block tensor approach. Assume that there is a 2 D noiseless signal with $N_{1} \times N_{2}$ complex samples $\left\{x_{n_{1} n_{2}}\right\}_{\substack{n_{1}=0,1, \ldots, N_{1}-1 \\ n_{2}=0,1, \ldots, N_{2}-1}}$ which is modeled as a sum of K exponential items

$$
n_{2}=0,1, \ldots, N_{2}-1
$$

$$
x_{n_{1} n_{2}}=\sum_{k=1}^{K} a_{k} \exp \left(\imath \varphi_{k}\right) \exp \left(\left(-\alpha_{1, k}+\imath \omega_{1, k}\right) n_{1} \Delta t_{1}+\left(-\alpha_{2, k}+\imath \omega_{2, k}\right) n_{2} \Delta t_{2}\right),
$$

where the meanings of parameters are the same as those of 1D signals. Also, this 2D signal can be rewritten into a compact form

$$
x_{n_{1} n_{2}}=\sum_{k=1}^{K} c_{k} z_{1, k}^{n_{1}} z_{2, k}^{n_{2}}
$$

Our aim is still to estimate the poles $\left\{z_{1, k}\right\}_{k=1}^{K}$ and $\left\{z_{2, k}\right\}_{k=1}^{K}$ of the signal from the samples. We shall see shortly that the extended Papy et al.'s algorithm can also be regarded as a modified version of the 2D ESPRIT method [25].

Denote matrix $X=\left(x_{n_{1} n_{2}}\right)_{N_{1} \times N_{2}}$. Then we map the data X into a block Hankel tensor with Hankel blocks (BHHB tensor) \mathcal{H} of level-1 size $I_{1} \times I_{2} \times \cdots \times I_{m}$ and level-2 size $J_{1} \times J_{2} \times \cdots \times J_{m}$. The size I_{p} and J_{p} of each dimension should be no less than K and satisfy that $I_{1}+I_{2}+\cdots+I_{m}-m+1=N_{1}$ and $J_{1}+J_{2}+\cdots+J_{m}-m+1=N_{2}$. First we construct Hankel tensors \mathcal{H}_{j} of size $I_{1} \times I_{2} \times \cdots \times I_{m}$ with the generating vectors $X(:, j)$ for $j=0,1, \ldots, N_{2}-1$ as shown in (1). Then, in block sense, we construct block Hankel tensors \mathcal{H} of size $J_{1} \times J_{2} \times \cdots \times J_{m}$ with the block generating vectors $\left[\mathcal{H}_{0}, \mathcal{H}_{1}, \ldots, \mathcal{H}_{N_{2}-1}\right]^{\top}$, e.g., when $m=3$ the slices in block sense of BHHB tensor \mathcal{H} are

$$
\begin{align*}
\mathcal{H}_{: ;, 1}^{(b)} & =\left[\begin{array}{ccccc}
\mathcal{H}_{0} & \mathcal{H}_{1} & \cdots & \mathcal{H}_{J_{2}-2} & \mathcal{H}_{J_{2}-1} \\
\mathcal{H}_{1} & . & . & . & \vdots \\
\vdots & . & . & . & \mathcal{H}_{J_{1}+J_{2}-3} \\
\mathcal{H}_{J_{1}-1} & \mathcal{H}_{J_{1}} & \cdots & \mathcal{H}_{J_{1}+J_{2}-3} & \mathcal{H}_{J_{1}+J_{2}-2}
\end{array}\right], \\
\mathcal{H}_{: ;, 2}^{(b)}= & {\left[\begin{array}{ccccc}
\mathcal{H}_{1} & \mathcal{H}_{2} & \cdots & \mathcal{H}_{J_{2}-1} & \mathcal{H}_{J_{2}} \\
\mathcal{H}_{2} & . & . & . & \vdots \\
\vdots & . & . & . & \mathcal{H}_{J_{1}+J_{2}-2} \\
\mathcal{H}_{J_{1}} & \mathcal{H}_{J_{1}+1} & \cdots & \mathcal{H}_{J_{1}+J_{2}-2} & \mathcal{H}_{J_{1}+J_{2}-1}
\end{array}\right], } \tag{2}\\
\vdots & \vdots \\
\vdots & \vdots \\
\vdots & \vdots
\end{align*}
$$

Then the BHHB tensor \mathcal{H} has the level-2 Vandermonde decomposition

$$
\mathcal{H}=\mathcal{C} \times_{1}\left(Z_{2,1_{\mathrm{KR}}}^{\otimes} Z_{1,1}\right)^{\top} \times_{2}\left(Z_{2,2_{\mathrm{KR}}}^{\otimes} Z_{1,2}\right)^{\top} \cdots \times_{m}\left(Z_{2, m_{\mathrm{KR}}}^{\otimes} Z_{1, m}\right)^{\top},
$$

where \mathcal{C} is a diagonal tensor with diagonal entries $\left\{c_{k}\right\}_{k=1}^{K}$, each $Z_{1, p}$ or $Z_{2, p}$ is a Vandermonde
matrix

$$
Z_{1, p}^{\top}=\left[\begin{array}{ccccc}
1 & z_{1,1} & z_{1,1}^{2} & \cdots & z_{1,1}^{I_{p}-1} \\
1 & z_{1,2} & z_{1,2}^{2} & \cdots & z_{1,2}^{I_{p}-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & z_{1, K} & z_{1, K}^{2} & \cdots & z_{1, K}^{I_{p}-1}
\end{array}\right], Z_{2, p}^{\top}=\left[\begin{array}{ccccc}
1 & z_{2,1} & z_{2,1}^{2} & \cdots & z_{2,1}^{J_{p}-1} \\
1 & z_{2,2} & z_{2,2}^{2} & \cdots & z_{2,2}^{J_{p}-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & z_{2, K} & z_{2, K}^{2} & \cdots & z_{2, K}^{J_{p}-1}
\end{array}\right]
$$

and the notation " \otimes " denotes the Khatri-Rao product (see [19, Chapter 12.3]) of two matrices with the same column sizes, i.e.,

$$
\left[\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right]_{\mathrm{KR}}^{\otimes}\left[\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right]=\left[\mathbf{a}_{1} \otimes \mathbf{b}_{1}, \mathbf{a}_{2} \otimes \mathbf{b}_{2}, \ldots, \mathbf{a}_{n} \otimes \mathbf{b}_{n}\right]
$$

So the target will be attained, if we obtain the level-2 Vandermonde decomposition of this BHHB tensor \mathcal{H}.

We can use HOOI as well to compute the best rank- (K, K, \ldots, K) approximation of the BHHB tensor \mathcal{H}

$$
\mathcal{H}=\mathcal{S} \times_{1} U_{1}^{\top} \times_{2} U_{2}^{\top} \cdots \times_{m} U_{m}^{\top},
$$

where $\mathcal{S} \in \mathbb{C}^{K \times K \times \cdots \times K}$ is the core tensor and $U_{p} \in \mathbb{C}^{\left(I_{p} J_{p}\right) \times K}$ has orthogonal columns. Then U_{p} and $Z_{2, p} \otimes_{\mathrm{KR}} Z_{1, p}$ have the common column space, that is, there is a nonsingular matrix T such that

$$
Z_{2, p_{\mathrm{KR}}}^{\otimes} Z_{1, p}=U_{p} T
$$

Denote

$$
\begin{aligned}
A^{1 \uparrow} & =\left[A_{0: I-2,:}^{\top}, A_{I, 2 I-2,:}^{\top}, \ldots, A_{(J-1) I: J I-2,:}^{\top}\right]^{\top}, \\
A^{1 \downarrow} & =\left[A_{1: I-1,:}^{\top}, A_{I+1,2 I-1,:}^{\top}, \ldots, A_{(J-1) I+1: J I-1,:}^{\top}\right]^{\top}, \\
A^{2 \uparrow} & =A_{0:(J-1) I-1,:}^{\top}, \\
A^{2 \downarrow} & =A_{I: J I-1,:},
\end{aligned}
$$

for matrix $A \in \mathbb{C}^{(I J) \times K}$. Then it is easy to verify that

$$
\left(Z_{2, p} \otimes_{\mathrm{KR}}^{\otimes} Z_{1, p}\right)^{1 \uparrow} D_{1}=\left(Z_{2, p} \otimes_{\mathrm{KR}}^{\otimes} Z_{1, p}\right)^{1 \downarrow}, \quad\left(Z_{2, p} \otimes_{\mathrm{KR}}^{\otimes} Z_{1, p}\right)^{2 \uparrow} D_{2}=\left(Z_{2, p} \otimes_{\mathrm{KR}}^{\otimes} Z_{1, p}\right)^{2 \downarrow}
$$

where D_{1} is a diagonal matrix with diagonal entries $\left\{z_{1, k}\right\}_{k=1}^{K}$ and D_{2} is a diagonal matrix with diagonal entries $\left\{z_{2, k}\right\}_{k=1}^{K}$. Then we have

$$
U_{p}^{1 \uparrow}\left(T D_{1} T^{-1}\right)=U_{p}^{1 \downarrow}, \quad U_{p}^{2 \uparrow}\left(T D_{2} T^{-1}\right)=U_{p}^{2 \downarrow}
$$

Therefore, if two matrices W_{1} and W_{2} satisfy that

$$
U_{p}^{1 \uparrow} W_{1}=U_{p}^{1 \downarrow}, \quad U_{p}^{2 \uparrow} W_{2}=U_{p}^{2 \downarrow}
$$

then W_{1} and W_{2} share the same eigenvalues with D_{1} and D_{2}, respectively. Equivalently, the eigenvalues of W_{1} and W_{2} are exactly the poles of the first and second dimension, respectively. Furthermore, we also choose the TLS as in [5] for solving the above two equations, since the noise on both sides should be taken into consideration.

Unlike to the 2D ESPRIT method, we obtain the poles of both dimensions by introducing only one BHHB tensor rather than constructing two related BHHB matrices. Hence the matrices W_{1} and W_{2} have the same eigenvectors. This information is useful for finding the assignment of the poles, that is, the eigenvalues of W_{1} and W_{2} with a same eigenvector is assigned into a pair.

Recall that Algorithm 2.1 is also called for BHHB tensors in 2D exponential data fitting. Thus the fast algorithm for BHHB tensor-vector products is also essential for this situation. Moreover, when we deal with the exponential data fitting problems of higher dimensions, i.e., 3D, 4D, etc., higher-level block Hankel tensors will be naturally involved. Therefore, it is also required to derive a unified fast algorithm for higher-level block Hankel tensor-vector products.

3. Anti-Circulant Tensors

The fast algorithm for Hankel tensor-vector products is based on a class of special Hankel tensors called anti-circulant tensor. Thus we introduce and investigate the anti-circulant tensors at first.
Circulant matrix [27] is famous, which is a special class of Toeplitz matrices [10, 12]. The first column entries of a circulant matrix shift down when moving right, as shown in the following 3-by-3 example

$$
\left[\begin{array}{lll}
c_{0} & c_{2} & c_{1} \\
c_{1} & c_{0} & c_{2} \\
c_{2} & c_{1} & c_{0}
\end{array}\right]
$$

If the first column entries of a matrix shift up when moving right, as shown in the following

$$
\left[\begin{array}{lll}
c_{0} & c_{1} & c_{2} \\
c_{1} & c_{2} & c_{0} \\
c_{2} & c_{0} & c_{1}
\end{array}\right]
$$

then it is a special Hankel matrix, which is called an anti-circulant matrix, or a left circulant matrix, or a retrocirculant matrix (see [27, Chapter 5]). Naturally, we generalize the anti-circulant matrix to the tensor case. A square Hankel tensor \mathcal{C} of order m and dimension n is called an anticirculant tensor, if its generating vector \mathbf{h} satisfies that

$$
h_{k}=h_{l}, \quad \text { if } k \equiv l(\bmod n) .
$$

Thus the generating vector is periodic and displayed as

$$
\mathbf{h}=(\underbrace{h_{0}, h_{1}, \ldots, h_{n-1}}_{\mathbf{c}^{\top}}, \underbrace{h_{n}, h_{n+1}, \ldots, h_{2 n-1}}_{\mathbf{c}^{\top}}, \ldots, \underbrace{h_{(m-1) n}, \ldots, h_{m(n-1)}}_{\mathbf{c}(0: n-m)^{\top}})^{\top}
$$

Since the vector \mathbf{c}, which is exactly the "first" column $\mathcal{C}(:, 0, \cdots, 0)$, contains all the information about \mathcal{C} and is more compact than the generating vector, we call it the compressed generating vector of the anti-circulant tensor. For instance, a $3 \times 3 \times 3$ anti-circulant tensor \mathcal{C} is unfolded by mode-1 into

$$
\operatorname{Unfold}_{1}(\mathcal{C})=\left[\begin{array}{ccc|ccc|ccc}
c_{0} & c_{1} & c_{2} & c_{1} & c_{2} & c_{0} & c_{2} & c_{0} & c_{1} \\
c_{1} & c_{2} & c_{0} & c_{2} & c_{0} & c_{1} & c_{0} & c_{1} & c_{2} \\
c_{2} & c_{0} & c_{1} & c_{0} & c_{1} & c_{2} & c_{1} & c_{2} & c_{0}
\end{array}\right]
$$

and its compressed generating vector is $\mathbf{c}=\left[c_{0}, c_{1}, c_{2}\right]^{\top}$. Note that the degree of freedom of an anti-circulant tensor is always n no matter how large its order m will be.

3.1. Diagonalization

One of the essential properties of circulant matrices is that every circulant matrix can be diagonalized by the Fourier matrix (see [27]), where the Fourier matrix of size n is defined as $F_{n}=\left(\exp \left(-\frac{2 \pi \imath}{n} j k\right)\right)_{j, k=0,1, \ldots, n-1}$. Actually, the Fourier matrix is exactly the Vandermonde matrix for the roots of unity, and it is also a unitary matrix up to the normalization factor

$$
F_{n} F_{n}^{*}=F_{n}^{*} F_{n}=n I_{n},
$$

where I_{n} is the identity matrix of $n \times n$ and F_{n}^{*} is the conjugate transpose of F_{n}. We will show that anti-circulant tensors also have a similar property, which brings much convenience for both analysis and computations.

In order to describe this property, we recall the definition of mode- p tensor-matrix product first. It should be pointed out that the tensor-matrix products in this paper are slightly different with some standard notations (see [21, 20]) just for easy use and simple descriptions. In the standard notation system, two indices in " $M_{i j}$ " should be exchanged. There are some basic properties of the tensor-matrix products

1. $\mathcal{A} \times{ }_{p} M_{p} \times{ }_{q} M_{q}=\mathcal{A} \times{ }_{q} M_{q} \times{ }_{p} M_{p}$, if $p \neq q$,
2. $\mathcal{A} \times_{p} M_{p_{1}} \times_{p} M_{p_{2}}=\mathcal{A} \times_{p}\left(M_{p_{1}} M_{p_{2}}\right)$,
3. $\mathcal{A} \times{ }_{p} M_{p_{1}}+\mathcal{A} \times{ }_{p} M_{p_{2}}=\mathcal{A} \times p\left(M_{p_{1}}+M_{p_{2}}\right)$,
4. $\mathcal{A}_{1} \times{ }_{p} M+\mathcal{A}_{2} \times{ }_{p} M=\left(\mathcal{A}_{1}+\mathcal{A}_{2}\right) \times{ }_{p} M$.

Particularly, when \mathcal{A} is a matrix, the mode- 1 and mode- 2 products can be written as

$$
\mathcal{A} \times_{1} M_{1} \times_{2} M_{2}=M_{1}^{\top} \mathcal{A} M_{2} .
$$

Notice that $M_{1}^{\top} \mathcal{A} M_{2}$ is totally different with $M_{1}^{*} \mathcal{A} M_{2}$! (M_{1}^{\top} is the transpose of M_{1}.) We will also adopt some notations from Qi's paper [28, 29] that

$$
\begin{aligned}
\mathcal{A} \mathbf{x}^{m-1} & =\mathcal{A} \quad \times_{2} \mathbf{x} \cdots \times_{m} \mathbf{x} \\
\mathcal{A} \mathbf{x}^{m} & =\mathcal{A} \times_{1} \mathbf{x} \times_{2} \mathbf{x} \cdots \times_{m} \mathbf{x} .
\end{aligned}
$$

We are now ready to state our main result about anti-circulant tensors.
Theorem 3.1. A square tensor of order m and dimension n is an anti-circulant tensor if and only if it can be diagonalized by the Fourier matrix of size n, that is,

$$
\mathcal{C}=\mathcal{D} F_{n}^{m}:=\mathcal{D} \times_{1} F_{n} \times_{2} F_{n} \cdots \times_{m} F_{n},
$$

where \mathcal{D} is a diagonal tensor and $\operatorname{diag}(\mathcal{D})=\operatorname{ifft}(\mathbf{c})$. Here "ifft" is a Matlab-type symbol, an abbreviation of inverse fast Fourier transformation.

Proof. It is direct to verify that a tensor that can be expressed as $\mathcal{D} F_{n}^{m}$ is anti-circulant. Thus we only need to prove that every anti-circulant tensor can be written into this form. And this can be done constructively.

First, assume that an anti-circulant tensor \mathcal{C} could be written into $\mathcal{D} F_{n}^{m}$. Then how do we obtain the diagonal entries of \mathcal{D} from \mathcal{C} ? Since

$$
\begin{aligned}
\operatorname{diag}(\mathcal{D}) & =\mathcal{D} \mathbf{1}^{m-1}=\frac{1}{n^{m}}\left(\mathcal{C}\left(F_{n}^{*}\right)^{m}\right) \mathbf{1}^{m-1}=\frac{1}{n^{m}} \bar{F}_{n}\left(\mathcal{C}\left(F_{n}^{*} \mathbf{1}\right)^{m-1}\right) \\
& =\frac{1}{n} \bar{F}_{n}\left(\mathcal{C} \mathbf{e}_{0}^{m-1}\right)=\frac{1}{n} \bar{F}_{n} \mathbf{c}
\end{aligned}
$$

where $\mathbf{1}=[1,1, \ldots, 1]^{\top}, \mathbf{e}_{0}=[1,0, \ldots, 0]^{\top}, \bar{F}_{n}$ is the conjugate of F_{n}, and \mathbf{c} is the compressed generating vector of \mathcal{C}, then the diagonal entries of \mathcal{D} can be computed by an inverse fast Fourier transformation (IFFT)

$$
\operatorname{diag}(\mathcal{D})=\operatorname{ifft}(\mathbf{c})
$$

Finally, it is enough to check that $\mathcal{C}=\mathcal{D} F^{m}$ with $\operatorname{diag}(\mathcal{D})=\operatorname{ifft}(\mathbf{c})$ directly. Therefore, every anti-circulant tensor is diagonalized by the Fourier matrix of proper size.

From the expression $\mathcal{C}=\mathcal{D} F_{n}^{m}$, we have a corollary about the spectra of anti-circulant tensors. The definitions of tensor Z-eigenvalues and H-eigenvalues follow the ones in [28, 29].
Corollary 3.2. An anti-circulant tensor \mathcal{C} of order m and dimension n with the compressed generating vector \mathbf{c} has a Z-eigenvector/ H-eigenvector $\frac{1}{\sqrt{n}} \mathbf{1}$, and the corresponding Z-eigenvalue is $n^{\frac{m-2}{2}} \mathbf{1}^{\top} \mathbf{c}$ and the corresponding H-eigenvalue is $n^{m-2} \mathbf{1}^{\top} \mathbf{c}$. When n is even, it has another Z eigenvector $\frac{1}{\sqrt{n}} \widetilde{\mathbf{1}}$, where $\widetilde{\mathbf{1}}=[1,-1, \ldots, 1,-1]^{\top}$, and the corresponding Z-eigenvalue is $n^{\frac{m-2}{2}} \widetilde{\mathbf{1}}^{\top} \mathbf{c}$; Moreover, this is also an H-eigenvector if m is even, and the corresponding H-eigenvalue is $n^{m-2} \widetilde{\mathbf{1}}^{\top} \mathbf{c}$.

Proof. It is easy to check that

$$
\begin{aligned}
\mathcal{C} \mathbf{1}^{m-1} & =F_{n}^{\top}\left(\mathcal{D}\left(F_{n} \mathbf{1}\right)^{m-1}\right)=n^{m-1} F_{n}^{\top}\left(\mathcal{D} \mathbf{e}_{0}^{m-1}\right)=n^{m-1} \mathcal{D}_{1,1, \ldots, 1} \cdot F_{n}^{\top} \mathbf{e}_{0} \\
& =n^{m-2}\left(\mathbf{e}_{0}^{\top} \bar{F}_{n} \mathbf{c}\right) \mathbf{1}=\left(n^{m-2} \mathbf{1}^{\top} \mathbf{c}\right) \mathbf{1}
\end{aligned}
$$

The proof of the rest part is similar, so we omit it.

3.2. Singular Values

Lim [30] defined the tensor singular values as

$$
\left\{\begin{array}{l}
\mathcal{A} \times_{2} \mathbf{u}_{2} \times_{3} \mathbf{u}_{3} \cdots \times_{m} \mathbf{u}_{m}=\varphi_{p_{1}}\left(\mathbf{u}_{1}\right) \cdot \sigma \\
\mathcal{A} \times_{1} \mathbf{u}_{1} \times_{3} \mathbf{u}_{3} \cdots \times_{m} \mathbf{u}_{m}=\varphi_{p_{2}}\left(\mathbf{u}_{2}\right) \cdot \sigma \\
\cdots \quad \cdots \quad \cdots \quad \cdots \quad \cdots \\
\mathcal{A} \times \times_{1} \mathbf{u}_{1} \times_{2} \mathbf{u}_{2} \cdots \times_{m-1} \mathbf{u}_{m-1}=\varphi_{p_{m}}\left(\mathbf{u}_{m}\right) \cdot \sigma
\end{array}\right.
$$

where $\sigma \geq 0$ and $\mathbf{u}_{l}^{\top} \varphi_{p_{l}}\left(\mathbf{u}_{l}\right)=\left\|\mathbf{u}_{l}\right\|_{p_{l}}^{p_{l}}=1$ for $l=1,2, \ldots, m$. When $p_{1}=p_{2}=\cdots=p_{m}=2$, $\varphi_{2}(\mathbf{u})=\overline{\mathbf{u}}$ and the singular values are unitarily invariant.

Consider the singular values of anti-circulant tensors. Let $\mathcal{C}=\mathcal{D} F^{m}$ be an anti-circulant tensor. There exists a permutation matrix P such that the diagonal entries of $\mathcal{D} P^{m}$ are arranged in descending order by their absolute values, then $\mathcal{C}=\left(\mathcal{D} P^{m}\right)\left((F P)^{\top}\right)^{m}$. Denote Λ is a diagonal matrix satisfying that $\Lambda_{k k}^{m}=\operatorname{sgn}\left(\left(\mathcal{D} P^{m}\right)_{k k}\right)$, where $\operatorname{sgn}(\cdot)$ denotes the signum function, i.e.,

$$
\operatorname{sgn}(\xi)= \begin{cases}\xi /|\xi|, & \xi \neq 0 \\ 0, & \xi=0\end{cases}
$$

Hence it is easy to understand that tensor \mathcal{C} can be rewritten into $\mathcal{C}=\widetilde{\mathcal{D}}\left(V^{\top}\right)^{m}$, where $\widetilde{\mathcal{D}}=\left|\mathcal{D} P^{m}\right|$ is a nonnegative diagonal tensor with ordered diagonal entries and $V=F P \Lambda$ is a unitary matrix. If $\left\{\sigma ; \mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{m}\right\}$ is a singular value and the corresponding singular vectors of \mathcal{C}, then

$$
\left\{\sigma ; V^{\top} \mathbf{u}_{1}, V^{\top} \mathbf{u}_{2}, \ldots, V^{\top} \mathbf{u}_{m}\right\}
$$

is a singular value and the associated singular vectors of $\widetilde{\mathcal{D}}$, and vice versa. Therefore, we need only to find the singular values and singular vectors of a diagonal tensor $\widetilde{\mathcal{D}}$. Let $d_{1} \geq d_{2} \geq \cdots \geq d_{n} \geq 0$ be the diagonal entries of $\widetilde{\mathcal{D}}$ and $\mathbf{w}_{l}=V^{\top} \mathbf{u}_{l}$ for $l=1,2, \ldots, m$. Then the above equations become into

$$
\left\{\begin{array}{l}
d_{k}\left(\mathbf{w}_{2}\right)_{k}\left(\mathbf{w}_{3}\right)_{k} \ldots\left(\mathbf{w}_{m}\right)_{k}=\left(\overline{\mathbf{w}}_{1}\right)_{k} \cdot \sigma, \\
d_{k}\left(\mathbf{w}_{1}\right)_{k}\left(\mathbf{w}_{3}\right)_{k} \ldots\left(\mathbf{w}_{m}\right)_{k}=\left(\overline{\mathbf{w}}_{2}\right)_{k} \cdot \sigma, \\
\cdots \cdots \cdots \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad 1,2, \ldots, n . \\
\cdots \quad \cdots\left(\mathbf{w}_{1}\right)_{k}\left(\mathbf{w}_{2}\right)_{k} \cdots\left(\mathbf{w}_{m-1}\right)_{k}=\left(\overline{\mathbf{w}}_{m}\right)_{k} \cdot \sigma
\end{array} \quad k=1,\right.
$$

From the above equations we have for $k=1,2, \ldots, n$,

$$
d_{k}\left(\mathbf{w}_{1}\right)_{k}\left(\mathbf{w}_{2}\right)_{k} \ldots\left(\mathbf{w}_{m}\right)_{k}=\left|\left(\mathbf{w}_{1}\right)_{k}\right|^{2} \cdot \sigma=\left|\left(\mathbf{w}_{2}\right)_{k}\right|^{2} \cdot \sigma=\cdots=\left|\left(\mathbf{w}_{m}\right)_{k}\right|^{2} \cdot \sigma
$$

Then $\left|\mathbf{w}_{1}\right|=\left|\mathbf{w}_{2}\right|=\cdots=\left|\mathbf{w}_{m}\right|:=\mathbf{q}=\left[q_{1}, q_{1}, \ldots, q_{n}\right]^{\top}$ when $\sigma \neq 0$. Denote $K=\left\{k: q_{k} \neq 0\right\}$. Then $d_{k} q_{k}^{m-2}=\sigma$. Since \mathbf{q} is normalized, we have $d_{k}>0$ and $\sum_{k \in K}\left(\sigma / d_{k}\right)^{\frac{2}{m-2}}=1$. Thus the singular value is

$$
\sigma=\left(\sum_{k \in K} d_{k}^{-\frac{2}{m-2}}\right)^{-\frac{m-2}{2}}
$$

and the singular vectors are determined by

$$
q_{k}=\left\{\begin{array}{ll}
\left(\sigma / d_{k}\right)^{\frac{1}{m-2}}, & k \in K, \\
0, & \text { otherwise },
\end{array} \quad \text { and } \operatorname{sgn}\left(\mathbf{w}_{1}\right)_{k} \operatorname{sgn}\left(\mathbf{w}_{2}\right)_{k} \ldots \operatorname{sgn}\left(\mathbf{w}_{m}\right)_{k}=1\right.
$$

Therefore, if $d_{1} \geq \cdots \geq d_{r}>d_{r+1}=\cdots=d_{n}=0$, then the anti-circulant tensor \mathcal{C} has at most $2^{r}-1$ nonzero singular values when $m>2$, since the index set K can be chosen as an arbitrary subset of $\{1,2, \ldots, n\}$. As to the zero singular value, the situation is a little more complicated. It is directly verified that the above equations hold for some k if there are two of $\left\{\left(\mathbf{w}_{1}\right)_{k},\left(\mathbf{w}_{2}\right)_{k}, \ldots,\left(\mathbf{w}_{m}\right)_{k}\right\}$ equal to zero. Furthermore, for $k=r+1, r+2, \ldots, n$, the k-th entries of \mathbf{w}_{l} 's can also be chosen such that

$$
\operatorname{sgn}\left(\mathbf{w}_{1}\right)_{k} \operatorname{sgn}\left(\mathbf{w}_{2}\right)_{k} \ldots \operatorname{sgn}\left(\mathbf{w}_{m}\right)_{k}=1
$$

One can easily prove that the largest singular value of a nonnegative diagonal tensor is

$$
\begin{aligned}
d_{1} & =\max \sigma(\widetilde{\mathcal{D}}) \\
& =\max \left\{\left|\widetilde{\mathcal{D}} \times_{1} \mathbf{w}_{1} \cdots \times_{m} \mathbf{w}_{m}\right|:\left\|\mathbf{w}_{1}\right\|_{2}=\cdots=\left\|\mathbf{w}_{m}\right\|_{2}=1\right\} .
\end{aligned}
$$

So we also have that the largest singular value of an anti-circulant tensor

$$
\begin{aligned}
d_{1} & =\max \sigma(\mathcal{C}) \\
& =\max \left\{\left|\mathcal{C} \times_{1} \mathbf{u}_{1} \cdots \times_{m} \mathbf{u}_{m}\right|:\left\|\mathbf{u}_{1}\right\|_{2}=\cdots=\left\|\mathbf{u}_{m}\right\|_{2}=1\right\}
\end{aligned}
$$

and the maximum value can be attained when $\mathbf{u}_{1}=\mathbf{u}_{2}=\cdots=\mathbf{u}_{m}=\bar{V} \mathbf{e}_{0}$. Recall the definition of the tensor Z-eigenvalues (see [28])

$$
\left\{\begin{array}{l}
\mathcal{C} \mathbf{x}^{m-1}=\lambda \mathbf{x} \\
\mathbf{x}^{\top} \mathbf{x}=1
\end{array}\right.
$$

where $\mathrm{x} \in \mathbb{R}^{n}$, then $\lambda=\mathcal{C} \mathbf{x}^{m}$. So the maximum absolute value of an anti-circulant tensor's Z-eigenvalues is bounded by the largest singular value, that is,

$$
\rho_{Z}(\mathcal{C}):=\{|\lambda|: \lambda \text { is a Z-eigenvalue of } \mathcal{C}\} \leq d_{1} .
$$

Particularly, when the anti-circulant tensor \mathcal{C} is further nonnegative, which is equally that its compressed generating vector \mathbf{c} is nonnegative, it can be verified that

$$
\mathrm{ifft}(\mathbf{c})_{1}=\max _{k}\left|\operatorname{ifft}(\mathbf{c})_{k}\right|
$$

where ifft $(\mathbf{c})_{k}$ denotes the k-th entry of ifft (\mathbf{c}). So the singular vectors corresponding to the largest singular value are $\mathbf{u}_{1}=\mathbf{u}_{2}=\cdots=\mathbf{u}_{m}=\frac{1}{\sqrt{n}} \mathbf{1}$. Note that $\frac{1}{\sqrt{n}} \mathbf{1}$ is also a Z-eigenvector of \mathcal{C} (see Corollary 3.2). Therefore, the Z-spectral radius of a nonnegative anti-circulant tensor is exactly its largest singular value.

3.3. Block Tensors

Block structures arise in a variety of applications in scientific computing and engineering (see $[31,1])$. We have utilized the block tensors to multi-dimensional data fitting in Section 2.2.

If a block tensor can be regarded as a Hankel tensor or an anti-circulant tensor with tensor entries, then we call it a block Hankel tensor or a block anti-circulant tensor, respectively. Moreover, its generating vector $\mathbf{h}^{(b)}$ or compressed generating vector $\mathbf{c}^{(b)}$ in block sense is called the block generating vector or block compressed generating vector, respectively. For instance, the block-entry vector $\left[\mathcal{H}_{0}, \mathcal{H}_{1}, \ldots, \mathcal{H}_{N_{2}-1}\right]^{\top}$ is the block generating vector of \mathcal{H} in Section 2.2. Recall the definition of Kronecker product [19]

$$
A \otimes B=\left[\begin{array}{cccc}
A_{11} B & A_{12} B & \cdots & A_{1 q} B \\
A_{21} B & A_{22} B & \cdots & A_{2 q} B \\
\vdots & \vdots & \ddots & \vdots \\
A_{p 1} B & A_{p 2} B & \cdots & A_{p q} B
\end{array}\right],
$$

where A and B are two matrices of arbitrary sizes. Then it can be proved following Theorem 3.1 that a block anti-circulant tensor \mathcal{C} can be block-diagonalized by $F_{N} \otimes I$, that is,

$$
\mathcal{C}=\mathcal{D}^{(b)}\left(F_{N} \otimes I\right)^{m},
$$

where $\mathcal{D}^{(b)}$ is a block diagonal tensor with diagonal blocks $\mathbf{c}^{(b)} \times_{1}\left(\frac{1}{N} \bar{F}_{N} \otimes I\right)$ and \bar{F}_{N} is the conjugate of F_{N}.

Furthermore, when the blocks of a block Hankel tensor are also Hankel tensors, we call it a block Hankel tensor with Hankel blocks, or BHHB tensor for short. Then its block generating vector can be reduced to a matrix, which is called the generating matrix H of a BHHB tensor

$$
H=\left[\mathbf{h}_{0}, \mathbf{h}_{1}, \ldots, \mathbf{h}_{N_{1}+\cdots+N_{m}-m}\right] \in \mathbb{C}^{\left(n_{1}+n_{2}+\cdots+n_{m}-m+1\right) \times\left(N_{1}+N_{2}+\cdots+N_{m}-m+1\right)}
$$

where \mathbf{h}_{k} is the generating vector of the k-th Hankel block in $\mathbf{h}^{(b)}$. For instance, the data matrix X is exactly the generating matrix of the BHHB tensor \mathcal{H} in Section 2.2. Similarly, when the blocks of a block anti-circulant tensor are also anti-circulant tensors, we call it a block anti-circulant tensor with anti-circulant blocks, or BAAB tensor for short. Its compressed generating matrix C is defined by

$$
C=\left[\mathbf{c}_{0}, \mathbf{c}_{1}, \ldots, \mathbf{c}_{N-1}\right] \in \mathbb{C}^{n \times N}
$$

where \mathbf{c}_{k} is the compressed generating vector of the k-th anti-circulant block in the block compressed generating vector $\mathbf{c}^{(b)}$. We can also verify that a BAAB tensor \mathcal{C} can be diagonalized by $F_{N} \otimes F_{n}$, that is,

$$
\mathcal{C}=\mathcal{D}\left(F_{N} \otimes F_{n}\right)^{m}
$$

where \mathcal{D} is a diagonal tensor with $\operatorname{diagonal} \operatorname{diag}(\mathcal{D})=\frac{1}{n N} \operatorname{vec}\left(\bar{F}_{n} C \bar{F}_{N}\right)$, which can be computed by 2D inverse fast Fourier transformation (IFFT2). Here vec(•) denotes the vectorization operator (see [19]).
We can even define higher-level block Hankel tensors. For instance, a block Hankel tensor with BHHB blocks is called a level-3 block Hankel tensor, and it is easily understood that a level-3 block Hankel tensor has the generating tensor of order 3. Generally, a block Hankel or anti-circulant tensor with level- $(k-1)$ block Hankel or anti-circulant blocks is called a level-k block Hankel or anti-circulant tensor, respectively. Furthermore, a level- k block anti-circulant tensor \mathcal{C} can be diagonalized by $F_{n^{(k)}} \otimes F_{n^{(k-1)}} \otimes \cdots \otimes F_{n^{(1)}}$, that is,

$$
\mathcal{C}=\mathcal{D}\left(F_{n^{(k)}} \otimes F_{n^{(k-1)}} \otimes \cdots \otimes F_{n^{(1)}}\right)^{m}
$$

where \mathcal{D} is a diagonal tensor with diagonal that can be computed by multi-dimensional inverse fast Fourier transformation.

4. Fast Hankel Tensor-Vector Product

General tensor-vector products without structures are very expensive for the high order and the large size that a tensor could be of. For a square tensor \mathcal{A} of order m and dimension n, the computational complexity of a tensor-vector product $\mathcal{A} \mathbf{x}^{m-1}$ or $\mathcal{A} \mathbf{x}^{m}$ is $\mathcal{O}\left(n^{m}\right)$. However, since Hankel tensors and anti-circulant tensors have very low degrees of freedom, it can be expected that there is a much faster algorithm for Hankel tensor-vector products. We focus on the following two types of tensor-vector products

$$
\mathbf{y}=\mathcal{A} \times_{2} \mathbf{x}_{2} \cdots \times_{m} \mathbf{x}_{m} \text { and } \alpha=\mathcal{A} \times_{1} \mathbf{x}_{1} \times_{2} \mathbf{x}_{2} \cdots \times_{m} \mathbf{x}_{m}
$$

which will be extremely useful to applications.
The fast algorithm for anti-circulant tensor-vector products is easy to derive from Theorem 3.1. Let $\mathcal{C}=\mathcal{D} F_{n}^{m}$ be an anti-circulant tensor of order m and dimension n with the compressed generating vector \mathbf{c}. Then for vectors $\mathbf{x}_{2}, \mathbf{x}_{3}, \ldots, \mathbf{x}_{m} \in \mathbb{C}^{n}$, we have

$$
\mathbf{y}=\mathcal{C} \times_{2} \mathbf{x}_{2} \cdots \times_{m} \mathbf{x}_{m}=F_{n}\left(\mathcal{D} \times_{2} F_{n} \mathbf{x}_{2} \cdots \times_{m} F_{n} \mathbf{x}_{m}\right)
$$

Recall that $\operatorname{diag}(\mathcal{D})=\operatorname{ifft}(\mathbf{c})$ and $F_{n} \mathbf{v}=\mathrm{fft}(\mathbf{v})$, where " fft " is a Matlab-type symbol, an abbreviation of fast Fourier transformation. So the fast procedure for computing the vector \mathbf{y} is

$$
\mathbf{y}=\mathrm{fft}\left(\mathrm{ifft}(\mathbf{c}) \cdot * \mathrm{fft}\left(\mathbf{x}_{2}\right) \cdot * \cdots \cdot * \mathrm{fft}\left(\mathbf{x}_{m}\right)\right)
$$

Figure 1. Embed a Hankel tensor into an anti-circulant tensor.
where $\mathbf{u} . * \mathbf{v}$ multiplies two vectors element-by-element. Similarly, for vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{m} \in \mathbb{C}^{n}$, we have

$$
\alpha=\mathcal{C} \times_{1} \mathbf{x}_{1} \times_{2} \mathbf{x}_{2} \cdots \times_{m} \mathbf{x}_{m}=\mathcal{D} \times_{1} F_{n} \mathbf{x}_{1} \times_{2} F_{n} \mathbf{x}_{2} \cdots \times_{m} F_{n} \mathbf{x}_{m}
$$

and the fast procedure for computing the scalar α is

$$
\alpha=\operatorname{ifft}(\mathbf{c})^{\top}\left(\mathrm{fft}\left(\mathbf{x}_{1}\right) \cdot * \mathrm{fft}\left(\mathbf{x}_{2}\right) \cdot * \cdots \cdot * \mathrm{fft}\left(\mathbf{x}_{m}\right)\right)
$$

Since the computational complexity of either FFT or IFFT is $\mathcal{O}(n \log n)$, both two types of anticirculant tensor-vector products can be obtained with complexity $\mathcal{O}((m+1) n \log n)$, which is much faster than the product of a general n-by- n matrix with a vector.

For deriving the fast algorithm for Hankel tensor-vector products, we embed a Hankel tensor into a larger anti-circulant tensor. Let $\mathcal{H} \in \mathbb{C}^{n_{1} \times n_{2} \times \cdots \times n_{m}}$ be a Hankel tensor with the generating vector \mathbf{h}. Denote $\mathcal{C}_{\mathcal{H}}$ as the anti-circulant tensor of order m and dimension $d_{\mathcal{H}}=n_{1}+n_{2}+\cdots+n_{m}-m+1$ with the compressed generating vector \mathbf{h}. Then we will find out that \mathcal{H} is in the "upper left frontal" corner of $\mathcal{C}_{\mathcal{H}}$ as shown in Figure 1. Hence, we have

$$
\begin{aligned}
& \mathcal{C}_{\mathcal{H}} \times_{2}\left[\begin{array}{c}
\mathbf{x}_{2} \\
\mathbf{0}
\end{array}\right] \cdots \times_{m}\left[\begin{array}{c}
\mathbf{x}_{m} \\
\mathbf{0}
\end{array}\right]=\left[\begin{array}{c}
\mathcal{H} \times_{2} \mathbf{x}_{2} \cdots \times_{m} \mathbf{x}_{m} \\
\dagger
\end{array}\right], \\
& \mathcal{C}_{\mathcal{H}} \times_{1}\left[\begin{array}{c}
\mathbf{x}_{1} \\
\mathbf{0}
\end{array}\right] \cdots \times_{m}\left[\begin{array}{c}
\mathbf{x}_{m} \\
\mathbf{0}
\end{array}\right]=\mathcal{H} \times_{1} \mathbf{x}_{1} \cdots \times_{m} \mathbf{x}_{m},
\end{aligned}
$$

so that the Hankel tensor-vector products can be realized by multiplying a larger anti-circulant tensor by some augmented vectors. Therefore, the fast procedure for computing $\mathbf{y}=\mathcal{H} \times{ }_{2} \mathbf{x}_{2} \cdots \times{ }_{m}$ \mathbf{x}_{m} is

$$
\left\{\begin{array}{l}
\widetilde{\mathbf{x}}_{p}=[\mathbf{x}_{p}^{\top}, \underbrace{0,0, \ldots, 0}_{d_{\mathcal{H}}-n_{p}}]^{\top}, p=2,3, \ldots, m \\
\widetilde{\mathbf{y}}=\mathrm{fft}\left(\operatorname{ifft}(\mathbf{h}) \cdot * \mathrm{fft}\left(\widetilde{\mathbf{x}}_{2}\right) \cdot * \cdots \cdot * \operatorname{fft}\left(\widetilde{\mathbf{x}}_{m}\right)\right) \\
\mathbf{y}=\widetilde{\mathbf{y}}\left(0: n_{1}-1\right)
\end{array}\right.
$$

and the fast procedure for computing $\alpha=\mathcal{H} \times_{1} \mathbf{x}_{1} \times_{2} \mathbf{x}_{2} \cdots \times_{m} \mathbf{x}_{m}$ is

$$
\left\{\begin{array}{l}
\widetilde{\mathbf{x}}_{p}=[\mathbf{x}_{p}^{\top}, \underbrace{0,0, \ldots, 0}_{d_{\mathcal{H}}-n_{p}}]^{\top}, p=1,2, \ldots, m, \\
\alpha=\operatorname{ifft}(\mathbf{h})^{\top}\left(\mathrm{fft}\left(\widetilde{\mathbf{x}}_{1}\right) \cdot * \operatorname{fft}\left(\widetilde{\mathbf{x}}_{2}\right) \cdot * \cdots, * \operatorname{fft}\left(\widetilde{\mathbf{x}}_{m}\right)\right) .
\end{array}\right.
$$

Moreover, the computational complexity is $\mathcal{O}\left((m+1) d_{\mathcal{H}} \log d_{\mathcal{H}}\right)$. When the Hankel tensor is a square tensor, the complexity is at the level $\mathcal{O}\left(m^{2} n \log m n\right)$, which is much smaller than the complexity $\mathcal{O}\left(n^{m}\right)$ of non-structured products.

Apart from the low computational complexity, our algorithm for Hankel tensor-vector products has two advantages. One is that this scheme is compact, that is, there is no redundant element in the procedure. It is not required to form the Hankel tensor explicitly. Just the generating vector is needed. Another advantage is that our algorithm treats the tensor as an ensemble instead of multiplying the tensor by vectors mode by mode.

For BAAB and BHHB cases, we also have fast algorithms for the tensor-vector products. Let \mathcal{C} be a BAAB tensor of order m with the compressed generating matrix $C \in \mathbb{C}^{n \times N}$. Since \mathcal{C} can be diagonalized by $F_{N} \otimes F_{n}$, i.e.,

$$
\mathcal{C}=\mathcal{D}\left(F_{N} \otimes F_{n}\right)^{m}
$$

we have for vectors $\mathbf{x}_{2}, \mathbf{x}_{3}, \ldots, \mathbf{x}_{m} \in \mathbb{C}^{n N}$

$$
\mathbf{y}=\mathcal{C} \times_{2} \mathbf{x}_{2} \cdots \times_{m} \mathbf{x}_{m}=\left(F_{N} \otimes F_{n}\right)\left(\mathcal{D} \times_{2}\left(F_{N} \otimes F_{n}\right) \mathbf{x}_{2} \cdots \times_{m}\left(F_{N} \otimes F_{n}\right) \mathbf{x}_{m}\right)
$$

Recall the vectorization operator and its inverse operator

$$
\begin{aligned}
\operatorname{vec}(A) & =\left[A_{:, 0}^{\top}, A_{:, 1}^{\top}, \ldots, A_{:, N-1}^{\top}\right]^{\top} \in \mathbb{C}^{n N}, \\
\operatorname{vec}_{n, N}^{-1}(\mathbf{v}) & =\left[\mathbf{v}_{0: n-1}, \mathbf{v}_{n: 2 n-1}, \ldots, \mathbf{v}_{(N-1) n: N n-1}\right] \in \mathbb{C}^{n \times N},
\end{aligned}
$$

for matrix $A \in \mathbb{C}^{n \times N}$ and vector $\mathbf{v} \in \mathbb{C}^{n N}$, and the relation holds

$$
(B \otimes A) \mathbf{v}=\operatorname{vec}\left(A \cdot \operatorname{vec}_{n, N}^{-1}(\mathbf{v}) \cdot B^{\top}\right)
$$

So $\left(F_{N} \otimes F_{n}\right) \mathbf{x}_{p}=\operatorname{vec}\left(F_{n} \cdot \operatorname{vec}_{n, N}^{-1}\left(\mathbf{x}_{p}\right) \cdot F_{N}\right)$ can be computed by 2D fast Fourier transformation (FFT2). Then the fast procedure for computing $\mathbf{y}=\mathcal{C} \times_{2} \mathbf{x}_{2} \cdots \times_{m} \mathbf{x}_{m}$ is

$$
\left\{\begin{array}{l}
X_{p}=\operatorname{vec}_{n, N}^{-1}\left(\mathbf{x}_{p}\right), p=2,3, \ldots, m \\
Y=\operatorname{fft} 2\left(\operatorname{ifft} 2(C) \cdot * \operatorname{fft} 2\left(X_{2}\right) \cdot * \cdots \cdot * \operatorname{fft} 2\left(X_{m}\right)\right) \\
\mathbf{y}=\operatorname{vec}(Y)
\end{array}\right.
$$

and the fast procedure for computing $\alpha=\mathcal{C} \times{ }_{1} \mathbf{x}_{1} \times_{2} \mathbf{x}_{2} \cdots \times_{m} \mathbf{x}_{m}$ is

$$
\left\{\begin{array}{l}
X_{p}=\operatorname{vec}_{n, N}^{-1}\left(\mathbf{x}_{p}\right), p=1,2, \ldots, m, \\
\alpha=\left\langle\operatorname{ifft} 2(C), \operatorname{fft} 2\left(X_{1}\right) \cdot * \operatorname{fft} 2\left(X_{2}\right) \cdot * \cdots \cdot * \operatorname{fft} 2\left(X_{m}\right)\right\rangle,
\end{array}\right.
$$

where $\langle A, B\rangle$ denotes

$$
\langle A, B\rangle=\sum_{j, k} A_{j k} B_{j k}
$$

For a BHHB tensor \mathcal{H} with the generating matrix H, we do the embedding twice. First we embed each Hankel block into a larger anti-circulant block, and then we embed the block Hankel tensor with anti-circulant blocks into a BAAB tensor $\mathcal{C}_{\mathcal{H}}$ in block sense. Notice that the compressed generating matrix of $\mathcal{C}_{\mathcal{H}}$ is exactly the generating matrix of \mathcal{H}. Hence we have the fast procedure for computing $\mathbf{y}=\mathcal{H} \times_{2} \mathbf{x}_{2} \cdots \times_{m} \mathbf{x}_{m}$

$$
\left\{\begin{array}{l}
\widetilde{X}_{p}=\underbrace{\left[\begin{array}{cc}
\operatorname{vec}_{n_{p}, N_{p}}^{-1}\left(\mathbf{x}_{p}\right) & \mathrm{O} \\
\mathrm{O} & \mathrm{O}
\end{array}\right]}_{N_{1}+N_{2}+\cdots+N_{m}-m+1}\}^{n_{1}+n_{2}+\cdots+n_{m}-m+1}, p=2,3, \ldots, m, \\
\widetilde{Y}=\operatorname{fft} 2\left(\operatorname{ifft} 2(H) \cdot * \mathrm{fft} 2\left(\widetilde{X}_{2}\right) \cdot * \cdots . * \mathrm{fft} 2\left(\widetilde{X}_{m}\right)\right), \\
\mathbf{y}=\operatorname{vec}\left(\widetilde{Y}\left(0: n_{1}-1,0: N_{1}-1\right)\right) .
\end{array}\right.
$$

Sometimes in applications there is no need to do the vectorization in the last line, and we just keep it as a matrix for later use. We also have the fast procedure for computing $\alpha=$ $\mathcal{H} \times_{1} \mathbf{x}_{1} \times_{2} \mathbf{x}_{2} \cdots \times_{m} \mathbf{x}_{m}$

$$
\left\{\begin{array}{l}
\widetilde{X}_{p}=\underbrace{\left[\begin{array}{cc}
\operatorname{vec}_{n_{p}, N_{p}}^{-1}\left(\mathbf{x}_{p}\right) & \mathrm{O} \\
\mathrm{O} & \mathrm{O}
\end{array}\right]}_{N_{1}+N_{2}+\cdots+N_{m}-m+1}\}^{n_{1}+n_{2}+\cdots+n_{m}-m+1}, p=1,2, \ldots, m \\
\alpha=\left\langle\operatorname{ifft2(H),\mathrm {ft}2(\widetilde {X}_{1})\cdot *\mathrm {fft}2(\widetilde {X}_{2})\cdot *\cdots ,*\mathrm {fft}2(\widetilde {X}_{m})\rangle }\right.
\end{array}\right.
$$

Similarly, we can also derive the fast algorithms for higher-level block Hankel tensor-vector products using the multi-dimensional FFT.

5. Numerical Examples

In this section, we will verify the effect of our fast algorithms for Hankel and block Hankel tensorvector products by several numerical examples.

We first construct

- $3^{\text {rd }}$-order square Hankel tensors of size $n \times n \times n(n=10,20, \ldots, 100)$, and
- $3^{\text {rd }}$-order square BHHB tensors of level- 1 size $n_{1} \times n_{1} \times n_{1}$ and level- 2 size $n_{2} \times n_{2} \times n_{2}$ $\left(n_{1}, n_{2}=5,6, \ldots, 12\right)$.

Then compute the tensor-vector products $\mathcal{H} \times_{2} \mathbf{x}_{2} \times{ }_{3} \mathbf{x}_{3}$ using both our fast algorithm and the non-structured algorithm directly based on the definition. The average running times of 1000 products are shown in Figure 2. From the results, we can see that the running time of our algorithm increases far more slowly than that of the non-structured algorithm just as the theoretical analysis. Moreover, the difference in running times is not only the low computational complexity, but also the absence of forming the Hankel or BHHB tensors explicitly in our algorithm.

Next, we shall apply our algorithm to the problems from exponential data fitting in order to show its efficiency, several of which are borrowed from [5, 6]. We do the experiments for both the one-dimensional case and the two-dimensional case:

- A one-dimensional signal is modelled as

$$
x_{n}=\exp ((-0.01+2 \pi \imath 0.20) n)+\exp ((-0.02+2 \pi \imath 0.22) n)+e_{n},
$$

where e_{n} is a complex white Gaussian noise (WGN).

- A two-dimensional signal is modelled as

$$
\begin{aligned}
x_{n_{1} n_{2}} & =\exp \left((-0.01+2 \pi \imath 0.20) n_{1}\right) \cdot \exp \left((-0.02+2 \pi \imath 0.18) n_{2}\right) \\
& +\exp \left((-0.02+2 \pi \imath 0.22) n_{1}\right) \cdot \exp \left((-0.01-2 \pi \imath 0.20) n_{2}\right)+e_{n_{1} n_{2}}
\end{aligned}
$$

where $e_{n_{1} n_{2}}$ is a two-dimensional complex white Gaussian noise.
The $3^{\text {rd }}$-order approach is accepted for both cases. We test the running times of the rank- $(2,2,2)$ approximation since these signals both have 2-peaks. Moreover, we will illustrate the HOSVDs of these Hankel and BHHB tensors, which shows that Papy et al.'s algorithm and our extended multi-dimensional version can also work when the number of peaks is unknown.

Figure 3 shows the comparison of these two algorithms' speeds. It provides a similar trend with the one in Figure 2, since the tensor-vector product plays a dominant role in the HOOI procedure. Therefore, when the speed of tensor-vector products is largely increased by exploiting the Hankel or block Hankel structure, we can handel much larger problems than before.

Then we fix the size of the Hankel and BHHB tensors. The Hankel tensor for 1D exponential data fitting is of size $15 \times 15 \times 15$, and the BHHB tensor for 2 D exponential data fitting is of

Figure 2. The average running time of tensor-vector products.
level- 1 size $5 \times 5 \times 5$ and level- 2 size $6 \times 6 \times 6$. Assume that we do not know the number of peaks. Then we compute the HOSVD of the best rank- $(10,10,10)$ approximation

$$
\mathcal{H} \approx \mathcal{S} \times_{1} U_{1}^{\top} \times_{2} U_{2}^{\top} \times_{3} U_{3}^{\top},
$$

where the core tensor \mathcal{S} is of size $10 \times 10 \times 10$. Figure 4 displays the Frobenius norm of $\mathcal{S}(k,:,:)$ for $k=1,2, \ldots, 10$. We can see that the first two of them are apparently larger than the others. (The others should be zero when the signal is noiseless, but here we add a noise at 10^{-4}-level.) Thus we can directly conclude that the number of peaks is two. Furthermore, our fast algorithm enables us to accept a much wild guess rather than to be anxious for the running time.

(b) BHHB tensors

Figure 3. The average running time of HOOI.

6. Conclusions

We propose a fast algorithm for Hankel tensor-vector products, which reduces the computational complexity from $\mathcal{O}\left(n^{m}\right)$ to $\mathcal{O}\left(m^{2} n \log m n\right)$ comparing with the algorithm without exploit the Hankel structure. This fast algorithm is derived by embedding the Hankel tensor into a larger anti-circulant tensor, which can be diagonalized by the Fourier matrices. The fast algorithm for higher-level block Hankel tensors is also described. Furthermore, the fast Hankel and BHHB tensor-vector products can largely accelerate the Papy et al.'s algorithm for one-dimensional exponential data fitting and our generalized algorithm for multi-dimensional case, respectively. It should be pointed out that our algorithm can also analogously be applied to higher-dimensional case although we only introduce the one- and two-dimensional cases for examples. The numerical experiments show the efficiency and effectiveness of our algorithms. Finally, this fast scheme

Figure 4. The Frobenius norms of slices of the core tensor.
should be introduced into every algorithm that involves Hankel or higher-level block Hankel tensor-vector products to improve its performance.

Acknowledgements

Weiyang Ding would like to thank Prof. Sanzheng Qiao for the useful discussions on fast algorithms based on Hankel matrices. We also thank Professors Rémy Boyer, Lieven De Lathauwer, Lars Eldén, Michael K. Ng, and the three referees for their detailed comments.

REFERENCES

1. Olshevsky V. Structured Matrices in Mathematics, Computer Science, and Engineering. II. Contemporary Mathematics, vol. 281. American Mathematical Society, Providence, RI, 2001.
2. Luque JG, Thibon JY. Hankel hyperdeterminants and Selberg integrals. Journal of Physics A: Mathematical and General 2003; 36(19):5267-5292.
3. Badeau R, Boyer R. Fast multilinear singular value decomposition for structured tensors. SIAM Journal on Matrix Analysis and Applications 2008; 30(3):1008-1021.
4. Boyer R, De Lathauwer L, Abed-Meraim K. Higher-order tensor-based method for delayed exponential fitting IEEE Transactions on Signal Processing 2007; 55(6):2795-2809.
5. Papy JM, De Lathauwer L, Van Huffel S. Exponential data fitting using multilinear algebra: The single-channel and multi-channel case. Numerical Linear Algebra with Applications 2005; 12(8):809-826.
6. Papy JM, De Lathauwer L, Van Huffel S. Exponential data fitting using multilinear algebra: The decimative case. Journal of Chemometrics 2009; 23(7-8):341-351.
7. De Lathauwer L. Blind separation of exponential polynomials and the decomposition of a tensor in rank$\left(L_{r}, L_{r}, \ldots, 1\right)$ terms. SIAM Journal on Matrix Analysis and Applications 2011; 32(4):1451-1474.
8. Qi L. Hankel tensors: Associated Hankel matrices and Vandermonde decomposition. Communications in Mathematical Sciences 2015; 13:113-125.
9. Song Y, Qi L. Infinite and finite dimensional Hilbert tensors. Linear Algebra and its Applications 2014; 451:1-14.
10. Chan R, Jin XQ. An Introduction to Iterative Toeplitz Solvers. SIAM, 2007.
11. Luk FT, Qiao S. A fast singular value algorithm for Hankel matrices. Contemporary Mathematics, vol. 323 Edited by Vadim Olshevsky, American Mathematical Society, Providence, RI; SIAM, Philadelphia, 2003; 169-178.
12. Ng MK. Iterative Methods for Toeplitz Systems. Oxford University Press, 2004.
13. Xu W, Qiao S. A fast symmetric SVD algorithm for square Hankel matrices. Linear Algebra and its Applications 2008; 428(2):550-563.
14. Pereyra V, Scherer G. Exponential Data Fitting and its Applications. Bentham Science Publishers, 2010.
15. Potts D, Tasche M. Parameter estimation for multivariate exponential sums. Electronic Transactions on Numerical Analysis 2013; 40:204-224.
16. Potts D, Tasche M. Parameter estimation for nonincreasing exponential sums by prony-like methods. Linear Algebra and its Applications 2013; 439(4):1024-1039.
17. Roy R, Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech and Signal Processing 1989; 37(7):984-995.
18. Kailath T, Roy III RH. ESPRIT-estimation of signal parameters via rotational invariance techniques. Optical Engineering 1990; 29(4):296-313.
19. Golub GH, Van Loan CF. Matrix Computations. 4th edn., The Johns Hopkins University Press, 2013.
20. Kolda TG, Bader BW. Tensor decompositions and applications. SIAM Review 2009; 51(3):455-500.
21. De Lathauwer L, De Moor B, Vandewalle J. A multilinear singular value decomposition. SIAM Journal on Matrix Analysis and Applications 2000; 21(4):1253-1278.
22. De Lathauwer L, De Moor B, Vandewalle J. On the best rank-1 and rank- $\left(R_{1}, R_{2}, \ldots, R_{n}\right)$ approximation of higher-order tensors. SIAM Journal on Matrix Analysis and Applications 2000; 21(4):1324-1342.
23. De Lathauwer L, Hoegaerts L. Rayleigh quotient iteration for the computation of the best rank$\left(R_{1}, R_{2}, \ldots, R_{N}\right)$ approximation in multilinear algebra. Technical Report, SCD-SISTA 04-003.
24. Eldén L, Savas B. A Newton-Grassmann method for computing the best multilinear rank- $\left(r_{1}, r_{2}, r_{3}\right)$ approximation of a tensor. SIAM Journal on Matrix Analysis and Applications 2009; 31(2):248-271.
25. Rouquette S, Najim M. Estimation of frequencies and damping factors by two-dimensional ESPRIT type methods. IEEE Transactions on Signal Processing 2001; 49(1):237-245.
26. Wang Y, Chen JW, Liu Z. Comments on "Estimation of frequencies and damping factors by two-dimensional ESPRIT type methods". IEEE Transactions on Signal Processing 2005; 53(8):3348-3349.
27. Davis PJ. Circulant Matrices. John Wiley \& Sons: New York, 1979.
28. Qi L. Eigenvalues of a real supersymmetric tensor. Journal of Symbolic Computation 2005; 40(6):1302-1324.
29. Qi L. Eigenvalues and invariants of tensors. Journal of Mathematical Analysis and Applications 2007; 325(2):1363-1377.
30. Lim LH. Singular values and eigenvalues of tensors: a variational approach. 2005 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, IEEE, 2005; 129-132.
31. Jin XQ. Developments and Applications of Block Toeplitz Iterative Solvers. Science Press, Beijing and Kluwer Academic Publishers, Dordrecht, 2002.
32. Qiao S, Liu G, Xu W. Block Lanczos tridiagonalization of complex symmetric matrices. Advanced Signal Processing Algorithms, Architectures, and Implementations XV, Proceedings of the SPIE, vol. 5910, SPIE, 2005; 285-295.
33. Browne K, Qiao S, Wei Y. A Lanczos bidiagonalization algorithm for Hankel matrices. Linear Algebra and its Applications 2009; 430(5):1531-1543.
34. Chen Z, Qi L. Circulant tensors with applications to spectral hypergraph theory and stochastic process. arXiv preprint arXiv:1312.2752 2014; .

[^0]: *Correspondence to: Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong. Email: liqun.qi@polyu.edu.hk.

 Contract/grant sponsor: W. Ding is supported by the National Natural Science Foundation of China under grant 11271084.

 Contract/grant sponsor: L. Qi is supported by the Hong Kong Research Grant Council (Grant No. PolyU 502510, 502111, 501212, 501913).

 Contract/grant sponsor: Y. Wei is supported by the National Natural Science Foundation of China under grant 11271084.
 ${ }^{\dagger}$ E-mail: 11110180009@fudan.edu.cn; liqun.qi@polyu.edu.hk; ymwei@fudan.edu.cn.

