Nonnegative Tensor Factorization, Completely Positive Tensors and a Hierarchical Elimination Algorithm

Liqun Qi †, Changqing Xu † and Yi Xu ‡

June 23, 2014

Abstract
Nonnegative tensor factorization has applications in statistics, computer vision, exploratory multiway data analysis and blind source separation. A symmetric nonnegative tensor, which has an exact symmetric nonnegative factorization, is called a completely positive tensor. This concept extends the concept of completely positive matrices. A classical result in the theory of completely positive matrices is that a symmetric, diagonally dominated nonnegative matrix is a completely positive matrix. In this paper, we introduce strongly symmetric tensors and show that a symmetric tensor has a symmetric binary decomposition if and only if it is strongly symmetric. Then we show that a strongly symmetric, hierarchically dominated nonnegative tensor is a completely positive tensor, and present a hierarchical elimination algorithm for checking this. Numerical examples are given to illustrate this. Some other properties of completely positive tensors are discussed. In particular, we show that the completely positive tensor cone and the copositive tensor cone of the same order are dual to each other.

Key words: nonnegative tensor factorization, completely positive tensor, eigenvalues, dominance properties, copositive tensor, strongly symmetric tensor, hierarchical dominance, hierarchical elimination algorithm.

AMS subject classifications (2010): 15A18; 15A69

*Email: maqilq@polyu.edu.hk. Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong. This author’s work was supported by the Hong Kong Research Grant Council (Grant No. PolyU 501909, 502510, 502111 and 501212).
†Email: cqxuiit@yahoo.com. School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou, 215009 China. This author’s work was done when visiting The Hong Kong Polytechnic University and supported by Jiangsu NSF (No.).
‡Email: yi.xu1983@gmail.com. Department of Mathematics, Southeast University, Nanjing, 210096 China.
1 Introduction

Nonnegative tensor factorization has applications in statistics, computer vision, exploratory multiway data analysis and blind source separation [3, 13]. In the literature, nonnegative matrix factorization refers to an approximation factorization [2, 5, 9]. A symmetric nonnegative matrix, which has an exact symmetric nonnegative factorization, is called a completely positive matrix [1, 6, 7, 14]. In this paper, as an extension of completely positive matrices, we introduce completely positive tensors and study their properties.

Let \(A = (a_{i_1 \ldots i_m}) \) be a real \(m \)th order \(n \)-dimensional tensor. Denote the set of all nonnegative vectors in \(\mathbb{R}^n \) by \(\mathbb{R}^n_+ \). For any vector \(u \in \mathbb{R}^n \), \(u^m \) is a rank-one \(m \)th order symmetric \(n \)-dimensional tensor \(u^m = (u_{i_1} \cdots u_{i_m}) \). If

\[
A = \sum_{k=1}^{r} (u^{(k)})^m,
\]

where \(u^{(k)} \in \mathbb{R}^n_+ \) for \(k = 1, \ldots, r \), then \(A \) is called a completely positive tensor. The minimum value of \(r \) is called the CPrank of \(A \). The concepts of completely positive tensors and their CPranks extend the concepts of completely positive matrices and their CPranks [1, 6, 7, 14].

A classical result in the theory of completely positive matrices is that a symmetric, diagonally dominated nonnegative matrix is a completely positive matrix [1, Theorem 2.5][7]. This forms a checkable condition for a completely positive matrix. The main result of this paper is that a strongly symmetric, hierarchically dominated nonnegative tensor is a completely positive tensor. This extends the above classical result. We present a hierarchical elimination algorithm for checking this. Some other properties of completely positive tensors are also discussed.

The rest of the paper is distributed as follows. We discuss some properties of completely positive tensors in the next section. In Section 3, we show that a strongly symmetric, hierarchically dominated nonnegative tensor is a completely positive tensor, and present a hierarchical elimination algorithm for checking this. Some numerical examples are given in Section 4. We make some final remarks in Section 5.

For a vector \(x \in \mathbb{R}^n \), denote \(\text{supp}(x) = \{i : 1 \leq i \leq n, x_i \neq 0\} \). For a finite set \(S \), \(|S| \) denotes its cardinality.

2 Properties of a Completely Positive Tensor

This section is divided to four subsections.

The Hadamard product of completely positive matrices is completely positive [1, Corollary 2.2]. The principal sub-matrices of a completely positive matrix are also completely
positive [1, Proposition 2.4]. We extend these results to completely positive tensors in Subsection 2.1.

The eigenvalues of a completely positive matrix are always nonnegative, as a completely positive matrix is positive semi-definite. In Subsection 2.2, after summarizing some necessary knowledge about eigenvalues of tensors, we prove that the H-eigenvalues of a completely positive tensor are always nonnegative. We further show that when the order \(m \) is even, the Z-eigenvalue of a completely positive tensor are all nonnegative, while when the order \(m \) is odd, a Z-eigenvector associated with a positive (negative) Z-eigenvalue of a completely positive tensor is always nonnegative (nonpositive).

In Subsection 2.3, we prove some dominance properties which the entries of a completely positive tensor must obey. These properties form some checkable necessary conditions for a completely positive tensor.

It is well-known that the completely positive matrix cone and the copositive matrix cone are dual to each other [1, Theorem 2.3]. Recently, motivated by the study of spectral hypergraph theory, Qi [11] introduced copositive tensors. In Subsection 2.4, we show that the completely positive tensor cone and the copositive tensor cone of the same order are dual to each other.

2.1 Hadamard Product and Principal Sub-Tensors

Let \(x = (x_1, \cdots, x_n)^\top, y = (y_1, \cdots, y_n)^\top \in \mathbb{R}^n \). Then the Hadamard product of \(x \) and \(y \) is \(x \odot y = (x_1y_1, \cdots, x_ny_n)^\top \in \mathbb{R}^n \). Let \(\mathcal{A} = (a_{i_1\cdots i_m}) \) and \(\mathcal{B} = (b_{i_1\cdots i_m}) \) be two real \(m \)-th order \(n \)-dimensional tensors. Then their Hadamard product is a real \(m \)-th order \(n \)-dimensional tensor \(\mathcal{A} \odot \mathcal{B} = (a_{i_1\cdots i_m}b_{i_1\cdots i_m}) \) [12]. We have the following proposition.

Proposition 1 The Hadamard product of two completely positive tensors is completely positive.

Proof. Assume that \(\mathcal{A} \) and \(\mathcal{B} \) are two \(m \)-th order \(n \)-dimensional tensors. Then we may assume that

\[
\mathcal{A} = \sum_{k=1}^{r} (u^{(k)})^m \quad \text{and} \quad \mathcal{B} = \sum_{j=1}^{p} (v^{(j)})^m,
\]

where \(u^{(k)}, v^{(j)} \in \mathbb{R}_+^n \) for \(k = 1, \cdots, r \) and \(j = 1, \cdots, p \). Then for \(i_1, \cdots, i_m = 1, \cdots, n \), we have

\[
a_{i_1\cdots i_m} = \sum_{k=1}^{r} u_{i_1}^{(k)} \cdots u_{i_m}^{(k)} \quad \text{and} \quad b_{i_1\cdots i_m} = \sum_{j=1}^{p} v_{i_1}^{(j)} \cdots v_{i_m}^{(j)}.
\]

Thus, for \(i_1, \cdots, i_m = 1, \cdots, n \),

\[
a_{i_1\cdots i_m}b_{i_1\cdots i_m} = \sum_{k=1}^{r} \sum_{j=1}^{p} \left(u_{i_1}^{(k)}v_{i_1}^{(j)} \right) \cdots \left(u_{i_m}^{(k)}v_{i_m}^{(j)} \right).
\]
This implies that
\[A \circ B = \sum_{k=1}^{r} \sum_{j=1}^{p} \left(u^{(k)} \circ v^{(j)} \right)^m, \]
where \(u^{(k)} \circ v^{(j)} \in \mathbb{R}^n_+ \) for \(k = 1, \cdots, r \) and \(j = 1, \cdots, p \). Hence, \(A \circ B \) is also completely positive.

Let \(S \) be a nonempty subset of \(\{1, 2, \cdots, n\} \) and \(s = |S| \). Let \(x \in \mathbb{R}^n \). Then we use \(x(S) \) to denote the sub-vector of \(x \), such that \(x(S) \in \mathbb{R}^s \) and its components are \(x_i, i \in S \). Let \(A = (a_{i_1 \cdots i_m}) \) be a real \(m \)th order \(n \)-dimensional tensor. We use \(A(S) \) to denote a real \(m \)th order \(s \)-dimensional tensor such that its entries are \(a_{i_1 \cdots i_m}, i_1, \cdots, i_m \in S \), and call \(A(S) \) a principal sub-tensor of \(A \) [10].

Proposition 2 All the principal sub-tensors of a completely positive tensor are completely positive.

Proof. Let \(A \) be a completely positive tensor expressed by (1). Let \(S \) be a nonempty subset of \(\{1, 2, \cdots, n\} \) and \(s = |S| \). Then we have
\[A(S) = \sum_{k=1}^{r} \left(u^{(k)}(S) \right)^m, \]
where \(u^{(k)}(S) \in \mathbb{R}^n_+ \) for \(k = 1, \cdots, r \). Thus, \(A(S) \) is also completely positive. \(\square \)

2.2 Eigenvalues

Let \(A = (a_{i_1 \cdots i_m}) \) be a real \(m \)th order \(n \)-dimensional tensor, and \(x \in C^n \). Then
\[Ax^m = \sum_{i_1, \cdots, i_m=1}^{n} a_{i_1 \cdots i_m} x_{i_1} \cdots x_{i_m}, \]
and \(Ax^{m-1} \) is a vector in \(C^n \), with its \(i \)th component defined by
\[(Ax^{m-1})_i = \sum_{i_2, \cdots, i_m=1}^{n} a_{i_1 \cdots i_m} x_{i_2} \cdots x_{i_m}. \]

Let \(s \) be a positive integer. Then \(x^{[s]} \) is a vector in \(C^n \), with its \(i \)th component defined by \(x_i^s \). We say that \(A \) is symmetric if its entries \(a_{i_1 \cdots i_m} \) are invariant for any permutation of the indices. If \(Ax^m \geq 0 \) for all \(x \in \mathbb{R}^n \), then we say that \(A \) is positive semi-definite. Clearly, only when \(m \) is even, a nonzero tensor \(A \) can be positive semi-definite.

The following definitions of eigenvalues, H-eigenvalues, E-eigenvalues and Z-eigenvalues were introduced in [10].
If \(x \in \mathbb{C}^n, x \neq 0, \lambda \in \mathbb{C}, x \) and \(\lambda \) satisfy
\[
A x^{m-1} = \lambda x^{[m-1]}, \tag{2}
\]
then we call \(\lambda \) an **eigenvalue** of \(A \), and \(x \) its corresponding **eigenvector**. By (2), if \(\lambda \) is an eigenvalue of \(A \) and \(x \) is its corresponding eigenvector, then
\[
\lambda = \frac{(A x^{m-1})_j}{x^{[m-1]}_j},
\]
for some \(j \) with \(x_j \neq 0 \). In particular, if \(x \) is real, then \(\lambda \) is also real. In this case, we say that \(\lambda \) is an **H-eigenvalue** of \(A \) and \(x \) is its corresponding **H-eigenvector**.

We say a complex number \(\lambda \) is an **E-eigenvalue** of \(A \) if there exists a complex vector \(x \) such that
\[
\begin{bmatrix}
A x^{m-1} = \lambda x, \\
x^T x = 1
\end{bmatrix} \tag{3}
\]
In this case, we say that \(x \) is an E-eigenvector of the tensor \(A \) associated with the E-eigenvalue \(\lambda \). By (3), if \(\lambda \) is an E-eigenvalue of \(A \) and \(x \) is its E-corresponding eigenvector, then
\[
\lambda = A x^m.
\]
Thus, if \(x \) is real, then \(\lambda \) is also real. In this case, we say that \(\lambda \) is an **Z-eigenvalue** of \(A \) and \(x \) is its corresponding **Z-eigenvector**.

By [10, Theorem 5], we have the following proposition.

Proposition 3 A real \(m \)-th order \(n \)-dimensional symmetric tensor \(A \) always has Z-eigenvalues. If \(m \) is even, then \(A \) always has at least one H-eigenvalue. When \(m \) is even, the following three statements are equivalent:

(a) \(A \) is positive semi-definite;
(b) all of the H-eigenvalues of \(A \) are nonnegative;
(c) all of the Z-eigenvalues of \(A \) are nonnegative.

If all the entries of \(A \) are nonnegative, then we say that \(A \) is a nonnegative tensor. By (1), a completely positive tensor is a symmetric nonnegative tensor. By [15], a nonnegative tensor has at least one H-eigenvalue, which is the largest modulus of its eigenvalues.

We now have the following theorem on H-eigenvalues of a completely positive tensor.

Theorem 1 Suppose that \(A = (a_{i_1 \ldots i_m}) \) is an \(m \)-th order \(n \)-dimensional completely positive tensor, expressed by (1), with \(m \geq 2 \). Then the H-eigenvalues of \(A \) are always nonnegative.

Proof. First, assume that \(m \) is even. For any \(x \in \mathbb{R}^n \), we have
\[
A x^m = \sum_{k=1}^r (u^{(k)})^m x^m = \sum_{k=1}^r [u^{(k)}^T x]^m \geq 0.
\]
Thus, \mathcal{A} is positive semi-definite. By Proposition 3, all of the H-eigenvalues are nonnegative.

Now assume that m is odd. By the discussion before this theorem, \mathcal{A} has at least one H-eigenvalue. Suppose that λ is an H-eigenvalue of \mathcal{A}, with an H-eigenvector x. Then $x \in \mathbb{R}^n, x \neq 0$. By the definition of H-eigenvalue and H-eigenvector, we have

$$\lambda x^{[m-1]} = \mathcal{A} x^{m-1} = \sum_{k=1}^{r} (u^{(k)})^m x^{m-1} = \sum_{k=1}^{r} [(u^{(k)})^\top x]^{m-1} u^{(k)} \geq 0.$$

Thus, $\lambda \geq 0$. This completes the proof. \square

By (3), when m is odd, if λ is a Z-eigenvalue of a tensor \mathcal{A} with a Z-eigenvector x, then $-\lambda$ is a Z-eigenvalue of a tensor \mathcal{A} with a Z-eigenvector $-x$. Hence, when m is odd, we cannot expect that the Z-eigenvalues of a completely positive tensor are always nonnegative. However, in this case, we may get strong properties of Z-eigenvectors.

Theorem 2 Suppose that $\mathcal{A} = (a_{i_1 \cdots i_m})$ is an mth order n-dimensional completely positive tensor, expressed by (1), with $m \geq 2$. When the order m is even, the Z-eigenvalue of a completely positive tensor are all nonnegative. When the order m is odd, a Z-eigenvalue associated with a positive (negative) Z-eigenvalue of a completely positive tensor is always nonnegative (nonpositive).

Proof. The proof of the case that m is even is similar to the first part of the proof of Theorem 1.

Now assume that m is odd. Suppose that λ is a Z-eigenvalue of \mathcal{A}, with an Z-eigenvector x. By the definition of Z-eigenvalue and Z-eigenvector, we have

$$\lambda x = \mathcal{A} x^{m-1} = \sum_{k=1}^{r} (u^{(k)})^m x^{m-1} = \sum_{k=1}^{r} [(u^{(k)})^\top x]^{m-1} u^{(k)} \geq 0.$$

Thus, if $\lambda > 0$, then $x \geq 0$, and if $\lambda < 0$, then $x \leq 0$. This completes the proof. \square

2.3 Dominance Properties

Denote $\mathcal{I} = \{(i_1, \cdots, i_m) : 1 \leq i_k \leq n, k = 1, \cdots, m\}$. For $(i_1, \cdots, i_m) \in \mathcal{I}$, let $[(i_1, \cdots, i_m)]$ be the set of all the distinct members in $\{i_1, \cdots, i_m\}$. For example, $[(1, 1, 4, 5)] = \{1, 4, 5\}$.

Let $(i_1, \cdots, i_m), (j_1, \cdots, j_m) \in \mathcal{I}$. We say that (i_1, \cdots, i_m) is dominated by (j_1, \cdots, j_m), and denote $(i_1, \cdots, i_m) \preceq (j_1, \cdots, j_m)$ if $[(i_1, \cdots, i_m)] \subseteq [(j_1, \cdots, j_m)]$. We say that (i_1, \cdots, i_m) is similar to (j_1, \cdots, j_m), and denote $(i_1, \cdots, i_m) \sim (j_1, \cdots, j_m)$ if $[(i_1, \cdots, i_m)] = [(j_1, \cdots, j_m)]$.

We have the following dominance property for a completely positive tensor.

Theorem 3 Suppose that $\mathcal{A} = (a_{i_1 \cdots i_m})$ is an mth order n-dimensional completely positive tensor, expressed by (1), with $m \geq 2$. If $(i_1, \cdots, i_m) \preceq (j_1, \cdots, j_m)$ and $a_{j_1 \cdots j_m} \neq 0$, then $a_{i_1 \cdots i_m} > 0$.

6
Proof. We have that
\[0 \neq a_{j_1, \ldots, j_m} = \sum_{k=1}^{r} u_{j_1}^{(k)} \cdots u_{j_m}^{(k)}. \]

Since \(u^{(k)} \in \mathbb{R}_+^n \) for \(k = 1, \ldots, r \), at least for one \(k = \bar{k} \), \(u_{j_1}^{(\bar{k})} > 0, \ldots, u_{j_m}^{(\bar{k})} > 0 \). Since \(\{i_1, \ldots, i_m\} \subseteq \{j_1, \ldots, j_m\} \), this implies that \(u_{i_1}^{(\bar{k})} > 0, \ldots, u_{i_m}^{(\bar{k})} > 0 \). Therefore,
\[a_{i_1, \ldots, i_m} = \sum_{k=1}^{r} u_{i_1}^{(k)} \cdots u_{i_m}^{(k)} > 0. \]

This completes the proof. \(\square \)

Corollary 1 Suppose that \(\mathcal{A} = (a_{i_1, \ldots, i_m}) \) is an \(m \)-th order \(n \)-dimensional completely positive tensor, expressed by (1), with \(m \geq 2 \). If \((i_1, \ldots, i_m) \sim (j_1, \ldots, j_m) \), then \(a_{j_1, \ldots, j_m} = 0 \) if and only if \(a_{i_1, \ldots, i_m} = 0 \).

When \(m = 2 \), this property can be derived from the symmetric property of the matrix \(\mathcal{A} \). When \(m > 2 \), this property cannot be derived from the symmetric property of the tensor \(\mathcal{A} \). For example, for a third order completely positive tensor \(\mathcal{A} = (a_{ij}) \), we have \(a_{ii} = a_{jj} \) for all \(i \) and \(j \), satisfying \(1 \leq i, j \leq n \). But this is not true for a general third order symmetric tensor. This motivates us to introduce strongly symmetric tensors in Section 3.

Suppose that \((j_1, \ldots, j_m) \in \mathcal{I} \) and \(I = \left\{ (i^{(1)}_1, \ldots, i^{(1)}_m), \ldots, (i^{(s)}_1, \ldots, i^{(s)}_m) \right\} \subseteq \mathcal{I} \). Assume that \((i^{(p)}_1, \ldots, i^{(p)}_m) \leq (j_1, \ldots, j_m) \) for \(p = 1, \ldots, s \), and for any index \(i \in \{j_1, \ldots, j_m\} \), if it appears \(t \) times in \(\{j_1, \ldots, j_m\} \), then it appears in \(I \) \(st \) times. Then we call \(I \) an \textit{s-duplicate} of \((j_1, \ldots, j_m) \).

We have the following strong dominance property for a completely positive tensor.

Theorem 4 Suppose that \(\mathcal{A} = (a_{i_1, \ldots, i_m}) \) is an \(m \)-th order \(n \)-dimensional completely positive tensor, expressed by (1), with \(m \geq 2 \). Assume that \(I = \left\{ (i^{(1)}_1, \ldots, i^{(1)}_m), \ldots, (i^{(s)}_1, \ldots, i^{(s)}_m) \right\} \) is an \(s \)-duplicate of \((j_1, \ldots, j_m) \in \mathcal{I} \). Then
\[\frac{1}{s} \sum_{p=1}^{s} a_{i_1^{(p)}, \ldots, i_m^{(p)}} \geq a_{j_1 \cdots j_m}. \]

Proof. We have that
\[\frac{1}{s} \sum_{p=1}^{s} a_{i_1^{(p)}, \ldots, i_m^{(p)}} = \sum_{k=1}^{r} \frac{1}{s} \sum_{p=1}^{s} u_{i_1}^{(k)} \cdots u_{i_m}^{(k)} \geq \sum_{k=1}^{r} \left(\prod_{p=1}^{s} u_{i_1}^{(k)} \cdots u_{i_m}^{(k)} \right)^{\frac{1}{s}} = \sum_{k=1}^{r} u_{j_1}^{(k)} \cdots u_{j_m}^{(k)} = a_{j_1 \cdots j_m}, \]
where the inequality is due to the fact that the geometric mean of some positive numbers is never greater than their arithmetic mean. This completes the proof. \(\square \)
Corollary 2 Suppose that $A = (a_{i_1 \cdots i_m})$ is an mth order n-dimensional completely positive tensor, expressed by (1), with $m \geq 2$. Assume that $(j_1, \cdots, j_m) \in \mathcal{I}$. Then
\[
\frac{1}{m} \sum_{p=1}^{m} a_{j_p \cdots j_p} \geq a_{j_1 \cdots j_m}.
\]

2.4 The Completely Positive Tensor Cone and the Copositive Tensor Cone

Denote the set of all mth order n-dimensional completely positive tensors by $CP_{m,n}$. By (1), it is easy to see that $CP_{m,n}$ is a closed convex cone. Suppose that B is a real mth order nth dimensional symmetric tensor. If for all $x \in \mathbb{R}_+^n$, we have $Bx^m \geq 0$, then B is called a copositive tensor [11]. Denote the set of all mth order n-dimensional copositive tensors by $COP_{m,n}$. Then, it is also easy to see that $COP_{m,n}$ is a closed convex cone. When $m = 2$, a classical result is that the completely positive matrix cone and the copositive matrix cone are dual to each other [1, Theorem 2.3]. We now extend this result to the completely positive tensor cone and the copositive tensor cone.

Let $A = (a_{i_1 \cdots i_m})$ and $B = (b_{i_1 \cdots i_m})$ be two real mth order n-dimensional symmetric tensors. Their inner product is defined as
\[
A \bullet B = \sum_{i_1, \ldots, i_m=1}^{n} a_{i_1 \cdots i_m} b_{i_1 \cdots i_m}.
\]

Theorem 5 Let $m \geq 2$ and $n \geq 1$. Then $CP_{m,n}$ and $COP_{m,n}$ are dual to each other.

Proof. Suppose that B is an mth order n-dimensional copositive tensor. For any $A \in CP_{m,n}$, by definition, we may assume that A can be expressed by (1). Since B is a copositive tensor, by definition, $B (u^{(k)})^m \geq 0$, for $k = 1, \cdots, r$. Thus,
\[
A \bullet B = \sum_{k=1}^{r} B (u^{(k)})^m \geq 0.
\]
Thus, B is in the dual cone of $CP_{m,n}$.

On the other hand, assume that B is in the dual cone of $CP_{m,n}$. Let $x \in \mathbb{R}_+^n$. Then x^m is an m order n-dimensional completely positive tensor, i.e., $x \in CP_{m,n}$. We have $Bx^m = B \bullet x^m \geq 0$. This shows that B is a copositive tensor.

Together, we see that $CP_{m,n}$ and $COP_{m,n}$ are dual to each other. \qed

3 A Checkable Sufficient Condition for Completely Positive Tensors

This section is divided to two subsections.
In Subsection 3.1, we introduce strongly symmetric tensors and show that a symmetric tensor is strongly symmetric if and only if it has a symmetric binary decomposition. We present a hierarchical elimination algorithm for checking this.

In Subsection 3.2, we further define strongly symmetric, hierarchically dominated non-negative tensors and show that a strongly symmetric, hierarchically dominated nonnegative tensor is a completely positive tensor. We show that the hierarchical elimination algorithm given in Subsection 3.1 can be used to check this condition too.

3.1 Strongly Symmetric Tensors

Suppose that $A = (a_{i_1 \cdots i_m})$ is a real m-th order n-dimensional tensor. If for any $(i_1, \cdots, i_m) \sim (j_1, \cdots, j_m), (i_1, \cdots, i_m), (j_1, \cdots, j_m) \in I$, we have $a_{i_1 \cdots i_m} = a_{j_1 \cdots j_m}$, then we say that A is a strongly symmetric tensor. Clearly, a strongly symmetric tensor is a symmetric tensor.

It is also clear that a linear combination of strongly symmetric tensors is still a strongly symmetric tensor. Thus, the set of all real m-th order n-dimensional strongly symmetric tensors is a linear space.

Let $A = (a_{i_1 \cdots i_m})$ be a real m-th order n-dimensional symmetric tensor. If

$$A = \sum_{k=1}^{r} \alpha_k (v^{(k)})^m,$$

where α_k are real numbers and $v^{(k)}$ are binary vectors in $\{0, 1\}^n$ for $k = 1, \cdots, r$, then we say that A has a symmetric binary decomposition, which is not a nonnegative tensor factorization, but a general symmetric tensor decomposition [4, 8].

It is easy to show the following proposition.

Proposition 4 Suppose that $A = (a_{i_1 \cdots i_m})$ is a real m-th order n-dimensional tensor with a symmetric binary decomposition. Then A is strongly symmetric.

Proof. Suppose that $A = (a_{i_1 \cdots i_m})$ is expressed by (4). Assume that $(i_1, \cdots, i_m) \sim (j_1, \cdots, j_m)$. Then

$$a_{i_1 \cdots i_m} = \sum \{ \alpha_k : (i_1, \cdots, i_m) \preceq \text{supp} (v^{(k)}) \} = \sum \{ \alpha_k : (j_1, \cdots, j_m) \preceq \text{supp} (v^{(k)}) \} = a_{j_1 \cdots j_m}.$$

This completes the proof. \qed

For $k = 1, \cdots, m$, let

$$I_k = \{(i_1, \cdots, i_m) \in I : [i_1, \cdots, i_m] = k\}.$$

Then I_1, \cdots, I_m are disjoint to each other and form a partition of I. 9
In \(\mathcal{I}_k \), there are some members similar to each other. For each class of similar members in \(I_k \), we wish to pick only one representative member \((i_1, \ldots, i_m)\) such that only the last index is repeated, i.e., \(i_1 < i_2 < \cdots < i_k = \cdots = i_m \). Hence, for \(k = 1, \ldots, m \), let
\[
\mathcal{I}_{k+} = \{(i_1, \ldots, i_{k-1}, i_k, i_k, \ldots, i_k) \in \mathcal{I}_k : 1 \leq i_1 < i_2 < \cdots < i_k \leq n\}.
\]
Then \(\mathcal{I}_{k+} \) is the “representative” set of \(\mathcal{I}_k \) in the sense that any member in \(\mathcal{I}_k \) is similar to a member of \(\mathcal{I}_{k+} \) and no two members in \(\mathcal{I}_{k+} \) are similar.

Suppose that \(\mathcal{A} = (a_{i_1 \cdots i_m}) \) is a real \(m \)th order \(n \)-dimensional tensor. For \(k = 1, \ldots, m \), let
\[
\mathcal{I}_{k+}(\mathcal{A}) = \{(i_1, \ldots, i_k, i_k, \ldots, i_k) \in \mathcal{I}_{k+} : a_{i_1 \cdots i_{k-1} i_k \cdots i_k} \neq 0\}.
\]

We now construct a hierarchical elimination algorithm to obtain symmetric binary decomposition of a strongly symmetric tensor. Suppose that \(\mathcal{A} = (a_{i_1 \cdots i_m}) \) is a real \(m \)th order \(n \)-dimensional strongly symmetric tensor.

Algorithm 1

Step 0. Let \(k = 0 \) and \(\mathcal{A}^{(0)} = (a_{i_1 \cdots i_m}^{(0)}) \) be defined by \(\mathcal{A}^{(0)} = \mathcal{A} \).

Step 1. For any \(e = (i_1, \ldots, i_{m-k}, \ldots, i_{m-k}) \in \mathcal{I}_{(m-k)+}(\mathcal{A}^{(k)}) \), let \(v^e \in \mathbb{R}_+^n \) be a binary vector such that \(v^e_{i_1} = \cdots = v^e_{i_{m-k}} = 1 \) and \(v^e_i = 0 \) if \(i \not\in \{i_1, \ldots, i_{m-k}\} \).

Let \(\mathcal{A}^{(k+1)} = (a_{i_1 \cdots i_m}^{(k+1)}) \) be defined by
\[
\mathcal{A}^{(k+1)} = \mathcal{A}^{(k)} - \sum_{e} \left\{ a_{i_1 \cdots i_{m-k} \cdots i_{m-k}}^{(k)} (v^e)^m : e = (i_1, \ldots, i_{m-k}, \ldots, i_{m-k}) \in \mathcal{I}_{(m-k)+}(\mathcal{A}^{(k)}) \right\}.
\]

Step 2. Let \(k = k + 1 \). If \(k = m \), stop. Otherwise, go to Step 1.

Theorem 6

Suppose that \(\mathcal{A} = (a_{i_1 \cdots i_m}) \) is a real \(m \)th order \(n \)-dimensional strongly symmetric tensor. Then we have \(\mathcal{A}^{(m)} = 0 \) in Algorithm 1, i.e., we have
\[
\mathcal{A} = \sum_{k=0}^{m-1} \sum a_{i_1 \cdots i_{m-k} \cdots i_{m-k}}^{(k)} (v^e)^m : e = (i_1, \ldots, i_{m-k}, \ldots, i_{m-k}) \in \mathcal{I}_{(m-k)+}(\mathcal{A}^{(k)}) \}
\]

Thus, a symmetric tensor has a symmetric binary decomposition if and only if it is strongly symmetric.

Proof. For \(k = 1, \ldots, m \), we now show by induction that \(\mathcal{A}^{(k)} \) is strongly symmetric, and \(\mathcal{I}_{(m-p)+}(\mathcal{A}^{(k)}) = \emptyset \) for \(p = 0, \ldots, k - 1 \).

By Step 0 and the assumption, \(\mathcal{A}^{(0)} \) is strongly symmetric.

For \(k = 0, \ldots, m - 1 \), assume that \(\mathcal{A}^{(k)} \) is strongly symmetric, and \(\mathcal{I}_{(m-p)+}(\mathcal{A}^{(k)}) = \emptyset \) for \(p = 0, \ldots, k - 1 \) if \(k \geq 1 \). By (5) and Proposition 4, \(\mathcal{A}^{(k+1)} \) is a linear combination of strongly symmetric tensors, thus also a strongly symmetric tensor. As in this iteration...
Theorem 7

In (6), if all the coefficients \(a_i^{(k)} \) are nonnegative, then \(\mathcal{A} \) is a completely positive tensor. In this section, we explore a sufficient condition for this.

For \(p = 1, \cdots, m-1 \), and \(q = 1, \cdots, m-p \), for any \((i_1, \cdots, i_p, i_p, \cdots, i_p) \in \mathcal{I}_{p+} \), define

\[\mathcal{J}_p(i_1, \cdots, i_p) = \{ (j_1, \cdots, j_{p+q}, \cdots, j_{p+q}) \in \mathcal{I}_{p+} : (i_1, \cdots, i_p, i_p, \cdots, i_p) \leq (j_1, \cdots, j_{p+q}, \cdots, j_{p+q}) \} . \]

An \(m \)-th order \(n \)-dimensional strongly symmetric nonnegative tensor \(\mathcal{A} = (a_{i_1 \cdots i_m}) \) is said to be **hierarchically dominated** if for \(p = 1, \cdots, m-1 \), and \(q = 1, \cdots, m-p \), we have

\[
a_{i_1 \cdots i_p \cdots i_p} \geq \sum \left\{ a_{j_1 \cdots j_{p+1} \cdots j_{p+1}} : (j_1, \cdots, j_{p+1}, j_{p+1}, \cdots, j_{p+1}) \in \mathcal{J}_p(i_1, \cdots, i_p) \right\}. \tag{7}
\]

Suppose that \(\mathcal{A} \) is an \(m \)-th order \(n \)-dimensional strongly symmetric, hierarchically dominated nonnegative tensor. By (7), for \(p = 1, \cdots, m-2 \), and any \((i_1, \cdots, i_p, i_p, \cdots, i_p) \in \mathcal{I}_{p+} \), we have

\[
a_{i_1 \cdots i_p \cdots i_p} \geq \sum \left\{ a_{j_1 \cdots j_{p+2} \cdots j_{p+2}} : (j_1, \cdots, j_{p+2}, j_{p+2}, \cdots, j_{p+2}) \in \mathcal{J}_2(i_1, \cdots, i_p) \right\} .
\]

Thus, by induction, we can prove the following proposition.

Proposition 5 Suppose that \(\mathcal{A} = (a_{i_1 \cdots i_m}) \) is an \(m \)-th order \(n \)-dimensional strongly symmetric, hierarchically dominated nonnegative tensor. Then for \(p = 1, \cdots, m-1 \), and \(q = 1, \cdots, m-p \), we have

\[
a_{i_1 \cdots i_p \cdots i_p} \geq \sum \left\{ a_{j_1 \cdots j_{p+q} \cdots j_{p+q}} : (j_1, \cdots, j_{p+q}, j_{p+q}, \cdots, j_{p+q}) \in \mathcal{J}_p(i_1, \cdots, i_p) \right\} . \tag{8}
\]

With this proposition, we can prove the following main theorem of this section.

Theorem 7 Suppose that \(\mathcal{A} = (a_{i_1 \cdots i_m}) \) is an \(m \)-th order \(n \)-dimensional strongly symmetric, hierarchically dominated nonnegative tensor. Then \(\mathcal{A}^{(k)} \) are nonnegative for \(k = 0, \cdots, m-1 \), in Algorithm 1. Thus, \(\mathcal{A} \) is a completely positive tensor. Thus, a strongly symmetric, hierarchically dominated nonnegative tensor is a completely positive tensor.
Proof. For $k = 1, \ldots, m - 1$, we now show by induction that $A^{(k)}$ is a strongly symmetric, hierarchically dominated nonnegative tensor.

By Step 0 and the assumption, $A^{(0)}$ is a strongly symmetric, hierarchically dominated nonnegative tensor.

For $k = 0, \ldots, m - 1$, assume that $A^{(k)}$ is a strongly symmetric, hierarchically dominated nonnegative tensor. We now consider $A^{(k+1)}$.

By the proof of Theorem 6, $A^{(k+1)}$ is also strongly symmetric and for $p = 0, \ldots, k$, and any $(i_1, \ldots, i_m) \in \mathcal{I}_{(m-p)+}$, $a_{i_1, \ldots, i_m}^{(k+1)} = 0$. By strong symmetry of $A^{(k+1)}$, for $p = 0, \ldots, k$, and any $(i_1, \ldots, i_m) \in \mathcal{I}_{m-p}$, $a_{i_1, \ldots, i_m}^{(k+1)} = 0$.

Now for $p = k + 1, \ldots, m - 1$, and any $(i_1, \ldots, i_m) \in \mathcal{I}_{(m-p)+}$, by (5),

$$a_{i_1, \ldots, i_{m-p}, i_{m-p}}^{(k+1)} = a_{i_1, \ldots, i_{m-p}, i_{m-p}}^{(k)} - \sum \left\{ a_{i_1, \ldots, i_{m-p}, l_{m-k}}^{(k)} : (l_1, \ldots, l_{m-k}, \ldots, l_{m-k}) \in J_{p-k}(i_1, \ldots, i_{m-p}) \right\}. \quad (9)$$

By Proposition 5, the right hand side of (9) is nonnegative. Thus, for $p = k + 1, \ldots, m - 1$, and any $(i_1, \ldots, i_m) \in \mathcal{I}_{(m-p)+}$, $a_{i_1, \ldots, i_{m-p}, i_{m-p}}^{(k+1)} \geq 0$. By strong symmetry of $A^{(k+1)}$, for $p = k + 1, \ldots, m - 1$, and any $(i_1, \ldots, i_m) \in \mathcal{I}_{m-p}$, $a_{i_1, \ldots, i_{m-p}, i_{m-p}}^{(k+1)} \geq 0$. This shows that $A^{(k+1)}$ is nonnegative.

Since $A^{(k)} = (a_{i_1, \ldots, i_m}^{(k)})$ is hierarchically dominated, for $p = 1, \ldots, m - 1$, and any $(i_1, \ldots, i_p, \ldots, i_p) \in \mathcal{I}_p$, we have

$$a_{i_1, \ldots, i_{p-1}, \ldots, i_p}^{(k)} \geq \sum \left\{ a_{j_1, \ldots, j_{p-1}, \ldots, j_{p+1}}^{(k)} : (j_1, \ldots, j_{p+1}, \ldots, j_{p+1}) \in J_1(i_1, \ldots, i_p) \right\}. \quad (10)$$

By (9), we have

$$a_{i_1, \ldots, j_{p-1}, \ldots, i_p}^{(k+1)} = a_{i_1, \ldots, j_{p-1}, \ldots, i_p}^{(k)} - \sum \left\{ a_{i_1, \ldots, j_{p-1}, \ldots, l_{m-k}}^{(k)} : (l_1, \ldots, l_{m-k}, \ldots, l_{m-k}) \in J_{m-p-k}(i_1, \ldots, i_p) \right\} \quad (11)$$

and

$$a_{j_1, \ldots, j_{p-1}, \ldots, j_{p+1}}^{(k+1)} = a_{j_1, \ldots, j_{p-1}, \ldots, j_{p+1}}^{(k)} - \sum \left\{ a_{i_1, \ldots, j_{p-1}, \ldots, l_{m-k}}^{(k)} : (l_1, \ldots, l_{m-k}, \ldots, l_{m-k}) \in J_{m-p-k-1}(j_1, \ldots, j_{p+1}) \right\} \quad (12)$$

Comparing (10), (11) and (12), for $p = 1, \ldots, m - 1$, and any $(i_1, \ldots, i_p, \ldots, i_p) \in \mathcal{I}_p$, we have

$$a_{i_1, \ldots, j_{p-1}, \ldots, i_p}^{(k+1)} \geq \sum \left\{ a_{j_1, \ldots, j_{p-1}, \ldots, j_{p+1}}^{(k+1)} : (j_1, \ldots, j_{p+1}, \ldots, j_{p+1}) \in J_1(i_1, \ldots, i_p) \right\}. \quad 12$$
Thus, \(A^{(k+1)} \) is also hierarchically dominated. The induction proof is completed.

Hence, \(A \) is a completely positive tensor. Therefore, a strongly symmetric, hierarchically dominated nonnegative tensor is a completely positive tensor. This completes the proof. \(\square \)

When \(m = 2 \), Theorem 7 implies Kaykobad’s result [7] [1, Theorem 2.5].

Corollary 3 Suppose that \(A = (a_{i_1 \ldots i_m}) \) is a real \(m \)-th order \(n \)-dimensional strongly symmetric, hierarchically dominated nonnegative tensor. Then the CP-rank of \(A \) is not bigger than \(\sum_{k=0}^{m-1} \binom{n}{m-k} \).

Proof. By (6), the CP-rank of \(A \) is not bigger than

\[
\sum_{k=0}^{m-1} |\mathcal{I}_{(m-k)+}(A^{(k)})| = \sum_{k=0}^{m-1} \binom{n}{m-k}.
\]

This completes the proof. \(\square \)

4 Numerical Examples

In this section, we present some strongly symmetric, hierarchically dominated nonnegative tensors with \(m = 3, n = 2 \), \(m = 3, n = 10 \) and \(m = 4, n = 10 \), and use Algorithm 1 to decompose them.

Firstly, we present a simple example with \(m = 3, n = 2 \) to show the steps of Algorithm 1.

Example Let \(m = 3, n = 2, A \equiv (a_{ijk}), a_{111} = 2, a_{121} = 1, a_{211} = 1, a_{221} = 1, a_{112} = 1, a_{122} = 1, a_{212} = 1, a_{222} = 5 \). It is clear that \(A \) is a strongly symmetric, hierarchically dominated nonnegative tensor. Thus, only the values of \(a_{111}, a_{121}, a_{222} \) are independent.

From Algorithm 1, we have \(A^{(0)} \equiv (a_{ijk}^{(0)}) = A \).

When \(k = 0 \), each member of \(\mathcal{I}_{(m-k)+}(A^{(k)}) \equiv \mathcal{I}_{3+}(A^{(0)}) \) is an index set \((i, j, k)\), such that \(i \neq j \neq k \neq i \) and \(i, j, k = 1 \) or \(2 \). This implies that \(\mathcal{I}_{3+}(A^{(0)}) = \emptyset \), and \(A^{(1)} \equiv (a_{ijk}^{(1)}) = A^{(0)}. \)

When \(k = 1 \), from the definition of \(\mathcal{I}_{(m-k)+}(A^{(k)}) \equiv \mathcal{I}_{2+}(A^{(1)}) \), it is easy to see that \(\mathcal{I}_{2+}(A^{(1)}) = \{(1, 2, 2)\} \). Hence, \(v^{(1,2,2)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \). Then \(A^{(2)} \equiv (a_{ijk}^{(2)}) = A^{(1)} - ((a_{122}^{(1)})^2 v^{(1,2,2)})^3. \)

This implies that \(a_{ijk}^{(2)} = \begin{cases} 1 & (i, j, k) = (1, 1, 1) \\ 4 & (i, j, k) = (2, 2, 2) \\ 0 & \text{otherwise} \end{cases} \).

When \(k = 2 \), \(\mathcal{I}_{(m-k)+}(A^{(k)}) \equiv \mathcal{I}_{1+}(A^{(2)}) = \{(1, 1, 1), (2, 2, 2)\}, v^{(1,1,1)} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \), and

\(v^{(2,2,2)} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \). Thus,
\[A^{(3)} = A^{(2)} - ((a_{111}^{(2)})^{\frac{1}{3}}v^{(1,1,1)})^3 - ((a_{222}^{(2)})^{\frac{1}{3}}v^{(2,2,2)})^3 = 0. \] Then Algorithm 1 stops.

Now we get 3 vectors. They are

\[v^{(1)} = (a_{122}^{(1)})^{\frac{1}{3}}v^{(1,2,2)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, v^{(2)} = (a_{111}^{(2)})^{\frac{1}{3}}v^{(1,1,1)} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \]

\[v^{(3)} = (a_{222}^{(2)})^{\frac{1}{3}}v^{(2,2,2)} = \begin{pmatrix} 0 \\ 1.5874 \end{pmatrix}. \]

We have

\[A = (v^{(1)})^3 + (v^{(2)})^3 + (v^{(3)})^3. \]

This shows that \(A \) is a completely positive tensor.

Table 1 indicates the result of this example. From Algorithm 1, we know that all the nonzero entries of \(v^{(i)} \) are the same. Thus, we put the common nonnegative value of the components of \(v^{(i)} \) in the first row of Table 1, and put the indices of these nonzero components in the second row of Table 1. For example, for \(v^{(1)} \), \(v_1^{(1)} = v_2^{(1)} = 1 \). Thus, in the second column, we put 1 in the first row, i.e., the \(v \)-row, and 1, 2 in the second row, i.e., the \(p \)-row. On the other hand, \(v_1^{(2)} = 1 \) and \(v_2^{(2)} = 0 \). Thus, in the third column, we put 1 in the first row and the second row. Similarly, since \(v_3^{(3)} = 1.5874 \) and \(v_1^{(3)} = 0 \), in the fourth column, we put 1.5874 in the first row and 2 in the second row. We see that \(v^{(1)}, v^{(2)}, v^{(3)} \) are all nonnegative vectors. Thus, Table 1 also indicates that \(A \) is a completely positive tensor. \(\square \)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>1</th>
<th>1.5874</th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
<td>p</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 1: \(n = 2, m = 3 \)

In the followings, we give the decomposition results of Algorithm 1 for three examples with \(m = 3, n = 10 \), and three examples with \(m = 4, n = 10 \). Instead of using \(a_{ijk} \) or \(a_{ijkl} \), we use \(A(i, j, k) \) and \(A(i, j, k, l) \) below. As the numbers of nonzero entries are large now, for each similarity class of the index sets, we only give the value of one representative entry. For example, in the first example below, \(A(3, 4, 4) = 1 \) implies that \(A(3, 3, 4) = A(3, 4, 3) = A(4, 3, 3) = A(4, 3, 4) = A(4, 4, 3) = 1 \).

Example Here, \(A \) is a strongly symmetric, hierarchically dominated nonnegative tensor. The entries of \(A \), whose index sets are not similar to the index sets of the entries defined below, are zero.

The \(m = 3, n = 10 \) case:
(1) \(A(1, 1, 1) = 1, A(2, 2, 2) = 5, A(3, 3, 3) = 3, A(4, 4, 4) = 2, A(5, 5, 5) = 4, A(6, 6, 6) = 2, A(7, 7, 7) = 2, A(8, 8, 8) = 2, A(9, 9, 9) = 5, A(10, 10, 10) = 4, A(1, 5, 5) = 1, A(2, 3, 3) = 1, A(2, 6, 6) = 1, A(2, 8, 8) = 1, A(3, 4, 4) = 1, A(3, 5, 5) = 1, A(4, 5, 5) = 1, A(5, 9, 9) = 1, A(6, 9, 9) = 1, A(7, 9, 9) = 1, A(7, 10, 10) = 1, A(8, 10, 10) = 1, A(9, 10, 10) = 1, A(2, 6, 9) = 1, A(2, 8, 10) = 1, A(3, 4, 5) = 1, A(7, 9, 10) = 1.

(2) \(A(1, 1, 1) = 2, A(2, 2, 2) = 5, A(3, 3, 3) = 6, A(4, 4, 4) = 2, A(5, 5, 5) = 3, A(8, 8, 8) = 6, A(9, 9, 9) = 6, A(10, 10, 10) = 4, A(1, 5, 5) = 1, A(1, 10, 10) = 1, A(2, 3, 3) = 1, A(2, 8, 8) = 1, A(2, 9, 9) = 2, A(2, 10, 10) = 1, A(3, 4, 4) = 1, A(3, 8, 8) = 2, A(3, 9, 9) = 2, A(4, 8, 8) = 1, A(5, 8, 8) = 1, A(5, 10, 10) = 1, A(8, 9, 9) = 1, A(9, 10, 10) = 1, A(1, 10, 10) = 1, A(2, 3, 9) = 1, A(2, 9, 10) = 1, A(3, 4, 8) = 1, A(3, 8, 9) = 1.

(3) \(A(2, 2, 2) = 4, A(3, 3, 3) = 6, A(4, 4, 4) = 7, A(5, 5, 5) = 4, A(7, 7, 7) = 4, A(8, 8, 8) = 6, A(9, 9, 9) = 4, A(10, 10, 10) = 3, A(2, 3, 3) = 1, A(2, 4, 4) = 1, A(2, 5, 5) = 1, A(2, 8, 8) = 1, A(3, 4, 4) = 1, A(3, 5, 5) = 1, A(3, 7, 7) = 1, A(3, 8, 8) = 2, A(4, 5, 5) = 2, A(4, 7, 7) = 1, A(4, 9, 9) = 1, A(4, 10, 10) = 1, A(7, 8, 8) = 1, A(7, 9, 9) = 1, A(8, 9, 9) = 1, A(8, 10, 10) = 1, A(9, 10, 10) = 1, A(2, 3, 8) = 1, A(2, 4, 5) = 1, A(3, 4, 5) = 1, A(3, 7, 8) = 1, A(4, 7, 9) = 1, A(8, 9, 10) = 1.

The \(m = 4, n = 10 \) case:

(1) \(A(1, 1, 1) = 1, A(2, 2, 2, 2) = 6, A(4, 4, 4, 4) = 6, A(5, 5, 5, 5) = 2, A(6, 6, 6, 6) = 3, A(7, 7, 7, 7) = 4, A(8, 8, 8, 8) = 8, A(9, 9, 9, 9) = 12, A(10, 10, 10, 10) = 4, A(1, 10, 10, 10) = 1, A(2, 4, 4, 4) = 2, A(2, 8, 8, 8) = 2, A(2, 9, 9, 9) = 2, A(4, 8, 8, 8) = 2, A(4, 9, 9, 9) = 2, A(5, 7, 7, 7) = 1, A(5, 9, 9, 9) = 1, A(6, 7, 7, 7) = 1, A(6, 9, 9, 9) = 1, A(6, 10, 10, 10) = 1, A(7, 9, 9, 9) = 2, A(8, 9, 9, 9) = 3, A(8, 10, 10, 10) = 1, A(9, 10, 10, 10) = 1, A(2, 4, 8, 8) = 1, A(2, 4, 9, 9) = 1, A(2, 8, 9, 9) = 1, A(4, 8, 9, 9) = 1, A(5, 7, 9, 9) = 1, A(6, 7, 9, 9) = 1, A(8, 9, 10, 10) = 1, A(2, 4, 8, 9) = 1.

(2) \(A(1, 1, 1, 1) = 9, A(2, 2, 2, 2) = 6, A(3, 3, 3, 3) = 8, A(4, 4, 4, 4) = 1, A(5, 5, 5, 5) = 1, A(6, 6, 6, 6) = 4, A(7, 7, 7, 7) = 6, A(8, 8, 8, 8) = 6, A(9, 9, 9, 9) = 9, A(10, 10, 10, 10) = 2, A(1, 2, 2, 2) = 1, A(1, 3, 3, 3) = 2, A(1, 5, 5, 5) = 1, A(1, 7, 7, 7) = 1, A(1, 8, 8, 8) = 2, A(1, 9, 9, 9) = 2, A(2, 3, 3, 3) = 1, A(2, 6, 6, 6) = 2, A(2, 7, 7, 7) = 2, A(3, 6, 6, 6) = 1, A(3, 8, 8, 8) = 2, A(3, 9, 9, 9) = 2, A(4, 9, 9, 9) = 1, A(6, 7, 7, 7) = 1, A(7, 9, 9, 9) = 1, A(7, 10, 10, 10) = 1, A(8, 9, 9, 9) = 2, A(9, 10, 10, 10) = 1, A(1, 2, 7, 7) = 1, A(1, 3, 8, 8) = 1, A(1, 3, 9, 9) = 1, A(1, 8, 9, 9) = 1, A(2, 3, 6, 6) = 1, A(2, 6, 7, 7) = 1, A(3, 8, 9, 9) = 1, A(7, 9, 10, 10) = 1, A(1, 3, 8, 9) = 1.

(3) \(A(1, 1, 1, 1) = 18, A(2, 2, 2, 2) = 6, A(3, 3, 3, 3) = 4, A(4, 4, 4, 4) = 2, A(5, 5, 5, 5) = \)
shown in Table 1. The vectors decomposed from Algorithm 1 for these six examples are shown in Tables 2-7, in which v-rows are the values of the nonzero components of the vectors, p-rows are the indices of these nonzero components. They are in the same format as the simple example shown in Table 1.

<table>
<thead>
<tr>
<th>v</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1.2599</th>
<th>1</th>
<th>1</th>
<th>1.4422</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>2 6 9</td>
<td>2 8 10</td>
<td>3 4 5</td>
<td>7 9 10</td>
<td>1 5</td>
<td>2 3</td>
<td>5 9</td>
<td>2</td>
<td>3</td>
<td>4 5</td>
</tr>
<tr>
<td>v</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.2599</td>
<td>1.2599</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>p</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Table 2: $n = 10, m = 3$ (1)

<table>
<thead>
<tr>
<th>v</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1.2599</th>
<th>1.4422</th>
<th>1.2599</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>1 5 10</td>
<td>2 3 9</td>
<td>2 9 10</td>
<td>3 4 8</td>
<td>3 8 9</td>
<td>2 8</td>
<td>5 8</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>v</td>
<td>1</td>
<td>1</td>
<td>1.2599</td>
<td>1.4422</td>
<td>1.2599</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>p</td>
<td>4</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Table 3: $n = 10, m = 3$ (2)

$26, \mathcal{A}(6, 6, 6, 6) = 18, \mathcal{A}(8, 8, 8, 8) = 8, \mathcal{A}(9, 9, 9, 9) = 24, \mathcal{A}(10, 10, 10, 10) = 8, \mathcal{A}(1, 5, 5, 5) = 6, \mathcal{A}(1, 6, 6, 6) = 4, \mathcal{A}(1, 8, 8, 8) = 2, \mathcal{A}(1, 9, 9, 9) = 4, \mathcal{A}(1, 10, 10, 10) = 2, \mathcal{A}(2, 5, 5, 5) = 2, \mathcal{A}(2, 6, 6, 6) = 2, \mathcal{A}(2, 9, 9, 9) = 2, \mathcal{A}(3, 4, 4, 4) = 1, \mathcal{A}(3, 9, 9, 9) = 2, \mathcal{A}(3, 10, 10, 10) = 1, \mathcal{A}(4, 9, 9, 9) = 1, \mathcal{A}(5, 6, 6, 6) = 6, \mathcal{A}(5, 8, 8, 8) = 3, \mathcal{A}(5, 9, 9, 9) = 7, \mathcal{A}(5, 10, 10, 10) = 2, \mathcal{A}(6, 8, 8, 8) = 2, \mathcal{A}(6, 9, 9, 9) = 4, \mathcal{A}(8, 9, 9, 9) = 1, \mathcal{A}(9, 10, 10, 10) = 3, \mathcal{A}(1, 5, 6, 6) = 2, \mathcal{A}(1, 5, 8, 8) = 1, \mathcal{A}(1, 5, 9, 9) = 2, \mathcal{A}(1, 5, 10, 10) = 1, \mathcal{A}(1, 6, 8, 8) = 1, \mathcal{A}(1, 6, 9, 9) = 1, \mathcal{A}(1, 9, 10, 10) = 1, \mathcal{A}(2, 5, 6, 6) = 1, \mathcal{A}(2, 5, 9, 9) = 1, \mathcal{A}(2, 6, 9, 9) = 1, \mathcal{A}(3, 4, 9, 9) = 1, \mathcal{A}(3, 9, 10, 10) = 1, \mathcal{A}(5, 6, 8, 8) = 1, \mathcal{A}(5, 6, 9, 9) = 2, \mathcal{A}(5, 8, 9, 9) = 1, \mathcal{A}(5, 9, 10, 10) = 1, \mathcal{A}(1, 5, 6, 8) = 1, \mathcal{A}(1, 5, 6, 9) = 1, \mathcal{A}(1, 5, 9, 10) = 1, \mathcal{A}(2, 5, 6, 9) = 1.$

The vectors decomposed from Algorithm 1 for these six examples are shown in Tables 2-7, in which v-rows are the values of the nonzero components of the vectors, p-rows are the indices of these nonzero components. They are in the same format as the simple example shown in Table 1.

<table>
<thead>
<tr>
<th>v</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1.2599</th>
<th>1.4422</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>2 3 8</td>
<td>2 4 5</td>
<td>3 4 5</td>
<td>3 7 8</td>
<td>4 7 9</td>
<td>8 9 10</td>
<td>4 10</td>
<td>2</td>
</tr>
<tr>
<td>v</td>
<td>1.4422</td>
<td>1.2599</td>
<td>1.2599</td>
<td>1.4422</td>
<td>1.2599</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>p</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Table 4: $n = 10, m = 3$ (3)
<table>
<thead>
<tr>
<th>v</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>2 4 8 9</td>
<td>5 7 9</td>
<td>6 7 9</td>
<td>8 9 10</td>
<td>1 10</td>
<td>2 4</td>
<td>2 8</td>
<td>2 9</td>
<td>4 8</td>
<td>4 9</td>
</tr>
<tr>
<td>v</td>
<td>1</td>
<td>1.1892</td>
<td>1.1892</td>
<td>1</td>
<td>1</td>
<td>1.1892</td>
<td>1.3161</td>
<td>1.4953</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>8 9</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Table 5: \(n = 10, m = 4 \) (1)

<table>
<thead>
<tr>
<th>v</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>1 3 8 9</td>
<td>2 7</td>
<td>2 3 6</td>
<td>2 6 7</td>
<td>7 9 10</td>
<td>1 3</td>
<td>1 5</td>
<td>1 8</td>
<td>1 9</td>
<td>3 8</td>
</tr>
<tr>
<td>v</td>
<td>1</td>
<td>1</td>
<td>1.3161</td>
<td>1.3161</td>
<td>1.3161</td>
<td>1.1892</td>
<td>1.3161</td>
<td>1.1892</td>
<td>1.3161</td>
<td>1</td>
</tr>
<tr>
<td>p</td>
<td>4 9</td>
<td>8 9</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 6: \(n = 10, m = 4 \) (2)

<table>
<thead>
<tr>
<th>v</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1.3161</th>
<th>1.1892</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>1 5 6 8</td>
<td>1 5 6 9</td>
<td>1 5 9 10</td>
<td>2 5 6 9</td>
<td>3 4 9</td>
<td>3 9 10</td>
<td>5 8 9</td>
<td>1 5</td>
<td>1 6</td>
<td>1 8</td>
<td></td>
</tr>
<tr>
<td>v</td>
<td>1.1892</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.3161</td>
<td>1</td>
<td>1.3161</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>p</td>
<td>1 9</td>
<td>1 10</td>
<td>2 5</td>
<td>2 6</td>
<td>2 9</td>
<td>5 6</td>
<td>5 8</td>
<td>5 9</td>
<td>5 10</td>
<td>6 8</td>
<td></td>
</tr>
<tr>
<td>v</td>
<td>1.1892</td>
<td>1</td>
<td>1.5651</td>
<td>1.1892</td>
<td>1.1892</td>
<td>1</td>
<td>1.7321</td>
<td>1.5651</td>
<td>1.3161</td>
<td>1.7321</td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>6 9</td>
<td>9 10</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>v</td>
<td>1.3161</td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Table 7: \(n = 10, m = 4 \) (3)
5 Further Remarks

In this paper, we studied various properties of completely positive tensors, showed that a strongly symmetric, hierarchically dominated nonnegative tensor is a completely positive tensor, and presented a hierarchical elimination algorithm for checking this. These indicate that a rich theory for completely positive tensors can be established parallel to the theory of completely positive matrices [1, 6, 7, 14]. This theory will be a solid foundation for applications of nonnegative tensor factorization [3, 13]. Further research on topics such as CPranks is needed.

Acknowledgement. The authors are thankful to Dr. Adrzej Cichocki for the discussion, and to the associate editor, Professor Pierre Comon and two referees for their careful reading and helpful comments.

References

