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Abstract

We define weakly positive tensors and study the relations among essentially positive

tensors, weakly positive tensors, and primitive tensors. In particular, an explicit linear

convergence rate of the Liu-Zhou-Ibrahim(LZI) algorithm for finding the largest eigenvalue

of an irreducible nonnegative tensor, is established for weakly positive tensors. Numerical

results are given to demonstrate linear convergence of the LZI algorithm for weakly positive

tensors.
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1. Introduction

Consider an m-order n-dimensional square tensor A consisting of nm entries in the real field

R:

A = (Ai1···im) , Ai1···im ∈ R, 1 ≤ i1, · · · , im ≤ n.

Tensors play an important role in physics, engineering, and mathematics. There are many

application domains of tensors such as data analysis and mining, information science, image

processing, and computational biology [16].

In 2005, Qi [12] introduced the notion of eigenvalues of higher-order tensors, and studied the

existence of both complex and real eigenvalues and eigenvectors. Independently, in the same

year, Lim [7] also defined eigenvalues and eigenvectors but restricted them to be real. Unlike

matrices, eigenvalue problems for tensors are nonlinear. Nevertheless, eigenvalue problems of

higher-order tensors have become an important part of a new applied mathematics branch,

numerical multilinear algebra, and found a wide range of practical applications, for more ref-

erences, see [7, 13–15]. The following definition was first introduced by Qi [12] when m is even

and A is symmetric. Chang, Pearson, and Zhang [3] extended it to general square tensors.

Definition 1.1. Let C be the complex field. A pair (λ, x) ∈ C×(Cn\{0}) is called an eigenvalue-

eigenvector pair of A, if they satisfy:

Axm−1 = λx[m−1], (1.1)
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where n-dimensional column vectors Axm−1 and x[m−1] are defined as

Axm−1 :=





n
∑

i2,...,im=1

Aii2···imxi2 · · ·xim





1≤i≤n

and x[m−1] :=
(

xm−1
i

)

1≤i≤n
,

respectively.

Recently, the largest eigenvalue problem for nonnegative tensors attracted much attention.

Chang, Pearson, and Zhang [2] generalized the Perron-Frobenius theorem from nonnegative

matrices to irreducible nonnegative tensors. It has numerous applications include multilinear

pagerank [7], spectral hypergraph theory [1], and higher-order Markov chains [10]. Pearson

[11] introduced the notion of essentially positive tensors and proved that the unique positive

eigenvalue is real geometrically simple when the tensor is essentially positive with even order.

Here, “real geometrically simple” means that the corresponding real eigenvector is unique up to

a scaling constant. Ng, Qi, and Zhou [10] proposed an iterative method for finding the largest

eigenvalue of an irreducible nonnegative tensor. The NQZ method in [10] is efficient but it is not

always convergent for irreducible nonnegative tensors. Chang, Pearson and Zhang [4] introduced

primitive tensors. An essentially positive tensor is a primitive tensor, and a primitive tensor is

an irreducible nonnegative tensor, but not vice versa. They established convergence of the NQZ

method for primitive tensors. Liu, Zhou, and Ibrahim [9] modified the NQZ method such that

the modified algorithm is always convergent for finding the largest eigenvalue of an irreducible

nonnegative tensor. Yang and Yang [17] generalized the weak Perron-Frobenius theorem to

general nonnegative tensors. Friedland, Gaubert and Han [5] pointed out that the Perron-

Frobenius theorem for nonnegative tensors has a very close link with the Perron-Frobenius

theorem for homogeneous monotone maps. They introduced weakly irreducible nonnegative

tensors and established the Perron-Frobenius theorem for such tensors.

The main contributions of this paper are to introduce the notion of weakly positive tensors,

to give the relations among essentially positive tensors, weakly positive tensors, and primitive

tensors, and to establish an explicit linear convergence rate of the LZI algorithm in [9] for weakly

positive tensors. The linear convergence result is significant for the theory of nonnegative tensors

as algorithms for general tensors cannot be so efficient [6, 8].

In Section 3, we introduce weakly positive tensors, and give the relations among essentially

positive tensors, weakly positive tensors, and primitive tensors. These tensors are all irreducible

nonnegative tensors. An essentially positive tensor is both a primitive tensor and a weakly

positive tensor, but not vice versa. A primitive tensor may not be a weakly positive tensor. A

weakly positive tensor may also not be a primitive tensor. We give a figure to describe their

relationships.

We then establish an explicit linear convergence rate of the LZI algorithm for weakly positive

tensors in Section 4. We also show that the LZI algorithm terminates after at most K iterations

to produce an ε-approximation of the largest eigenvalue of a weakly positive tensor, where K

is a constant related to the fixed accurate tolerance ε. Numerical results are given in Section 5

to demonstrate linear convergence of the LZI algorithm for weakly positive tensors.

2. Preliminaries

Let us first recall some definitions on tensors. An m-order n-dimensional tensor A is called

nonnegative if Ai1···im ≥ 0. We call an m-order n-dimensional tensor the unit tensor, denoted
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by I, if its entries are δi1...im with δi1...im = 1 if and only if i1 = · · · = im and the others are zero.

A tensor A is called reducible, if there exists a nonempty proper index subset I ⊂ {1, 2, · · · , n}

such that

Ai1···im = 0, ∀i1 ∈ I, ∀i2, · · · , im 6∈ I.

If A is not reducible, then we say that A is irreducible.

We now recall some preliminary results. In the following, we state the Perron-Frobenius

theorem for nonnegative tensors given in [2, Theorem 1.4].

Theorem 2.1. If A is an irreducible nonnegative tensor of order m and dimension n, then

there exist λ0 > 0 and x0 ∈ Rn, x0 > 0 such that

Axm−1
0 = λ0x

[m−1]
0 .

Moreover, if λ is an eigenvalue with a nonnegative eigenvector of A, then λ = λ0. If λ is an

eigenvalue of A, then |λ| ≤ λ0.

Let P = {x ∈ Rn : xi ≥ 0, 1 ≤ i ≤ n} and int(P ) = {x ∈ Rn : xi > 0, 1 ≤ i ≤ n}. The

minimax theorem was given in [2] for irreducible nonnegative tensors as follows.

Theorem 2.2. Assume that A is an irreducible nonnegative tensor of order m and dimension

n. Then

min
x∈int(P )

max
1≤i≤n

(Axm−1)i

xm−1
i

= λ0 = max
x∈int(P )

min
1≤i≤n

(Axm−1)i

xm−1
i

,

where λ0 is the unique positive eigenvalue corresponding to the positive eigenvector.

Let A be an m-order n-dimensional nonnegative tensor. Its associated nonlinear map TA :

P → P was defined in [4] as

TAx =
(

Axm−1
)[ 1

m−1 ] .

The tensor A is called an essentially positive tensor [11] if

Ai j···j > 0, i, j ∈ {1, 2, · · · , n}.

A is called a primitive tensor [4] if there exists a positive integer ℓ such that

T ℓ
A(P\{0}) ⊂ int(P ).

It was proved [4, 11] that an essentially positive tensor is a primitive tensor, and a primitive

tensor is an irreducible nonnegative tensor, but not vice versa.

Let A be an irreducible nonnegative tensor of orderm and dimension n. Based on Theorems

2.1 and 2.2, the LZI algorithm presented in [9] works as follows: Choose x(0) ∈ int(P ) and ρ > 0.

Let B = A+ ρI and let y(0) = B
(

x(0)
)m−1

. For k = 1, 2, · · · , compute

x(k) =

(

y(k−1)
)[ 1

m−1 ]

∥

∥

∥

(

y(k−1)
)[ 1

m−1 ]
∥

∥

∥

, y(k) = B
(

x(k)
)m−1

, (2.1a)

λk = min
x
(k)
i

>0

(

y(k)
)

i
(

x
(k)
i

)m−1 , λk = max
x
(k)
i

>0

(

y(k)
)

i
(

x
(k)
i

)m−1 . (2.1b)
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It is shown in [9, Theorem 2.5] that the obtained sequences {λk} and {λk} converge to λ, where

λ is the largest eigenvalue of B. Furthermore, λ− ρ is the largest eigenvalue of A.

In this paper we intend to establish an explicit linear convergence rate of the LZI algorithm.

For this purpose, we introduce a new class of nonnegative tensors, i.e., weakly positive tensors,

in the next section.

3. Weakly Positive Tensors

In this section we introduce the notion of weakly positive tensors, and give the relations

among essentially positive tensors, weakly positive tensors, and primitive tensors.

Definition 3.1. Let A be a nonnegative tensor of order m and dimension n. A is weakly

positive if

Ai j...j > 0 for i 6= j and i, j ∈ {1, 2, · · · , n}.

Clearly, essentially positive tensors are weakly positive, but not vice versa..

Theorem 3.1. If a nonnegative tensor A is weakly positive, then it is irreducible.

Proof. Suppose A is a reducible tensor, then there exists a nonempty proper index subset

I ⊂ {1, 2, · · · , n} such that

Ai1···im = 0, ∀i1 ∈ I, ∀i2, · · · , im 6∈ I.

In particular, for i ∈ I and j 6∈ I we have Ai j...j = 0. This is a contradiction since A is weakly

positive.

The following example shows the converse of Theorem 3.1 is false.

Example 3.1. Let a 3-order 3-dimensional tensor A be defined by A122 = A133 = A211 =

A311 = 1 and zero otherwise.

A is irreducible but not primitive [4, Example 3.6]. Moreover, it is not weakly positive since

A322 = A233 = 0.

By Theorem 3.1, [11, Theorem 3.2] and [4, Theorem 2.7], essentially positive tensors, prim-

itive tensors, and weakly positive tensors are irreducible, but not vice versa.

The following example [4, Example 3.3] shows that there are some irreducible tensors which

are both weakly positive and primitive, but not essentially positive.

Example 3.2. Consider the 3-order 3-dimensional tensor A defined by A122 = A133 = A211 =

A233 = A311 = A322 = 1 and zero otherwise.

Clearly, A is weakly positive. It was shown in [4] that A is primitive but not essentially

positive.

Furthermore, there exist some primitive tensors which are not weakly positive, and some

weakly positive tensors which are not primitive. These can be seen from the following examples.

Example 3.3. Consider the 3-order 3-dimensional tensor A defined by A133 = A211 = A311 =

A322 = 1 and zero otherwise.

A is primitive [4, Example 3.4] but not weakly positive since A122 = A233 = 0.
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Example 3.4. Consider the 3-order 2-dimensional tensor A defined by A122 = A211 = 1 and

zero elsewhere.

Clearly, A is weakly positive but not primitive [9, Example 2.1].

We illustrate the relations of notions of irreducible, weakly positive, primitive, essentially

positive on higher-order tensors in Fig. 3.1.

Weakly positive tensors
Primitive tensors

Irreducible nonnegative tensors

Essentially positive tensors

Fig. 3.1. Relations of essentially positive, weakly positive, and primitive tensors

4. Linear Convergence for Weakly Positive Tensors

Clearly, the LZI algorithm is convergent for weakly positive tensors by Theorem 2.5 in [9]

and Theorem 3.1. We now establish linear convergence of the LZI algorithm under the weakly

positive assumption. We first prove the following lemma.

Lemma 4.1. Choose x(0) as the vector of ones in the LZI algorithm, then it generates two

sequences {λk} and {λk}. Let B(0) = B and

S
(0)
i =

n
∑

i2,...,im=1

Bii2...im , i = 1, · · · , n.

For k = 1, · · · , and i = 1, · · · , n, define

S
(k)
i =

n
∑

i2,...,im=1

B
(k)
ii2···im

where

B
(k)
ii2···im

= B
(k−1)
ii2...im

(

S
(k−1)
i2

)
1

m−1

· · ·
(

S
(k−1)
im

)
1

m−1

S
(k−1)
i

. (4.1)

Then, for k = 1, 2, · · · , we have

λk = min
1≤i≤n

S
(k)
i , λk = max

1≤i≤n
S
(k)
i . (4.2)

Proof. For k = 0, 1, · · · , denote

M (k) =

∥

∥

∥

∥

(

y(k)
)[ 1

m−1 ]
∥

∥

∥

∥

m−1

.
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Obviously, y
(0)
i = S

(0)
i , 1 ≤ i ≤ n. Thus, it follows the LZI algorithm that

x
(1)
i =

(

S
(0)
i

)
1

m−1

(

M (0)
)

1
m−1

, y
(1)
i =

S
(0)
i S

(1)
i

M (0)
, x

(2)
i =

(

S
(0)
i S

(1)
i

)
1

m−1

(

M (0)M (1)
)

1
m−1

.

According to the framework of the LZI algorithm and (4.1), by induction, we have for 1 ≤ i ≤ n

and k = 1, 2, · · · ,

x
(k)
i =

(

∏k−1
j=0 S

(j)
i

)
1

m−1

(

∏k−1
j=0 M

(j)
)

1
m−1

,

and hence

(B(x(k))m−1)i

(x
(k)
i )m−1

=

n
∑

i2,...,im=1

B
(0)
ii2...im

(

∏k−1
j=0 S

(j)
i2

)
1

m−1

· · ·
(

∏k−1
j=0 S

(j)
im

)
1

m−1

∏k−1
j=0 S

(j)
i

=

n
∑

i2,...,im=1

B
(1)
ii2...im

(

∏k−1
j=1 S

(j)
i2

)
1

m−1

· · ·
(

∏k−1
j=1 S

(j)
im

)
1

m−1

∏k−1
j=1 S

(j)
i

= · · · =

n
∑

i2,...,im=1

B
(k−1)
ii2...im

(

S
(k−1)
i2

)
1

m−1

· · ·
(

S
(k−1)
im

)
1

m−1

S
(k−1)
i

= S
(k)
i ,

which, together with (2.1), implies that (4.2) holds. �

By Theorem 2.5 in [9], we have

lim
k→∞

(

λk − λk

)

= 0.

We will show that {λk − λk} linearly converges to zero with an explicit convergence rate

when A is a weakly positive tensor. We need the following lemma.

Lemma 4.2. For k = 1, 2, · · · ,

B
(k)
i i...i = Ai i...i + ρ, i = 1, · · · , n.

B
(k)
i j...jB

(k)
j i...i = Ai j...jAj i...i, i 6= j, i, j ∈ {1, · · · , n}.

Proof. For i = 1, 2, · · · , n, it follows from (4.1) that

B
(k)
i i...i = B

(k−1)
i i...i

(

S
(k−1)
i

)
1

m−1

· · ·
(

S
(k−1)
i

)
1

m−1

S
(k−1)
i

= B
(k−1)
i i...i = · · · = Bi i...i = Ai i...i + 1.

For i, j ∈ {1, · · · , n} and i 6= j, according to (4.1), by a direct computation,

B
(k)
i j...jB

(k)
j i...i = B

(k−1)
i j...j

S
(k−1)
j

S
(k−1)
i

B
(k−1)
j i...i

S
(k−1)
i

S
(k−1)
j

= B
(k−1)
i j...j B

(k−1)
j i...i = · · · = Bi j...jBj i...i = Ai j...jAj i...i.
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The following theorem shows that the LZI algorithm has an explicit linear convergence rate

under the weakly positive assumption.

Theorem 4.1. Let A be a nonnegative tensor of order m and dimension n. Choose x(0) as the

vector of ones in the LZI algorithm. Let {λk} and {λk} be the sequences generated by the LZI

algorithm. If A is weakly positive, then

λk+1 − λk+1 ≤ α
(

λk − λk

)

, k = 1, 2, · · · , (4.3)

where
α = 1−

β

µ
∈ (0, 1), µ = ρ+ max

1≤i≤n
µi, (4.4a)

β = min

{

min
i,j∈{1,2,...,n}, i6=j

Ai j...j , ρ+ min
1≤i≤n

Ai i...i

}

, (4.4b)

µi =

n
∑

i2,...,im=1

Aii2...im . (4.4c)

Proof. By Theorem 3.1 and Theorem 2.4 in [9], B is irreducible.

By (4.2), without loss of generality, assume that λk+1 = S
(k+1)
p and λk+1 = S

(k+1)
q . Then

we have

λk+1 − λk+1 =

n
∑

i2,...,im=1

(

B
(k)
pi2...im

S
(k)
p

−
B

(k)
qi2...im

S
(k)
q

)

(

S
(k)
i2

)
1

m−1

· · ·
(

S
(k)
im

)
1

m−1

. (4.5)

Define

I = {(i2, . . . , im) | i2, . . . , im ∈ {1, . . . , n}},

I(k) =

{

(i2, . . . , im) ∈ I

∣

∣

∣

∣

∣

B
(k)
pi2...im

S
(k)
p

≥
B

(k)
qi2...im

S
(k)
q

}

.

By the definition of S
(k)
i , for i = 1, · · · , n, we have

∑

(i2,...,im)∈I(k)

B
(k)
ii2...im

S
(k)
i

+
∑

(i2,...,im)∈I\I(k)

B
(k)
ii2...im

S
(k)
i

= 1.

Combining the two equalities with i = p and q , we have

∑

(i2,...,im)∈I(k)

(

B
(k)
pi2...im

S
(k)
p

−
B

(k)
qi2...im

S
(k)
q

)

= −
∑

(i2,...,im)∈I\I(k)

(

B
(k)
pi2...im

S
(k)
p

−
B

(k)
qi2...im

S
(k)
q

)

. (4.6)
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Combining (4.2), (4.5) and (4.6), we obtain

λk+1 − λk+1

=
∑

(i2,...,im)∈I(k)

(

B
(k)
pi2...im

S
(k)
p

−
B

(k)
qi2...im

S
(k)
q

)

(

S
(k)
i2

)
1

m−1

· · ·
(

S
(k)
im

)
1

m−1

+
∑

(i2,...,im)∈I\I(k)

(

B
(k)
pi2...im

S
(k)
p

−
B

(k)
qi2...im

S
(k)
q

)

(

S
(k)
i2

)
1

m−1

· · ·
(

S
(k)
im

)
1

m−1

≤ λk

∑

(i2,...,im)∈I(k)

(

B
(k)
pi2...im

S
(k)
p

−
B

(k)
qi2...im

S
(k)
q

)

+ λk

∑

(i2,...,im)∈I\I(k)

(

B
(k)
pi2...im

S
(k)
p

−
B

(k)
qi2...im

S
(k)
q

)

=
(

λk − λk

)

∑

(i2,...,im)∈I(k)

(

B
(k)
pi2...im

S
(k)
p

−
B

(k)
qi2...im

S
(k)
q

)

≤
(

λk − λk

)

(

1−
∆1 +∆2

µ

)

, (4.7)

where

∆1 =
∑

(i2,...,im)∈I\I(k)

B
(k)
pi2...im

, ∆2 =
∑

(i2,...,im)∈I(k)

B
(k)
qi2...im

.

Since A is weakly positive, we have

0 < β < µ =⇒ 0 < α < 1. (4.8)

We now consider the subindex array (p, . . . , p) ∈ I. If (p, . . . , p) ∈ I\I(k), then the summation

∆1 must include B
(k)
p p...p. If (p, . . . , p) ∈ I(k), there are two possibilities:

(i) (q, . . . , q) ∈ I(k). In this case, the summation ∆2 must include B
(k)
q q...q.

(ii) (q, . . . , q) ∈ I\I(k). In this case, the summation ∆1 must include B
(k)
p q...q and the summa-

tion ∆2 must include B
(k)
q p...p.

From the above discussion, by Lemma 4.2, we obtain

∆1 +∆2 ≥ min
{

B(k)
p p...p, B

(k)
q q...q, B

(k)
p q...q +B(k)

q p...p

}

≥ min
{

Ap p...p + ρ, Aq q...q + ρ, 2
√

Ap q...q Aq p...p

}

≥ β. (4.9)

Combining (4.7), (4.8) and (4.9), we obtain the inequality (4.3) for k = 1, 2, · · · . �

Corollary 4.1. Let α and µ be defined by (4.4), and let µ = ρ + min
1≤i≤n

µi. Let ε > 0 be a

sufficiently small number. If A is weakly positive, then the LZI algorithm terminates in at most

K =









log
(

ε
µ−µ

)

log(α)









+ 1 (4.10)

iterations with λK − λK < ε.
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Table 5.1: Output of the LZI Algorithm for A1, A2 and A3 with m = 3

Tensor Dimension Eig No. Iter Ratio

A1 n = 5 2 18 0.3333, 0.3333, 0.3333, 0.3333, 0.3333

n = 10 3 30 0.5000, 0.5000, 0.5000, 0.5000, 0.5000

n = 20 4.3589 45 0.6268, 0.6268, 0.6268, 0.6268, 0.6268

n = 40 6.2450 66 0.7239, 0.7239, 0.7239, 0.7239, 0.7239

n = 80 8.8882 97 0.7977, 0.7977, 0.7977, 0.7977, 0.7977

A2 n = 5 24.5919 19 0.3300, 0.3297, 0.3297, 0.3297, 0.3297

n = 10 103.6157 15 0.1828, 0.1830, 0.1831, 0.1833, 0.1833

n = 20 423.2622 12 0.1144, 0.1143, 0.1143, 0.1142, 0.1142

n = 40 1709 11 0.0899, 0.0898, 0.0898, 0.0898, 0.0898

n = 80 6866 11 0.0802, 0.0802, 0.0802, 0.0802, 0.0802

A3 n = 5 1.6717 22 0.3821, 0.4820, 0.2895, 0.5704, 0.2764

n = 10 2.1663 30 0.6571, 0.3774, 0.6650, 0.4017, 0.6179

n = 20 2.7478 39 0.6728, 0.4971, 0.6540, 0.5713, 0.5520

n = 40 3.4611 50 0.6592, 0.6386, 0.6106, 0.7454, 0.6238

n = 80 4.3507 64 0.6700, 0.6671, 0.7421, 0.7494, 0.7440

Proof. By Theorem 4.1, we have for k = 1, 2, · · · ,

λk − λk ≤ αk(µ− µ). (4.11)

It follows from (4.10) and α ∈ (0, 1) that

log(αK) = K log(α) < log(α)

log

(

ε

µ− µ

)

log(α)
= log

(

ε

µ− µ

)

,

which yields αK < ε/(µ− µ). This, together with (4.11), implies

λK − λK ≤ αK(µ− µ) < ε.

This completes the proof. �

5. Numerical Experiments

To demonstrate the linear convergence for weakly positive tensors, we made numerical ex-

periments for the LZI algorithm [9] on some numerical examples with the stop rule ε = 10−8.

We consider the following three classes of nonnegative tensors of order m = 3 and dimension n:

A1 : A11ii = A1i11 = 1 for i = 2, 3, · · · , n, and zero elsewhere.

A2 : A2ijj = i+ j for i, j = 1, 2, · · · , n and i 6= j, and zero elsewhere.

A3 : A31nn = 1, A3i11 = 1 for i = 2, 3, · · · , n, A3nii = 1 for i = 1, 2, · · · , n− 1,

and zero elsewhere.

Note that A1 is irreducible, but not primitive and weakly positive. A2 is primitive and weakly

positive, but not essentially positive. A3 is primitive, but not weakly positive. We apply the

LZI algorithm to find the largest eigenvalues of A1, A2 and A3 with different dimensions. We
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summarize the numerical results in the following table, where No.Iter denotes the number of

iterations, Eig denotes the largest eigenvalue, and Ratio denotes the ratio of λk+1 − λk+1 to

λk − λk at the last 5 iterations.

From the last column of Table 1, we see that the LZI algorithm for A1 and A2 is linearly

convergent and it is not true for A3. This shows that the assumption that A is weakly positive

is a sufficient condition for the inequality (4.3), but may not be a necessary condition. There

may exist a weaker condition to guarantee the linear convergence of the LZI algorithm, but we

have not been able to identify it at this moment. We put this as an open question for further

study.
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