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Abstract. In this paper we define the best rank-one approximation ratio of a tensor space. It turns out
that in the finite dimensional case this provides an upper bound for the quotient of the residual of the best rank-
one approximation of any tensor in that tensor space and the norm of that tensor. This upper bound is strictly
less than one, and it gives a convergence rate for the greedy rank-one update algorithm. For finite dimensional
general tensor spaces, third order finite dimensional symmetric tensor spaces, and finite biquadratic tensor
spaces, we give positive lower bounds for the best rank-one approximation ratio. For finite symmetric tensor
spaces and finite dimensional biquadratic tensor spaces, we give upper bounds for this ratio.
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1. Introduction. The best rank-one approximation problem for higher-order ten-
sors has wide applications in wireless communication systems, magnetic resonance ima-
ging, signal and image processing, data analysis, higher order statistics, as well as
independent component analysis [2], [3], [4], [6], [7], [10], [12], [14], [15], [17], [19],
[21], [23], [26].

A basic question for the best rank-one approximation problem is whether there ex-
ists a positive lower bound for the quotient of the best rank-one approximation of a
tensor and the norm of that tensor such that this lower bound only depends upon
the order and dimensions of that tensor. If such a positive lower bound exists, then
it will provide an upper bound for the quotient of the residual of the best rank-one ap-
proximation of any tensor in that tensor space and the norm of that tensor. This upper
bound is strictly less than one, and it gives a convergence rate for the greedy rank-one
update algorithm [1], [9], [8], [24]. In the next section, we show that such a positive lower
bound exists. We call it the best rank-one approximation ratio of that tensor space.

In section 3, we give a positive lower bound for the best rank-one approximation
ratio of a general finite dimensional tensor space. In section 4, we give a positive lower
bound for the best rank-one approximation ratio of a third order finite dimensional sym-
metric tensor space, and an upper bound of this ratio of a finite dimensional symmetric
tensor space. In section 5, we give a positive lower bound and an upper bound for the
best rank-one approximation ratio of a finite dimensional biquadratic tensor
space. Some numerical results are given in section 6. Four open questions are raised
in section 7.

2. General discussion. The following discussion is borrowed from [9] and was
suggested by a referee. Let Vj be separable Hilbert spaces with inner product h·; ·ij
for j ¼ 1; : : : ;m. Consider the tensor product Hilbert space V ¼ ⨂m

j¼1Vj (or the
subspace of symmetric tensors SymmðV Þ ⊂ V⊗m, here V⊗m ¼ V with Vi ¼ V for
i ¼ 1; : : : ;m) with norm k · k induced by the inner product h·; ·i ¼ Πm

j¼1h·; ·ij. Denote
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the set of rank-one tensors by

S1 ¼ fB ∈ V∶B ¼⊗m
j¼1 v

ðjÞ; vðjÞ ∈ Vjg:

For SymmðV Þ, S1 should be replaced by the set of symmetric rank-one tensors

SSym
1 ¼ fB ∈ SymmðV Þ∶B ¼ v⊗m; v ∈ Vg:

Denote the zero tensor in V by O. Since S1 is weakly closed (see Lemma 1 of [9] and its
proof), for A ∈ V \ fOg, it can be shown (see Lemma 6 of [9]) that

kA− B�k2 ¼ min
B∈S1

kA− Bk2 ¼ kAk2 − σðAÞ2 ¼ kAk2
�
1−

σðAÞ2
kAk2

�
;ð2:1Þ

where

σðAÞ ¼ max
B∈S1; kBk¼1

jhA;Bij:ð2:2Þ

The value σðAÞ is called the first singular value of A ∈ V in [13]. In the finite di-
mensional case, it is actually the largest absolute value of the singular values of such a
tensor in the sense of [14]. It itself may not be a singular value.

In the symmetric case, we may replace σðAÞ by

ρðAÞ ¼ max
B∈SSym

1 ; kBk¼1
jhA;Bij:ð2:3Þ

In the finite dimensional case, ρðAÞ is actually the largest absolute value of the Z -
eigenvalues of such a tensor A in the sense of [19]. It itself may not be a Z -eigenvalue
of that tensor. Hence, we call it the spectral radius of that tensor in this paper. In sec-
tion 4, we will give the definition of Z -eigenvalues.

Define

AppðVÞ ¼ max

�
μ∶μ ≤

σðAÞ
kAk ∀A ∈ V;A ≠ O

�
:ð2:4Þ

We call AppðVÞ the best rank-one approximation ratio of V, or simply the approxima-
tion ratio ofV. It is independent from a particular tensor; rather, it is an important index
of the tensor space V.

Similarly, we may define the best rank-one approximation ratio of SymmðV Þ as

AppðSymmðV ÞÞ ¼ max

�
μ∶μ ≤

ρðAÞ
kAk ∀A ∈ SymmðV Þ; A ≠ O

�
:ð2:5Þ

By (2.1), for A ∈ V \ fOg, we have

kA− B�k2
kAk2 ≤ 1− AppðVÞ2;ð2:6Þ
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where B� is the best rank-one approximation of A. Hence, the approximation ratio of V
gives an upper bound for the quotient of the residual of the best rank-one approximation
of any tensor in V and the norm of that tensor.

In the finite dimensional case, S1 is closed. Then, by (2.2), we see that σð·Þ is also a
norm of V. By (2.4) and the norm equivalence theorem [18], we have

AppðVÞ > 0:ð2:7Þ

Thus, in the finite dimensional case, (2.6) provides an upper bound for the quotient of
the residual of the best rank-one approximation of any tensorA in V and the norm ofA.
This upper bound is also strictly less than one.

We now consider the following greedy rank-one update algorithm [8], [13] (called
progressive separated representation in [9] and, in the symmetric case, called successive
symmetric rank-one decomposition in [24]). For A ∈ V \ fOg, let Að0Þ ¼ A. For k ≥ 0,
let BðkÞ be the best rank-one approximation ofAðkÞ, and letAðkþ1Þ ¼ AðkÞ − BðkÞ. Then by
(2.1) and (2.6), we have

kAðkþ1Þk2 ≤ kAðkÞk2½1− AppðVÞ2� ≤ · · ·≤ kAk2½1− AppðVÞ2�kþ1:

This shows that A ¼ P∞
k¼0 B

ðkÞ and gives a convergence rate for this algorithm. Numer-
ical examples of this algorithm can be found in section 6. More discussion on this algo-
rithm can be found in [1], [8], [9], [13], [24]. The symmetric case can be treated similarly.
We also have

AppðSymmðℜnÞÞ > 0:ð2:8Þ

3. A general finite dimensional tensor space. Let 2 ≤ n1 ≤ · · ·≤ nm. Consider
V≡ Vðm;n1; : : : ; nmÞ ¼ ⨂m

j¼1ℜ
nj in this section. In this case, forA ∈ V, we may denote

A ¼ ðai1 · · · imÞ, where ij ¼ 1; : : : ; nj. The norm k · k induced by the inner product
hx; yi≡ x⊤y in ℜn is actually the Frobenius norm. For A ∈ V, it has the form

kAk≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn1

i1

· · ·
Xnm

im¼1

a2i1 · · · im

vuut :

For xðjÞ ∈ ℜnj , we call it a unit vector if ðxðjÞÞ⊤xðjÞ ¼ 1. The best rank-one approx-
imation of A is a rank-one tensor λxð1Þ · · · xðmÞ ≡ λ ⊗m

j¼1 x
ðjÞ ≡ ðλxð1Þi1

· · · xðmÞ
im

Þ, where
λ ∈ ℜ, xðjÞ ∈ ℜnj are unit vectors such that the Frobenius norm kA− λxð1Þ · · · xðmÞk
is minimized.

Let A ∈ V. For xðjÞ ∈ ℜnj ; j ¼ 1; : : : ;m, denote

Axð1Þ · · · xðmÞ ≡ hA;⊗m
j¼1 x

ðjÞi ¼
Xn1

i1¼1

· · ·
Xnm

im¼1

ai1 · · · imx
ð1Þ
i1

· · · xðmÞ
im

:

Then we have

σðAÞ ¼ max fjAxð1Þ · · · xðmÞj∶xðjÞ ∈ ℜnj ; ðxðjÞÞ⊤xðjÞ ¼ 1 for j ¼ 1; : : : ;mg:ð3:1Þ

We may see that σðAÞ is the largest absolute value of the singular values of A in the
sense of [14]. By (3.1), for any A ∈ V and any unit vectors xðjÞ ∈ ℜnj for j ¼ 1; : : : ;m,
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we have

σðAÞ ≥ jAxð1Þ · · · xðmÞj ¼
�����
Xn1

i1¼1

· · ·
Xnm

im¼1

ai1 · · · imx
ð1Þ
i1

· · · xðmÞ
im

�����:ð3:2Þ

Clearly, for any A ∈ V and A ≠ O, we have

0 <
σðAÞ
kAk ≤ 1:

Then we have

0 < AppðVÞ ≤ 1:

For a matrix space, we have m ¼ 2. It is not difficult to see that in that case

AppðVðm;n1; n2ÞÞ ¼
1ffiffiffiffiffi
n1

p :

THEOREM 3.1. Let

μ ̲ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 · · · nm−1

p :

Then μ ̲ is a positive lower bound for AppðVðm;n1; : : : ; nmÞÞ.
Proof. Suppose that A ∈ Vðm;n1; : : : ; nmÞ. For each ði1; : : : ; im−2Þ, satisfying

that 1 ≤ i1 ≤ n1; : : : ; 1 ≤ im−2 ≤ nm−2, let Ki1 · · · im−2
be an nm−1 × nm matrix with

its ði; jÞth element as ai1 · · · im−2ij. Then by (3.1), we have

σðKi1 · · · im−2
Þ ≤ σðAÞ:

We have

kAk2 ¼
Xn1

i1¼1

· · ·
Xnm−2

im−2¼1

kKi1 · · · im−2
k2 ≤

Xn1

i1¼1

· · ·
Xnm−2

im−2¼1

nm−1σðKi1 · · · im−2
Þ2

≤
Xn1

i1¼1

· · ·
Xnm−2

im−2¼1

nm−1σðAÞ2 ¼ n1 · · · nm−1σðAÞ2:

Now the conclusion follows. ▯
The above bound is tight when m ¼ 2. The question is if it is the exact value of

AppðVðm;n1; : : : ; nmÞÞ for m ≥ 3.

4. A finite dimensional symmetric tensor space. We now consider
SymmðℜnÞ. For A ∈ SymmðℜnÞ, we can denote A ¼ ðai1 · · · imÞ, where i1; : : : ; im ¼
1; : : : ; n and the entries ai1 · · · im are invariant under any permutation of its indices.
Let λ ∈ ℜ and x ∈ ℜn be a unit vector. Then λxm ≡ λx⊗m denotes the rank-one mth
order n-dimensional real symmetric tensor, whose ði1 · · · imÞth element is
λxi1 · · · xim . The best rank-one approximation of A is a rank-one tensor λxm such that
the Frobenius norm kA− λxmk is minimized. The Frobenius norm of tensor A has the
form
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kAk≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i1; : : : ;im¼1

a2i1 · · · im

vuut :

According to [19], λxm is the best rank-one approximation ofA if and only if λ is a Z -
eigenvalue of A with the largest absolute value, while x is a Z -eigenvector of A, asso-
ciated with the Z -eigenvalue λ.

Denote Axm−1 as an n-dimensional vector whose ith component is

ðAxm−1Þi ¼
Xn

i2 · · · im¼1

aii2 · · · imxi2 · · · xim :

Suppose λ ∈ ℜ and x ∈ ℜn satisfy the system
�
Axm−1 ¼ λx;
x⊤x ¼ 1:

ð4:1Þ

Then we call λ a Z -eigenvalue of A, and we call x a Z -eigenvector of A, associated with
the Z -eigenvalue λ. Then the spectral radius ρðAÞ is the largest absolute value of the Z -
eigenvalues of A.

For A ∈ SymmðℜnÞ and x ∈ ℜn, we have

Axm ≡ hA; xmi ¼
Xn

i1 · · · im¼1

ai1 · · · imxi1 · · · xim :

By (2.3), we have

ρðAÞ ¼ max
x∈ℜn; x⊤x¼1

jAxmj:ð4:2Þ

Thus, we have

0 <
ρðAÞ
kAk ≤ 1

for any A ∈ SymmðℜnÞ, A ≠ O.
Clearly,

0 < AppðSymmðℜnÞÞ ≤ 1

for all m;n ≥ 2. In the case of a symmetric matrix space, we have m ¼ 2. It is not dif-
ficult to see that

AppðSym2ðℜnÞÞ ¼ 1ffiffiffi
n

p :

Again, it is an open question to find the exact values of AppðSymmðℜnÞÞ form ≥ 3.
By Theorem 2.2 of [28], we have the following theorem.
THEOREM 4.1. For any A ∈ Sym3ðℜnÞ, we have ρðAÞ ¼ σðAÞ.
CONJECTURE 1. For any A ∈ SymmðℜnÞ with m ≥ 4, we still have ρðAÞ ¼ σðAÞ.
PROPOSITION 4.2.

max

�����
Xn
i¼1

xi

����∶x ∈ ℜn; x⊤x ¼ 1

�
¼ ffiffiffi

n
p

:
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Proof. We have

max

�����
Xn
i¼1

xi

����∶x ∈ ℜn; x⊤x ¼ 1

�
¼ max

�Xn
i¼1

xi∶x ∈ ℜn; x⊤x ¼ 1

�
:

Following the optimization theory, we have the conclusion. ▯
Let

μm̲;n ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
nm−1

p :

If m ¼ 2k is even, then let Aðm;nÞ ∈ SymmðℜnÞ, and let μ̄m;n be defined by

Aðm;nÞxm ¼ ðx⊤xÞkð4:3Þ

and

μ̄m;n ¼ 1

kAðm;nÞk :

If m ¼ 2kþ 1 is odd, then let Aðm;nÞ ∈ SymmðℜnÞ, and let μ̄m;n be defined by

Aðm;nÞxm ¼ ðx⊤xÞk
�Xn

i¼1

xi

�
ð4:4Þ

and

μ̄m;n ¼
ffiffiffi
n

p

kAðm;nÞk :

THEOREM 4.3. The value μ ̲3;n is a positive lower bound for AppðSym3ðℜnÞÞ. On the
other hand, the value μ̄m;n is an upper bound for AppðSymmðℜnÞÞ for m ¼ 2; 3; : : : . We
have

1ffiffiffi
n

p ¼ μ ̲2;n ¼ AppðSym2ðℜnÞÞ ¼ μ̄2;n ¼ 1ffiffiffi
n

p ;ð4:5Þ

1

n
¼ μ ̲3;n ≤ AppðSym3ðℜnÞÞ ≤ μ̄3;n ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
6

nþ 5

r
;ð4:6Þ

and

AppðSym4ðℜnÞÞ ≤ μ̄4;n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

n2 þ 2n

r
:ð4:7Þ

Proof. By Theorems 3.1 and 4.1, (2.4), and (2.5), we have the first conclusion. Ifm
is even, by (4.2) and (4.3), we have ρðAðm;nÞÞ ¼ 1. If m is odd, by (4.2), (4.4), and Pro-
position 4.2, we have ρðAðm;nÞÞ ¼ ffiffiffi

n
p

. By (2.5), we have the second conclusion.
The equalities (4.5) are basic knowledge of linear algebra.
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For (4.6), we need only prove the last equality. The other equality and inequalities
of (4.6) follow from the first two conclusions. Let Að3;nÞ ¼ ðaijkÞ be defined by (4.4).
Then

aiii ¼ 1

for i ¼ 1; : : : ; n,

aiij ¼ aiji ¼ ajii ¼
1

3

for i; j ¼ 1; : : : ; n, i ≠ j, and the other elements of Að3;nÞ are zero. Then,

kAð3;nÞk2 ¼
Xn
i¼1

a2iii þ
X

1≤i;j≤n
i≠j

½a2iij þ a2iji þ a2jii� ¼
n2 þ 5n

6
:

Hence, the last equality of (4.6) holds.
For (4.7), we need only prove the equality. The inequality of (4.7) follows from the

second conclusion. Let Að4;nÞ ¼ ðaijklÞ be defined by (4.3). Then

aiiii ¼ 1

for i ¼ 1; : : : ; n,

aiijj ¼ aijij ¼ aijji ¼ ajiji ¼ ajiij ¼ ajjii ¼
1

3

for i; j ¼ 1; : : : ; n, i ≠ j, and the other elements of Að4;nÞ are zero. Then,

kAð4;nÞk2

¼
Xn
i¼1

a2iiii þ
X

1≤i<j≤n

½a2iijj þ a2ijij þ a2ijji þ a2jiji þ a2jiij þ a2jjii�

¼n2 þ 2n

3
:

Hence, the equality of (4.7) also holds. ▯
CONJECTURE 2. For m ≥ 4, μm̲;n ¼ 1ffiffiffiffiffiffiffiffi

nm−1
p is also a positive lower bound for

AppðSymmðℜnÞÞ.
In the previous version of this paper, we got a positive lower bound

μ ¼ 3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n4 þ 12

ffiffiffi
3

p
n3 þ ð35− 36

ffiffiffi
3

p Þn2 þ ð24 ffiffiffi
3

p
− 30Þn

q

for AppðSym4ðℜnÞÞ. The proof is tedious, and the bound is much smaller than
μ ̲4;n ¼ 1ffiffiffiffi

n3
p . Hence, we do not include that result here.

Now, (4.5) gives the exact values of AppðSymmðℜnÞÞ form ¼ 2. What are the exact
values of AppðSymmðℜnÞÞ for m ≥ 3? Does an equality hold for one of the two inequal-
ities of (4.6), or are both the inequalities of (4.6) strict? What is the exact value of
AppðSym3ðℜnÞÞ? What is the exact value of AppðSym4ðℜnÞÞ?
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5. A finite dimensional biquadratic tensor space. Beside symmetric and gen-
eral tensors, there are also various partially symmetric tensors. Among partially sym-
metric tensors, biquadratic tensors have received much attention in recent years [5], [11],
[16], [20], [22], [25], [27].

An (n× p)-dimensional biquadratic tensor A has the form A ¼ ðaijklÞ, where
i; j ¼ 1; : : : ; n; k; l ¼ 1; : : : ; p; 2 ≤ n ≤ p, with symmetric property aijkl ¼ ajikl ¼
aijlk for any i, j, k, and l. We use Bn;p to denote the set of all (n× p)-dimensional bi-
quadratic tensors. Then Bn;p ¼ Sym2ðℜnÞ⨂Sym2ðℜpÞ is a tensor space.

The best rank-one approximation of A ∈ Bn;p is a rank-one tensor λx2y2≡
λx ⊗ x ⊗ y ⊗ y≡ ðλxixjykylÞ, where λ ∈ ℜ, x ∈ ℜn, and y ∈ ℜp are unit vectors with
x⊤x ¼ y⊤y ¼ 1 such that the Frobenius norm kA− λx2y2k is minimized.

Let A ∈ Bn;p. For x ∈ ℜn and y ∈ ℜp, denote

Ax2y2 ≡ hA; x2y2i ¼
Xn
i;j¼1

Xp
k;l¼1

aijklxixjykyl:

For A ∈ Bn;p, define

ρBðAÞ ¼ max fjAx2y2j∶x ∈ ℜn; x⊤x ¼ 1; y ∈ ℜp; y⊤y ¼ 1g:ð5:1Þ

Again, we see that ρBð·Þ is a norm of Bn;p. We may also see that ρBðAÞ is the largest
absolute value of theM -eigenvalues ofA, defined as below [20], [25]. Denote A· xyy as a
vector in ℜn, whose ith component is

P
n
j¼1

Pp
k;l¼1 aijklxjykyl, and denote Axxy · as a

vector inℜp, whose lth component is
P

n
i;j¼1

Pp
k¼1 aijklxixjyk. If λ ∈ ℜ, x ∈ ℜn, and y ∈

ℜp satisfy the system
8>><
>>:

A· xyy ¼ λx;
Axxy · ¼ λy;
x⊤x ¼ 1;
y⊤y ¼ 1;

then we call λ an M -eigenvalue of A, and we call x and y left and right M -eigenvectors
of A, associated with the M -eigenvalue λ. We call ρBðAÞ the bispectral radius
of A.

CONJECTURE 3. If n ¼ p and A ∈ Sym4ðℜnÞ, then ρBðAÞ ¼ ρðAÞ.
Similarly, for any A ∈ Bn;p and A ≠ O, we have

0 <
ρBðAÞ
kAk ≤ 1:

Define the best rank-one approximation ratio of Bn;p as

AppðBn;pÞ ¼ max

�
μ∶μ ≤

ρBðAÞ
kAk ∀A ∈ Bn;p; A ≠ O

�
:

Then,

0 < AppðBn;pÞ ≤ 1:

We now have the following theorem.
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THEOREM 5.1. We have

η ̲n;p ≡
1ffiffiffiffiffiffiffiffi
n2p

p ≤ AppðBn;pÞ ≤ η̄n;p ≡
1ffiffiffiffiffiffi
np

p :

Proof. For each ði; jÞ, 1 ≤ i; j ≤ n, let Kij be a p× p symmetric matrix with its
ðk; lÞth element as aijkl. Then by (5.1), we have

ρðKijÞ ≤ ρBðAÞ:

We have

kAk2 ¼
Xn
i;j¼1

kKijk2 ≤
Xn
i;j¼1

pρðKijÞ2 ≤ n2pρBðAÞ2:

The first inequality of (5.3) follows.
Let A ∈ Bn;p be defined by

Ax2y2 ¼ ðx⊤xÞðy⊤yÞ:

By (5.1), ρBðAÞ ¼ 1. It is easy to see that kAk2 ¼ np. By (5.2), we have the second
inequality of (5.3). The proof is complete. ▯

Again, what is the exact value of AppðBn;pÞ?

6. Numerical results. In this section, we present some intuitive numerical results
of general third order tensors, symmetric third order tensors, and biquadratic tensors to
show the validity of the theoretical results established in this paper. We use the greedy
update algorithm to decompose the tensors. In every iteration of the greedy method, we
use the higher order power method [12], its symmetric version, and the bisymmetric
power method [25] to compute the best rank-one approximation of each of the three
kinds of tensors, respectively. Since all the best rank-one approximation problems
for higher order tensors are NP-hard, the solution found by the power method is only
an approximate value of the best rank-one approximation. Nevertheless, favorable nu-
merical results are achieved for the tested tensors. The experiments were conducted in
MATLAB on a personal PC.

Let Að1Þ be the tensor given in the following examples for k ≥ 1; let fBðkÞ
i gi≥1 be the

sequence of computed rank-one approximations ofAðkÞ by the power method. The power

method is terminated whenever kBðkÞ
iþ1 − BðkÞ

i k < 1.0× 10−6. Then, let BðkÞ ≔ BðkÞ
iþ1 be the

computed rank-one approximation of AðkÞ. Let Aðkþ1Þ ≔ AðkÞ − BðkÞ. We terminate the

greedy update algorithm whenever kAðkÞk
kAð1Þk < 1.0× 10−6. The results are shown in

Figures 1–3. In these figures, the horizontal axis represents the iteration k, rank-one

ration denotes kBðkÞk
kAðkÞk, computed residual denotes kAðkÞk

kAð1Þk, and theoretical residual denotesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1− α2Þk

p
with α the corresponding lower bound for AppðVÞ established in sections 3,

4, and 5, respectively.
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Example 1. The first example is a 3× 3× 3 tensor with entries as follows in the
format of the MATLAB multidimensional array notation:

Að∶; ∶; 1Þ ¼

0
BB@

0.4333 0.4278 0.4140

0.8154 0.0199 0.5598

0.0643 0.3815 0.8834

1
CCA;

Að∶; ∶; 2Þ ¼

0
BB@

0.4866 0.8087 0.2073

0.7641 0.9924 0.8752

0.6708 0.8296 0.1325

1
CCA;

Að∶; ∶; 3Þ ¼

0
BB@

0.3871 0.0769 0.3151

0.1355 0.7727 0.4089

0.9715 0.7726 0.5526

1
CCA:

The results are shown in Figure 1. The lower bound for AppðVÞ in this case is 1
3. We

observe from Figure 1 that all the computed rank-one rations are above the lower bound,
and theoretical residual dominates computed residual as expected.

Example 2. The second example is a 3× 3× 3 symmetric tensor with the
independent entries as follows in the format of the MATLAB multidimensional array
notation:

0 5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

Iterations

R
at

io

 

 
Rank One Ration
Computed Residual
Theoretical Residual

FIG. 1. Performance map of a 3× 3× 3 tensor.
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Að1; 1; 1Þ ¼ 0.0517; Að2; 2; 2Þ ¼ 0.3943; Að3; 3; 3Þ ¼ 0.9723;

Að1; 1; 2Þ ¼ 0.3579; Að1; 1; 3Þ ¼ 0.5298; Að1; 2; 2Þ ¼ 0.7544;

Að1; 3; 3Þ ¼ 0.3612; Að1; 2; 3Þ ¼ 0.2156; Að2; 2; 3Þ ¼ 0.0146;

Að2; 3; 3Þ ¼ 0.6718:

The results are shown in Figure 2. The lower bound for AppðVÞ in this case is 1
3. We

observe from Figure 2 that 27 of 30 computed rank-one rations are above the lower
bound. The three exception cases are due to the fact that the power method does
not guarantee the computed solution is the best rank-one approximation, while theo-
retical residual dominates computed residual as expected.

Example 3. The third example is a 2× 2× 3× 3 biquadratic tensor with the inde-
pendent entries as follows in the format of theMATLABmultidimensional array notation:

Að1; 1; 1; 1Þ ¼ 0.8728; Að1; 1; 1; 2Þ ¼ 0.8932; Að1; 1; 1; 3Þ ¼ 0.6199;

Að1; 1; 2; 2Þ ¼ 0.7716; Að1; 1; 2; 3Þ ¼ 0.6240; Að1; 1; 3; 3Þ ¼ 0.7999;

Að1; 2; 1; 1Þ ¼ 0.7562; Að1; 2; 1; 2Þ ¼ 0.7749; Að1; 2; 1; 3Þ ¼ 0.5485;

Að1; 2; 2; 2Þ ¼ 0.5406; Að1; 2; 2; 3Þ ¼ 0.5487; Að1; 2; 3; 3Þ ¼ 0.6386;

Að2; 2; 1; 1Þ ¼ 0.8378; Að2; 2; 1; 2Þ ¼ 0.7583; Að2; 2; 1; 3Þ ¼ 0.5386;

Að2; 2; 2; 2Þ ¼ 0.6850; Að2; 2; 2; 3Þ ¼ 0.6113; Að2; 2; 3; 3Þ ¼ 0.5993:

0 5 10 15 20 25 30
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0.6

0.8

1
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Rank One Ration
Computed Residual
Theoretical Residual

FIG. 2. Performance map of a 3× 3× 3 symmetric tensor.
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The results are shown in Figure 3. The lower bound for AppðVÞ in this case is
1ffiffiffiffi
12

p ¼ 0.2887. Similar phenomena as that in Figure 2 could be observed.
From the numerical experiments, we see that the results established in this paper do

give a convergence rate for the greedy rank-one update algorithm.

7. Four open questions. This paper leaves four outstanding challenging
questions.

1. Are Conjectures 1–3 true? By Theorem 3.1, (2.4), and (2.5), we may see that if
Conjecture 1 is true, then Conjecture 2 is true.

2. What are the exact values of AppðVðm;n1; : : : ; nmÞÞ for m ≥ 3?
3. What are the exact values of AppðSymmðℜnÞÞ for m ≥ 3?
4. What are the exact values of AppðBn;pÞ?
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