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SUMMARY

An iterative method for finding the largest eigenvalue of a nonnegative tensor was proposed by Ng, Qi,
and Zhou in 2009. In this paper, we establish an explicit linear convergence rate of the Ng–Qi–Zhou
method for essentially positive tensors. Numerical results are given to demonstrate linear convergence of
the Ng–Qi–Zhou algorithm for essentially positive tensors. Copyright © 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Consider an m-order n-dimensional tensor A consisting of nm entries in the real field <:

AD
 

ai1���im

�

, ai1���im 2 <, 1 6 i1, : : : , im 6 n.

An m-order n-dimensional tensor A is called nonnegative (or, respectively, positive) if ai1���im > 0

(or, respectively, ai1���im > 0). A tensorA is called reducible, if there exists a nonempty proper index

subset J � f1, 2, : : : ,ng such that

ai1���im D 0, 8i1 2 J , 8i2, : : : , im 62 J .

If A is not reducible, then we say that A is irreducible. This definition was used in [1–6]. In [7, 8],

this property is called indecomposable.

To an n-dimensional column vector x D .x1I x2I : : : I xn/, real or complex, and any complex

number ˛, we define n-dimensional column vectors Axm 1 and xŒ˛�:

Axm 1 WD

0

@

n
X

i2,:::,imD1

ai i2:::imxi2 : : : xim

1

A

16i6n

, xŒ˛� WD
 

x˛
i

�

16i6n
.

Let C be the complex field. A pair .�, x/ 2 C � .Cnnf0g/ is called an eigenvalue–eigenvector pair
of A, if they satisfy:

Axm 1 D �xŒm 1�. (1)

*Correspondence to: Liqun Qi, Department of Applied Mathematics, The Hong Kong Polytechnic University,
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This definition was introduced by Qi [9] when m is even and A is symmetric and extended to the

general case in [1]. Independently, Lim [10] gave such a definition but restricted x and � to be real.

Unlike matrices, the eigenvalue problem for tensors is nonlinear.

Recently, the largest eigenvalue problem for a nonnegative tensor has attracted much attention

because it has many important applications such as multilinear pagerank [11], hypergraphs [12],

higher-order Markov chains [4, 13], and positive definiteness of a multivariate form [3]. Chang,

Pearson, and Zhang [1] generalized the Perron–Frobenius theorem from nonnegative matrices

to irreducible nonnegative tensors. Yang and Yang [6] generalized the weak Perron–Frobenius

theorem to general nonnegative tensors. Bulò and Pelillo [12] gave new bounds on the clique num-

ber of graphs on the basis of spectral hypergraph theory. The calculation of these new bounds relies

on finding the largest eigenvalue of a f0, 1g nonnegative tensor. Ng, Qi, and Zhou [4] proposed an
iterative method for finding the largest eigenvalue of an irreducible nonnegative tensor, which is

an extension of the Collatz method [14] for calculating the spectral radius of an irreducible non-

negative matrix. Pearson [5] introduced the notion of essentially positive tensors and proved that

the unique positive eigenvalue is real geometrically simple when the tensor is essentially positive

with even order. Here, ‘real geometrically simple’ means that the corresponding real eigenvector is

unique up to a scaling constant. Liu, Zhou, and Ibrahim [3] modified the Ng–Qi–Zhou method such

that the modified algorithm is always convergent for finding the largest eigenvalue of an irreducible

nonnegative tensor. Chang, Pearson, and Zhang [2] introduced primitive tensors. An essentially pos-

itive tensor is a primitive tensor, and a primitive tensor is an irreducible nonnegative tensor but not

vice versa. Chang, Pearson, and Zhang [2] established convergence of the Ng–Qi–Zhou method for

primitive tensors. Friedland, Gaubert, and Han [7] pointed out that the Perron–Frobenius theorem

for nonnegative tensors has a very close link with the Perron–Frobenius theorem for homogeneous

monotone maps, initiated by Nussbaum [15] and further studied by Gaubert and Gunawardena [8].

Friendland, Gaubert, and Han [7] introduced weakly irreducible nonnegative tensors and established

the Perron–Frobenius theorem for them.

Denote <n
C D fx 2 <n W x > 0g and <n

CC D fx 2 <n W x > 0g. A map F W <n
C !<n

C is called

a homogeneous monotone map if F.tx/ D tF .x/ for any x 2 <n
C and any positive number t and

if F.x/ 6 F.y/ for any x,y 2 <n
C with x 6 y. For an m-order n-dimensional tensor A, define

F W <n
C ! <n

C by F.x/ D
 

Axm 1
�Œ 1

m 1 �
for any x 2 <n

C. Then F is a homogeneous monotone

map. Hence, in <C � <n
C, eigenvalues and eigenvectors of nonnegative tensors, discussed here,

fall in the class of eigenvalues and eigenvectors of homogeneous monotone maps. Eigenvalues and

eigenvectors of nonnegative tensors are defined in C�.Cnnf0g/. In Corollary 4.3 of [7], Friendland,
Gaubert, and Han showed how to extend the Perron–Frobenius result for a nonnegative tensor from

<C �<n
C to C� .Cnnf0g/.

In this paper, we establish an explicit linear convergence rate of the Ng–Qi–Zhou method for

essentially positive tensors. Such a result has not appeared in the literature of eigenvalues of

homogeneous monotone maps and nonnegative tensors.

This paper is organized as follows. In Section 2, we recall some preliminary results. In Section 3,

we rewrite the Ng–Qi–Zhou method in the spirit of the earlier work of Hall and Porsching [16, 17].

An explicit linear convergence rate of the Ng–Qi–Zhou method is established for essentially positive

tensors, with a specified starting point, in Section 4. Finally, in Section 5, we report some numerical

results.

Note that Chang, Pearson, and Zhang [2] showed that linear convergence rate did not hold for

some primitive but not essentially positive tensors for the Ng–Qi–Zhou method. This shows that our

result is sharp.

2. PRELIMINARIES

First, we state the Perron–Frobenius theorem for nonnegative tensors given in [1, Theorem 1.4]

and the minimax theorem for irreducible nonnegative tensors given in [1, Theorem 4.2]. These two

results, as we stated in the introduction, may be derived from the earlier results on homogeneous

monotone maps.

Copyright © 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2012; 19:830–841
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Theorem 2.1

If A is an irreducible nonnegative tensor of order m and dimension n, then there exist �0 > 0 and

x0 2 <n
CC such that

Axm 1
0 D �0x

Œm 1�
0 .

Moreover, if � is an eigenvalue with a nonnegative eigenvector, then � D �0. If � is an eigenvalue

of A, then j�j6 �0.

Theorem 2.2

Assume that A is an irreducible nonnegative tensor of order m and dimension n. Then

min
x2<n

CC

max
16i6n

 

Axm 1
�

i

xm 1
i

D �0 D max
x2<n

CC

min
16i6n

.Axm 1/i

xm 1
i

,

where �0 is the unique positive eigenvalue corresponding to a positive eigenvector.

On the basis of Theorem 2.2, the Ng–Qi–Zhou method presented in [4] works as follows. Choose

x.0/ 2 <n
CC and let y

.0/ DA
 

x.0/
�m 1

. For k D 0, 1, 2, : : : , compute

x.kC1/ D
 

y.k/
�Œ 1

m 1 �













 

y.k/
�Œ 1

m 1 �













, y.kC1/ DA

�

x.kC1/
�m 1

,

�kC1 D min
x

.kC1/

i
>0

 

y.kC1/
�

i
�

x
.kC1/
i

�m 1
, �kC1 D max

x
.kC1/

i
>0

 

y.kC1/
�

i
�

x
.kC1/
i

�m 1
. (2)

It is shown in [4] that the obtained sequences f�kg and f�kg converge to some numbers � and

�, respectively, and we have � 6 �0 6 �, where �0 is the largest eigenvalue of A, defined in

Theorem 2.1. If � D �, that is, the gap is zero, then both the sequences f�kg and f�kg converge to
�0. However, a positive gap may happen, which can be seen in an example given in [4]. That exam-

ple is irreducible but not primitive. Chang, Pearson, and Zhang [2] established convergence of the

Ng–Qi–Zhou method for primitive tensors and gave an example, which is primitive but not

essentially positive, such that linear convergence fails for this example with the Ng–Qi–Zhou

method.

We thus intend to establish an explicit linear convergence rate of the Ng–Qi–Zhou method for

essentially positive tensors. For this purpose, we need the following definition given in [5].

Definition 2.1

A nonnegative m-order n-dimensional tensor A is essentially positive if Axm 1 2 <n
CC for any

nonzero x 2 <n
C.

By Theorem 3.2 and Definition 2.1 in [5], it is easy to obtain the following result.

Proposition 2.1

A nonnegative m-order n-dimensional tensor A is essentially positive if and only if ai j :::j > 0 for

i , j 2 f1, 2, : : : ,ng.

For the remainder of this paper, denote

I D f.i2, : : : , im/ j i2, : : : , im 2 f1, : : : ,ngg .

Copyright © 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2012; 19:830–841

DOI: 10.1002/nla



LINEAR CONVERGENCE FOR FINDING THE LARGEST EIGENVALUE 833

3. ALGORITHM

We first give inclusion bounds for the largest eigenvalue of an irreducible nonnegative tensor. The

following lemma was given in [1, Lemma 2.2].

Lemma 3.1

If a nonnegative tensor A of order m and dimension n is irreducible, then

Ri WD
n
X

i2,:::,imD1

ai i2:::im > 0, i D 1, 2, : : : ,n.

On the basis of Theorem 2.2 and Lemma 3.1, we obtain the following inclusion bounds.

Proposition 3.1

Let A be an irreducible nonnegative tensor of order m and dimension n, and let �0 be the largest

eigenvalue of A. Then

min
16i6n

Mi 6 �0 6 max
16i6n

Mi ,

where

Mi D
1

Ri

n
X

i2,:::,imD1

ai i2:::imR
1

m 1

i2
� � �R

1
m 1

im
, i D 1, 2, : : : ,n.

Proof

Define an n-dimensional column vector R WD .Ri /16i6n, where Ri is defined in Lemma 3.1. By

Lemma 3.1, the vector RŒ 1
m 1 � 2 <n

CC. Taking x D RŒ 1
m 1 � into the equalities in Theorem 2.2, we

immediately get the lower and upper bounds. �

Let

RD max
16i6n

Ri , RD min
16i6n

Ri . (3)

For i D 1, 2, : : : ,n, we have

RD R

Ri

n
X

i2,:::,imD1

ai i2:::im 6 Mi 6
R

Ri

n
X

i2,:::,imD1

ai i2:::im DR.

This shows that the lower and upper bounds given in Proposition 3.1 are better than the bounds in

[6, Lemma 5.6].

On the basis of Proposition 3.1 and in the spirit of the earlier work of Hall and Porsching [16,17],

we rewrite the Ng–Qi–Zhou method as follows.

Algorithm 3.1

Step 0. Let A.0/ D A and S
.0/
i D

n
P

i2,:::,imD1

ai i2:::im for i D 1, : : : ,n. Let the accurate tolerance

" > 0 be a sufficiently small number and set k WD 0.

Step 1. Set

A
.kC1/ D

�

a
.kC1/
i1:::im

�

, S
.kC1/
i D

n
X

i2,:::,imD1

a
.kC1/
i i2:::im

Copyright © 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2012; 19:830–841

DOI: 10.1002/nla



834 L. ZHANG AND L. QI

for i D 1, : : : ,n, where

a
.kC1/
i i2:::im

D a
.k/
i i2:::im

�

S
.k/
i2

�
1

m 1 � � �
�

S
.k/
im

�
1

m 1

S
.k/
i

. (4)

Step 2. Let

�k D max
16i6n

S
.kC1/
i , �k D min

16i6n
S

.kC1/
i .

If �k  �k < ", stop. Output the maximal eigenvalue �0 D 1
2
.�k C �k/. Otherwise, set

k WD kC 1 and go to Step 1.

Algorithm 3.1 is well defined. By Lemma 3.1, for i D 1, : : : ,n, S
.0/
i DRi > 0 and there exists at

least one subindex array .i2, : : : , im/ 2 I such that ai i2:::im > 0. Hence, a
.1/
i i2:::im

> 0 and S
.1/
i > 0.

By induction, we have a
.k/
i i2:::im

> 0 and S
.k/
i > 0 for k D 2, 3, : : : .

We now prove that Algorithm 3.1 is actually the Ng–Qi–Zhou method with a specified starting

point.

Proposition 3.2

Let A be an irreducible nonnegative tensor of order m and dimension n. Then Algorithm 3.1 is just

the Ng–Qi–Zhou method with the starting point x.0/ D .1I 1I : : : I 1/ 2 <n.

Proof

For k D 0, 1, : : :, define an n-dimensional column vector

x.k/ WD

0

@

k
Y

jD0

S
.j /
i

1

A

16i6n

.

Because A is irreducible, by Lemma 3.1, x.k/ 2 <n
CC for k D 0, 1, : : :. Set

y.k/ WD
 

x.k/
�Œ 1

m 1 �













 

x.k/
�Œ 1

m 1 �













, k D 0, 1, : : : . (5)

By the definition of A.k/ in Step 1, we obtain for 1 6 i 6 n,

�

A
 

y.k/
�m 1

�

i
�

y
.k/
i

�m 1
D 1

x
.k/
i

n
X

i2,:::,imD1

ai i2:::im

�

x
.k/
i2

�
1

m 1 � � �
�

x
.k/
im

�
1

m 1

D
n
X

i2,:::,imD1

a
.1/
i i2:::im

�

Qk
jD1 S

.j /
i2

�
1

m 1 � � �
�

Qk
jD1 S

.j /
im

�
1

m 1

Qk
jD1 S

.j /
i

D � � � D
n
X

i2,:::,imD1

a
.k/
i i2:::im

�

S
.k/
i2

�
1

m 1 � � �
�

S
.k/
im

�
1

m 1

S
.k/
i

D S
.kC1/
i , (6)

which concludes that �k is just �kC1 in (2) for k D 0, 1, 2, : : :. This also holds for the sequence

f�kg. Hence, we conclude the statement of this proposition. �

Copyright © 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2012; 19:830–841
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Numerical results reported in [3,4] imply that Algorithm 3.1 is efficient. In particular, Liu, Zhou,

and Ibrahim [3] applied a modification of Algorithm 3.1 to study the positive definiteness of a

multivariate form. Testing positive definiteness of a multivariate form is an important problem in

the stability study of nonlinear autonomous systems via Lyapunov’s direct method in automatic

control. Researchers in automatic control studied the conditions of such positive definiteness inten-

sively [9]. For n > 3 and m > 4, this problem is a hard problem in mathematics. There are only a

few methods to answer the question, and these methods are computationally expensive when n > 3

[3]. Numerical results in [3] show the method of using the largest eigenvalue of nonnegative tensors

is effective in some cases.

4. LINEAR CONVERGENCE

By Proposition 3.2, it suffices to establish an explicit linear convergence rate of Algorithm 3.1 in the

case of essentially positive tensors. By some straightforward computations, we immediately obtain

the following two propositions.

Proposition 4.1

For k D 0, 1, 2, : : : ,

S
.kC1/
i D

n
X

i2,:::,imD1

a
.k/
i i2:::im

�

S
.k/
i2

�
1

m 1 � � �
�

S
.k/
im

�
1

m 1

S
.k/
i

, i D 1, 2, : : : ,n.

Proof

For i D 1, 2, : : : ,n, by (4), we have

S
.kC1/
i D

n
X

i2,:::,imD1

a
.kC1/
i i2:::im

D
n
X

i2,:::,imD1

a
.k/
i i2:::im

�

S
.k/
i2

�
1

m 1 � � �
�

S
.k/
im

�
1

m 1

S
.k/
i

.

�

Proposition 4.2

For k D 0, 1, 2, : : : ,

a
.k/
i i:::i D ai i :::i , i D 1, 2, : : : ,n.

a
.k/
i j :::j a

.k/
j i:::i D ai j :::j aj i:::i , i , j 2 f1, 2, : : : ,ng.

Proof

For i D 1, 2, : : : ,n, it follows from (4) that

a
.k/
i i:::i D a

.k 1/
i i:::i

�

S
.k 1/
i

�
1

m 1 � � �
�

S
.k 1/
i

�
1

m 1

S
.k 1/
i

D a
.k 1/
i i:::i D � � � D ai i :::i .

For i , j 2 f1, 2, : : : ,ng, according to (4), by a direct computation,

a
.k/
i j :::j a

.k/
j i:::i D a

.k 1/
i j :::j

S
.k 1/
j

S
.k 1/
i

a
.k 1/
j i:::i

S
.k 1/
i

S
.k 1/
j

D a
.k 1/
i j :::j a

.k 1/
j i:::i D � � � D ai j :::j aj i:::i .

�

Copyright © 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2012; 19:830–841
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LetA be an irreducible nonnegative tensor of orderm dimension n. By Theorem 2.1, there exists a

positive eigenvalue ofA, which is the largest in modulus among all the eigenvalues ofA. Algorithm

3.1 yields two sequences of lower and upper bounds for this largest eigenvalue.

Theorem 4.1

Let A be an irreducible nonnegative tensor of order m and dimension n and �0 be its largest

eigenvalue. Assume that f�kg and f�kg are two sequences generated by Algorithm 3.1. Then

R 6 �0 6 �1 6 � � �6 �k 6 � � �6 �0 6 � � �6 �k 6 � � �6 �1 6 �0 6 R.

Proof

For k D 0, 1, : : :, let y.k/ be defined by (5). Taking the vector y.k/ into the two equalities in

Theorem 2.2, we obtain from (6),

�k D min
16i6n

S
.kC1/
i 6 �0 6 max

16i6n
S

.kC1/
i D �k , k D 0, 1, : : : .

We now prove for any k > 0,

�k 6 �kC1 and �kC1 6 �k .

We assume, without loss of generality, that �kC1 D S
.kC2/
p and �kC1 D S

.kC2/
q where p, q 2

f1, 2, : : : ,ng. We have by Proposition 4.1,

�kC1 D S .kC2/
p

D 1

S
.kC1/
p

n
X

i2,:::,imD1

a
.kC1/
pi2:::im

�

S
.kC1/
i2

�
1

m 1 � � �
�

S
.kC1/
im

�
1

m 1

> min
16i6n

S
.kC1/
i

D �k .

Similarly, we can prove that �kC1 6 �k . This, together with (3), completes our proof. �

Theorem 4.1 indicates that f�kg and f�kg converge, and the sequences f�k  �kg is nonnega-
tive and monotonically decreasing. Hence, f�k  �kg has a limit. We now show that in the case of
essentially positive tensors, f�k  �kg linearly converges to zero with an explicit convergence rate.
This establishes an explicit linear converge rate of the Ng–Qi–Zhou method for essentially positive

tensors.

Theorem 4.2

Let A be a nonnegative tensor of order m and dimension n. If A is essentially positive, then

�k  �k 6 ˛
�

�k 1  �k 1

�

, k D 1, 2, : : : , (7)

where

˛ WD 1 ˇ

R
2 .0, 1/, (8)

ˇ WD min
i ,j2f1,2,:::,ng

ai j :::j ,

RD max
16i6n

Ri

Copyright © 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2012; 19:830–841
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and

Ri D
n
X

i2,:::,imD1

ai i2:::im .

Proof

By Proposition 2.1, the nonnegative tensor A is irreducible.

Without loss of generality, assume that �k D S
.kC1/
p and �k D S

.kC1/
q . Then by Proposition 4.1,

we have

�k  �k D S .kC1/
p  S .kC1/

q

D
n
X

i2,:::,imD1

 

a
.k/
pi2:::im

S
.k/
p

 
a

.k/
qi2:::im

S
.k/
q

!

�

S
.k/
i2

�
1

m 1 � � �
�

S
.k/
im

�
1

m 1

. (9)

Define

I.k/D
(

.i2, : : : , im/ 2 I

ˇ

ˇ

ˇ

ˇ

ˇ

a
.k/
pi2:::im

S
.k/
p

>
a

.k/
qi2:::im

S
.k/
q

)

.

By the definition of S
.k/
i , for i D 1, � � � ,n, we have

1D
X

.i2,:::,im/2I.k/

a
.k/
i i2:::im

S
.k/
i

C
X

.i2,:::,im/2InI.k/

a
.k/
i i2:::im

S
.k/
i

.

Letting i D p and q and combining these two equalities, we have

X

.i2,:::,im/2I.k/

 

a
.k/
pi2:::im

S
.k/
p

 
a

.k/
qi2:::im

S
.k/
q

!

D 
X

.i2,:::,im/2InI.k/

 

a
.k/
pi2:::im

S
.k/
p

 
a

.k/
qi2:::im

S
.k/
q

!

. (10)

Combining (9), (10), and the definitions of �k 1 and �k 1, by Theorem 4.1, we obtain

�k  �k D
X

.i2,:::,im/2I.k/

 

a
.k/
pi2:::im

S
.k/
p

 
a

.k/
qi2:::im

S
.k/
q

!

�

S
.k/
i2

�
1

m 1 � � �
�

S
.k/
im

�
1

m 1

C
X

.i2,:::,im/2InI.k/

 

a
.k/
pi2:::im

S
.k/
p

 
a

.k/
qi2:::im

S
.k/
q

!

�

S
.k/
i2

�
1

m 1 � � �
�

S
.k/
im

�
1

m 1

6 �k 1

X

.i2,:::,im/2I.k/

 

a
.k/
pi2:::im

S
.k/
p

 
a

.k/
qi2:::im

S
.k/
q

!

C �k 1

X

.i2,:::,im/2InI.k/

 

a
.k/
pi2:::im

S
.k/
p

 
a

.k/
qi2:::im

S
.k/
q

!

D
�

�k 1  �k 1

�

X

.i2,:::,im/2I.k/

 

a
.k/
pi2:::im

S
.k/
p

 
a

.k/
qi2:::im

S
.k/
q

!

D
�

�k 1  �k 1

�

0

@1 

0

@

X

.i2,:::,im/2InI.k/

a
.k/
pi2:::im

S
.k/
p

C
X

.i2,:::,im/2I.k/

a
.k/
qi2:::im

S
.k/
q

1

A

1

A

6

�

�k 1  �k 1

�

�

1 �1 C�2

�k 1

�

6

�

�k 1  �k 1

�

�

1 �1 C�2

R

�

, (11)
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where

�1 D
X

.i2,:::,im/2InI.k/

a
.k/
pi2:::im

, �2 D
X

.i2,:::,im/2I.k/

a
.k/
qi2:::im

.

Because A is essentially positive, we have from Proposition 2.1,

ai j :::j > 0, i , j 2 f1, 2, : : : ,ng. (12)

Because A is irreducible, from (3) and (12), we have

0 < ˇ < R, (13)

where ˇ is defined in the statement of the theorem.We now consider the subindex array .p, : : : ,p/ 2
I . If .p, : : : ,p/ 2 InI.k/, then the summation�1 must include a

.k/
p p:::p . If .p, : : : ,p/ 2 I.k/, there

are two possibilities:

(1) .q, : : : , q/ 2 I.k/. In this case, the summation �2 must include a
.k/
q q:::q .

(2) .q, : : : , q/ 2 InI.k/. In this case, the summation �1 must include a
.k/
p q:::q , and the summation

�2 must include a
.k/
q p:::p .

From the discussion, by Proposition 4.2, we can obtain

�1 C�2 >min
n

a.k/
p p:::p , a.k/

q q:::q , a.k/
p q:::q C a.k/

q p:::p

o

>min
˚

ap p:::p , aq q:::q , 2
p

ap q:::q aq p:::p

	

> ˇ. (14)

Take

˛ WD 1 ˇ

R
.

Then 0 < ˛ < 1 follows from (13). Combining (11) and (14), we obtain (7) for k D 1, 2, : : : . �

Theorem 4.2 achieved the target of this paper, namely, to establish an explicit linear convergence

rate of the Ng–Qi–Zhou method for essentially positive tensors.

In the following corollary, we give an explicit asymptotic estimate on the number of iterations.

Corollary 4.1

Let ˛ and R,R be defined by (8) and (3), respectively. Let " > 0 be the sufficiently small number

given in Algorithm 3.1. If A is essentially positive, then Algorithm 3.1 terminates in at most

K D

2

6

6

6

log
�

"

R R

�

log.˛/

3

7

7

7

C 1 (15)

iterations with

�K  �K < ".

Proof

By (7) in Theorem 4.2, we have for k D 1, 2, : : : ,

�k  �k 6 ˛k.R R/. (16)

It follows from (15) and ˛ 2 .0, 1/ that

log.˛K/DK log.˛/ < log.˛/
log

�

"

R R

�

log.˛/
D log

�

"

R R

�

,
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which yields

˛K <
"

R R
.

This, together with (16), implies

�K  �K 6 ˛K.R R/ < ".

This completes the proof. �

5. NUMERICAL EXPERIMENTS

To demonstrate the linear convergence of the Ng–Qi–Zhou algorithm (Algorithm 3.1 ) for essen-

tially positive tensors, we made numerical experiments on some numerical examples with the stop

rule "D 10 8.

We consider the following five classes of nonnegative tensors of order mD 3 and dimension n.

A1 W A1ijj D i � j for i , j D 1, 2, : : : ,n, and zero elsewhere.

A2 W A2ijj D
1

i
for i , j D 1, 2, : : : ,n, and zero elsewhere.

A3 W A3ijj D
i

j
for i , j D 1, 2, : : : ,n, and zero elsewhere.

Table I. Numerical results for Algorithm 3.1

Tensor Dimension Eig No. Iter Ratio (Max, Min) Ratio

A1 5 55 6 0.00179, 0.00179, 0.00179 (0.00461, 0.00179)
30 9455 4 0.0001, 0.0001, 0.0001 (0.0015, 0.0001)
60 73810 3 0.136e 4, 0.136e 4, 0.136e 4 (3.671e 4, 0.136e 4)

A2 5 2.2833 17 0.3046, 0.3046, 0.3046 (0.3327, 0.2736)
30 3.9950 14 0.2002, 0.2002, 0.2002 (0.2448, 0.0806)
60 4.6799 13 0.1761, 0.1761, 0.1761 (0.2246, 0.0466)

A3 5 5.0000 12 0.1667, 0.1667, 0.1667 (0.1780, 0.1472)
30 30.0000 7 0.0323, 0.0323, 0.0323 (0.0514, 0.0323)
60 60.0000 7 0.0164, 0.0164, 0.0164 (0.0381, 0.0164)

A4 5 3.2143 21 0.3792, 0.3796, 0.3800 (0.5635, 0.3333)
30 19.3565 18 0.2900, 0.2588, 0.2858 (0.4823, 0.1301)
60 38.4843 19 0.2998, 0.3016, 0.3003 (0.4471, 0.1877)
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0
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Figure 1. The curves of ratio for A1.
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A4 W A41jj D 1 for j D 2, : : : ,n, A4ijj D 1 for i D 2, : : : ,n,

j D 1, : : : ,n i C 1, and zero elsewhere.

A5 W A5122 D 4, A5211 D 1, and zero elsewhere.

Note that A1, A2, and A3 are all essentially positive. A4 is primitive but not essentially positive.

A5 is irreducible but not primitive and not essentially positive. We apply Algorithm 3.1 to find the
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Figure 2. The curves of ratio for A2.
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Figure 3. The curves of ratio for A3.
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Figure 4. The curves of ratio for A4.
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largest eigenvalues of all the five tensors with different dimensions n D 5, 30, 60. We summarize

the numerical results in the following table, where No.Iter denotes the number of iterations, Eig

denotes the largest eigenvalue, and Ratio denotes the ratio of �kC1  �kC1 to �k  �k at the last

three iterations, (Max, Min) Ratio denotes the maximum ratio and the minimum ratio. We also draw

the curve of the convergence ratio to describe the linear convergence in the following figures.

For tensor A5, the Ng–Qi–Zhou algorithm is divergent. From Table I and Figures 1–3, we see

that the Ng–Qi–Zhou algorithm is linearly convergent for tensors A1, A2, and A3. From Table I

and Figure 4, we see that the Ng–Qi–Zhou algorithm is also convergent for A4, but it is not linearly

convergent. This echoes the results in [2]. Hence, numerical examples show that the Ng–Qi–Zhou

algorithm is linearly convergent for essentially positive tensors, and this result is sharp.
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